Compare commits

...

4 commits

Author SHA1 Message Date
32fa9a5afb scola output tile 2025-03-17 11:39:46 +01:00
de414576b8 scola output 2025-03-17 11:39:10 +01:00
f52a6e3957 value error unknown mode 2025-03-17 11:39:06 +01:00
72ce9a3b99 added analysis 2025-03-17 11:38:59 +01:00
6 changed files with 455 additions and 4 deletions

0
analysis/__init__.py Normal file
View file

335
analysis/power_spectrum.py Normal file
View file

@ -0,0 +1,335 @@
import numpy as np
kmin = 1e-1
kmax = 2e0
Nk = 50
AliasingCorr=False
def get_power_spectrum(field, kmin=kmin, kmax=kmax, Nk=Nk):
from pysbmy.power import PowerSpectrum
from pysbmy.fft import FourierGrid
from pysbmy.correlations import get_autocorrelation
G = FourierGrid(
field.L0,
field.L1,
field.L2,
field.N0,
field.N1,
field.N2,
k_modes=np.concat([PowerSpectrum(field.L0,field.L1,field.L2,field.N0,field.N1,field.N2,).FourierGrid.k_modes[:10],np.logspace(
np.log10(kmin),
np.log10(kmax),
Nk,
)]),
kmax=kmax,
)
k = G.k_modes[1:]
Pk, _ = get_autocorrelation(field, G, AliasingCorr)
Pk = Pk[1:]
return k, Pk
def get_cross_correlations(field_A, field_B, kmin=kmin, kmax=kmax, Nk=Nk):
from pysbmy.power import PowerSpectrum
from pysbmy.fft import FourierGrid
from pysbmy.correlations import get_crosscorrelation
G = FourierGrid(
field_A.L0,
field_A.L1,
field_A.L2,
field_A.N0,
field_A.N1,
field_A.N2,
k_modes=np.concat([PowerSpectrum(field_A.L0,field_A.L1,field_A.L2,field_A.N0,field_A.N1,field_A.N2,).FourierGrid.k_modes[:10],np.logspace(
np.log10(kmin),
np.log10(kmax),
Nk,
)]),
kmax=kmax,
)
k = G.k_modes[1:]
_, _, Rks, _ = get_crosscorrelation(field_A, field_B, G, AliasingCorr)
Rks = Rks[1:]
return k, Rks
def add_power_spectrum_to_plot(ax, field, Pk_ref=None, plot_args={}, power_args={}):
k, Pk = get_power_spectrum(field, **power_args)
if Pk_ref is not None:
ax.plot(k, Pk/Pk_ref-1, **plot_args)
else:
ax.plot(k, Pk, **plot_args)
return ax
def add_cross_correlations_to_plot(ax, field_A, field_B, plot_args={}, power_args={}):
k, Rks = get_cross_correlations(field_A, field_B, **power_args)
ax.plot(k, Rks, **plot_args)
return ax
def plot_power_spectra(filenames,
labels=None,
colors=None,
linestyles=None,
markers=None,
Pk_ref=None,
ylims=[0.9,1.1],
yticks = np.linspace(0.9,1.1,11),
bound1=0.01,
bound2=0.02,
kmin=kmin,
kmax=kmax,
Nk=Nk,
figsize=(8,4),
dpi=300,
ax=None,
fig=None,):
import matplotlib.pyplot as plt
from pysbmy.field import read_field
if fig is None or ax is None:
fig, ax = plt.subplots(figsize=figsize, dpi=dpi)
if labels is None:
labels = [None for f in filenames]
if colors is None:
colors = [None for f in filenames]
if linestyles is None:
linestyles = [None for f in filenames]
if markers is None:
markers = [None for f in filenames]
for i, filename in enumerate(filenames):
field = read_field(filename)
add_power_spectrum_to_plot(ax=ax,
field=field,
Pk_ref=Pk_ref,
plot_args=dict(label=labels[i],
color=colors[i],
linestyle=linestyles[i],
marker=markers[i],),
power_args=dict(kmin=kmin,
kmax=kmax,
Nk=Nk),
)
ax.set_xscale('log')
ax.set_xlim(kmin, kmax)
if ylims is not None:
ax.set_ylim(ylims)
if yticks is not None:
ax.set_yticks(yticks)
ax.set_xlabel(r'$k$ [$h/\mathrm{Mpc}$]')
if Pk_ref is not None:
ax.set_ylabel(r'$P(k)/P_\mathrm{ref}(k)-1$')
else:
ax.set_ylabel('$P(k)$')
if bound1 is not None:
ax.axhspan(1 - bound1, 1 + bound1, color="grey", alpha=0.2)
if bound2 is not None:
ax.axhspan(1 - bound2, 1 + bound2, color="grey", alpha=0.1)
ax.grid(which="major",alpha=0.5)
ax.grid(which="minor",alpha=0.2)
return fig, ax
def plot_cross_correlations(filenames_A,
filename_B,
labels=None,
colors=None,
linestyles=None,
markers=None,
ylims=[0.99, 1.001],
yticks = np.linspace(0.99,1.001,12),
bound1=0.001,
bound2=0.002,
kmin=kmin,
kmax=kmax,
Nk=Nk,
figsize=(8,4),
dpi=300,
ax=None,
fig=None,):
import matplotlib.pyplot as plt
from pysbmy.field import read_field
if fig is None or ax is None:
fig, ax = plt.subplots(figsize=figsize, dpi=dpi)
if labels is None:
labels = [None for f in filenames_A]
if colors is None:
colors = [None for f in filenames_A]
if linestyles is None:
linestyles = [None for f in filenames_A]
if markers is None:
markers = [None for f in filenames_A]
field_B = read_field(filename_B)
for i, filename_A in enumerate(filenames_A):
