{
"cells": [
{
"cell_type": "markdown",
"id": "47c34537",
"metadata": {},
"source": [
"Tristan Hoellinger
\n",
"Institut d'Astrophysique de Paris\n",
"tristan.hoellinger@iap.fr"
]
},
{
"cell_type": "markdown",
"id": "b31e6021",
"metadata": {},
"source": [
"# Exploring time step limiters for P3M: tuning $\\eta$\n",
"\n",
"## Set up the environment and parameters"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0f8c355d",
"metadata": {},
"outputs": [],
"source": [
"# pyright: reportWildcardImportFromLibrary=false\n",
"from wip3m import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2c415aeb",
"metadata": {},
"outputs": [],
"source": [
"workdir = ROOT_PATH + \"results/\"\n",
"output_path = OUTPUT_PATH\n",
"\n",
"# STANDARD PARAMETERS:\n",
"L = 32 # Box size in Mpc/h\n",
"N = 32 # Density grid size\n",
"Np = 32 # Number of dark matter particles per spatial dimension\n",
"Npm = 64 # PM grid size\n",
"n_Tiles = 8 # Make sure Npm/n_Tiles >= 6\n",
" \n",
"force = force_hard = True\n",
"run_id = \"notebook11\"\n",
"\n",
"TimeStepDistribution = 0 # 0: constant, 1: log, 2: exp, 3: custom\n",
"nsteps = 50 # not used for TimeStepDistribution=3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "03aa3f4e",
"metadata": {},
"outputs": [],
"source": [
"# Automatic reloading of modules\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"from os.path import isfile\n",
"from pathlib import Path\n",
"import numpy as np\n",
"\n",
"from pysbmy.power import PowerSpectrum\n",
"from pysbmy.field import read_field\n",
"from pysbmy.timestepping import StandardTimeStepping, P3MTimeStepping\n",
"\n",
"from wip3m.tools import get_k_max, generate_sim_params, generate_white_noise_Field, run_simulation\n",
"from wip3m.params import params_CONCEPT_kmax_missing, cosmo_small_to_full_dict, z2a, BASELINE_SEEDPHASE\n",
"from wip3m.plot_utils import * # type: ignore"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "57436422",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"k_max = 5.442\n"
]
}
],
"source": [
"corner = 0.0\n",
"RedshiftLPT = 19.0\n",
"RedshiftFCs = 0.0\n",
"\n",
"ai = z2a(RedshiftLPT)\n",
"af = z2a(RedshiftFCs)\n",
"k_max = get_k_max(L, N) # k_max in h/Mpc\n",
"print(f\"k_max = {k_max}\")\n",
"# cosmo = params_planck_kmax_missing.copy()\n",
"cosmo = params_CONCEPT_kmax_missing.copy()\n",
"cosmo[\"k_max\"] = k_max\n",
"\n",
"wd = workdir + run_id + \"/\"\n",
"simdir = output_path + run_id + \"/\"\n",
"gravpotdir = simdir + \"gravpot/\"\n",
"momentadir = simdir + \"p_res/\"\n",
"logdir = simdir + \"logs/\"\n",
"if force_hard:\n",
" import shutil\n",
" if Path(simdir).exists():\n",
" shutil.rmtree(simdir)\n",
" if Path(wd).exists():\n",
" shutil.rmtree(wd)\n",
"Path(wd).mkdir(parents=True, exist_ok=True)\n",
"Path(gravpotdir).mkdir(parents=True, exist_ok=True)\n",
"Path(momentadir).mkdir(parents=True, exist_ok=True)\n",
"Path(logdir).mkdir(parents=True, exist_ok=True)\n",
"\n",
"input_white_noise_file = simdir + \"input_white_noise.h5\"\n",
"input_seed_phase_file = simdir + \"seed\"\n",
"ICs_path = simdir + \"initial_density.h5\"\n",
"simpath = simdir\n",
"\n",
"# Path to the input matter power spectrum (generated later)\n",
"input_power_file = simdir + \"input_power.h5\"\n",
"\n",
"# Paths to the time step logs\n",
"OutputTimestepsLog = simdir + \"timesteps_log.txt\"\n",
"\n",
"# Path to the output gravitational potential field\n",
"OutputGravitationalPotentialBase = gravpotdir + \"gp\"\n",
"\n",
"# Path to the output momenta field\n",
"OutputMomentaBase = momentadir + \"p\""
]
},
{
"cell_type": "markdown",
"id": "d3bc340d",
"metadata": {},
"source": [
"### Generate the parameter files"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "012c5e01",
"metadata": {},
"outputs": [],
"source": [
"common_params = {\n",
" \"Np\": Np,\n",
" \"N\": N,\n",
" \"L\": L,\n",
" \"corner0\": corner,\n",
" \"corner1\": corner,\n",
" \"corner2\": corner,\n",
" \"h\": cosmo[\"h\"],\n",
" \"Omega_m\": cosmo[\"Omega_m\"],\n",
" \"Omega_b\": cosmo[\"Omega_b\"],\n",
" \"n_s\": cosmo[\"n_s\"],\n",
" \"sigma8\": cosmo[\"sigma8\"],\n",
"}\n",
"\n",
"lpt_params = common_params.copy()\n",
"lpt_params[\"method\"] = \"lpt\"\n",
"lpt_params[\"InputPowerSpectrum\"] = input_power_file\n",
"lpt_params[\"ICsMode\"] = 1\n",
"lpt_params[\"InputWhiteNoise\"] = input_white_noise_file\n",
"\n",
"p3m_params = common_params.copy()\n",
"p3m_params[\"method\"] = \"p3m\"\n",
"p3m_params[\"EvolutionMode\"] = 7 # 7: COLA with P3M force evaluation\n",
"p3m_params[\"TimeStepDistribution\"] = TimeStepDistribution\n",
"p3m_params[\"nsteps\"] = nsteps\n",
"p3m_params[\"ai\"] = ai\n",
"p3m_params[\"af\"] = af\n",
"p3m_params[\"RedshiftLPT\"] = RedshiftLPT\n",
"p3m_params[\"RedshiftFCs\"] = RedshiftFCs\n",
"p3m_params[\"Npm\"] = Npm\n",
"p3m_params[\"n_Tiles\"] = n_Tiles\n",
"p3m_params[\"RunForceDiagnostic\"] = False\n",
"p3m_params[\"cosmo_dict\"] = cosmo\n",
"p3m_params[\"WriteGravPot\"] = True\n",
"p3m_params[\"OutputGravitationalPotentialBase\"] = OutputGravitationalPotentialBase\n",
"p3m_params[\"WriteReferenceFrame\"] = True\n",
"p3m_params[\"OutputMomentaBase\"] = OutputMomentaBase"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a162fa70",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10:08:49|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[10:08:49|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/example_lpt.sbmy'...\n",
"[10:08:49|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/example_lpt.sbmy' done.\n",
"[10:08:49|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/example_lpt.sbmy\n",
"P3M nsteps = 50:\n",
"[10:08:49|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5\n",
"[10:08:49|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5'...\n",
"[10:08:49|\u001b[38;5;113mSTATUS \u001b[00m]|Write timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5' done.\n",
"[10:08:49|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 50\n",
"[10:08:49|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5'...\n",
"[10:08:49|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5' done.\n",
"[10:08:50|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[10:08:50|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_example_p3m.sbmy'...\n",
"[10:08:50|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_example_p3m.sbmy' done.\n",
"[10:08:50|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_example_p3m.sbmy\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWARJREFUeJztnQV8VMcTx3+55OLu7hAkJGhIgru7W3GKFHcvVtyhpaUFghQvXqxYi1vwQAMETSBo3O/9PzPHHXcJ9F+KhWS//byGe3P73r5ZmZ3Z3Xc6kiRJEAgEAoEgHyD73BkQCAQCgeBTIYyeQCAQCPINwugJBAKBIN8gjJ5AIBAI8g3C6AkEAoEg3yCMnkAgEAjyDcLoCQQCgSDfIIyeQCAQCPINeviCUSgUiI6OhpmZGXR0dD53dgQCgUDwmaD3rCQkJMDZ2RkymSxvGj0yeG5ubp87GwKBQCDIJdy/fx+urq550+iRh6d6SHNz8/98Hb9CfngU8whWdlZY+sdS3F2qC0WSLmQmWfDonqX1XSETsuyy3JYfIcu7srz0HCruLtWDIkkGY3M52k8MxX8lPj6enSCVXciTRk8V0iSD9z5GT+UKy3RlsLGyQaxBJhQZMsgMFLCx0laRkAlZdlluy4+Q5V1ZXnoOFU8MspCVoQMjA/l79eMq/t9Ul1jIIhAIBIJ8gzB6AoFAIMg3CKMnEAgEgnyDMHoCgUAgyD9IXzBxcXH0A7j8931wdnHm65iYmUgOrg6Snq5c8rAvJLWp3l8KqRYi2djbsHzS0knS94P3Sw2CukruDgUlIxMjydLGUipXs5wUdiiMZYu+PiC1rtZP8i7kLRmbGvNRpGQRqU/TKSyj7xy6d4iP7sO783WrlGzCsrohHfiz5uFg5aZOt+H0Bql6k+qSuaW5pG+gLznbekpDm34vWZs75EhHR4UiDaVFA/dIHfp1kBzdHJVp3J2l+qEdpYU9/uBr7rq2S2rWpZnk4OIg6cn1JCMDU8nE0EL9vKq8zts4T/L3LisZyI1YpqenJ5UsV1JadWQVy9wdCkh6Mrn63kt3L+V0s9fOlmwtnCSZji6fN7Mwk2o0rSFtPL2R09lbuUgyHRnLDI0M+ZqLty1+db9gydxYqfvSFUvz3z7j+rDM0tQ2x/OWqVRGnc701TMYGBrwdf0C/KTx349/o57oaNC+gVTEs4ykr2egfj4PXw9p4JSBUrdh3SRXOx9+Bh3oSDKZTPIv48/PTjK6NulFrqsv6cr0JH1DfalCnQpSuz7tWEb1ic6rdLDj8g5O51vUV9KV6Uo6OjJJR0dHsra3lpp0aiJ91f8rTqcpM7UwlUJrhErNuzVX38/U0FIK8AmRigUV4+tS3SAZpcn+fIUCC6nTGembSiZGyjpE9dPR1VHy8vN6q26ozujLDfk56KB0BfwLSPXa1ON6biA35Gejg/RdqV4lqfuI7nxNem66Bj1D0dJFpc3nNksDpgyQbB1t1eVOB5UN1Zeeo3tK5lbmrGc6T+lDqodIO67s4HRmlmZqGd2vcInCUtjBMJZRXgz1jSVDubFkZGCirsMkMzQ2zFnm7Rqo01G5U37o2vQMAUEBXA5v0wnll56R2ovqHNWzdt+0U7eZCV3DpADPcuo65eLpws9Psvn9d3H7lOvpK3Xs4ayWta0xQPJ1CmRdk6xh+4Z8ftulbVw/7K1c1XXJp7AP64bk9dvW12prTu5OrBtVflR9F17lV9W+A4MD36gbVbohbeZLtmZOynYh12PdrDi44h91Q+mm9lwvlSlQXTI3tuL2RLKyVcuqr7v6z9VS+VrlJVMjCy6z0n5VpEePHn10eyA8PQ2SEpLQcUBHjOzwA1ysfbD58I9w8XRB/8n9tb53M/oSKhVviMVbF2PmmpnIzMzEsPbDkJaRwnJLM1t0H9EdP+76EUt2LkGJ0BJYsnU8Yp7fUV/j+sXr2PHrDngX9ta6tmdBT2w+u1l9DG49l88npyagb9O+0NPTw7SV07DiwAo0rfQ1jPXNMLzdIq00s9bM4jQlfCph35n12LZqG/pN7Iewg2HoMbIH9p/ZgCNXtvB3Zg6bibN/ncXIeSMxcMpAONt6Ij0zNYduUpNTkZ6RCklS8OevR38NQ2NDfu7El4mwMLVFoFe5HOniX8bzptHKxZry5za92uD+7fsY3XU0X9PR2gO1SrZnWbfh3eDo5sjXfProKVztvNGqfD+WPbj9ALYOtuq8mBiawdXGlz8PmzWMn3vswrEsszazQ3pmGsu6DOmCn/f+jA79OiArKwtVSjZBu0pD1OnooNVehQILIT7pOQzkxizrN6kfmnVthvnj5uPwrsNITU+Gi7U3OtYdjmJliuHW1VsY3Howwo+Ho3HHxijqHQRDfRO42fvC1MwUT6KfsN5JVqVkU5Qv0gB2lk7q/F88dREV61SEr2sAmgX3hK9LACSFhFOHTmHHmh2crlbZtmhbYRAKuAZAX18fWZlZ2L5qOxp2aIihbRfgm/ozEPviIW5cvMHXvfP3HU5HeQj0rAA/9xKwdbTFmr/WwNjUmGVtavRHliITpobmMLMww7wN82BiZsKyAS1noW+9mep07fq24xXNrXq2goutF+zMneHuUABmlmYIrhqM39f9jprNasLYwAwFnYsj2L8mt4X4F/Ess3Oyg4mRGdpXHo7gojVx9dxVDOswDHaOdihbpSzrpWqxFpz3Kf2mIOpGFPQN9OHm7YZW1fvhm7ozULJgRZz44wS+7fktp6vWqBqXQd/6s1C2aHVcv3AdA1sNhI29Dbe5Ee0Xo0LRRjAxVK4CfPzwMadzcnNCyYKVMKjRfFQu0YTbUe2WtVlWq3ktWvKHyv7NEFqsDj9DaI1QePl5YdS8URjcep46Ha30NjAy4Pwf2n4IZsYW6FpjPPo1n46CAQWxZtEaHNl1BCnJKVi4aQRS0hJhZGgKV29XfpnG6C6j+e+mwz/gQtRfMNI34T6G6sS4HuM4z+kZaXCy8oS+noFWW3r2+BmePn6K8gH1YG5sBVsLJ36+mUNnsrxgsYKoUaYlzI2tYWfpwiZoaPuhXO+5fjy6gQMXN8BA3yhHOw3wCYWViR0cbdxRr009fD3qaz5PZbZg4zAkpyXA3soVVRtW5bpi72zPbW5qz/XoXWcqrMzsYGVrBV09XdYNEbZ7OmJf3kejCl15Oxgdpw6eQuSVSNYPtXNqewNazMTARvORlZWBBg0asH4+JsLoaWBgbIA6LevAycYDrSsOgJGhCRdkhdoVtL7Xp940hPjX4kbhW8QXI2aP4Mp373EkywN8QrhTcPVy5QbcbVg3rmhRsddYnpKUwo18yLQh3PFoQpXG2t5afZgaW/D5fafXw97JHsNnD0fh4oXh5O6EIp6lYWfhDDNjS600Jw6cgJ2lMwo4BeJ29DWUq1kOIdVC2KBUqlcJhT1L4W7sdW5cf+7+kyt4YNlA1G1dl42so6V7Dt0EVQ7Co+f3Ubd0J/7s6OqIkXNH4mnsU6SlpaFX44noXH1sjnSV61XGpO6r0DSkJ39283FD/0n98fflv9nA92w8AfVKd2SZg4sDeo/tzYMPSxtLNCzfGR72fixr3q05dOW6/G9qVG4OvrA2s+fPpEN6buqMSZaUmoBAr/Isc/Zw5k6FdEAdZosqvRFSqI463bF9x1A8pDjqtqqLLEUWKhZtxDIq9wbtGsCnsA+KlCiCp3Ex+KrqCAQVroZvl3zLjTY5KRlVGlRB+VrlcTHyGFqW74teTSbh+ZPnaNKpCRLjE+Hu444mFbuhRblv0KhCN772zWs3MWPVDDbE/VvMQOWAZujWYAxePH2Bmk1rcroaTWqgfuhXCClcB13rj+FrUtmlp6VzWdHgBJKE5LREPkfQgK12i9owkBvCytQOXeqN4sHDk0dPMHvtbJYdDt+KqgHNMaj1XDyLfcbPQIOChu0boqBbIPxcS6rTHd5xmA0CyaKfRqFG8Tb4utEE7nxLVSjF+qPvvUx6hq41x6N9zUEwNjFmfTy88xDn/jqHllW/QbBfTXSoNQQmpia4de0Wl+2Q6UPQrPLX8PcM5rzTAOpa+DXW26Iti1AxsD4KuZVC53ojWXbhxAUuW6o7VAZ+LiX4mkYmRqwbaovU5tIyUnEmcj8Gt5mnHiyRATO3MoeFqTW8Hf3RsmpvTkdGlmQ0qKlWqhmahvZEu5oD+RlMLUxRuX5l1GhaAz4uRdXpoAMU8C/A6R/ceYA6we1QwrsiCnmUxPyN81lORvrK2St4GvcIL5KeoGPtYWyUy1QsgxuXbuD4/uM4dmk3d/id6o7gAUbpCqXZwFw7f40N7/WHZ1E7uK1WW6JnHDlnJI5e2on2lYexoSlaqii3dxoQVW9cHQfObUL7ykNhaWrDstjoWDy6/4j7nKXbJ/I9nW28tK5LRjHywUW0qzwUZkaWMDQy5IEQsXD8Qujp6aNLjXGwMLHmMqc6b2RsxG3OQG6EjccXcVlQm6A+j3RDREVfQ2iheth7ei2GzxrObYEGb9T2ST+PHjzi/szFzhsuNt7oWm8Uzp49i4MHD+JjIozeq9fXEFQgKmQ6MhRyL4mr56/+3/TUSRPkfWSHKtTB7QfZS/JyKMLn5o2Zxw2UOo7sPIx6iOalm6NtubaY3G8ynsfH8vlLt07AL8CPR7xNSjRB9zrdcfTS7znSZ6RnYP+W/WyUqYJ7OxfB+WPn2btSdbi3Hl5BEfcgKKQsKLIUPLrWRJ5thEnE3IthT6iQS0n1OVNzUzbA1FjfhaT4JM4bpdeERtg7f90JE3MTHkwoJAVWHpymNojZiYy+qNbn3FFzEfcijkeJV26fgr2F8o0MUwdNRa+GvXB079Ec6RPiEnDy4Ek29gTp6vLdE+o6QV7cg6gHKFS8EJ/T09XXKm+5vhyXz1zmRkzek59LKaSkKWXUMVKeNesP1QEi+0CHUKWTILFXRoOf7LLwY+HssdAom6614sAU1A1WesnZOXvzAL79pTP/e9+mfUhNSWWjeifmOkyNLLFw00iWfT/xe1w+ffmNeSHDRYMBwsu5CM7dOoTn8Y/5c0R4BBtbd1936ue5vZy9fojvQ56wjkyH6z61IYUii2X0fer8NXVCZUxQuqIli2rlQ5UuIy0DRqZGWjoh2Ymre9lDIqNBOqFrLN81Fc3LfYPI+xfVgywVZyIOYtiKxhj1YxsuQ9+ivqwTehbSyawt32DQwkY86JDL5TnysufUr9xeaBBA+Jfyx7kbR5CUGo/MrAwsGLeAvauqjapynukDtTMyiAR5zaSXv/b8xW0vwLOcWkYDNlV9WX9gIfzdg+HuUDBHuVJd9/cqi0KupdTtXVVfNGWk1zuRd9T1ZfbI2UhLT+Eoh56uXo4+JzMzA8sPTMbdRzfYIKnqCxlpF1tv7Dq7Arejr+LI70e06osqr8aGplwWXgVfG1SqM7+fXwk/txIoUa4EXj59yXWCBpmsHx1lG1Ih19VnT/ro0Zxt9UPyRW9O/1Co3GmqkJqYGVvhwZP7/zftom8Xwb+0P5xtvaBIVJ6/ff02+jTuww2dRj49Go7nkMXZ6wcQeTMSS3YsyXEtL6dCGN5hODdUGoWvnLcScw4MxKjmv7CnsW31NrTo1gLtvmnH4dGFYxdBliFHaKka6mtQ506NlsJJRM2g1jAploqOVTpyo6NG26BcZ5QpUB0yfQWPBlctWAUPXw9l+OHaH4h6rPRINaHRNOvEyErrPHlELLP+d7rOTM/Ej/N/5I5BOZrMVBuaCb0mcAiTwrMW1hZYdnoVZLLXHZ0mRTzLIMC1In7aO5ZDbMf3HceIr0Zg4tKJHGbef2Edf6/TgE7cMVDoaM76OTCAv/oa5D3QqL5i7Yr8uWXVPlizex7uPbnBgwvqSAZPG8we4s8TVmD76Z/RpnZfhI1fCAdXBzx+8JjLiZ5fT1cOQ31jrPzjO64LNCpn3cQ+B0yUnfuRC9v4Ph4FPLTrkKQMd9EAYs+GPajftr5aduTKVmw+vpj/ff3SdQ6nU0ex6fB8eDoUwZWoU3w/6qhUlClcFRZ69th/aS1S9V/g9JHT+K7/d2jdszXLd51ZAWsLe/gU8UFAUAAGtx2MZfuXkf+uzou1nXJUT9cmutUfi6VbJ2P6mm/48+qFq1nXNFCkNIOXNeDnH7NwDHZv2M2hWhrYjP6pDTIy0znSMfGniQibG8Y6ofYxcEEfpGcqvdTR80az50+oZJROX27IBoFCbipZv3k92cgQZPAoREs6mdxzMmJfPsSy/RPVITzq8ImAsgG4diYCmYpMZGSlsye3ZuEatU42HloMHejw/cj7mzV8FoqULMLtV5UXHR0ZR1vICyfGfz8e/WoOx/CwJmrddx7SmaMiFKKm5yc90ACF2h0ZC/pLgySiWUhvrXpA9YUGWvdjYzC00Q+4m6A9mKTBM4UGB9ReBKSCB1rXL9xEk85N1LJSTrUx6Jd6PEVhmmjK/QwZ2dOHTiPAJ5gN7aGrm7SuSf1C1wajYaXnjGUHJ+LuzbtcX2hQQDx8cgtNgnshS8qAvo2kri/0HPdjIzmvv539HgaGBrBxsFFfu5RfZWx6+AP+urQTNX1380AytHooR16o7ZO3+NPUn1DRtDMyM4Ath5exUYyJicHHRBi992T+mPmI+jsKCzcvxNMNr89TWPPnPT+zAfrz9z+xcvlMdK42BhsPfY+5W2ZB31DbuyKKegWhcH1lkXBYrXgRtCjVCudvH+YK4+fvh+7Du6s9ifMbbuPotR1aRu/39b+jbOWysDS1ZQN8/sYR/HH+D+6MqFO5efUmFoxcBHM9W05HIcoZQ2egRVALrvxudgVQ2qcKztw88FH0te5HpTGi+UMVNB9E9BjRA/ej7mNC7wkYPHUwDp/fgmFNl2DM6lY5rlO6UBUoEpWBCgo/1m9TH+0qtGPPiyjmGYpzNw9yGJjCbeSN7li9A80LvDZ6546dQ/Um1dVlcTh8G+48juB/9xrbC7q6upg/dj4b4h6NxmPV7jkY9n1zlgcGB8KzgKc6SkBsOLoA0U/vYMnahTnySzIKd70Jkj18chvWhuZsEDsNVIaQiftPI2FmYoWBs/qyx0a6adenHW7cC4evY6D6fi3LtlSnoTmfX3cvwPOEWCzZv5C9/MFtBnNYirAxc+Q5mrnLF/K8G0UCdq/fjfJGnV/lJQqpUgpaff1a7zuOrcDD57d4IDjmxxGIOB/BeZmzdg7a1xqMnUfD8DLpKcZ/PZ5D6TQoiH0Yi5EdliD5ZQouPDiCaYOmsTFVtQ+SXY+8gHV/zcPcMXPh6efJdVQle/HkOVYcnIzE+HhUqa/MO8mGtlmAJ7GPcfH+nwi/+SdGdRmFLoO7cN0e3m4xspIkvt++0+s4vEd06NsBPgnV1Hk5FrGDjYFKJ6SzUN/6LDt1djd7XaSTToM6cV7insVh4c4hiI+L57lTyuey2cvYA+xQeTj0jGU4+2Qnls9eDhs7G/7bqlpf/HF6IwYu2M4ePIX3KB1FD3RlepDrUb17PX9FgzMqi8EtFrySvYaegwbXNOhJ36ePpPQkLidLe3P2xr9p8g3L4nbYoohjMJYdmIgsw2SM6TYGT2KesJFpWa0voBxjMHHP4/DLzF9eXdOD2xPNFRYM8mTdUF6ICoH1EVKoNk7f2ouAsgXYcG/6eRNPjfSqO42f7ez1g1oGj/K74eBi2Jo7oUXVXijWzZrzcvLQSR64eBfyxvgfxmPeqHn47d5vPEAoW7g6SpYs+Y8vi/4QCKOn8RoyGpVpkpD8AtYub3dhqEOkeDrF8qnzeIpMtYxGnjSiISgseW5nBHsfCckv0aNuD/X3qALp4BKOhG/DggG/axUJjUZp8vhJXDTH07N7CI7W7gi/8Zf6M8XIzx89jwk/TQCUfTd+O7IUXw1vwxPQBFW2K5tisP/CWjZ6lEfKP89RJSQjdp0Fft4yJcezqjqrhJQXWucpBEKhyP9HVpZSNy+fv+QFPqo5A4LmBQjycNv0boP2Fdtj87LNrKtxa9qwbNzX47h8fpj8AzYt24TxrVZrXZ/m7sg7pM6JvEMnK21dURiODWKB1+eePXqmDm2mpaZh+9Fl6F5zApbsGc1zlmQsKRy8/qf16Fz6O/g4+iMx7SWmr5vCZUphU/pLuiHP4/Kd4xjcdi7XBZVuaN5j/faFuHL3JJpX7onlv0/VyheFhy7fOQEzE0tYWJlj0k+ToCfXU8uuPziHwW3mokJdNx4lNyzWkAc2T15G80HeSetQpbdCBqdYUDFYpnrw/Qa1mc15oXqkekbieeJjjOiwWJ1P0s3j6MdYf0eZz6qlm2D78WXsQavCnOSlkpc/tO18BFVyQ1ClIFw6fYnD0XX8+yHYsy6SZS+w5vwk7vwun73MAwJTIwvYyt3g6eWLp/K/OZRIOqH2YW/lgueWz/geFBajMifPmmTmJlYI2zUDjjYeMHKRsHXlVrWM5nNdTAqiZLFyyDzxApdOXWKdUAh++mpt74nmpKhzJm+Q7qeQyzgvsbrX2dNX6cTHxR/udgXV+Yy5H8M6UeXzdtR1fp6C/gU5n+QhblmxBWM6LoWjoTdkpgp8taQml8+KuSu47DccWMTXZo9PknjwoTlI6veTcrBKnjI9g0o2bVUv/qv6JnmNtOiN6j/3HYrXYeHY6FS0r9ReS6a6puq+BIVzBy1UhmVVkDdLZE9386GOVhifFsPR4jeWLb/MRo6mIOgZKa/0me6Tci8Jvy3/DVvCtvDCuYzMNDx6cQ+LNo8Etij7OqJbrW7Yf3s/z3GuOboGZ6c+h5SiB1t7K4wMawFvb+3FfR8aYfQ03tVGIy0VVMA0mm7R4HXoQgUVMHVIV2OOY+6GuexN/D8ojZmhBcZ0/Ane7V+rffrg6bDIcEV1/zY5Qnk0+UxhzSAfa3i7FMX9W9qh1tgXD2Bt9nqui0JjtEggpGoI/o5QVvaMzNQcIycK06gajQoKNdBxJ/UFIh6cyZF/ekZzE2vceKgc/akaRcSFCDTq0AiI+meD98sfk/nfnQd1hoWVxT/rSiGxga/u1gWKZBm+29gNfcb1wbof1vHCAlp1l7RTOw2NZmnVIIWzPBz88Piltq5odE3ehybO7s5qg52Zkcnhouzv7SPdUWOl8r4YdQwDW8+CX4BytP73pb/ReXBnDhERtNCDVtQR927d48VNFHa8ePMq+jeYg3jFk9fPKEk8BxQeeRRmhlYwMjDGlGVT2OtUyS7cPMbpVNek8xROp3pBCw7aVRoKWwc7rk9danRh75RCTqf3aacjD4g4ffg0P18pnypqGUGdMXn5sVHPOd3ao7PZwFJdonsum0WhT6BD5WFa6ThcrrHSjhZd0TkafCXGJXJ4mNpQoHMlltPAio7sc3eqZ1O1P6pXtPJRV6bPC6TCzo7Tapua0P0pbZlKZdBzdE/cXp3JdUZmrMDksB68KpcWUWRH1aFTCI88eWpLeLV+i65HERrNeeTj13fzAjXoJXJeVMbyTe95pDlyCv9p5mVj+Gyewz539BzGLBqD7/pORaPgHihasATLaKBAC1xGzx8NnfMenO5efARW753NC5hadG/B7ZMWHk3tNhsyyAGZAoXKeaFxp8YsI1T3XP3nDBQIduM5OFoERtGQBzuzoEiVYde5ZYh5dhfNuzZnvdHgRzOdvZ85zv55lhdszRs9D/4u5VDRrwnL/EI9OMxOeqVoDaUL2zULJsamkCyT2JulgSvlk+he81vYOzpyHaW+jhZV0VwoRVE0602WQgcRd88hNjYWDRtqG+cPjTB6GtBE7J6Ne6D/rAAOntqC1PQU+AX6qTsNGv0lx97EHyc348q9E/hu1WSeE+J5G16oYAA9GGHrX78gPTgYDs4OXPgHth7gifXe9abxvJ+X32u108o0k3RzOFt7YfPhH1C/bDk4ujjy0uQVc1bwAoFSvlXhnVUYs9f3x+pFqznUQ8aGFrK0qThQ3fgp77TaTjnhr/SsivkE8/wLGQMaTUdejcTBc5sRXLA2y2m+h4aUFDaisMOCX3+ApYk9UtKj+Hnp2WlOxdzSnJeP/352JaejznzTL5tgZW2FUuVK4fCfFxH37KX6uei6NN9FE+kLNs1GzFOlEaKVZLSqj7wPS1tLrNqzHL52yvAmLeOn+aDYR7Hc0O9vzFJ73/R8ZKhp5E1bAr7fPQMF7ZWLAM4cOYOl05ayUaM5qBIFK2Drnz+zjOY+aUXcsf3HMCNsBu7vu4mUuDR1iFjz+dztC2DjUWVokibwb0Xcwt5Ne3mu7cSVvahfpiuSUhKwe+NuNgTB1YN59Set/ivmE8Les6WNFRKOmHLZ0RwpdXJtqw7B84THiE64qc7TrrW7WEfmBrbIVKSjUYV+vKCAFiWEzQvj8FJxr0p4Gh+DNN1EvNj/EttXb+cOmfLVo8FE2Bt4QMdIAYtXL/MlPVC5BHpU4HSpsnjc3fgAK+eu5AUkdL+KgQ1x8uo+uLn4QHHOh/USdT2K62GPuhORlBKHyAeX0GrYGO7Yv5/0PW+jsDC1wa6zYYChAopzFrh48iJ3jLwF5th6mOna4fazSwi/HA5jY2PuFOmeFOJKKpWE288uI+JqBA9mSGdUN2Juy3A3WrndgrxwmjudO3ouXzslNQtNy/bGlr9+xoULF3g7Ci3GoPrgllIWuun6OBO1HxcjLnIb5IVWL+NhILdBspSK0xHKgUjZqmWx9oe1vEjKIy0EsnQ5TkTuQmRkJLwKefG2A1qdvevXzTCEKZ4kP0D4pXD2thNeJnCdjLqXgZsxF3nLQ/iJC7zyljp3qsPLdn6HuiU7QW4iw9LWm3lxFBkomtM99Ggn7I08Ya5nzgMV0jPJqjWshiNLL+Dw5c1wd/Xmuk11gubXKdx+MiIWcYkvIb0aUNAz09wprQ2gLUbUIrpUH4uVR6byIIn6i6SkJPy560/YZpWAsdyKw65U70k3Lbu35PnCiBuZHMI8cm2zOkRPkZ4D2w7AIas0jOSWPHdJ3jjNgVaqW4m33vwybTn8HEqxgafpB5rLpoEupb2nexcPnkaid9MpOBq9nlfJ0rPTIJJWkB+4uBHNbHpA38CY9Ul9ZZ1WytXT1NZpLcGzl2a4efsaNp/4HgMHDoSfn3LF9kdD+oL50JvTjc2MlZu0X21Ob1Wt71s3YL7p6FBrCG8kD/GvzZvc5fpy3rxOG677NpuWY3O6amOoanN6Kb/KvBGe0tHm3SoNqvAGV1W675Z9xxt+5QZyyd3XXWpbY6BaNmP1DM7DysMr1RtRSTan7zb15nPV5vTaZdtK87rt4e+MWzyOz9E9aeP4m56rVvNa0tz1c98oo82lb5PRUbF2xbfKvh719RvPB1cNfus1aZP19FXT3yirXL/yW9OVCC3xVtk/PR9t6H5b/odMH/JWWUH/gu9Ud/7NQRux/0u6oMpBb5XRpui3yYbPHv5WmZ2TnRRQNoDrOW+g5w3jOlxve43tJdVpWYfrnHKjvA7/9S/tL20+u1mq06oOvwjiTdeljeJvuye9KII2/qs+UzstHlqcXwxB11S9WII27fu5l1BvwKZ2RPVblY42hNMG+p1Xd6rTqTamUz49CnhICzYtUMtULwjwcy8uzVw9U912K9atKMlfbTynw8jYSGrds7VaXrNMK8nMyEr9wgJ6icDBuwe1NqcbG5pJOjId5eb0s8rN6W96SQUdbXq1eatuFm9dLJWtUlYyM7bk++nK5JKbtxvrRnNz+qKvD0gFXAPUull/cj2Xo4mhGeuOXrBALx4g3ajSNSrfVbI0sWP90AsUSDcqWa2g1pKVqb20aNBe7suor1HJvu2yXAr0qsB5oo379IIAesmESk7PY2Wn1I+dhYvUqkofSaFQfHR7oEP/wxcK/X6ShYUF4uLi3usnKVxcXRD9MBo2jjbYdHoTIuYrR0QUpy/cX9sZFjIhyy7LbfkRsrwry0vPoeL6/CxkJerA2EKOztO190R/DHsg9ukJBAKBIN8gjJ5AIBAI8g3vbPQqV66MAQMGvFHWqVMnNG7c+F9d586dOzwxSpPUnxVFFu2Y5n/KaFl9ZjpkCuVKMf5Lco3vCpmQaclyW36ELO/Kclt+FP9dZhlzGfa3/oRl9EX195CVnvN5c7unN3/+fKxYsQJfDNe2A/P8oZOs3CuknxqPSitbwSA1gT/T3+AN3WF75wQf9G8hEzKVjMhN+RGyvCvLa3Wt+O9jUOTwbBTfPY77XYL74Xn+yn75S9myQJOIXwyk2A1fvVr8pEG2/WsGSc9Q9IDy/Y/ZEbL8LbtfrAncLm/JNfkRsrwry8t1TYv4GGW/3HIlUKRh7vT0du3axcZuzZo1OcKbtP9kxowZ8PX1hYGBAdzd3TFlSs63fRD0zrUuXbqgUKFCuHfvHj4q5ELvGa42eEZ6gLFc+Ze2muohDXo6qfxXc+upkAmZpszt8tZclR8hy7uyvFbXNFF97/UODHrTxoiPFup85y0LNKdXvHhxzJs3D7/++it69uzJf+vXr89G7+XLl9i6VVlAw4cPx9KlSzF37lyUL1+eXyR6/fp1dOvWjef0vLy8EB4ejsKFC6NNmzZ8bu/evbCzU74eKTv0EzZ0aC5RdXNze/ctC1F/AWGvX+orEAgEgs/L6thFaG+vfKE503En4FUh92xZWLx4MXr37o0dO3awwctOQkICz/GRp9exY0f4+Piw4SODp0liYiLq1auHJ0+e4NChQ281eMTUqVP5oVQHGbz/RKLy51E0ua1wxMD0XpiXqfyxUyJZMoBn6q980L81yeuy3JYfIcu7styWHyH79ZPITiv8MCKjG37OVL6h5d/00x+C/2T0Nm3axK+L2b9/PypVUr5XLzsRERHslVWrVu0fr0UeHr1CZ9++ff93TnDkyJFsxVXH/fv//LM/b8VU+x2M5ZclosZWU2xRVMDerNLq8zueKX9z7E3kddnWp+OF7B1lua0MvxRZbirDL0WW28pwx3+Q3ZPssS6rKjamNmMvT1+mfF/n2/rpz2r0SpQowR7ZsmXLtN4aromRUc6fpH8TdevWxaVLl3DihHKF0j9B84Lktmoe/wmPUMDcWR1dPtrFFHMbKT1MCx3li2iJBjbab8TXJK/LGttOELJ/JdPJtWX4pcg+fxl+KbK8VdcsoOxrDeXRHNZsaTvslUQHMHdR9tO5ZfUmhSpnz57N83v0tuxFi5Q/oaFJgQIF2PAdOHAgR0hTk169esHf35/frE2LYt7mOX5Q6NcMak9/tXqTKpKERElppC1fFYQKayiX076JvC4j3bxdLmR49ZNIubkMvxRZrizf3CTLg3XN8pWDkQijnIa99jRlP53bFrLcuHGDP7dq1Yo/Z1/IMmHCBJ7XI1m5cuV43u7q1avo2rWr1kIW1fXGjh2L3bt389zfJ3n3Jm1boFWc8dH8MUPSRTrkMOGVRK+gEQcVALF7KJCg8UOgQpa/ZbSkmupQbsmPkOVdWR6saxnc3+rBmFZ36rzhed+Rf20P3vVN1pUqVZL69++v/nzt2jXJ3t5eGjRokNSxY0epUaNGallWVpY0efJkycPDQ5LL5ZK7u7v03XffsSwqKorXp4aHh6u/P3v2bMnMzEw6duzYB32r9j+SlSlJt/+UpEsblX+TnkvSeHPlcWOfUq4iJU7IhExbltvyI2R5V5bb8pPyAWQRuyXp1uHX/W/2530H/q09eOfw5uHDh7U+03aDx4/fvMqGfoBz9OjRfGTH09Mzx3zgoEGD+PikkAutuSw2XSO86Rmq7WJr/lvIhCw35kfI8q4st+VH9gFk3hUAfRN8SsSPyL5iwYFI3HqSiPalnVCmQE0+l5oJdFyuXGAT1iUIhjq6QD6RQUcXqRlZ6LjstFLeIQCGQpZTlovL8EuRffYy/FJkubgMU/+jbOzOSDxOzMSkxv5wMDfEp0AYvVccvfkUp6Oeo0YRB6DdRj6nSM/EqSjlr6IryCvVN8w3shxyPQMhe5MsF5fhlyL77GX4pchycRkq/qNs33d/4HF8GvpVK/DJjJ74aaFXxCUr3/RtaaT/ubMiEAgE+QLLV/3ty1f976dAGL1XvExR/ryQhZH8c2dFIBAI8gUWr/rbuJRPZ/REePMVKqVbyjOAKU7Kk/1vaH+JFrnM9M0fsqE36XUAGrJkYKafkGWXvYtOhezNss9dhl+K7F10+oXILFy2aDkdnwJh9GiiNSMLqRnKnxQyN9QDMrK9DkcTIROy3HBPIcufstyWn4z3k30OT0+ENzUULtMBzAzEOEAgEAg+BZb0e24aayo+BaKHp538r4wejTpkZPk0MJK//VU4eV2W2/IjZHlXltvyI2SfRmb5ytOLTxVG75NSwMEMkVPqICktk/xu9XljfV1ETKr9+ovpaflGppTrvZZrbtoXslxTTnlBlqvLNzfJcnEZGv9HWZcQV3SuWJC/86kQRu8Vcl0ZLI31gfRPN+IQCASC/IwxGTv9T2uGxJyeQCAQCPINwtMDsOfKI+y+EoPyvrZoEWgLeCh/5SE1U0KvNcpXAP3QvhQMdWT5RgYdGa9q7bX6nFLeqggMhSynLBeX4Zci++xl+KXIcnEZpv5HWUx8OuYevgkd6GB68wB8CoTRA3A1Og7bLkTzQpYWpd2AzrvUr885dOOJxutzjPKNLIdcz1DI3iTLxWX4pcg+exl+KbJcXIaK/yhLf5aEDWcfcJjzUxk9Ed7U2LIg3sYiEAgEn/41ZMnpWUjPVO6V/iKMHv2Q7IABA94qpx+M1dHRwYULF9Tnjh07hmLFikEul6Nx48b4XGQpJNyMTVS//40+a8pUnLr9PF/Jclt+hCzvynJbfoTs08nIw1NtEjsQ8ThHvcgVv5z+/35N/U1kZWXxr6bb2tpCT08ZUS1btiwKFiyIqVOnwtTUlNPSL65rGsaP/cvpe67EYMKOa4iJe/1L6V7mwF704X/XkBbjbgLynUxfT4b9NfdjzO9R/AZ0whCpOGE4ACb6ujhS94CQvZLl1jL8UmSiruXvulYLixEV/1rmZGGI8Q2KoLb/q1dBvgP/1h589Dm99PR06Ovrw9HRUev8rVu30LNnT7i6uuJzQAav1+rzyG7xH8enQt/whfLfqWQMDfOfLB3ov+4CkjVkhBXiWdZv3QWkCNmH03d+lom6lq/r2qNsskdxqdwv/9C+5H8yfB8lvJmUlISvvvqKvTMnJyfMnj07xy+iT5o0ib9D1rZHjx5a4U3Vv589e4YuXbrwv1esWIEJEybg4sWL/Fl17mNBLjR5eG9ycSmqnCwZ8CHlY1n26Lr0D+nysyw3l+GXIhN17d/JcnMZSh9IpvpM/fPHCnW+c3izd+/e2LVrF5YtWwZ7e3uMGjUKR44cYQNGIUoyei9evMC4cePUc3W6urrw8vJCeHg4z+NRqNPPzw8TJ05Eq1at2CUdO3Ys9uzZgz/++IPT0DkjIyOte6elpfGh6c66ubm9c3jzxK1naLP05Ls8tkAgEAg+ImVTdHHKKEv9eW33YIT42Hze8GZiYiJ++eUXrF69GtWqVeNzYWFhOUKUVatWxeDBg9WfybtTQQaQQp3kzVEGVWFP8hxpvi97GFQTmv8jj/B9iU14PYcnEAgEgs9P0XRto/ex+ul3Mno0D0dzdLQIRYW1tTV7bZqULl0aH4ORI0di0KBBOTy9d8XeTDtO/vDH7shKeg5dE2u4fL1US9Y1zgCmkg4SdST8YpGWr2S5LT9ClndluS0/QqbzyWWpOtI/9tMfio+ykMXExORjXBYGBgZ8vC9BXta8SogmTUnNUmY6pIw0/psdOXSgDx28aQdfXpXp6ACqoHduyI+Q5V2ZqGtCJn8lU5lC2sLgaGHI/fRnX8ji4+PD++pOnTqlPkfzd3///fd7Z4RWeNLWhk+BrkyHl8US2j8kJCBqB4oX9Qg+DaKuCTRR9cfUP1M//TF4pxpH825du3bF0KFDYWNjwwtZRo8eDZns/fe40wKYqKgoXuFJc4RmZmYfxKt7G7QclpbF0iqh+xrnrU110La88i0Ba/5KB+Lyn6y0jx58HHVzTX6ELO/KRF0TMmjIHN9jn95HW71Ji1l69eqF3377jQ0TLVih1ZyqzelkvOjtLJpvaKGFLKrVm/Q9wtLSkr/fqVMn/kyrMtu1a4cDBw7g5cuXWL58uVr2sTanE7Qs1tHZGU8fP4KFnQ1+O7NR/UOyCoWEq/OyIEuRQWGkQNEBuvlGltvyI2R5V5bb8iNkWZ9Udm2+AjrJOtAz1UO3GRX+s4f30Tank7e3atUqPlSQ5/emlZoqyBBmt61k2DQhr27Tpk341JCC6a0QhJ4utBoi/ZvOKfKhLLflR8jyriy35UfI8GllMoAmtvR1dT5aSFML6QsmLi6O16HQ3/fB2cWZr2PjaCMdundI6jepn+Tg6iDJDeSSp2MhaUiTxdL3g/dL8zbOk0KqhUg29jb8/R4Nv5UWfX1Aali+i+QX4CcZmRhJljaWUrma5aTxnZexrHW1fpJ3IW/J2NSYjyIli0h9mk5hGV2T7qc6ug/vztet7N9UqhvSgf+teThYuanTbTi9QarepLpkbmku6RvoS862ntLQpt9L1uYOOdLRUaFIQ2nRwD1Sh34dJEc3R2Uad2epfmhHaWGPP/iau67tkpp1aSY5uDhIenI9ydTCVDIxMlc/qyqfpIfgasGSgdyIZboyPalkuZLSqiOrWFawWEFJT1euvvfS3Us53ey1syVnD2dJJtPl88YGplKNpjWkjac3cjpXL1dJpiNjmb6eIV9z8bbFar1bmFizrLBHKf7bZ1wfltk52eV43jKVyqjzWsA1QJ0fub6cy2rdiXUse5Ou6GjQvoFUxLOMpK9nwJ/19PQkD18PLltKry835GvSQdek+7Xo3oJlpBe5rj7rRd9QX6pQp4LUrk87ltH36bxMR6mDHZd3SN2GdZN8i/pKujJdSUdHJuno6EjW9tZSk05NpK/6f8XpNGVULqE1QqXm3Zqr72dqaCkF+IRIxYKK8XWpbpCM0mR/tkKBhdTpjPSVZUz1geqno6uj5OXn9Va9VG1YVXKx8+b860BHkslkkkcBD+nbJd9KA6YMkJxtvbjsSK6rqysZGBpIlepVkrqP6C452Xjys9N1dGQ6UtHSRaXN5zZzOltHW3XZ0zH++/Fcfj1H95TMrcz5Xqq6FlI9RNpxZQenM7M0U8vonoVLFJbCDoaxjNqdob6xZCg3lowMTPg7k5ZOYpmhsWHOMm/XQJ2Oyp3yQ9emZwgICuCyeJte6rauK7n7uqvrNqWjuk56oedY/edqKdC3nGRqaKGui/Xa1FO3qfn9d3Eblevps4zSkm5I1rbGAMnXKVCdrmH7hnx+26VtUqXijSR7C1f1fX0K+7BuSF4+oJ5ka+6kljm5O7FuSEbtnfqSRuW7qJ+BdEMyai9v0o0q3aBGCyRbCydlu5DrsW5WHFzxVt1QWU7tuV4qU6C6us+gflKlm4ldV0oBnuUkUyMLyczMTGrRooX06NGjj2YPxK8sZOPg9oP4YdIP6DigI37a9RNc7LyxeNdwJCS/QGpyKnyK+KD/5P5aaW4+uITGHRtj8dbFmLlmJjIzM7Fw0wikZaTA0swW3Ud0x4+7fsSSnUtQIrQElmwdj5jn2h7x9YvXsePXHXw/FZ4FPbH57Gb1Mbj1XD6fnJqAvk378r7GaSunYcWBFWha6WsY65theLtFWmlmrZnFaUr4VMK+M+uxbdU29JvYD2EHw9BjZA/sP7MBR65s4e/MHDYTZ/86i5HzRmLglIHw8vNCekbOvTKkh7SUNEiS8l0ajSt2h6GxIYa1H4bEl4mwdbRFoG+5HOniX8ZDoVCgSokm/LlmUCvcv30fo7uO5mt6FPBAneB2LGtUoQsc3Rz5mk8fPWW9t6rWl2WxLx7A1sFWnRczCzO42vny5/a1hvBzj104lj8/jHqIOzHXUcStDH/uM74POvTrAH0DfU5bpWQTtKs0hGXDZg3jg/aQFgoshPik5zCQG7Os36R+aNa1GY7tO4YiJYvAzsIZjpYecHcoCHMrc9g42GDbym2o27ouinoHwVDfBG72vjA1M8WT6Cesd6ojVUo2RfkiDWBnqZyzoDxcPHURFetUhK9rAJoF94SvSwAkhYRTh05hx5odnK5W2bZoW2EQCrgGKBd9ZWZh+6rtaNihIYa2XYBv6s9A7IuHuHHxBl/3zt93OB3lIdCzAvzcS3C5rPlrDYxNjVnWpkZ/ZCkyYWpozjqct2EeTMxMWDag5Sz0rTdTna5d33YwMjFC3PM4ZCmy4GDpho51hiEgKIDLZ0KvCchIz0C90A4wMTBDQbdA1G5Zm9tC/It4/L7ud1iZ2cHE0Bxf1R6KWs1r4eq5qxjWYRjsHO1QtkpZ1k3VYi04/1P6TUHUjSguJzdvN7Sq3g/f1J2BkgUr4sQfJ/Btz285XbVG1dCx7nD0rT8LZYtWx/UL1zGw1UDY2NtwuxvRfjEqFG3E9yUeP3zM6ZzcnFCyYCUMajQflUs04bZE+SUZ5Y2WlVb2b4bQYnX4GUJrhHJ7GDVvFAa3nqdOR+sZDIwMUKZiGc6ro7U7ulQfhwqB9fHo/iPWy5WzV7geE81C+8DEyJzL4Pj+49weiE2Hf8CFqL9gpG8CF08XrhfjeoxjWXpGGpysPKGvp73G4dnjZ4hLeoZyhevB3NgKTu5O/Hwzh85kubtDAVQPbM0yVy9XNkFD2w9VLxi8G3sd+89uhLGJso5rUsyjHJcXtcl6berh61Ff8/nb0dewaNcw7oNcvV1RtWFVri/2zvaY2nM9eteZqk5XuERhrjNUtmG7p+P+k79hqG8Edx93OHs4Y2LviaybBZuG8+/pDWs9j3+IgLbFNWjQQK2bD40wetnY+PNGLuQ6Leuw0aGOgSrb8ct7ufC6Du2KCrUraKX5ptlU1G5RmxuFbxFfjJg9As8TYnH/SSQCfEIQXDWYKx013m7DusFA3whRsdfU6VOSUriRD5k2BMYGpurzunq6sLa3Vh+mxhZ8ft/p9bB3ssfw2cNRuHhhruxFPEtzR2xmbKmV5sSBE7CzdEYBp0CusOVqlkNItRA2KJXqVUJhz1Jc+alh/bn7T67cgWUDufNesGkBHK09cugoqHIQ7kbeRb3QjvzZxtwBI+eOxNPYpzw3O+WXKehaf3SOdJXrVcbaY2vRrLKyAdlbuaH/pP74+/LfrOvJP09GvdCvWGZlZo/eY3sjKSEJljaWrHdPx0Isq1qqGXTluvxvKpMC/gVgbW7Pn0l/9Nxmlmb8mYx4iYIV0KPWJGVe7W1YB1a2Vpy2RZXeCClUh2XU8ZNRKx5SHHVb1eXOvWLRRsr82FqhQbsGfC8yOA+f3kbHqiPxdaNvufOp1awWd2SZ6Zm4GHkMLcv3Ra8mk/D8yXM06dQEifGJ3NibVOyGFuW+QaMK3fi6N6/dxIxVM9gQ928xA5UDmqFbgzF48fQFajatyelqNKmB+qFfIaRwHXStP4avSWWXnpbOZeVs68nr/pPTEvkcQYM2qpMGckNYmdqhS71RbJyePHqC2Wtns+xw+FZUDWiOQa3n4lnsMyQnJePnvT+jYfuGbLT8XEuq0x3ecRiV61fGrF9n4UX8Y9Qo3hpBRapj/A/juYyoczMyNoKB3Agvk5+he8NxGDJ9CHeo5WuVx8M7D3H97nl+9uCiNTF81nCYmJrg1rVbXL70XaoX/p7BnH8aRF0Lv8a6W7RlESoG1kcht1LoXG8kyy6cuMDlR/UnqHA1+LmUQIdaQzgfpB9qi9Tu0jJScSZyPwa3Ub4M/8HtB2zAaKBiYWoNb0d/tKzam9ORkSXZ4V2HUa1UMzQN7Yl2NQfyM5hamPLz12haAz4uRdXpaLkh1QmSPYh6gBplWqCkTyW0rt6PBxAGhgY4susIHj14hFZVv8Hv58LQsfYweBfy5jIOPxbOZXzs0m4ebHWqO4IHGaUrlOZBwbXz19jwXn94FrWD22q1J3rGr2oPw9GInTyQIMNTtFRRbvNUR0sXqooDlzawjAZlJIuNjmVjnJqegp/3T2BjQ9fRRKHIws2Yi6xPKhtDI0N+FmLDwcXQ05WjW4Ox3JaozVRpUEVd9huPL1Kni74bzXoh3d5+eBVJaQnoWGc4rOysuN8yNTdl3TyLf4z2VYbB1c6H39hFLzw5e/YsDh48iI+BMHoa0LwjdcClypdSn5PpyLjxR8W8NlL/D+oECGNDZcergkZY5EmS9+TloNwyQcwbM48baKkKr++r8lKal26OtuXaYnK/yXgeH8vnL906Ab8APx7tNinRBN3rdMfRS7/nyAeNvPdv2Y8Q/1rcoLydi+D8sfPsXak63FsPr6CIexAUUhYUWQoerWqir6f9mYi5F8MdSyGPEupzVIGpIlNDfReS4pM4b5ReE4UiEzt/3QkTcxMeSNCob8Xu6WqDmJ3IBxf57/oDCzF31FzEvYjjNCcPnoS9lSsW7RrO8iVTluDo3qNvzEtCXAJ/nww+Qfq6fPeEum6EHw/njq1QcaXx1dPVR0qasqwtrC0g15fjxMET7D35uZRSy6hTdHBxwNXzr3Wj8qCp08iOKp0EiQ0pDX6yy6izJG+FOjq61ooDU1A3uP0bn+vszQP49pfO/O99m/YhNSWVO1zygE2NLLFw00iWfT/xe1w+ffmNeSGjRQMBwsu5CM7dOoSklHjWGZGZkcmDhcysDF52Tu2G6jrdq1iZYtCR6XAdI71Qp8rtIC2dO05NvSheRQ8oXdGSRbXyQunOXj+EjLQMGJkaaemFZCeu7mUPiYwG6YWusXzXVDQv9w0i7yvrh5vP65dZnIk4iGErGmPUj224zfoW9WW9RIRHsF5mbfkGgxY2YqNEW7Wy52XPqV+5zdAggfAv5Y9zN45wVOh0xEEeRFAddPd1Z+O45a+f4e8ejEIeJZUr3nWAy2cuc59DugnwLMcyrheWZuo6Q3Wa0lFUITsqmSodtXlVndGUUT7vRN5R15m1++dxJKp9rcHQ09de2hH7MhqZWen4ZecUjkCRN6aqM/ce/w1na2/sOBaGq2ev4sjvR9R1RvN+yYnJHBVQ1RlDAxPI9Qw48kAeJ/VBVP6kG6ovZEhVGBoasn6OHn1zO31fxCYZDSikRJWDRvWamBtZIfax5saGt0OVfNG3i+DjXBTO1jSCUuD29dvo07gPFzKNeno0HM/hCpJR44+8EoklO5ZoXcfLqRCGdxjOjZRG4SvnrcScAwMxqvkveBoXg22rt6FFtxZo9007rpgLxy6CLEOO0FI11Negzp0aLI2siZpBrWFSLBUdq3SETFfGz9qgXGeUKVAdMn0FjwRXLVgFD18PHo0d3HYQt2MicjwjGTzWi7G2nkhvKtm/gYzDj1N/RNVGVdUjycu3lO9E/XnnZNieseXwLBmUNYvWvHVrDHmeXhmhWLJtPMoWqY6LJ09ixFcjMHHpRPaiyTOuX6Yzrj84iyIlinDYaM76OSgerFxJrIK8BxrVV6xdkT+3rNoHa3bPw70nN3iAQR3J4GmDOaT284QV2HZqKdIUSay3kwdO4knME/YIqAEb6htj5R/fwb+0P4+kWTexzwETZcd+5MI2vgeFgbTqj6TgUBcNIPZs2IP6beurZUeubMXm44v539cvXedQOhnaTYfnw9OhCK5EneL7USelokzhqrDQs8f+S2uRqv8Cp4+cxnf9v0Prnq1ZvuvMClhb2HP4mEKVg9sOxrL9y2jxuDov1nbWbJzp2kS3+mPx87YpGPp9M+AHcF2a/MtkDssZ6j/idGQsjM2MMWbhGOzesJvbFvXyY1a34g7VyMwIE3+aiLC5YawXaiMDF/RB+qsXRIyeN5q9f0Ily8hMh77ckA0CRWNUsn7zerKxJcjgUZiW9DK552TEvnyIZfsncnSFoA6fCCgbgGtnIpCpyERGVjqX25qFa9R62XhoMXtBdD/y/mYNn8VhbWrDqrzo6Mg44kKeuMq77te8P0bebs6fKew5aekkFChaAIsnLMa1qDMY1zKMjQ15QdT5U9v+a89f/P1mIb216gLVGRpo3Y+NwdBGP+BugvaAkvqO+7GRLFMNPCIvR6JJ5yZqWUjBuhi4oAF7vPSMS3Ys4ftdvXMGxTxCEOgbipOPf9O6JrWzztXHws7BAauOT8bdm3e5ztCggHj47BaaV/kap6Izub+jOkOhZM28UD+gqjN0TYrAmBvZKusMGR65Hr5b/h3r5vvxS7Dt5FK0qtGTf9BgxIgR7CDExMTgYyA8vQ/M/DHzEfV3FLpohPcorPnznp/x/bbv0ah9I6zcMxMxL+6w50YGcvSC0dA31PaoinoFcWjAp7APgioFYdqKaRy+On/7MHsdBf0Lovvw7uxFUNitXLG6OHpth9Y1fl//O8pWLgtLU+X81/kbR/DH1j+4I/rp958wYs4IHDi7ESdv7GU5hSjp2i2CWqCmb038tvw3lC5U5aPpiuYTCZo/VFHQPZD/Nq7QFWUql8GE3hNw9s+z2Lx8M4dp3gTNKwT4hvK/PZ0Kc2OigQCNookA3xAO4xEV61bk8O6O1dq6Is4dO4fqTaqry+Jw+Dbceaw0+r3G9kKvMb0wf+x8XDx5ET0ajUdk9AVE3D3HYbjwE+EcbiOvldhwdAGin97BuMXKeRlNSPY07tEbn4VkD5/c5nkNMoidBr7etnP/aSTMTKzw7ZJv4eblxrqh8NCNe+F83zfdr3xAPfZWKdw+Z90cLmPq9Gjuh7Axc2RvburyqTzfSXV19/rdGnmJQkpKitr7JXYcW4GU9EQU8w6GjZ0NmnVuxnkhA0TecbtKQ2FhasPe0/ivx3M4zcHVgdOObP4ThrVbyO1g2qBpSEtVvoeD7juywxK0Kt+PP88dM5fnJTVlNG9H4VoayFWpX0UtG9pmAbrV/JYN/MtnLzGqyyjWy82rNzG83WIMabIYFQIb8PcpvEd06NsBozv+hKFNFvO8LoUDNfVCehva9HtUKtGIBxHkdZFeVHnp33Au6zw+Ll6dT2pbzjaeaFW+P0KK1uJz9PyUDzLCcj19jFjZFIMXNuZOnUKANDe+/7f90JXpsVwT8tooMtOp7sgcMnoO6jtUMipD0j8NCMi7UsmCC9bCyA4/8KDGzNwMY7qNwZyRc1iPLV/pWgV5ZpSuT9PvEOAZChc75WCN5itJNxt+UrbXCkUaIMS/Ng/gKbxO3uOymcvUeaGpEvIKPf081fmktQppGcno13w6ChYryP0W1Rkyjt0bjMOVeyfQe24t3nJAK/tLlnzlDX8EhKenAYVgaNRKBaZJfMoLmJtoezVvgjpEiqfP3zgfL7fYQaH8QXau8DQKJigseW5nBA5f/g1FC5The/Wo20N9DfK+bj64jD+vbsW+b/bxC7oJGqVRmO5JXDQsTKxzeAg0gR5+QzliJGgO4fzR85jw0wTglbP225Gl+Gp4GzYSBM0rXNkUg/0X1rKHSHmkvKckpyA5IZnnAQZX/zbHc9LIn/WSrK0nehYKRf4/srIy+W9iShwWrPlR7eURNC+gmu9rM7M92ldsj83LNuPl05cY85NykcvS7RM49PfD5B+wadkmrDu+Tuv6NElO3mHcszj2zpxstHVFIRWVQdTk2aNn6s6dOuPtR5ehe80JWLJnNBxdHXluikLC639aD+M4Jw7XjGr1I8oMtOcOrFfDXvy92xG3cfnOcQxuOxd2TnZq3dBc4/rtC3Hl7kk0r9wTy3+fqnV/Cg9dvnMCZiaWsLAyx6SfJvGIWCW7/uAcBreZiwp13RBaPRQNizXkgc2Tl9F8kGfSOrS1urMtFlQMlqkefL9BbWZzXqgeqZ6PeJ74GCM6LFbnk3TzOPox1t9R5rNq6SbYfnwZajarqQ5zkpdayqcqbj2+jO/3LOQ55VsRt7A1bCvqOPZDSKHaKFe6Jpw7KI0e1aPLZ0nfEkwMLeBg44Ra/YvwwIRCiaQXaiP2Vi54bvmM7+NV0IvLnTxrklH7C9s1A442HjBykbB15Va1zM3BFy4mBVGyWDlknniBS6cusV4oDD99tbb3tHD8Qp67Jm+Q7qeQy+Dp5YtY3evs6av04uPiD3e7gix7Kv8bMfdjWC+qfN6Ouq4efFI+yUOkxUpjOi6Fo6E3ZKb1kXbyCe7dvMf1hQy1TCdZPShS9TE0/aCi309Kj5E8ZXoG1Tavaat68V/Vpi9a3ESL3sh7VsnUYeHkVLSv1F5LppLTvaVX10xCEgYvex1FIMib1byfZjrNaZv9F9fhj4vr/yGfEp+7cuYK10fKy7mnh9kzXrR5pFZetizfgnqeA/Btm9XIkifhq0kVeA83/fCAt/frRX0fEmH0NKCCoFEIja6ogyOogP5+GM4jvrdBhUcG7+ieo5i7YS53Ai+R+Y/fp3AMzYkpQ0mv+bb9NDiYu6NWaEu1wSMoTEdhzSAfa3i7FMX9W9rhVlrRaG2mHE0TFBqjjjikagj+jlBWyozM1ByjJ6qIqgajgial6Uh4mYCIu2dz5J+ejwwfeRgqqEFEXIhAow5v15MqBEOhS4IWZ1hYKRfnvFVXCokNPK00vb06E5PDeqB5lZ44dG0jLyqgFXfZoTAjrRikUBatwnz8XFtXNC+n8jw0cXZ3VhttyieFX1UNXgV9ppF9esJt9G8wB452zrC00eNr0srJMpWUq0RrFG8DWwvlCs17t+6xB0Eew8WbVzldvOLJ62eUJCwYtwDhkUdhZmgFIwNjTFk2hT1OlezCzWOcTnVNOk+hJaoXZkaW7F3ZOtjBu70eutTowp4pzRWd3qedjrwO4vTh0/wspXyqqGUEzbXQwC826jmnW3t0NhtYqksEze0Qf0efZwNMdYHgcHm21XY08KDzNABLjEuETKaLGw/Po5SNsm3R4IqO7HN3qucjT0dVt2g1tK5MH70aT0TY2XFqWXYoD5SWyqHn6J5cZxTJMsiMFVx3qD7QIprsqDp0CuHRymBqT3B/nRcyWuTtqTh+fTcvUoNeIudFZSw16wulo/9o3pLauWZewv6axLomz5zqab+m/dEouAeKFiyBjeGzeaBAqztHzx8NnfMenO5efARW753Ni5hadG/BbfTasgT8unce9ORyGNhJ8CzgicadGrNM8350TVpMd+T3I2jerTnMH/pBkSqDzFCBfdfDuE4379qc9ZZwwEorHXmPFG2hCMOsgXN5NXCVoIYso8VZ1y5cY4+vpEFjTrf6zxl4nhrNfQ/lhRZC0eCne81vYe/oqE4XfS+a9aOCFuGRwaMFLLGxsWjYUDlX+qERRi8bNE82bfA0Nn40r7Luj40cD6fFINTB0EhXxbP4R3ggv4mDf27E1YcnePUhzQnRHEVcUiYMMs2w56+VSA8OhoOzA09sH9h6gCfVe9ebxvM+Xn7abw6gsIOJgTlOXNkHm5NJcHRxxNPHT7FizgpeHFDKtyq8swpj9vr+WL1oNYd5yNjQQpY2FQeqG/6ejXt46bVysl9pgIv5BGP1wtXcyGgkHXk1EgfPbUZwQaXhoPkeqoMUwqFQyZLvlsDSzI5DJ/Ss1GFSAzC3NOfQ667VyhcU3I6+itFdt8DK2gqlypXChZMXcPn6606drktzFxQGmTNqDm49vKfUX9xjnPvrHHsflraWCJsTBrt45bzRzYeXMbrrPsQ+iuVGTuEnWk3Jz0cdvqTgUTdtCZg6cCock5Rh0Yg7Z7Gn7TI2atSAqVOd2n8arI2UnfO+zftwbP8xjF88nsvzfuxdpMQpOywKuWg+o7t9AWw8upBlNy7dYG+GQlw08V+jRCs8fHYbKTpxuLPxAZcPrYilhQfFfELYe7a0sULCEVOW0RzpuaPn0LbqEDxPeIzoBKXxIW9n19pdrCNzA1tkKtLRqEI/XsRECxLC5oVxaKm4VyU8jY9Bmm4iXux/ie2rt3OnSnnq0WAi7A08oGOkgIWVskmfOXKGjWygRwVOlyqLx92ND7By7kruhOl+FQMb4uTVfXBz8YHinA/rJep6FK+O7FF3IpJS4hD54BJaDRvDnTqtRKRtGeRRmtE894toXD2XxPeiTpHKKVJxCbfv3OC6sHukMuxrbGzMxkY/0Qobjy1Cqk4Ctg26yl4eDWhoxSzVj5jbMtyNVm65IE+c5k7njp7L4eSU1Cw0LdubF4PQqwppS8rskbN5UOSWUha66fo4E7UfFyMuchskL4+2yBjIbZAspfLCEqJs1bJY+8Na3obgkRYCWbocJyJ3ITIyEl6FvHBo+yFenb3r180whCmeJD9A+KVw9rhpEEjbS6LuZfDqRtryEH7iAq++pRAlzSeu3D0TlYs2w62nFzkdQW2FyllKd4GxrjXuxF7hOT2qb7TykSgXUAeHL2+Gu6s3t1/6Ps0VU7j9ZEQs4hJfQno1qKBnpm0rFF7cdHgGn6PV0hvCZ/BAifoMmhu7dOsoCtmXgbm+OYdTaSWosYkxWnZviUdrzKBIlEFmqsCp2K18jcDgQI72rIvcjyKOwTCTm3K5Pwh/wHOglepWwpV1j7Hz+EoU9i3BkbH7Ufd5S07b3m0Rv80Bjx/G4P5jpS5phSzNodMAklaQH7i4Ec1senC6Rw8fcX7a922P42v3wN7IA3YKW/7Zuv79+2PgwIE5fr3ngyF9wXy0zekT+/EGbdp0zJvTGy/iTZlz18996wbMNx3tKw+VQvxrKze668t5QyZtuO7bbNobN6erNobS5vRSfpV5Ezylo427VRpUkSZ0DVOn+27Zd7yJmDbQ06bYtjUGqmUzVs/g+688vFJrI+qcvtvUm89Vm9Nrl20rzeu2h78zbvE4Pkf3NLMwe+Mz1Wpe6616KF+r/D/qqGLtim+VfT3q6zeeD64a/NZr0ibr6aumv1FWuX5lfva3pf2n5/gn2duO0Oqhb5UV9C/4Ttf6Nwdtwv4v6YIqB71VRhui3yYbPns46/NtctpoXadVHX45Am+ihw5vpKe622tsL6lOyzqStZn9q83yyk3t/qX9pc1nN3M6EzPl5vHsB20Uf9s96YUFtPlf9Zk2bxcPLS6FHQrja1K7o3O0cd/PvYR6Aza1JarjqnS0IZw20O+8ulOdTrUxnfJLm+8XbFqglqleEuDnXlyauXom64Vk9Kx0XpWOXgIxcu5Ilrfp1UYyN7bizfX2Vi6s66ZdmubYnG5saMYb93lz+lnl5vQ3vaiCDrrm23SzeOtiqahXGcnMyJLvSc/r5u3GutHsE+hvYHCgWjfrT66XfF2LScYGZqw76icK+Bdg3ajSNQzqJlma2nE+6SUKpBuVrGbxNpKVmZ0UWDaQ+xrV833bZbkU6FVBMjO25HT0wgGVbmqWaSWZGSl1U6BAAWn27NmSQqH4aPbgnd+9mZv4EO/eJFxcXRD9MBo2jjbYdFr7VWgR8zPVI6LC/fXylSy35UfI8q4st+VHyGSfTHZ9fhayEnVgbCFH5+nae6A/hj0QqzcFAoFAkG8QRk8gEAgE+QZh9AQCgUCQbxBGTyAQCAT5BmH0BAKBQJBvEEZPIBAIBPkGYfQEAoFAkG/4ot/IotpiSPsz3gfV65PovZfPXijf/aciJU0XinRdyNKy8OxFVr6S5bb8CFneleW2/AiZ7ieTJafpQZEug06a/L36clXa/7f1/IvenP7gwQO4ub3+fSyBQCAQ5G/u378PV1fXvGn0yEOLjo6GmZlZjhcDCz48NJKiQQZVqvd5A47g3yN0/ukROv8y9U2mLCEhAc7Ozv/4s0RfdHiTHuyfLLrg40AVU3QGnxah80+P0PmXp296Ddn/QyxkEQgEAkG+QRg9gUAgEOQbhNET/GsMDAwwfvx4/iv4NAidf3qEzvO2vr/ohSwCgUAgELwLwtMTCAQCQb5BGD2BQCAQ5BuE0RMIBAJBvkEYPYFAIBDkG4TRy+csXrwYnp6eMDQ0RNmyZXH69Om3fnfp0qWoUKECrKys+KhevXqO73fq1InfjqN51K5d+xM8Sd7U+YoVK3Lok9JpQmvRxo0bBycnJxgZGXG5REZGfoInyXv6rly5cg5901GvXj31d0Qd/2f+/PNPNGjQgN+MQrrZunXr/0kBHD58GCVLluQVnL6+vlzv36cc/wlh9PIx69evx6BBg3i58Pnz5xEYGIhatWohNjb2rRWzTZs2OHToEE6cOMGvDqpZsyYePnyo9T3qAGJiYtTH2rVrP9ET5T2dE/SWCk193r17V0s+Y8YMLFiwAEuWLMGpU6dgYmLC10xNTUV+5131/dtvv2np+sqVK9DV1UWLFi20vifq+NtJSkpiPZOR+jdERUXxoKJKlSq4cOECBgwYgG7dumHv3r3v1W7eCm1ZEORPgoKCpD59+qg/Z2VlSc7OztLUqVP/VfrMzEzJzMxMCgsLU5/r2LGj1KhRo4+S3/yo8+XLl0sWFhZvvZ5CoZAcHR2lmTNnqs+9fPlSMjAwkNauXSvld963js+dO5freGJiovqcqOP/HjIxW7Zs+cfvDBs2TCpatKjWuVatWkm1atX6YOWoifD08inp6ek4d+4ch8I032VKn8mL+zckJycjIyMD1tbWOTxCe3t7+Pn5oVevXnj2TPvnmvIr/1XniYmJ8PDwYM+6UaNGuHr1qtYo+dGjR1rXpPcPUvjn35ZjXuVD1PFffvkFrVu3Zu9ZE1HHPxxUFpplRJAXpyqjD1GOmgijl095+vQpsrKy4ODgoHWePlMn+m8YPnw4x+01KyOFfVauXIkDBw5g+vTpOHLkCOrUqcP3yu/8F51Tp7ps2TJs27YNq1ev5l8WCQ0N5Z/VIlTp3qcc8yrvW8dpzojCmxRq00TU8Q8LlcWbyoh+fSElJeWD9FV55lcWBJ+PadOmYd26dTzi1VxYQaNiFcWKFUNAQAB8fHz4e9WqVftMuf1yCQkJ4UMFGbzChQvjxx9/xKRJkz5r3vI65OVRHQ4KCtI6L+r4l43w9PIptra2PEH/+PFjrfP02dHR8R/Tzpo1i43evn37uMH/E97e3nyvmzdvIr/zPjpXIZfLUaJECbU+Vene55p5lffRNy3GoEFd165d/+99RB1/P6gs3lRGtICLViN/iHajiTB6+RR9fX2UKlWKQzQqKHRGnzU9i+zQSkHyMPbs2YPSpUv/3/tQGI7mO2g5fX7nv+pcEwrzXL58Wa1PLy8vbvia16SwEK3i/LfXzKu8j743btyItLQ0tG/f/v/eR9Tx94PKQrOMiP3796vL6EO0Gy3eeemLIM+wbt06XuW3YsUK6dq1a1KPHj0kS0tL6dGjRyzv0KGDNGLECPX3p02bJunr60ubNm2SYmJi1EdCQgLL6e+QIUOkEydOSFFRUdIff/whlSxZUipQoICUmpr62Z7zS9b5hAkTpL1790q3bt2Szp07J7Vu3VoyNDSUrl69qlUudI1t27ZJly5d4pWFXl5eUkpKipTfeVd9qyhfvjyvIMyOqOP/H9JReHg4H2Ri5syZw/++e/cuy0nfpHcVt2/floyNjaWhQ4dKERER0uLFiyVdXV1pz549/7oc3wVh9PI5CxculNzd3dmY0bLgkydPqmWVKlXi5dkqPDw8uBJnP8aPH8/y5ORkqWbNmpKdnZ0kl8v5+927d/9PFTMv8y46HzBggPq7Dg4OUt26daXz58/n2LYwduxYllPHUK1aNenGjRuf9Jnyir6J69evc73et29fjmuJOv7/OXTo0Bv7CZWe6S/pPXua4sWLcxl5e3vzVp13Kcd3Qfy0kEAgEAjyDWJOTyAQCAT5BmH0BAKBQJBvEEZPIBAIBPkGYfQEAoFAkG8QRk8gEAgE+QZh9AQCgUCQbxBGTyAQCAT5BmH0BAKBQJBvEEZPIBAIBPkGYfQEAoFAkG8QRk8g+IIZP348/6Yb/bI3/agm/Yo3/Zq9QCB4M+JHZAWCL5RXL4znH5R1cXHBtWvX0LFjR/6NQzJ+AoEgJ+KF0wJBHqJt27awt7fHvHnzPndWBIJciQhvCgRfKHfv3kWfPn3g7+8PKysrmJqaYsOGDXB1df3cWRMIci3C6AkEXyBPnjxBmTJl+Be758yZg6NHj+L48eOQyWQIDAz83NkTCHItYk5PIPgC2bFjB7KysrB27Vro6OjwuUWLFvEiluLFi3/u7AkEuRZh9ASCLxAbGxvEx8dj+/btKFKkCBvBqVOn8oIWOzu7z509gSDXIhayCARfIAqFAr1798avv/4KIyMjtG/fHqmpqTzPt3Pnzs+dPYEg1yKMnkAgEAjyDWIhi0AgEAjyDcLoCQQCgSDfIIyeQCAQCPINwugJBAKBIN8gjJ5AIBAI8g3C6AkEAoEg3yCMnkAgEAjyDcLoCQQCgSDfIIyeQCAQCPINwugJBAKBIN8gjJ5AIBAI8g3C6AkEAoEA+YX/AVcJfDdoS9A+AAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"reset_plotting() # Default style for Simbelmynë\n",
