diff --git a/sCOCA_ML/models/UNet_models.py b/sCOCA_ML/models/UNet_models.py index 8c99007..9138189 100644 --- a/sCOCA_ML/models/UNet_models.py +++ b/sCOCA_ML/models/UNet_models.py @@ -9,17 +9,24 @@ from .base_class_models import BaseModel from .FiLM import FiLM class UNetBlock(nn.Module): - def __init__(self, in_channels, out_channels, style_dim=None): + def __init__(self, in_channels, out_channels, style_dim=None, batch_norm=True): super(UNetBlock, self).__init__() self.conv1 = nn.Conv3d(in_channels, out_channels, kernel_size=3, padding=1) self.conv2 = nn.Conv3d(out_channels, out_channels, kernel_size=3, padding=1) - self.norm = nn.BatchNorm3d(out_channels) + + if batch_norm: + self.norm1 = nn.BatchNorm3d(out_channels) + self.norm2 = nn.BatchNorm3d(out_channels) + else: + self.norm1 = nn.Identity() + self.norm2 = nn.Identity() + self.relu = nn.ReLU(inplace=True) self.film = FiLM(out_channels, style_dim) if style_dim else None def forward(self, x, style=None): - x = self.relu(self.norm(self.conv1(x))) - x = self.relu(self.norm(self.conv2(x))) + x = self.relu(self.norm1(self.conv1(x))) + x = self.relu(self.norm2(self.conv2(x))) if self.film: x = self.film(x, style) return x @@ -51,6 +58,7 @@ class UNet3D(BaseModel): in_channels: int = 2, out_channels: int = 1, style_dim: int = 2, + depth: int = None, device: torch.device = torch.device('cpu'), first_layer_channel_exponent: int = 3, ): @@ -61,7 +69,9 @@ class UNet3D(BaseModel): - in_channels: Number of input channels (default is 2). - out_channels: Number of output channels (default is 1). - style_dim: Dimension of the style vector (default is 2). + - depth: Depth of the U-Net (default is None, which will be computed based on N). - device: Device to load the model onto (default is CPU). + - first_layer_channel_exponent: Exponent for the number of channels in the first layer (default is 3). This model implements a 3D U-Net architecture with downsampling and upsampling blocks. The model uses convolutional layers with ReLU activations and batch normalization. The FiLM layers are used to condition the feature maps on style parameters. @@ -74,7 +84,12 @@ class UNet3D(BaseModel): device=device) import numpy as np - self.depth = np.floor(np.log2(N)).astype(int) - 1 # Depth of the U-Net based on input size N + if depth is not None: + self.depth = depth + if np.floor(np.log2(N)).astype(int) - 1 < depth: + raise ValueError(f"Depth {depth} is too large for input size {N}. Maximum depth is {np.floor(np.log2(N)).astype(int) - 1}.") + else: + self.depth = np.floor(np.log2(N)).astype(int) - 1 # Depth of the U-Net based on input size N self.first_layer_channel_exponent = first_layer_channel_exponent self.enc=[] @@ -100,7 +115,12 @@ class UNet3D(BaseModel): self.dec = nn.ModuleList(self.dec) - self.final = nn.Conv3d(2**(self.first_layer_channel_exponent), out_channels, kernel_size=1) + # self.final = nn.Conv3d(2**(self.first_layer_channel_exponent), out_channels, kernel_size=3, padding=1) + self.final = nn.Sequential( + nn.Conv3d(2**(self.first_layer_channel_exponent), 2**(self.first_layer_channel_exponent), kernel_size=3, padding=1), + nn.ReLU(inplace=True), + nn.Conv3d(2**(self.first_layer_channel_exponent), out_channels, kernel_size=1) + ) @@ -127,6 +147,7 @@ class UNet3D_Shrink(BaseModel): in_channels: int = 2, out_channels: int = 1, style_dim: int = 2, + depth: int = None, device: torch.device = torch.device('cpu'), first_layer_channel_exponent: int = 3, shrink_factor_exponent: int = 1, @@ -142,7 +163,13 @@ class UNet3D_Shrink(BaseModel): device=device) import numpy as np - self.depth_enc = np.floor(np.log2(N)).astype(int) - 1 # Depth of the U-Net based on input size N + if depth is not None: + self.depth_enc = depth + if np.floor(np.log2(N)).astype(int) - 1 < depth: + raise ValueError(f"Depth {depth} is too large for input size {N}. Maximum depth is {np.floor(np.log2(N)).astype(int) - 1}.") + else: + self.depth_enc = np.floor(np.log2(N)).astype(int) - 1 # Depth of the U-Net based on input size N + self.depth_dec = self.depth_enc - shrink_factor_exponent # Depth of the U-Net based on input size N and shrink factor self.first_layer_channel_exponent = first_layer_channel_exponent self.shrink_factor_exponent = shrink_factor_exponent