Compare commits

...
Sign in to create a new pull request.

6 commits

5 changed files with 138 additions and 31 deletions

View file

@ -1,7 +1,7 @@
import numpy as np
import os
kmin = 1e-1
nfirst_kmodes = 10
kmax = 2e0
Nk = 50
AliasingCorr=False
@ -24,12 +24,17 @@ def crop_field(field, Ncrop):
field.L2 = field.N2*d2
def get_power_spectrum(field, kmin=kmin, kmax=kmax, Nk=Nk, G=None):
def get_power_spectrum(field, nfirst_kmodes=nfirst_kmodes, kmax=kmax, Nk=Nk, G=None):
from pysbmy.power import PowerSpectrum
from pysbmy.fft import FourierGrid
from pysbmy.correlations import get_autocorrelation
if G is None:
default_k_modes = PowerSpectrum(field.L0,field.L1,field.L2,int(field.N0),int(field.N1),int(field.N2),).FourierGrid.k_modes
if kmax is None:
kmax = default_k_modes[-1]
if kmax > default_k_modes[-1]:
raise ValueError(f"kmax ({kmax}) is larger than the maximum k mode available in the field ({default_k_modes[-1]}).")
G = FourierGrid(
field.L0,
field.L1,
@ -37,8 +42,8 @@ def get_power_spectrum(field, kmin=kmin, kmax=kmax, Nk=Nk, G=None):
int(field.N0),
int(field.N1),
int(field.N2),
k_modes=np.concat([PowerSpectrum(field.L0,field.L1,field.L2,int(field.N0),int(field.N1),int(field.N2),).FourierGrid.k_modes[:10],np.logspace(
np.log10(kmin),
k_modes=np.concat([default_k_modes[:nfirst_kmodes],np.logspace(
np.log10(default_k_modes[nfirst_kmodes]),
np.log10(kmax),
Nk,
)]),
@ -51,13 +56,18 @@ def get_power_spectrum(field, kmin=kmin, kmax=kmax, Nk=Nk, G=None):
return G, k, Pk
def get_cross_correlations(field_A, field_B, kmin=kmin, kmax=kmax, Nk=Nk, G=None):
def get_cross_correlations(field_A, field_B, nfirst_kmodes=nfirst_kmodes, kmax=kmax, Nk=Nk, G=None):
from pysbmy.power import PowerSpectrum
from pysbmy.fft import FourierGrid
from pysbmy.correlations import get_crosscorrelation
if G is None:
default_k_modes = PowerSpectrum(field_A.L0,field_A.L1,field_A.L2,int(field_A.N0),int(field_A.N1),int(field_A.N2),).FourierGrid.k_modes
if kmax is None:
kmax = default_k_modes[-1]
if kmax > default_k_modes[-1]:
raise ValueError(f"kmax ({kmax}) is larger than the maximum k mode available in the field ({default_k_modes[-1]}).")
G = FourierGrid(
field_A.L0,
field_A.L1,
@ -65,8 +75,8 @@ def get_cross_correlations(field_A, field_B, kmin=kmin, kmax=kmax, Nk=Nk, G=None
int(field_A.N0),
int(field_A.N1),
int(field_A.N2),
k_modes=np.concat([PowerSpectrum(field_A.L0,field_A.L1,field_A.L2,int(field_A.N0),int(field_A.N1),int(field_A.N2),).FourierGrid.k_modes[:10],np.logspace(
np.log10(kmin),
k_modes=np.concat([default_k_modes[:nfirst_kmodes],np.logspace(
np.log10(default_k_modes[nfirst_kmodes]),
np.log10(kmax),
Nk,
)]),
@ -104,7 +114,7 @@ def plot_power_spectra(filenames,
yticks = np.linspace(0.9,1.1,11),
bound1=0.01,
bound2=0.02,
kmin=kmin,
nfirst_kmodes=nfirst_kmodes,
kmax=kmax,
Nk=Nk,
figsize=(8,4),
@ -139,7 +149,7 @@ def plot_power_spectra(filenames,
color=colors[i],
linestyle=linestyles[i],
marker=markers[i],),
power_args=dict(kmin=kmin,
power_args=dict(nfirst_kmodes=nfirst_kmodes,
kmax=kmax,
Nk=Nk),
)
@ -178,7 +188,7 @@ def plot_cross_correlations(filenames_A,
yticks = np.linspace(0.99,1.001,12),
bound1=0.001,
bound2=0.002,
kmin=kmin,
nfirst_kmodes=nfirst_kmodes,
kmax=kmax,
Nk=Nk,
figsize=(8,4),
@ -217,7 +227,7 @@ def plot_cross_correlations(filenames_A,
color=colors[i],
linestyle=linestyles[i],
marker=markers[i],),
power_args=dict(kmin=kmin,
power_args=dict(nfirst_kmodes=nfirst_kmodes,
kmax=kmax,
Nk=Nk),
)
@ -283,8 +293,15 @@ def console_main():
parser.add_argument('-yrp', '--ylim_power', type=float, nargs=2, default=[0.9,1.1], help='Y-axis limits.')
parser.add_argument('-yrc', '--ylim_corr', type=float, nargs=2, default=[0.99,1.001], help='Y-axis limits.')
parser.add_argument('--crop', type=int, default=None, help='Remove the outter N pixels of the fields.')
parser.add_argument('--nfirst_kmodes', type=float, default=10, help='First k modes from all available k modes to be used in the power spectrum before the geomspace part.')
parser.add_argument('--kmax', type=float, default=None, help='Maximum k value for the power spectrum geomspace part. If None, it will be set to the maximum k mode available in the field.')
parser.add_argument('--Nk', type=int, default=50, help='Number of k values for the power spectrum geomspace part.')
args = parser.parse_args()
nfirst_kmodes = args.nfirst_kmodes
kmax = args.kmax
Nk = args.Nk
if not args.power_spectrum and not args.cross_correlation:
print('You must choose between power_spectrum and cross_correlation.')
@ -298,7 +315,7 @@ def console_main():
from pysbmy.field import read_field
F_ref = read_field(args.directory+args.reference)
crop_field(F_ref, args.crop)
G, _, Pk_ref = get_power_spectrum(F_ref, kmin=kmin, kmax=kmax, Nk=Nk)
G, _, Pk_ref = get_power_spectrum(F_ref, nfirst_kmodes=nfirst_kmodes, kmax=kmax, Nk=Nk)
else:
Pk_ref = None
G = None
@ -325,7 +342,7 @@ def console_main():
yticks = yticks_power,
bound1=0.01,
bound2=0.02,
kmin=kmin,
nfirst_kmodes=nfirst_kmodes,
kmax=kmax,
Nk=Nk,
ax=axes[0],
@ -344,7 +361,7 @@ def console_main():
yticks = yticks_corr,
bound1=0.001,
bound2=0.002,
kmin=kmin,
nfirst_kmodes=nfirst_kmodes,
kmax=kmax,
Nk=Nk,
ax=axes[1],
@ -371,7 +388,7 @@ def console_main():
yticks = yticks_power,
bound1=0.01,
bound2=0.02,
kmin=kmin,
nfirst_kmodes=nfirst_kmodes,
kmax=kmax,
Nk=Nk,
Ncrop=args.crop,
@ -392,7 +409,7 @@ def console_main():
yticks = yticks_corr,
bound1=0.001,
bound2=0.002,
kmin=kmin,
nfirst_kmodes=nfirst_kmodes,
kmax=kmax,
Nk=Nk,
Ncrop=args.crop,