"generate_sim_params(lpt_params, ICs_path, wd, simdir, None, force)\n",
"\n",
"print(f\"P3M nsteps = {nsteps}:\")\n",
"file_ext = f\"nsteps{nsteps}\" # \"p3m\" is already in the filename\n",
"generate_sim_params(p3m_params, ICs_path, wd, simdir, file_ext, force)\n",
"setup_plotting() # Reset plotting style for this project"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f5b71b98",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10:08:50|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5'...\n",
"[10:08:50|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5' done.\n"
]
}
],
"source": [
"TSpath = wd + file_ext + \"_ts_p3m.h5\" if file_ext else wd + \"ts_p3m.h5\"\n",
"if TimeStepDistribution in [0, 1, 2]:\n",
" TS = StandardTimeStepping.read(TSpath)\n",
" aiDrift = TS.aiDrift\n",
" nsteps = TS.nsteps\n",
"elif TimeStepDistribution == 3:\n",
" TS = P3MTimeStepping.read(TSpath)\n",
" aiDrift = TS.aiDrift\n",
" nsteps = TS.nsteps\n",
"else:\n",
" raise ValueError(f\"Invalid TimeStepDistribution: {TimeStepDistribution}\")"
]
},
{
"cell_type": "markdown",
"id": "56d49527",
"metadata": {},
"source": [
"### Generate the initial phase"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6969353d",
"metadata": {},
"outputs": [],
"source": [
"generate_white_noise_Field(\n",
" L=L,\n",
" size=N,\n",
" corner=corner,\n",
" seedphase=BASELINE_SEEDPHASE,\n",
" fname_whitenoise=input_white_noise_file,\n",
" seedname_whitenoise=input_seed_phase_file,\n",
" force_phase=force,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "af2c102d",
"metadata": {},
"source": [
"### Generating the input power spectrum"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "eeddae78",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10:08:50|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid...\n",
"[10:08:50|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m][10:08:50|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook11/input_power.h5'...\n",
"|Computing normalization of the power spectrum...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum done.\n",
"[10:08:50|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mL0=32, L1=32, L2=32\u001b[00m\n",
"[10:08:50|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mN0=32, N1=32, N2=32, N2_HC=17, N_HC=17408, NUM_MODES=464\u001b[00m\n",
"[10:08:50|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook11/input_power.h5' done.\n"
]
}
],
"source": [
"# If cosmo[\"WhichSpectrum\"] == \"class\", then classy is required.\n",
"if not isfile(input_power_file) or force:\n",
" Pk = PowerSpectrum(L, L, L, N, N, N, cosmo_small_to_full_dict(cosmo))\n",
" Pk.write(input_power_file)"
]
},
{
"cell_type": "markdown",
"id": "ed3ab1c8",
"metadata": {},
"source": [
"## Running the simulations"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e3ed21b6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10:08:50\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/example_lpt.sbmy /Users/hoellinger/WIP3M/notebook11/logs/lpt.txt\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 10:08:50: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/example_lpt.sbmy'...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/example_lpt.sbmy' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook11/input_white_noise.h5'...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook11/input_white_noise.h5' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook11/input_power.h5'...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook11/input_power.h5' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores)...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores) done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook11/initial_density.h5'...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook11/initial_density.h5' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.004 CPU - 0.004 wallclock seconds used.\n",
"[10:08:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.049 CPU - 0.016 wallclock seconds used.\n",
"[10:08:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs...\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook11/lpt_density.h5'...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook11/lpt_density.h5' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook11/lpt_particles.gadget3'...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook11/lpt_particles.gadget3' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook11/lpt_particles.gadget3' (32768 particles)...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook11/lpt_particles.gadget3' done.\n",
"[10:08:50\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs done.\u001b[00m\n",
"[10:08:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT output: 0.019 CPU - 0.005 wallclock seconds used.\n",
"[10:08:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.072 CPU - 0.024 wallclock seconds used.\n",
"[10:08:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 0.074 CPU - 0.026 wallclock seconds used.\n",
"[10:08:50\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
]
}
],
"source": [
"run_simulation(\"lpt\", lpt_params, wd, logdir)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "39c97bc2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10:08:51\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227m/Users/hoellinger/miniforge3/envs/p3m/bin/simbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_example_p3m.sbmy /Users/hoellinger/WIP3M/notebook11/logs/nsteps50_p3m.txt\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[10:08:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 10:08:51: Starting SIMBELMYNË, commit hash bab918a5347585bc2fb9554e442fd77ad3ae69cc\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_example_p3m.sbmy'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_example_p3m.sbmy' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook11/initial_density.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook11/initial_density.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.050 CPU - 0.015 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.052 CPU - 0.017 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook11/nsteps50_ts_p3m.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: X�[o\u0001\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModulePMCOLA: L_minus operator: changing reference frame before COLA evolution...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModulePMCOLA: L_minus operator: changing reference frame before COLA evolution done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 1/50, time_kick:0.050000, time_drift=0.050000.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/50 done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce1.h5.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce1.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce1.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p0.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p0.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 1/50, time_kick:0.059500, time_drift=0.069000.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Potential: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Accelerations (long-range): 0.064 CPU - 0.013 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Accelerations (short-range): 0.256 CPU - 0.037 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/50: Total Evolution: 0.353 CPU - 0.060 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 2/50, time_kick:0.059500, time_drift=0.069000.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/50 done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce2.h5.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce2.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce2.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p1.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p1.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 2/50, time_kick:0.078500, time_drift=0.088000.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Density: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Potential: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Accelerations (long-range): 0.058 CPU - 0.014 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Accelerations (short-range): 0.259 CPU - 0.042 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/50: Total Evolution: 0.343 CPU - 0.067 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 3/50, time_kick:0.078500, time_drift=0.088000.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/50 done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce3.h5.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce3.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce3.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p2.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p2.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 3/50, time_kick:0.097500, time_drift=0.107000.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Potential: 0.008 CPU - 0.004 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Accelerations (long-range): 0.060 CPU - 0.015 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Accelerations (short-range): 0.263 CPU - 0.041 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/50: Total Evolution: 0.348 CPU - 0.065 wallclock seconds used.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 4/50, time_kick:0.097500, time_drift=0.107000.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/50 done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce4.h5.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce4.h5'...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce4.h5' done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p3.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p3.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 4/50, time_kick:0.116500, time_drift=0.126000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Accelerations (short-range): 0.250 CPU - 0.043 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/50: Total Evolution: 0.338 CPU - 0.069 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 5/50, time_kick:0.116500, time_drift=0.126000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce5.