UNet shrinking

This commit is contained in:
Mayeul Aubin 2025-06-25 09:35:38 +02:00
parent 37733e82e0
commit f0b828dc4d

View file

@ -1,18 +1,12 @@
"""
3D U-Net model with optional FiLM layers for style conditioning.
This model implements a 3D U-Net architecture with downsampling and upsampling blocks, and skip connections.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from .base_class_models import BaseModel
class FiLM(nn.Module):
def __init__(self, num_features, style_dim):
super(FiLM, self).__init__()
self.gamma = nn.Linear(style_dim, num_features)
self.beta = nn.Linear(style_dim, num_features)
def forward(self, x, style):
gamma = self.gamma(style).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
beta = self.beta(style).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
return gamma * x + beta
from .FiLM import FiLM
class UNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, style_dim=None):
@ -48,7 +42,8 @@ class UNetDecLayer(nn.Module):
def forward(self, x, skip_connection, style=None):
x = self.up(x)
x = torch.cat([x, skip_connection], dim=1)
if skip_connection is not None:
x = torch.cat([x, skip_connection], dim=1)
return self.block(x, style)
class UNet3D(BaseModel):
@ -125,3 +120,70 @@ class UNet3D(BaseModel):
return self.final(out)
class UNet3D_Shrink(BaseModel):
def __init__(self,
N: int = 128,
in_channels: int = 2,
out_channels: int = 1,
style_dim: int = 2,
device: torch.device = torch.device('cpu'),
first_layer_channel_exponent: int = 3,
shrink_factor_exponent: int = 1,
):
"""
A 3D U-Net model with optional FiLM layers for style conditioning and a shrink factor.
It means that the output data is of size (N/shrink_factor, N/shrink_factor, N/shrink_factor), where N is the input size.
"""
super().__init__(N=N,
in_channels=in_channels,
out_channels=out_channels,
style_parameters=style_dim,
device=device)
import numpy as np
self.depth_enc = np.floor(np.log2(N)).astype(int) - 1 # Depth of the U-Net based on input size N
self.depth_dec = self.depth_enc - shrink_factor_exponent # Depth of the U-Net based on input size N and shrink factor
self.first_layer_channel_exponent = first_layer_channel_exponent
self.shrink_factor_exponent = shrink_factor_exponent
self.enc = []
for i in range(self.depth_enc):
in_ch = in_channels if i == 0 else 2**(self.first_layer_channel_exponent + i - 1)
out_ch = 2**(self.first_layer_channel_exponent + i)
self.enc.append(UNetEncLayer(in_ch, out_ch, style_dim))
self.enc = nn.ModuleList(self.enc)
self.bottleneck = UNetBlock(2**(self.first_layer_channel_exponent + self.depth_enc - 1),
2**(self.first_layer_channel_exponent + self.depth_enc), style_dim)
self.dec = []
for i in range(self.depth_dec - 1, -1, -1):
in_ch = 2**(self.first_layer_channel_exponent + i + 1)
out_ch = 2**(self.first_layer_channel_exponent + i)
skip_conn_ch = out_ch if i >= self.depth_dec-self.depth_enc else 0
self.dec.append(UNetDecLayer(in_ch, out_ch, skip_conn_ch, style_dim))
self.dec = nn.ModuleList(self.dec)
self.final = nn.Conv3d(2**(self.first_layer_channel_exponent), out_channels, kernel_size=1)
def forward(self, x, style):
out = x
outlist = []
for i in range(self.depth_enc):
skip, out = self.enc[i](out, style)
outlist.append(skip)
out = self.bottleneck(out, style)
for i in range(self.depth_dec):
if i < self.depth_enc:
out = self.dec[i](out, outlist[self.depth_enc - 1 - i], style)
else:
out = self.dec[i](out, None, style)
return self.final(out)