many improvements

This commit is contained in:
Mayeul Aubin 2025-06-17 18:07:06 +02:00
parent c07ec8f8cf
commit 6c526d7115
4 changed files with 219 additions and 53 deletions

View file

@ -36,7 +36,7 @@ class GravPotDataset(Dataset):
N:int=128,
N_full:int=768,
match_str:str='train',
device=torch.device('cpu'),
device='cpu',
initial_conditions_variables:tuple|list=['DM_delta', 'DM_phi'],
target_variable:str='gravpot',
style_files:str='cosmo_and_time_parameters',
@ -50,6 +50,7 @@ class GravPotDataset(Dataset):
- N: Size of the chunks to read (N x N x N).
- N_full: Full size of the simulation box (N_full x N_full x N_full).
- device: Device to load tensors onto (default is CPU)."""
super().__init__()
self.initial_conditions_variables = initial_conditions_variables
self.target_variable = target_variable
@ -152,10 +153,44 @@ class GravPotDataset(Dataset):
def __len__(self):
return len(self.samples)
def files_from_samples(self, sample):
"""
Return the paths to the files for a given sample.
"""
ID, t, ox, oy, oz = sample
input_paths = [
os.path.join(self.root_dir, self.INITIAL_CONDITIONS_DIR, f'ICs_{ID}_{var}.h5')
for var in self.initial_conditions_variables
]
target_path = os.path.join(self.root_dir, self.TARGET_DIR, f'{self.target_variable}_{ID}_nforce{t}.h5')
style_path = os.path.join(self.root_dir, self.STYLE_DIR, f'{self.style_files}_{ID}_nforce{t}.txt')
return {
'input': input_paths,
'target': target_path,
'style': style_path
}
def files_from_ID_and_time(self, ID, t):
"""
Return the paths to the files for a given ID and time.
"""
input_paths = [
os.path.join(self.root_dir, self.INITIAL_CONDITIONS_DIR, f'ICs_{ID}_{var}.h5')
for var in self.initial_conditions_variables
]
target_path = os.path.join(self.root_dir, self.TARGET_DIR, f'{self.target_variable}_{ID}_nforce{t}.h5')
style_path = os.path.join(self.root_dir, self.STYLE_DIR, f'{self.style_files}_{ID}_nforce{t}.txt')
return {
'input': input_paths,
'target': target_path,
'style': style_path
}
def __getitem__(self, idx):
from pysbmy.field import read_field_chunk_3D_periodic
from io import BytesIO
import torch
from sbmy_control.low_level import stdout_redirector, stderr_redirector
f = BytesIO()
@ -170,12 +205,11 @@ class GravPotDataset(Dataset):
style_path = os.path.join(self.root_dir, self.STYLE_DIR, f'{self.style_files}_{ID}_nforce{t}.txt')
# Read 3D chunks
with stdout_redirector(f):
input_arrays = [
read_field_chunk_3D_periodic(file, self.N,self.N,self.N, ox,oy,oz, name=varname).array
for file, varname in zip(input_paths, self.initial_conditions_variables)
]
target_array = read_field_chunk_3D_periodic(target_path, self.N, self.N, self.N, ox, oy, oz, name=self.target_variable).array
input_arrays = [
read_field_chunk_3D_periodic(file, self.N,self.N,self.N, ox,oy,oz, name=varname).array
for file, varname in zip(input_paths, self.initial_conditions_variables)
]
target_array = read_field_chunk_3D_periodic(target_path, self.N, self.N, self.N, ox, oy, oz, name=self.target_variable).array
# Stack the input arrays
input_tensor = np.stack(input_arrays, axis=0)
@ -206,21 +240,45 @@ class GravPotDataset(Dataset):
def on_epoch_end(self):
"""Call this at the end of each epoch to regenerate offset + time choices."""
self._prepare_samples()
class SubDataset(Dataset):
def __init__(self, dataset: GravPotDataset, indices: list):
self.dataset = dataset
self.indices = indices
def __init__(self, dataset: GravPotDataset, ID_list: list):
from copy import deepcopy
self.dataset = deepcopy(dataset)
self.ids = ID_list
self.dataset.ids = ID_list
def __len__(self):
return len(self.indices)
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[self.indices[idx]]
return self.dataset[idx]
def on_epoch_end(self):
self.dataset.ids = self.ids
self.dataset.on_epoch_end()
def train_val_split(dataset: GravPotDataset, val_fraction: float = 0.2, seed: int = 42):
"""
Splits the dataset into training and validation sets.
Parameters:
- dataset: The GravPotDataset to split.
- val_fraction: Fraction of the dataset to use for validation.
Returns:
- train_dataset: SubDataset for training.
- val_dataset: SubDataset for validation.
"""
from sklearn.model_selection import train_test_split
train_ids, val_ids = train_test_split(dataset.ids, test_size=0.2, random_state=seed)
train_dataset = SubDataset(dataset, train_ids)
val_dataset = SubDataset(dataset, val_ids)
train_dataset.dataset._prepare_samples()
val_dataset.dataset._prepare_samples()
return train_dataset, val_dataset