View file

@ -32,7 +32,7 @@ def main_monofonic(parsed_args):
print_message("Running monofonic in slurm mode.", 1, "monofonic", verbose=parsed_args.verbose)
slurm_dict=parse_arguments_slurm(parsed_args)
main_dict=parse_arguments_main(parsed_args)
slurm_script = slurm_dict["scripts"]+"monofonic.sh"
slurm_script = slurm_dict["scripts"]+f"monofonic_{main_dict['simname']}.sh"
if not isfile(slurm_script) or parsed_args.force:
print_message(f"SLURM script {slurm_script} does not exist (or forced). Creating it.", 2, "monofonic", verbose=parsed_args.verbose)

View file

@ -95,8 +95,6 @@ def get_config_from_dict(monofonic_dict):
"Omega_L": monofonic_dict["Omega_q"],
"H0": monofonic_dict["h"]*100.,
"n_s": monofonic_dict["n_s"],
"sigma_8": monofonic_dict["sigma8"],
"A_s": monofonic_dict["A_s"],
"Tcmb": monofonic_dict["Tcmb"],
"k_p": monofonic_dict["k_p"],
"N_ur": monofonic_dict["N_ur"],
@ -110,7 +108,14 @@ def get_config_from_dict(monofonic_dict):
"transfer": "CLASS",
"ztarget": 2.5,
"ZeroRadiation": False
}
}
if "A_s" in monofonic_dict.keys() and monofonic_dict["A_s"] is not None:
config["cosmology"]["A_s"] = monofonic_dict["A_s"]
elif "sigma8" in monofonic_dict.keys() and monofonic_dict["sigma8"] is not None:
config["cosmology"]["sigma8"] = monofonic_dict["sigma8"]
else:
raise KeyError("Either A_s or sigma8 must be provided in the cosmology parameters.")
config["random"] = {
"generator": "NGENIC",