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce5.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce5.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p4.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p4.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 5/50, time_kick:0.135500, time_drift=0.145000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Accelerations (long-range): 0.059 CPU - 0.014 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Accelerations (short-range): 0.242 CPU - 0.045 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/50: Total Evolution: 0.328 CPU - 0.070 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 6/50, time_kick:0.135500, time_drift=0.145000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce6.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce6.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce6.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p5.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p5.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 6/50, time_kick:0.154500, time_drift=0.164000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Potential: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Accelerations (short-range): 0.256 CPU - 0.044 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/50: Total Evolution: 0.343 CPU - 0.068 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 7/50, time_kick:0.154500, time_drift=0.164000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce7.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce7.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce7.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p6.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p6.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 7/50, time_kick:0.173500, time_drift=0.183000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Density: 0.009 CPU - 0.005 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Accelerations (short-range): 0.269 CPU - 0.056 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/50: Total Evolution: 0.356 CPU - 0.081 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 8/50, time_kick:0.173500, time_drift=0.183000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce8.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce8.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce8.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p7.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p7.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 8/50, time_kick:0.192500, time_drift=0.202000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Density: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Accelerations (short-range): 0.261 CPU - 0.045 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/50: Total Evolution: 0.347 CPU - 0.069 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 9/50, time_kick:0.192500, time_drift=0.202000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce9.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce9.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce9.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p8.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p8.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 9/50, time_kick:0.211500, time_drift=0.221000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Accelerations (long-range): 0.065 CPU - 0.014 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Accelerations (short-range): 0.262 CPU - 0.047 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Outputs: 0.001 CPU - 0.004 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/50: Total Evolution: 0.354 CPU - 0.072 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 10/50, time_kick:0.211500, time_drift=0.221000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce10.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce10.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce10.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p9.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p9.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 10/50, time_kick:0.230500, time_drift=0.240000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Density: 0.007 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Accelerations (short-range): 0.250 CPU - 0.045 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/50: Total Evolution: 0.334 CPU - 0.071 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 11/50, time_kick:0.230500, time_drift=0.240000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce11.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce11.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce11.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p10.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p10.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 11/50, time_kick:0.249500, time_drift=0.259000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Accelerations (long-range): 0.063 CPU - 0.014 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Accelerations (short-range): 0.252 CPU - 0.047 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/50: Total Evolution: 0.341 CPU - 0.070 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 12/50, time_kick:0.249500, time_drift=0.259000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce12.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce12.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce12.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p11.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p11.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 12/50, time_kick:0.268500, time_drift=0.278000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Accelerations (long-range): 0.060 CPU - 0.013 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Accelerations (short-range): 0.271 CPU - 0.044 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/50: Total Evolution: 0.365 CPU - 0.066 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 13/50, time_kick:0.268500, time_drift=0.278000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce13.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce13.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce13.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p12.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p12.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 13/50, time_kick:0.287500, time_drift=0.297000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Density: 0.013 CPU - 0.004 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Potential: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Accelerations (long-range): 0.056 CPU - 0.015 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Accelerations (short-range): 0.266 CPU - 0.051 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/50: Total Evolution: 0.354 CPU - 0.078 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 14/50, time_kick:0.287500, time_drift=0.297000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce14.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce14.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce14.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p13.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p13.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 14/50, time_kick:0.306500, time_drift=0.316000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Density: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Accelerations (long-range): 0.061 CPU - 0.018 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Accelerations (short-range): 0.254 CPU - 0.063 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Outputs: 0.001 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/50: Total Evolution: 0.340 CPU - 0.091 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 15/50, time_kick:0.306500, time_drift=0.316000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce15.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce15.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce15.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p14.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p14.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 15/50, time_kick:0.325500, time_drift=0.335000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Accelerations (short-range): 0.289 CPU - 0.057 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/50: Total Evolution: 0.376 CPU - 0.080 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 16/50, time_kick:0.325500, time_drift=0.335000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce16.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce16.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce16.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p15.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p15.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 16/50, time_kick:0.344500, time_drift=0.354000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Accelerations (long-range): 0.059 CPU - 0.017 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Accelerations (short-range): 0.279 CPU - 0.051 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/50: Total Evolution: 0.364 CPU - 0.077 wallclock seconds used.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 17/50, time_kick:0.344500, time_drift=0.354000.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/50 done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce17.h5.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce17.h5'...\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce17.h5' done.\n",
"[10:08:52\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p16.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p16.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 17/50, time_kick:0.363500, time_drift=0.373000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Accelerations (long-range): 0.058 CPU - 0.015 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Accelerations (short-range): 0.309 CPU - 0.059 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/50: Total Evolution: 0.393 CPU - 0.083 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 18/50, time_kick:0.363500, time_drift=0.373000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce18.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce18.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce18.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p17.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p17.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 18/50, time_kick:0.382500, time_drift=0.392000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Accelerations (short-range): 0.302 CPU - 0.059 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/50: Total Evolution: 0.389 CPU - 0.082 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 19/50, time_kick:0.382500, time_drift=0.392000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce19.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce19.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce19.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p18.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p18.