train shrink

This commit is contained in:
Mayeul Aubin 2025-06-25 15:49:10 +02:00
parent 47cfefd61f
commit 773f9ad860

View file

@ -12,7 +12,8 @@ def train_model(model,
device='cuda',
print_timers=False,
save_model_path=None,
scheduler=None):
scheduler=None,
shrink:bool = False):
"""
Train a model with the given dataloader and optimizer.
@ -25,6 +26,7 @@ def train_model(model,
- print_timers: If True, print timing information for each epoch (default is False).
- save_model_path: If provided, the model will be saved to this path after each epoch.
- scheduler: Learning rate scheduler (optional).
- shrink: If True, the model will output only the center region of size N//2 of the target
Returns:
- train_loss_log: List of training losses for each batch.
@ -64,6 +66,11 @@ def train_model(model,
# Forward pass
t1 = time.time()
output = model(input, style)
if shrink:
# Shrink the target to the center region of size N//2
N = target.shape[-1]
target = target[..., N//4:N*3//4, N//4:N*3//4, N//4:N*3//4]
loss = loss_fn(output, target)
forward_time += time.time() - t1
@ -80,7 +87,7 @@ def train_model(model,
# End of epoch, validate the model
t3 = time.time()
val_loss, style_bins_means, style_bins = validate(model, dataloader['val'], loss_fn, device)
val_loss, style_bins_means, style_bins = validate(model, dataloader['val'], loss_fn, device, shrink=shrink)
val_loss_log.append(val_loss)
validation_time += time.time() - t3
@ -112,7 +119,7 @@ def train_model(model,
if print_timers:
total_time = time.time() - epoch_start_time
print(f"Epoch {epoch+1} Timings: {total_time:9.0f} s")
print(f" I/O time (train): {io_time:8.0f} s\t | {100 * io_time / total_time:2.2f}%")
print(f" Sync time + I/O: {io_time:8.0f} s\t | {100 * io_time / total_time:2.2f}%")
print(f" Forward time: {forward_time:8.0f} s\t | {100 * forward_time / total_time:2.2f}%")
print(f" Backward time: {backward_time:8.0f} s\t | {100 * backward_time / total_time:2.2f}%")
print(f" Validation time: {validation_time:8.0f} s\t | {100 * validation_time / total_time:2.2f}%")
@ -121,7 +128,7 @@ def train_model(model,
return train_loss_log, val_loss_log
def validate(model, val_loader, loss_fn, device='cuda'):
def validate(model, val_loader, loss_fn, device='cuda', shrink:bool = False):
model.eval()
losses = []
styles = []
@ -133,6 +140,11 @@ def validate(model, val_loader, loss_fn, device='cuda'):
input = batch['input'].to(device)
target = batch['target'].to(device)
style = batch['style'].to(device)
if shrink:
# Shrink the target to the center region of size N//2
N = target.shape[-1]
target = target[..., N//4:N*3//4, N//4:N*3//4, N//4:N*3//4]
output = model(input, style)
loss = loss_fn(output, target)