Compare commits

...

4 commits

Author SHA1 Message Date
fa54f87866 powerspectrum 2025-03-24 17:34:01 +01:00
0447279fcc prevent scola overwriting 2025-03-24 17:33:42 +01:00
881bc7b234 bugfix lightcone output 2025-03-24 17:33:27 +01:00
06edf57e24 improving slice to have the ticks 2025-03-24 17:33:03 +01:00
4 changed files with 179 additions and 95 deletions

View file

@ -5,72 +5,73 @@ kmax = 2e0
Nk = 50
AliasingCorr=False
def get_power_spectrum(field, kmin=kmin, kmax=kmax, Nk=Nk):
def get_power_spectrum(field, kmin=kmin, kmax=kmax, Nk=Nk, G=None):
from pysbmy.power import PowerSpectrum
from pysbmy.fft import FourierGrid
from pysbmy.correlations import get_autocorrelation
G = FourierGrid(
field.L0,
field.L1,
field.L2,
field.N0,
field.N1,
field.N2,
k_modes=np.concat([PowerSpectrum(field.L0,field.L1,field.L2,field.N0,field.N1,field.N2,).FourierGrid.k_modes[:10],np.logspace(
np.log10(kmin),
np.log10(kmax),
Nk,
)]),
kmax=kmax,
)
if G is None:
G = FourierGrid(
field.L0,
field.L1,
field.L2,
field.N0,
field.N1,
field.N2,
k_modes=np.concat([PowerSpectrum(field.L0,field.L1,field.L2,field.N0,field.N1,field.N2,).FourierGrid.k_modes[:10],np.logspace(
np.log10(kmin),
np.log10(kmax),
Nk,
)]),
kmax=kmax,
)
k = G.k_modes[1:]
Pk, _ = get_autocorrelation(field, G, AliasingCorr)
Pk = Pk[1:]
return k, Pk
return G, k, Pk
def get_cross_correlations(field_A, field_B, kmin=kmin, kmax=kmax, Nk=Nk):
def get_cross_correlations(field_A, field_B, kmin=kmin, kmax=kmax, Nk=Nk, G=None):
from pysbmy.power import PowerSpectrum
from pysbmy.fft import FourierGrid
from pysbmy.correlations import get_crosscorrelation
G = FourierGrid(
field_A.L0,
field_A.L1,
field_A.L2,
field_A.N0,
field_A.N1,
field_A.N2,
k_modes=np.concat([PowerSpectrum(field_A.L0,field_A.L1,field_A.L2,field_A.N0,field_A.N1,field_A.N2,).FourierGrid.k_modes[:10],np.logspace(
np.log10(kmin),
np.log10(kmax),
Nk,
)]),
kmax=kmax,
)
if G is None:
G = FourierGrid(
field_A.L0,
field_A.L1,
field_A.L2,
field_A.N0,
field_A.N1,
field_A.N2,
k_modes=np.concat([PowerSpectrum(field_A.L0,field_A.L1,field_A.L2,field_A.N0,field_A.N1,field_A.N2,).FourierGrid.k_modes[:10],np.logspace(
np.log10(kmin),
np.log10(kmax),
Nk,
)]),
kmax=kmax,
)
k = G.k_modes[1:]
_, _, Rks, _ = get_crosscorrelation(field_A, field_B, G, AliasingCorr)
Rks = Rks[1:]
return k, Rks
return G, k, Rks
def add_power_spectrum_to_plot(ax, field, Pk_ref=None, plot_args={}, power_args={}):
k, Pk = get_power_spectrum(field, **power_args)
def add_power_spectrum_to_plot(ax, field, Pk_ref=None, G=None, plot_args={}, power_args={}):
G, k, Pk = get_power_spectrum(field, G=G, **power_args)
if Pk_ref is not None:
ax.plot(k, Pk/Pk_ref-1, **plot_args)
ax.plot(k, Pk/Pk_ref, **plot_args)
else:
ax.plot(k, Pk, **plot_args)
return ax
return ax, G, k, Pk