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 19/50, time_kick:0.401500, time_drift=0.411000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Accelerations (long-range): 0.060 CPU - 0.013 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Accelerations (short-range): 0.313 CPU - 0.050 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/50: Total Evolution: 0.399 CPU - 0.072 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 20/50, time_kick:0.401500, time_drift=0.411000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce20.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce20.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce20.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p19.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p19.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 20/50, time_kick:0.420500, time_drift=0.430000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Accelerations (long-range): 0.060 CPU - 0.018 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Accelerations (short-range): 0.318 CPU - 0.058 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/50: Total Evolution: 0.405 CPU - 0.085 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 21/50, time_kick:0.420500, time_drift=0.430000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 21/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce21.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce21.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce21.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p20.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p20.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 21/50, time_kick:0.439500, time_drift=0.449000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Accelerations (long-range): 0.058 CPU - 0.021 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Accelerations (short-range): 0.310 CPU - 0.071 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/50: Total Evolution: 0.396 CPU - 0.102 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 22/50, time_kick:0.439500, time_drift=0.449000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 22/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce22.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce22.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce22.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p21.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p21.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 22/50, time_kick:0.458500, time_drift=0.468000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Potential: 0.010 CPU - 0.006 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Accelerations (long-range): 0.057 CPU - 0.015 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Accelerations (short-range): 0.319 CPU - 0.068 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/50: Total Evolution: 0.406 CPU - 0.095 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 23/50, time_kick:0.458500, time_drift=0.468000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 23/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce23.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce23.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce23.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p22.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p22.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 23/50, time_kick:0.477500, time_drift=0.487000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Accelerations (short-range): 0.314 CPU - 0.073 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/50: Total Evolution: 0.403 CPU - 0.095 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 24/50, time_kick:0.477500, time_drift=0.487000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 24/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce24.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce24.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce24.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p23.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p23.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 24/50, time_kick:0.496500, time_drift=0.506000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Accelerations (long-range): 0.063 CPU - 0.014 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Accelerations (short-range): 0.336 CPU - 0.062 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/50: Total Evolution: 0.433 CPU - 0.086 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 25/50, time_kick:0.496500, time_drift=0.506000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 25/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce25.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce25.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce25.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p24.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p24.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 25/50, time_kick:0.515500, time_drift=0.525000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Accelerations (short-range): 0.337 CPU - 0.070 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/50: Total Evolution: 0.425 CPU - 0.093 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 26/50, time_kick:0.515500, time_drift=0.525000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 26/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce26.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce26.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce26.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p25.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p25.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 26/50, time_kick:0.534500, time_drift=0.544000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Accelerations (long-range): 0.059 CPU - 0.014 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Accelerations (short-range): 0.356 CPU - 0.080 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/50: Total Evolution: 0.447 CPU - 0.104 wallclock seconds used.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 27/50, time_kick:0.534500, time_drift=0.544000.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 27/50 done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce27.h5.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce27.h5'...\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce27.h5' done.\n",
"[10:08:53\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p26.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p26.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 27/50, time_kick:0.553500, time_drift=0.563000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Accelerations (long-range): 0.060 CPU - 0.015 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Accelerations (short-range): 0.366 CPU - 0.130 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/50: Total Evolution: 0.452 CPU - 0.154 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 28/50, time_kick:0.553500, time_drift=0.563000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 28/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce28.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce28.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce28.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p27.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p27.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 28/50, time_kick:0.572500, time_drift=0.582000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Accelerations (long-range): 0.063 CPU - 0.015 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Accelerations (short-range): 0.353 CPU - 0.075 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/50: Total Evolution: 0.445 CPU - 0.099 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 29/50, time_kick:0.572500, time_drift=0.582000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 29/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce29.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce29.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce29.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p28.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p28.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 29/50, time_kick:0.591500, time_drift=0.601000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Accelerations (short-range): 0.354 CPU - 0.078 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/50: Total Evolution: 0.447 CPU - 0.102 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 30/50, time_kick:0.591500, time_drift=0.601000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 30/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce30.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce30.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce30.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p29.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p29.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 30/50, time_kick:0.610500, time_drift=0.620000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Accelerations (long-range): 0.061 CPU - 0.013 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Accelerations (short-range): 0.350 CPU - 0.084 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/50: Total Evolution: 0.441 CPU - 0.108 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 31/50, time_kick:0.610500, time_drift=0.620000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 31/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce31.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce31.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce31.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p30.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p30.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 31/50, time_kick:0.629500, time_drift=0.639000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Accelerations (long-range): 0.056 CPU - 0.018 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Accelerations (short-range): 0.378 CPU - 0.080 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/50: Total Evolution: 0.460 CPU - 0.107 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 32/50, time_kick:0.629500, time_drift=0.639000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 32/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce32.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce32.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce32.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p31.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p31.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 32/50, time_kick:0.648500, time_drift=0.658000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Accelerations (long-range): 0.063 CPU - 0.014 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Accelerations (short-range): 0.359 CPU - 0.088 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/50: Total Evolution: 0.451 CPU - 0.111 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 33/50, time_kick:0.648500, time_drift=0.658000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 33/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce33.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce33.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce33.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p32.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p32.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 33/50, time_kick:0.667500, time_drift=0.677000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Accelerations (long-range): 0.063 CPU - 0.014 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Accelerations (short-range): 0.379 CPU - 0.086 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/50: Total Evolution: 0.475 CPU - 0.110 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 34/50, time_kick:0.667500, time_drift=0.677000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 34/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce34.