field_A = read_field(filename_A)
add_cross_correlations_to_plot(ax=ax,
field_A=field_A,
field_B=field_B,
plot_args=dict(label=labels[i],
color=colors[i],
linestyle=linestyles[i],
marker=markers[i],),
power_args=dict(kmin=kmin,
kmax=kmax,
Nk=Nk),
)
ax.set_xscale('log')
ax.set_xlim(kmin, kmax)
if ylims is not None:
ax.set_ylim(ylims)
if yticks is not None:
ax.set_yticks(yticks)
ax.set_xlabel(r'$k$ [$h/\mathrm{Mpc}$]')
ax.set_ylabel('$R(k)$')
if bound1 is not None:
ax.axhspan(1 - bound1, 1 + bound1, color="grey", alpha=0.2)
if bound2 is not None:
ax.axhspan(1 - bound2, 1 + bound2, color="grey", alpha=0.1)
ax.grid(which="major",alpha=0.5)
ax.grid(which="minor",alpha=0.2)
return fig, ax
if __name__ == "__main__":
from argparse import ArgumentParser
parser = ArgumentParser(description='Plot power spectra of fields')
parser.add_argument('-ps', '--power_spectrum', action='store_true', help='Plot power spectra.')
parser.add_argument('-cc', '--cross_correlation', action='store_true', help='Plot cross correlations.')
parser.add_argument('-d', '--directory', type=str, required=True, help='Directory containing the fields files.')
parser.add_argument('-ref', '--reference', type=str, default=None, help='Reference field file.')
parser.add_argument('-f', '--filenames', type=str, nargs='+', required=True, help='Field files to be plotted.')
parser.add_argument('-o', '--output', type=str, default=None, help='Output plot file name.')
parser.add_argument('-l', '--labels', type=str, nargs='+', default=None, help='Labels for each field.')
parser.add_argument('-c', '--colors', type=str, nargs='+', default=None, help='Colors for each field.')
parser.add_argument('-ls', '--linestyles', type=str, nargs='+', default=None, help='Linestyles for each field.')
parser.add_argument('-m', '--markers', type=str, nargs='+', default=None, help='Markers for each field.')
parser.add_argument('-t','--title', type=str, default=None, help='Title of the plot.')
args = parser.parse_args()
if not args.power_spectrum and not args.cross_correlation:
print('You must choose between power_spectrum and cross_correlation.')
exit()
if args.reference is not None:
from pysbmy.field import read_field
Pk_ref = get_power_spectrum(read_field(args.directory+args.reference), kmin=kmin, kmax=kmax, Nk=Nk)[1]
else:
Pk_ref = None
filenames = [args.directory+f for f in args.filenames]
if args.power_spectrum and args.cross_correlation:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 1, figsize=(8,8))
plot_power_spectra(filenames=filenames,
labels=args.labels,
colors=args.colors,
linestyles=args.linestyles,
markers=args.markers,
Pk_ref=Pk_ref,
# ylims=[0.9,1.1],
# yticks = np.linspace(0.9,1.1,11),
# bound1=0.01,
# bound2=0.02,
ylims=None,
yticks = None,
bound1=None,
bound2=None,
kmin=kmin,
kmax=kmax,
Nk=Nk,
ax=axes[0],
fig=fig)
plot_cross_correlations(filenames_A=filenames,
filename_B=args.directory+args.reference,
labels=args.labels,
colors=args.colors,
linestyles=args.linestyles,
markers=args.markers,
# ylims=[0.99, 1.001],
# yticks = np.linspace(0.99,1.001,12),
# bound1=0.001,
# bound2=0.002,
ylims=None,
yticks = None,
bound1=None,
bound2=None,
kmin=kmin,
kmax=kmax,
Nk=Nk,
ax=axes[1],
fig=fig)
axes[1].legend(loc='lower left')
axes[0].set_title("Power Spectrum")
axes[1].set_title("Cross Correlations")
if args.title is not None:
fig.suptitle(args.title)
elif args.power_spectrum:
fig, ax = plot_power_spectra(filenames=filenames,
labels=args.labels,
colors=args.colors,
linestyles=args.linestyles,
markers=args.markers,
Pk_ref=Pk_ref,
ylims=[0.9,1.1],
yticks = np.linspace(0.9,1.1,11),
bound1=0.01,
bound2=0.02,
kmin=kmin,
kmax=kmax,
Nk=Nk)
ax.legend()
if args.title is not None:
ax.set_title(args.title)
elif args.cross_correlation:
fig, ax = plot_cross_correlations(filenames_A=filenames,
filename_B=args.reference,
labels=args.labels,
colors=args.colors,
linestyles=args.linestyles,
markers=args.markers,
ylims=[0.99, 1.001],
yticks = np.linspace(0.99,1.001,12),
bound1=0.001,
bound2=0.002,
kmin=kmin,
kmax=kmax,
Nk=Nk)
ax.legend(loc='lower left')
if args.title is not None:
ax.set_title(args.title)
if args.output is not None:
fig.savefig(args.output)
else:
fig.savefig(args.directory+'power_spectrum.png')