def add_cross_correlations_to_plot(ax, field_A, field_B, plot_args={}, power_args={}):
k, Rks = get_cross_correlations(field_A, field_B, **power_args)
def add_cross_correlations_to_plot(ax, field_A, field_B, G=None, plot_args={}, power_args={}):
G, k, Rks = get_cross_correlations(field_A, field_B, G=G, **power_args)
ax.plot(k, Rks, **plot_args)
return ax
return ax, G, k, Rks
def plot_power_spectra(filenames,
@ -79,6 +80,7 @@ def plot_power_spectra(filenames,
linestyles=None,
markers=None,
Pk_ref=None,
G=None,
ylims=[0.9,1.1],
yticks = np.linspace(0.9,1.1,11),
bound1=0.01,
@ -108,9 +110,10 @@ def plot_power_spectra(filenames,
for i, filename in enumerate(filenames):
field = read_field(filename)
add_power_spectrum_to_plot(ax=ax,
_, G, k, _ = add_power_spectrum_to_plot(ax=ax,
field=field,
Pk_ref=Pk_ref,
G=G,
plot_args=dict(label=labels[i],
color=colors[i],
linestyle=linestyles[i],
@ -120,15 +123,15 @@ def plot_power_spectra(filenames,
Nk=Nk),
)
ax.set_xscale('log')
ax.set_xlim(kmin, kmax)
ax.set_xlim(k.min(),k[-2])
if ylims is not None:
ax.set_ylim(ylims)
if yticks is not None:
ax.set_yticks(yticks)
ax.set_xlabel(r'$k$ [$h/\mathrm{Mpc}$]')
ax.set_xlabel(r'$k$ [$h/\mathrm{Mpc}$]', labelpad=-10)
if Pk_ref is not None:
ax.set_ylabel(r'$P(k)/P_\mathrm{ref}(k)-1$')
ax.set_ylabel(r'$P(k)/P_\mathrm{ref}(k)$')
else:
ax.set_ylabel('$P(k)$')
@ -145,6 +148,7 @@ def plot_power_spectra(filenames,
def plot_cross_correlations(filenames_A,
filename_B,
G=None,
labels=None,
colors=None,
linestyles=None,
@ -180,9 +184,10 @@ def plot_cross_correlations(filenames_A,
for i, filename_A in enumerate(filenames_A):
field_A = read_field(filename_A)
add_cross_correlations_to_plot(ax=ax,
_, G, k, _ = add_cross_correlations_to_plot(ax=ax,
field_A=field_A,
field_B=field_B,
G=G,
plot_args=dict(label=labels[i],
color=colors[i],
linestyle=linestyles[i],
@ -192,12 +197,12 @@ def plot_cross_correlations(filenames_A,
Nk=Nk),
)
ax.set_xscale('log')
ax.set_xlim(kmin, kmax)
ax.set_xlim(k.min(), k[-2])
if ylims is not None:
ax.set_ylim(ylims)
if yticks is not None:
ax.set_yticks(yticks)
ax.set_xlabel(r'$k$ [$h/\mathrm{Mpc}$]')
ax.set_xlabel(r'$k$ [$h/\mathrm{Mpc}$]', labelpad=-10)
ax.set_ylabel('$R(k)$')
if bound1 is not None:
@ -211,6 +216,28 @@ def plot_cross_correlations(filenames_A,
return fig, ax
def get_ylims_and_yticks(ylims):
if ylims[0] == ylims[1]:
ylims = None
yticks = None
else:
diff_ylims = ylims[1] - ylims[0]
factor = 1
while diff_ylims<5.:
diff_ylims *= 10
factor *= 10
if diff_ylims<12.:
yticks = np.linspace(int(ylims[0]*factor)/factor,int(factor*ylims[1])/factor, int(diff_ylims)+1)
else:
while diff_ylims>12.:
diff_ylims /= 2.
factor /= 2.
yticks = np.linspace(int(ylims[0]*factor)/factor,int(factor*ylims[1])/factor, int(diff_ylims)+1)
return ylims, yticks
if __name__ == "__main__":
from argparse import ArgumentParser