View file

@ -1,9 +1,7 @@
from pysbmy.density import get_density_pm_snapshot
from pysbmy.snapshot import read_snapshot
import argparse
def convert_snapshot_to_density(snapshot_path, output_path, N=None, corner=(0.0, 0.0, 0.0)):
def convert_snapshot_to_density(snapshot_path, output_path, N=None, corner=(0.0, 0.0, 0.0), time=1.0):
"""
Convert a snapshot to a density field.
@ -18,6 +16,9 @@ def convert_snapshot_to_density(snapshot_path, output_path, N=None, corner=(0.0,
corner : tuple of float
Corner of the box (x, y, z).
"""
from pysbmy.density import get_density_pm_snapshot
from pysbmy.snapshot import read_snapshot
# Read the snapshot
print("Reading snapshot...")
snap = read_snapshot(snapshot_path)
@ -28,12 +29,86 @@ def convert_snapshot_to_density(snapshot_path, output_path, N=None, corner=(0.0,
# Calculate density
print("Calculating density...")
F = get_density_pm_snapshot(snap, N, N, N, corner[0], corner[1], corner[2])
F.time = time # Set the time for the field
# Write density to file
print("Writing density...")
F.write(output_path)
print("Density written to", output_path)
print("Done.")
def convert_snapshots_to_density(snapshot_base_path, output_path, N=None, corner=(0.0, 0.0, 0.0), time=1.0):
"""
Convert multiple snapshots to density fields.
Parameters
----------
snapshot_base_path : str
Base path for the snapshot files.
output_path : str
Path to the output density file.
N : int
Size of the density field grid (N x N x N).
corner : tuple of float
Corner of the box (x, y, z).
"""
from pysbmy.density import get_density_pm, density_to_delta
from pysbmy.snapshot import read_snapshot
from pysbmy.field import Field
import numpy as np
# Get all snapshot files with path "snapshot_base_path*"
import glob
snapshot_files = glob.glob(snapshot_base_path + "*")
if not snapshot_files:
raise FileNotFoundError(f"No snapshot files found at {snapshot_base_path}")
A = None
L0 = L1 = L2 = None
d0 = d1 = d2 = None
for snapshot_path in snapshot_files:
# Read the snapshot
print(f"Reading snapshot {snapshot_path}...")
snap = read_snapshot(snapshot_path)
if N is None:
N = snap.Np0
if L0 is None:
# Get the grid parameters from the snapshot
L0 = snap.L0
L1 = snap.L1
L2 = snap.L2
d0 = L0 / N
d1 = L1 / N
d2 = L2 / N
else:
# Ensure the grid parameters match the first snapshot
if not (snap.L0 == L0 and snap.L1 == L1 and snap.L2 == L2):
raise ValueError(f"All snapshots must have the same grid parameters. Got {snap.L0}, {snap.L1}, {snap.L2} but expected {L0}, {L1}, {L2}.")
if A is None:
# Initialize the density field
A = np.zeros((N, N, N), dtype=np.float32)
# Calculate density
print("Calculating density for this snapshot...")
A = get_density_pm(snap.pos, A, d0=d0, d1=d1, d2=d2)
# Convert density to delta field
print("Converting density to delta field...")
A = density_to_delta(A)
# Create a Field object
F = Field(L0=L0,L1=L1,L2=L2,corner0=corner[0],corner1=corner[1],corner2=corner[2],rank=1,N0=N,N1=N,N2=N,time=time,data=A)
# Write density to file
print("Writing density...")
F.write(output_path)
print("Density written to", output_path)
print("Done.")
def console_main():
@ -70,13 +145,23 @@ def console_main():
args = parser.parse_args()
convert_snapshot_to_density(
snapshot_path=args.snapshot,
output_path=args.output,
N=args.N,
corner=args.corner,
)
if args.snapshot.endswith("h5") or args.snapshot.endswith("hdf5") or args.snapshot.endswith("gadget3"):
# If the snapshot is a single file, convert it to density
convert_snapshot_to_density(
snapshot_path=args.snapshot,
output_path=args.output,
N=args.N,
corner=args.corner,
)
else:
# If the snapshot is a base path, convert all snapshots to density
convert_snapshots_to_density(
snapshot_base_path=args.snapshot,
output_path=args.output,
N=args.N,
corner=args.corner,
)
if __name__ == "__main__":
console_main()
console_main()

View file

@ -16,7 +16,7 @@ def main_simbelmyne(parsed_args):
if isfile(log_file): # Remove the preexisting log file to allow for the progress_bar to be run normally
from os import remove
oremove(log_file)
remove(log_file)
command_args = ["simbelmyne", paramfile, log_file]