114
analysis/slices.py Normal file
View file

@ -0,0 +1,114 @@
import numpy as np
fs = 18
fs_titles = fs -4
def plot_imshow_with_reference( data_list,
reference,
titles,
vmin=None,
vmax=None,
cmap='viridis'):
"""
Plot the imshow of a list of 2D arrays with two rows: one for the data itself,
one for the data compared to a reference. Each row will have a common colorbar.
Parameters:
- data_list: list of 2D arrays to be plotted
- reference: 2D array to be used as reference for comparison
- titles: list of titles for each subplot
- cmap: colormap to be used for plotting
"""
import matplotlib.pyplot as plt
if titles is None:
titles = [None for f in data_list]
def score(data, reference):
return np.linalg.norm(data-reference)/np.linalg.norm(reference)
n = len(data_list)
fig, axes = plt.subplots(2, n, figsize=(5 * n, 10))
if vmin is None or vmax is None:
vmin = min(np.quantile(data,0.01) for data in data_list)
vmax = max(np.quantile(data,0.99) for data in data_list)
vmin_diff = min(np.quantile((data-reference),0.01) for data in data_list)
vmax_diff = max(np.quantile((data-reference),0.99) for data in data_list)
else:
vmin_diff = vmin
vmax_diff = vmax
# Plot the data itself
for i, data in enumerate(data_list):
im = axes[0, i].imshow(data, cmap=cmap, origin='lower', vmin=vmin, vmax=vmax)
axes[0, i].set_title(titles[i], fontsize=fs_titles)
fig.colorbar(im, ax=axes[0, :], orientation='vertical')
# Plot the data compared to the reference
for i, data in enumerate(data_list):
im = axes[1, i].imshow(data - reference, cmap=cmap, origin='lower', vmin=vmin_diff, vmax=vmax_diff)
axes[1, i].set_title(f'{titles[i]} - Reference', fontsize=fs_titles)
fig.colorbar(im, ax=axes[1, :], orientation='vertical')
# Add the score on the plots
for i, data in enumerate(data_list):
axes[1, i].text(0.5, 0.9, f"Score: {score(data, reference):.2e}", fontsize=10, transform=axes[1, i].transAxes, color='white')
# plt.tight_layout()
return fig, axes
if __name__ == "__main__":
from argparse import ArgumentParser
parser = ArgumentParser(description='Comparisons of fields slices.')
parser.add_argument('-a','--axis', type=int, default=0, help='Axis along which the slices will be taken.')
parser.add_argument('-i','--index', type=int, default=None, help='Index of the slice along the axis.')
parser.add_argument('-d', '--directory', type=str, required=True, help='Directory containing the fields files.')
parser.add_argument('-ref', '--reference', type=str, default=None, help='Reference field file.')
parser.add_argument('-f', '--filenames', type=str, nargs='+', required=True, help='Field files to be plotted.')
parser.add_argument('-o', '--output', type=str, default=None, help='Output plot file name.')
parser.add_argument('-l', '--labels', type=str, nargs='+', default=None, help='Labels for each field.')
parser.add_argument('-c', '--cmap', type=str, default='viridis', help='Colormap to be used for plotting.')
parser.add_argument('-vmin', type=float, default=None, help='Minimum value for the colorbar.')
parser.add_argument('-vmax', type=float, default=None, help='Maximum value for the colorbar.')
parser.add_argument('-t', '--title', type=str, default=None, help='Title for the plot.')
parser.add_argument('-log','--log_scale', action='store_true', help='Use log scale for the data.')
args = parser.parse_args()
from pysbmy.field import read_field
ref_field = read_field(args.directory+args.reference)
fields = [read_field(args.directory+f) for f in args.filenames]
if args.index is None:
index = ref_field.N0//2
else:
index=args.index
match args.axis:
case 0 | 'x':
reference = ref_field.data[index,:,:]
fields = [f.data[index,:,:] for f in fields]
case 1 | 'y':
reference = ref_field.data[:,index,:]
fields = [f.data[:,index,:] for f in fields]
case 2 | 'z':
reference = ref_field.data[:,:,index]
fields = [f.data[:,:,index] for f in fields]
case _:
raise ValueError(f"Wrong axis provided : {args.axis}")
if args.log_scale:
reference = np.log10(2.+reference)
fields = [np.log10(2.+f) for f in fields]
fig, axes = plot_imshow_with_reference(fields,reference,args.labels, vmin=args.vmin, vmax=args.vmax,cmap=args.cmap)
fig.suptitle(args.title)
if args.output is not None:
fig.savefig(args.output)
else:
fig.savefig(args.directory+'slices.png')