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce34.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce34.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p33.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p33.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 34/50, time_kick:0.686500, time_drift=0.696000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Accelerations (long-range): 0.063 CPU - 0.014 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Accelerations (short-range): 0.384 CPU - 0.096 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/50: Total Evolution: 0.475 CPU - 0.118 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 35/50, time_kick:0.686500, time_drift=0.696000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 35/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce35.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce35.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce35.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p34.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p34.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 35/50, time_kick:0.705500, time_drift=0.715000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Accelerations (short-range): 0.360 CPU - 0.088 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/50: Total Evolution: 0.456 CPU - 0.112 wallclock seconds used.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 36/50, time_kick:0.705500, time_drift=0.715000.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 36/50 done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce36.h5.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce36.h5'...\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce36.h5' done.\n",
"[10:08:54\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p35.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p35.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 36/50, time_kick:0.724500, time_drift=0.734000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Accelerations (long-range): 0.062 CPU - 0.015 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Accelerations (short-range): 0.373 CPU - 0.109 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/50: Total Evolution: 0.463 CPU - 0.135 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 37/50, time_kick:0.724500, time_drift=0.734000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 37/50 done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce37.h5.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce37.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce37.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p36.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p36.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 37/50, time_kick:0.743500, time_drift=0.753000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Density: 0.015 CPU - 0.004 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Accelerations (long-range): 0.064 CPU - 0.014 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Accelerations (short-range): 0.385 CPU - 0.101 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/50: Total Evolution: 0.482 CPU - 0.126 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 38/50, time_kick:0.743500, time_drift=0.753000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 38/50 done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce38.h5.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce38.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce38.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p37.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p37.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 38/50, time_kick:0.762500, time_drift=0.772000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Accelerations (long-range): 0.064 CPU - 0.014 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Accelerations (short-range): 0.423 CPU - 0.103 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/50: Total Evolution: 0.522 CPU - 0.127 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 39/50, time_kick:0.762500, time_drift=0.772000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 39/50 done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce39.h5.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce39.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce39.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p38.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p38.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 39/50, time_kick:0.781500, time_drift=0.791000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Accelerations (long-range): 0.057 CPU - 0.015 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Accelerations (short-range): 0.407 CPU - 0.112 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/50: Total Evolution: 0.493 CPU - 0.135 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 40/50, time_kick:0.781500, time_drift=0.791000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 40/50 done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce40.h5.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce40.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce40.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p39.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p39.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 40/50, time_kick:0.800500, time_drift=0.810000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Accelerations (long-range): 0.060 CPU - 0.014 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Accelerations (short-range): 0.409 CPU - 0.106 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/50: Total Evolution: 0.497 CPU - 0.128 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 41/50, time_kick:0.800500, time_drift=0.810000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 41/50 done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce41.h5.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce41.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce41.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p40.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p40.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 41/50, time_kick:0.819500, time_drift=0.829000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Accelerations (short-range): 0.412 CPU - 0.109 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/50: Total Evolution: 0.507 CPU - 0.132 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 42/50, time_kick:0.819500, time_drift=0.829000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 42/50 done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce42.h5.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce42.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce42.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p41.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p41.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 42/50, time_kick:0.838500, time_drift=0.848000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Accelerations (short-range): 0.423 CPU - 0.106 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/50: Total Evolution: 0.519 CPU - 0.129 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 43/50, time_kick:0.838500, time_drift=0.848000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 43/50 done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce43.h5.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce43.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce43.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p42.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p42.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 43/50, time_kick:0.857500, time_drift=0.867000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Accelerations (short-range): 0.420 CPU - 0.105 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/50: Total Evolution: 0.510 CPU - 0.127 wallclock seconds used.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 44/50, time_kick:0.857500, time_drift=0.867000.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 44/50 done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce44.h5.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce44.h5'...\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce44.h5' done.\n",
"[10:08:55\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p43.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p43.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 44/50, time_kick:0.876500, time_drift=0.886000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Accelerations (short-range): 0.412 CPU - 0.107 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/50: Total Evolution: 0.501 CPU - 0.130 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 45/50, time_kick:0.876500, time_drift=0.886000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 45/50 done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce45.h5.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce45.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce45.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p44.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p44.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 45/50, time_kick:0.895500, time_drift=0.905000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Accelerations (short-range): 0.432 CPU - 0.112 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/50: Total Evolution: 0.524 CPU - 0.137 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 46/50, time_kick:0.895500, time_drift=0.905000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 46/50 done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce46.h5.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce46.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce46.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p45.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p45.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 46/50, time_kick:0.914500, time_drift=0.924000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Accelerations (long-range): 0.062 CPU - 0.013 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Accelerations (short-range): 0.445 CPU - 0.112 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Outputs: 0.001 CPU - 0.002 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/50: Total Evolution: 0.536 CPU - 0.136 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 47/50, time_kick:0.914500, time_drift=0.924000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 47/50 done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce47.h5.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce47.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce47.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p46.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p46.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 47/50, time_kick:0.933500, time_drift=0.943000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Accelerations (short-range): 0.443 CPU - 0.178 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/50: Total Evolution: 0.535 CPU - 0.201 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 48/50, time_kick:0.933500, time_drift=0.943000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 48/50 done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce48.h5.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce48.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce48.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p47.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p47.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 48/50, time_kick:0.952500, time_drift=0.962000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Accelerations (short-range): 0.463 CPU - 0.117 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/50: Total Evolution: 0.557 CPU - 0.140 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 49/50, time_kick:0.952500, time_drift=0.962000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 49/50 done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce49.h5.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce49.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce49.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p48.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p48.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 49/50, time_kick:0.971500, time_drift=0.981000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Accelerations (long-range): 0.059 CPU - 0.017 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Accelerations (short-range): 0.454 CPU - 0.127 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/50: Total Evolution: 0.548 CPU - 0.154 wallclock seconds used.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 50/50, time_kick:0.971500, time_drift=0.981000.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 50/50 done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce50.h5.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce50.h5'...\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce50.h5' done.\n",