parser = ArgumentParser(description='Plot power spectra of fields')
@ -226,6 +253,8 @@ if __name__ == "__main__":
parser.add_argument('-ls', '--linestyles', type=str, nargs='+', default=None, help='Linestyles for each field.')
parser.add_argument('-m', '--markers', type=str, nargs='+', default=None, help='Markers for each field.')
parser.add_argument('-t','--title', type=str, default=None, help='Title of the plot.')
parser.add_argument('-yrp', '--ylim_power', type=float, nargs=2, default=[0.9,1.1], help='Y-axis limits.')
parser.add_argument('-yrc', '--ylim_corr', type=float, nargs=2, default=[0.99,1.001], help='Y-axis limits.')
args = parser.parse_args()
@ -235,12 +264,18 @@ if __name__ == "__main__":
if args.reference is not None:
from pysbmy.field import read_field
Pk_ref = get_power_spectrum(read_field(args.directory+args.reference), kmin=kmin, kmax=kmax, Nk=Nk)[1]
G, _, Pk_ref = get_power_spectrum(read_field(args.directory+args.reference), kmin=kmin, kmax=kmax, Nk=Nk)
else:
Pk_ref = None
G = None
filenames = [args.directory+f for f in args.filenames]
ylims_power, yticks_power = get_ylims_and_yticks(args.ylim_power)
ylims_corr, yticks_corr = get_ylims_and_yticks(args.ylim_corr)
if args.power_spectrum and args.cross_correlation:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 1, figsize=(8,8))
@ -250,14 +285,11 @@ if __name__ == "__main__":
linestyles=args.linestyles,
markers=args.markers,
Pk_ref=Pk_ref,
# ylims=[0.9,1.1],
# yticks = np.linspace(0.9,1.1,11),
# bound1=0.01,
# bound2=0.02,
ylims=None,
yticks = None,
bound1=None,
bound2=None,
G=G,
ylims=ylims_power,
yticks = yticks_power,
bound1=0.01,
bound2=0.02,
kmin=kmin,
kmax=kmax,
Nk=Nk,
@ -266,18 +298,15 @@ if __name__ == "__main__":
plot_cross_correlations(filenames_A=filenames,
filename_B=args.directory+args.reference,
G=G,
labels=args.labels,
colors=args.colors,
linestyles=args.linestyles,
markers=args.markers,
# ylims=[0.99, 1.001],
# yticks = np.linspace(0.99,1.001,12),
# bound1=0.001,
# bound2=0.002,
ylims=None,
yticks = None,
bound1=None,
bound2=None,
ylims=ylims_corr,
yticks = yticks_corr,
bound1=0.001,
bound2=0.002,
kmin=kmin,
kmax=kmax,
Nk=Nk,
@ -298,8 +327,9 @@ if __name__ == "__main__":
linestyles=args.linestyles,
markers=args.markers,
Pk_ref=Pk_ref,
ylims=[0.9,1.1],
yticks = np.linspace(0.9,1.1,11),
G=G,
ylims=ylims_power,
yticks = yticks_power,
bound1=0.01,
bound2=0.02,
kmin=kmin,
@ -312,12 +342,13 @@ if __name__ == "__main__":
elif args.cross_correlation:
fig, ax = plot_cross_correlations(filenames_A=filenames,
filename_B=args.reference,
G=G,
labels=args.labels,
colors=args.colors,
linestyles=args.linestyles,
markers=args.markers,
ylims=[0.99, 1.001],
yticks = np.linspace(0.99,1.001,12),
ylims=ylims_corr,
yticks = yticks_corr,
bound1=0.001,
bound2=0.002,
kmin=kmin,