View file

@ -190,7 +190,9 @@ def main(parsed_args):
print_message("Running allsCOLA finished.", 1, "control", verbose=parsed_args.verbose)
case _:
raise ValueError(f"Unknown mode: {main_dict['mode']}")
print_ending_module("control", verbose=parsed_args.verbose)

View file

@ -192,7 +192,7 @@ def parse_arguments_card(parsed_args):
if card_dict["OutputFinalDensity"] is None:
card_dict["OutputFinalDensity"] = main_dict["resultdir"]+ligthcone_prefix+"final_density_"+main_dict["simname"]+".h5"
if card_dict["OutputTilesBase"] is None:
card_dict["OutputTilesBase"] = main_dict["workdir"]+"sCOLA_tile"
card_dict["OutputTilesBase"] = main_dict["workdir"]+main_dict["simname"]+"_tile"
if card_dict["OutputLPTPotential1"] is None:
card_dict["OutputLPTPotential1"] = main_dict["workdir"]+"initial_conditions_DM_phi.h5"
if card_dict["OutputLPTPotential2"] is None:

View file

@ -52,7 +52,7 @@ def main_scola(parsed_args):
if have_no_tiles(parsed_args) or parsed_args.force:
## Submit all boxes
print_message("Submitting all boxes.", 2, "scola", verbose=parsed_args.verbose)
slurm_script = slurm_dict["scripts"]+"scola.sh"
slurm_script = slurm_dict["scripts"]+"scola_"+main_dict["simname"]+".sh"
if not isfile(slurm_script) or parsed_args.force:
print_message(f"SLURM script {slurm_script} does not exist (or forced). Creating it.", 2, "scola", verbose=parsed_args.verbose)
@ -85,7 +85,7 @@ def main_scola(parsed_args):
print_message(f"Submitting missing boxes: {missing_tiles_arrays}.", 2, "scola", verbose=parsed_args.verbose)
for missing_tiles in missing_tiles_arrays:
slurm_script = slurm_dict["scripts"]+"scola_"+str(missing_tiles[0])+"_"+str(missing_tiles[-1])+".sh"
slurm_script = slurm_dict["scripts"]+"scola_"+main_dict["simname"]+"_"+str(missing_tiles[0])+"_"+str(missing_tiles[-1])+".sh"
if not isfile(slurm_script):
print_message(f"SLURM script {slurm_script} does not exist. Creating it.", 2, "scola", verbose=parsed_args.verbose)