View file

@ -1,13 +1,18 @@
import numpy as np
import sys
sys.path.append('/home/aubin/Simbelmyne/sbmy_control/')
from cosmo_params import register_arguments_cosmo, parse_arguments_cosmo
fs = 18
fs_titles = fs -4
def plot_imshow_with_reference( data_list,
reference,
titles,
reference=None,
titles=None,
vmin=None,
vmax=None,
vmax=None,
L=None,
cmap='viridis'):
"""
Plot the imshow of a list of 2D arrays with two rows: one for the data itself,
@ -23,38 +28,69 @@ def plot_imshow_with_reference( data_list,
if titles is None:
titles = [None for f in data_list]
if L is None:
L = [len(data) for data in data_list]
elif isinstance(L, int) or isinstance(L, float):
L = [L for data in data_list]
sep = 10 if L[0] < 100 else 20 if L[0] < 200 else 100
ticks = [np.arange(0, l+1, sep)*len(dat)/l for l, dat in zip(L,data_list)]
tick_labels = [np.arange(0, l+1, sep) for l in L]
def score(data, reference):
return np.linalg.norm(data-reference)/np.linalg.norm(reference)
n = len(data_list)
fig, axes = plt.subplots(2, n, figsize=(5 * n, 10))
fig, axes = plt.subplots(1 if reference is None else 2, n, figsize=(5 * n, 5 if reference is None else 5*2), dpi=max(500, data_list[0].shape[0]//2))
if vmin is None or vmax is None:
vmin = min(np.quantile(data,0.01) for data in data_list)
vmax = max(np.quantile(data,0.99) for data in data_list)
if reference is not None:
vmin_diff = min(np.quantile((data-reference),0.01) for data in data_list)
vmax_diff = max(np.quantile((data-reference),0.99) for data in data_list)
else:
vmin_diff = vmin
vmax_diff = vmax
# Plot the data itself
for i, data in enumerate(data_list):
im = axes[0, i].imshow(data, cmap=cmap, origin='lower', vmin=vmin, vmax=vmax)
axes[0, i].set_title(titles[i], fontsize=fs_titles)
fig.colorbar(im, ax=axes[0, :], orientation='vertical')
if reference is not None:
# Plot the data itself
for i, data in enumerate(data_list):
im = axes[0, i].imshow(data, cmap=cmap, origin='lower', vmin=vmin, vmax=vmax)
axes[0, i].set_title(titles[i], fontsize=fs_titles)
axes[0, i].set_xticks(ticks[i])
axes[0, i].set_yticks(ticks[i])
axes[0, i].set_xticklabels(tick_labels[i])
axes[0, i].set_yticklabels(tick_labels[i])
axes[0, i].set_xlabel('Mpc/h')
fig.colorbar(im, ax=axes[0, :], orientation='vertical')
# Plot the data compared to the reference
for i, data in enumerate(data_list):
im = axes[1, i].imshow(data - reference, cmap=cmap, origin='lower', vmin=vmin_diff, vmax=vmax_diff)
axes[1, i].set_title(f'{titles[i]} - Reference', fontsize=fs_titles)
fig.colorbar(im, ax=axes[1, :], orientation='vertical')
# Add the score on the plots
for i, data in enumerate(data_list):
axes[1, i].text(0.5, 0.9, f"Score: {score(data, reference):.2e}", fontsize=10, transform=axes[1, i].transAxes, color='white')
# plt.tight_layout()
# Plot the data compared to the reference
for i, data in enumerate(data_list):
im = axes[1, i].imshow(data - reference, cmap=cmap, origin='lower', vmin=vmin_diff, vmax=vmax_diff)
axes[1, i].set_title(f'{titles[i]} - Reference', fontsize=fs_titles)
axes[1, i].set_xticks(ticks[i])
axes[1, i].set_yticks(ticks[i])
axes[1, i].set_xticklabels(tick_labels[i])
axes[1, i].set_yticklabels(tick_labels[i])
axes[1, i].set_xlabel('Mpc/h')
fig.colorbar(im, ax=axes[1, :], orientation='vertical')
# Add the score on the plots
for i, data in enumerate(data_list):
axes[1, i].text(0.5, 0.9, f"Score: {score(data, reference):.2e}", fontsize=10, transform=axes[1, i].transAxes, color='white')
# plt.tight_layout()
else:
for i, data in enumerate(data_list):
im = axes[i].imshow(data, cmap=cmap, origin='lower', vmin=vmin, vmax=vmax)
axes[i].set_title(titles[i], fontsize=fs_titles)
axes[0, i].set_xticks(ticks[i])
axes[0, i].set_yticks(ticks[i])
axes[0, i].set_xticklabels(tick_labels[i])
axes[0, i].set_yticklabels(tick_labels[i])
fig.colorbar(im, ax=axes[:], orientation='vertical')
return fig, axes
@ -76,36 +112,48 @@ if __name__ == "__main__":
parser.add_argument('-t', '--title', type=str, default=None, help='Title for the plot.')
parser.add_argument('-log','--log_scale', action='store_true', help='Use log scale for the data.')
register_arguments_cosmo(parser)
args = parser.parse_args()
from pysbmy.field import read_field
from pysbmy.cosmology import d_plus
ref_field = read_field(args.directory+args.reference)
ref_field = read_field(args.directory+args.reference) if args.reference is not None else None
fields = [read_field(args.directory+f) for f in args.filenames]
if args.index is None:
index = ref_field.N0//2
else:
index=args.index
# args.labels=[f"a={f.time:.2f}" for f in fields]
L = [f.L0 for f in fields]
match args.axis:
case 0 | 'x':
reference = ref_field.data[index,:,:]
reference = ref_field.data[index,:,:] if ref_field is not None else None
fields = [f.data[index,:,:] for f in fields]
# reference = ref_field.data[index,:,:]/d_plus(1e-3,ref_field.time,parse_arguments_cosmo(args))
# fields = [f.data[index,:,:]/d_plus(1e-3,f.time,parse_arguments_cosmo(args)) for f in fields]
# reference = ref_field.data[index,:,:]/d_plus(1e-3,0.05,parse_arguments_cosmo(args))
# fields = [f.data[index,:,:]/d_plus(1e-3,time,parse_arguments_cosmo(args)) for f,time in zip(fields,[0.05, 1.0])]
case 1 | 'y':
reference = ref_field.data[:,index,:]
reference = ref_field.data[:,index,:] if ref_field is not None else None
fields = [f.data[:,index,:] for f in fields]
case 2 | 'z':
reference = ref_field.data[:,:,index]
reference = ref_field.data[:,:,index] if ref_field is not None else None
fields = [f.data[:,:,index] for f in fields]
case _:
raise ValueError(f"Wrong axis provided : {args.axis}")
if args.log_scale:
reference = np.log10(2.+reference)
reference = np.log10(2.+reference) if ref_field is not None else None
fields = [np.log10(2.+f) for f in fields]
fig, axes = plot_imshow_with_reference(fields,reference,args.labels, vmin=args.vmin, vmax=args.vmax,cmap=args.cmap)
fig, axes = plot_imshow_with_reference(fields,reference,args.labels, vmin=args.vmin, vmax=args.vmax,cmap=args.cmap, L=L)
fig.suptitle(args.title)
if args.output is not None:

View file

@ -188,9 +188,9 @@ def parse_arguments_card(parsed_args):
if card_dict["OutputSnapshotsBase"] is None:
card_dict["OutputSnapshotsBase"] = main_dict["resultdir"]+"particles_"+main_dict["simname"]
if card_dict["OutputFinalSnapshot"] is None:
card_dict["OutputFinalSnapshot"] = main_dict["resultdir"]+ligthcone_prefix+"final_particles_"+main_dict["simname"]+".gadget3"
card_dict["OutputFinalSnapshot"] = main_dict["resultdir"]+ligthcone_prefix+"final_particles_"+main_dict["simname"]+("_lc" if card_dict["GenerateLightcone"] else "")+".gadget3"
if card_dict["OutputFinalDensity"] is None:
card_dict["OutputFinalDensity"] = main_dict["resultdir"]+ligthcone_prefix+"final_density_"+main_dict["simname"]+".h5"
card_dict["OutputFinalDensity"] = main_dict["resultdir"]+ligthcone_prefix+"final_density_"+main_dict["simname"]+("_lc" if card_dict["GenerateLightcone"] else "")+".h5"
if card_dict["OutputTilesBase"] is None:
card_dict["OutputTilesBase"] = main_dict["workdir"]+main_dict["simname"]+"_tile"
if card_dict["OutputLPTPotential1"] is None:

View file

@ -13,6 +13,11 @@ def main_scola(parsed_args):
nboxes_tot = int(parsed_args.N_tiles**3)
if have_all_tiles(parsed_args) and not parsed_args.force:
print_message("All tiles already exist. Use -F to overwrite.", 1, "scola", verbose=parsed_args.verbose)
print_ending_module("scola", verbose=parsed_args.verbose)
return
if parsed_args.execution == "local":
from parameters_card import parse_arguments_card
from tqdm import tqdm