"[10:08:56\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p49.h5'...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p49.h5' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce51.h5.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce51.h5'...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce51.h5' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 50/50, time_kick:1.000000, time_drift=1.000000.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Density: 0.030 CPU - 0.006 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Potential: 0.018 CPU - 0.005 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Accelerations (long-range): 0.123 CPU - 0.026 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Accelerations (short-range): 0.915 CPU - 0.257 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Kick: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/50: Total Evolution: 1.101 CPU - 0.299 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p50.h5'...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook11/p_res/p50.h5' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModulePMCOLA: L_plus operator: changing reference frame after COLA evolution...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModulePMCOLA: L_plus operator: changing reference frame after COLA evolution done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.624 CPU - 0.153 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.442 CPU - 0.149 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 3.106 CPU - 0.743 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 17.489 CPU - 4.076 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.291 CPU - 0.080 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.073 CPU - 0.036 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.055 CPU - 0.071 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 22.080 CPU - 5.308 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
"[10:08:57\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook11/nsteps50_final_density_p3m.h5'...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook11/nsteps50_final_density_p3m.h5' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook11/nsteps50_p3m_snapshot.gadget3'...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook11/nsteps50_p3m_snapshot.gadget3' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook11/nsteps50_p3m_snapshot.gadget3' (32768 particles)...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook11/nsteps50_p3m_snapshot.gadget3' done.\n",
"[10:08:57\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 22.315 CPU - 5.478 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 22.369 CPU - 5.497 wallclock seconds used.\n",
"[10:08:57\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
]
}
],
"source": [
"file_ext = f\"nsteps{nsteps}\"\n",
"if not isfile(simdir + f\"{file_ext}_final_density_p3m.h5\") or force:\n",
" !simbelmyne {wd}{file_ext}_example_p3m.sbmy {logdir}{file_ext}_p3m.txt"
]
},
{
"cell_type": "markdown",
"id": "7846fd8b",
"metadata": {},
"source": [
"## Gravitational potential"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "2f634435",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10:11:14|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook11/nsteps50_final_density_p3m.h5'...\n",
"[10:11:14|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]======|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[10:11:14|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook11/nsteps50_final_density_p3m.h5' done.\n",
"[10:11:14|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce1.h5'...\n",
"[10:11:14|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]======|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[10:11:14|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce1.h5' done.\n",
"[10:11:14|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce25.h5'...\n",
"[10:11:14|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]======|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[10:11:14|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce25.h5' done.\n",
"[10:11:14|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce50.h5'...\n",
"[10:11:14|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]======|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[10:11:14|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook11/gravpot/gp_nforce50.h5' done.\n"
]
}
],
"source": [
"slice_ijk = (N // 2, slice(None), slice(None))\n",
"steps = [1,25,50] # Steps to compare\n",
"DELTA_P3M = read_field(simdir + f\"nsteps{nsteps}_final_density_p3m.h5\").data[slice_ijk]\n",
"DELTA_GP1 = read_field(gravpotdir + f\"gp_nforce{steps[0]}.h5\").data[slice_ijk]\n",
"DELTA_GP2 = read_field(gravpotdir + f\"gp_nforce{steps[1]}.h5\").data[slice_ijk]\n",
"DELTA_GP3 = read_field(gravpotdir + f\"gp_nforce{steps[2]}.h5\").data[slice_ijk]\n",
"diff_gp2_gp1 = DELTA_GP3 - DELTA_GP1\n",
"diff_gp3_gp1 = DELTA_GP3 - DELTA_GP2"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "931e6fe0",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAEXQAAARZCAYAAAB0nz/XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs/WuMXOe6J/atqu7mTdIWSW3tc5l9LiJnn7EnM55jkjuZJIAziKQPEySOgZAUgsCBEUDUpziZGYA0g3GMJEYUErAnSOAP5AaSIP7giKS/BEaChGRsIxjMJKIUOJM5k5kdSnPuZ1/UpESR7O7qqgqe2rO4i4vVl6p6qmvVqt8PaFFsdr+1atVba/3fd731rFa/3+8XAAAAAAAAAAAAAAAAAAAAAABMrT19EwAAAAAAAAAAAAAAAAAAAAAABAVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQREEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAckNOnTxdXrlyZ92YAAEAqORcAAPYmNwMAwOKR42kS/RkAmAUZgybRn4FZUNAFGuz9998vWq3WzL9OnDgxCCpnz54tLly4UNy8ebP44osvimXx0UcfjbW/Yj/VTbxm477uAADAeO7du7dUYyUAAJaDnAsAAHuTmwEAYPHI8TSJ/gwAzIKMQZPoz8CsKOgCTO3x48eDoPL5558Xd+7cGRQ4iQIvUegl/j/+nV8q91OdqBoIAACzd/fu3RfFNwEAoCnkXAAA2JvcDAAAi0eOp0n0ZwBgFmQMmkR/Bmal1e/3+zNrHZirKKSyvr7+0v/fvn27uHnz5sifP378eHHt2rXi3Llzg//fb/vlnxFYogrdqAIu58+fH7R96tSphGe2+zbFNsS2PHjwYFBoptyeeE7x+PH8zp49W1y8eHFfz3OS/RyPf/369RePW90n77333ouAN2+xvyJknjlzZlBspiq2NQrzxL4b3l+zfi0B6iaOke+++25x6dKl4urVq2nnkDgv37hxY1BcK9rO3uZPPvlk8GecE+OrPB/G1w9/+MPBOdoxHeBgxDgkjsmmYmBxxfg5MtXDhw/nvSkAUBtyLiyGyLExD1nOFZbX+IbnCyPvxnWhWcwXLuL8KgBkkpuhXhYxn7r+DwAHT46nSfRnAGAWZAyaRH8GZkVBF1hCccG4LDYyLC4mZ1xIjovFUbxlVOGYrMcYVZQkHjP+HEcsSo39EX9mi30cbceF8vJC+rBHjx6lLAaY1oULF14qhjMsirx89tlnc9oygHopC2CV4vgeBa8mOYfcuXNncE4sj7txPojjbdbCqmg3zkFloa44npcFzUI8VhQ+G/73OI/O4nwIwC+1Wi0ZGxZUjJkjS5Vje1OqAPBLci7UW8xFxlxh9TrVbmKeMvsDqIs0vwoAsyA3Q70sUj51/R8A5keOp0n0ZwBgFmQMmkR/BmZldWYtA7UVF59HFXTJuogc7ZR3GoliIeXF4vKxb9++Xdy9ezflsWLxabRZXhCPx46L0eUdBIcLppR3JoltiwvpIX4vvuJn4/uZCz1jkWvsg/Kif3WfR8Gby5cvF/P+QFrsi3g94kJ+VexbAEaL42d5PinPPXEeicH7yZMnB+egOM6Wd7uN82Ecb2MhVXy/FD93//79tHNQnHuHt2u389vweTS2P85d8fMA5CvHLBbPwuKJ8XuM74czHADwC3Iu1FfM/Q1fpyvnMMv5y/Jn4ivmLYeL/pfzhpGDr169OpPrWXWdXwWAWZCbof7qmk9d/weA+ZHjaRL9GQCYBRmDJtGfgVlS0AWWULlIc7/fn1RcPI5qdMMXlstwE3cImbZSXbQZbZcFU2JBaVxE3217yoIvcVE9fre8G2Fs0+nTpwcX2rNC13AxmVFFdOKC+bwLuty6dWuwnfGcRxV0ye4TAE1VFggbV7mYa7fz137FIrE4v5bntjjP7HUH3TgvxrkvzlHx4Yz4sHIsOIttGj6PATC9sqjl8N0eqYcYG37wwQeDcSUMU8gFAPYm59aXnLvcyg9whugDcQ1o1Ic+y3nJuF4Vuffjjz9+6XpWfC8ycbzX44YNs5ozrMP8KgDMktxcX3Izdc2nrv8DwPzJ8TSJ/gwAzIKMQZPoz8AstWfaOlBLB32BNhZ4VoukREGVacJNXHCORRXxXMpFpONcDI+fjYIy1cWrsU3DxWeylHdsGRYX3Mu7Is5LXOy/ePHiXLcBYFnFufHLL7+c22KuYfGBjbKwV5yboi0AcpULf8+dOzfvTaEixoCffvrpvDeDOSrH59EXYpF7ZKFWqzUozqqYCwDsTs6tLzl3eZXFXIavoY0q5lIVPx9zhA8fPnzl56PNd95558X8Y9PmVwFg1uTm+pKbyeL6PwA0jxxPk+jPAMAsyBg0if4MzJKCLsCBGHXXvgg58UGpccWF5vhQVSwmjQvh1WIx+1UuZK2KQjGzWJAa21wVF9zn/YG1UdsFwOzE+SeO/3EOyiqyNnzuirvHjbOYa3hRV3lOjbZUlQXIFdk7FvG6A2K9KNax3CLvROGW06dPDxa0R6aKO5eWxVcjV0Ux2EmyFQAsCzm3nuTc5VXO68V78v79+xNdQ4vrb5GDqx9EjX4Vbc+7f81ifhUAZk1urqd55xqawfV/AGguOZ4m0Z8BgFmQMWgS/RmYJQVdgAMRQebq1auvfH/4g1LjXLQOsZh02oAUi1JHXfSexUXsixcvvvK9W7duFfO8y1A8f3cuBBhPHDsnOf/E78SiqShGlvmh4Js3b76oBBt+9KMfTdzWcKGxaDPaBmB6KnbX1/r6+rw3gRq9/uUcQRSlffTo0eBPY2YA2JmcW19y7vIqr6FNm2XLgjDVedD4IOi7777bqPlVAJg1ubm+5GbqmE9d/weAepDjaRL9GQCYBRmDJtGfgVlT0AU4MDtdvP7www/HKkISi0XjgnPmXU2q4jGGL45niO2Nu6ZU7/aT/Tj7Ffvwo48+mstjAyyyK1euDD7gG4XFrl27Nji2V6uwxv/Hwq+441X8TPxs/E78f2a11jiPxPaUYsHYNO3HNg+fq6Jtd6YDmF7clTG4+2H9jFtglGaJD7mWOa3f7xcPHz4cjJUjD6mwDwB7k3PrS85dTuVNFGKOMOYlpxWZODJzVTzGNB8ErdP8KgAcBLm5vuRm6pZPXf8HgPqQ42kS/RkAmAUZgybRn4FZW535IwD8M3GBOS5sVwuYxAKJKKASF5H3e+eQuMAcX+WF8v387k52WtQaj5Wx4HVYFFCJojSzfpy9lPvcHQwBJheLuKa5y22Gjz/++KUFVxmFuq5evfriXBVtx2PEuRaAyZVjoIPO/ewtxkUsr2nmEgAAObfO5NzlFPN4cS0ucy4v3t+jru3FNbqLFy9O9eHSOsyvAsBBkJvrS26mbvnU9X8AqA85nibRnwGAWZAxaBL9GZi19swfAWDIThe+y0Ite3nw4MGLC8zxFRecMyrfjVpwOos78USoqz5WPIeDvvtJWUTGXQwBFv+uu8MfSM74UHL1bmPT3G0XgF+OLeIYLX/Xz6effjrvTQAAWFhybn3Jucsn5vDiWlN8WDNbFG+pise6detW+mMBQBPJzfUlN1M3rv8DQH3I8TSJ/gwAzIKMQZPoz8CsKegCHKgf/vCHI79f3glkL6MKn8Qdc6YtvjLqAvis7sQTdyysOuhFr/F4Fy5cONDHBCBXdaHV+fPn09oeriob516LugAmp2J3vVXvMg8AwP7IufUm5y6f8sYJly5dSm97pxsE7PdmDQCwzOTmepObqRPX/wGgPuR4mkR/BgBmQcagSfRn4CAo6AIcqJ3uHDJt8ZT19fViUXz00UdzXfQaxXPi4vwsFvUCcHCq546diqZNotrW7du309oGWDZ3794d/Pn+++/Pe1MYMQ4dVTQUAIC9ybn1Jecun3i948YHZ86cmdndokYtXIrH1NcAYHdyc33JzdSN6/8AUB9yPE2iPwMAsyBj0CT6M3AQFHQBDtRuC0n3s1Bip4Iw586dK7LNatFrLKitPo9Y9DptUZtxFgBk3sUFgPl9SGM/58hJz1XVirMWNAJMRtXu+opilwAATEbOrS85d3nfj+HChQuDGwtU5w6ntdPCpQcPHqQ+DgA0jdxcX3IzdeL6PwDUixxPk+jPAMAsyBg0if4MHAQFXYCFMuoOIdeuXZu6+MqoYiqZF8arYjHtPBaLxMX4CJmjHh+AxfyQxk6LsKYxqlDaqMcEYG+xADfGK7MqGMnkPv7443lvAgDAwpJz60vOXT7lNa54X8a1pps3bxZnz55Nve600zWzg7pZAQAsKrm5vuRm6sT1fwCoFzmeJtGfAYBZkDFoEv0ZOAgKugAHare7e+wn9MTF6kePHhU3btwYfD18+LC4fPnyTLZr1MXsLJcuXXrle/F8Zu3WrVuD/axiIMBiu3v37kt/z544GNXep59+mvoYAMtAxe76ig82uvskAMBk5Nz6knOX01dffTXy+1euXEl7jJMnT478vv4GADuTm+tLbqZuXP8HgPqQ42kS/RkAmAUZgybRn4GDoqALcKDW19fHurPfTheZoyBKfI3ze7tV0RvlwoULxayMKqoSdzHcaVuyRNGYUcVkAFgsDx48eOnvGefDvRZ1zfocBdDkBbjvv//+vDeFig8//HDemwAAsLDk3PqSc6led8qy0wdKdyomAwDIzXUmN1M3rv8DQH3I8TSJ/gwAzIKMQZPoz8BBUdAFOFA7XQw+c+ZMMS+ffPLJvgquZBtVMCYKrsxKWTDmo48+mtljADCf8+lOd8idRnWRWHURGQB7U7W7nmJM5O6rAACTk3PrSc5dXqdPnx6rCMskdupbb731VtpjAEDTyM31JDdTR67/A0B9yPE0if4MAMyCjEGT6M/AQVHQBThQn3766cjvz7PIyM2bN1/53rVr12b+uJcuXXrle7du3ZrZ40WxmLg4P4u7uAAw3+JomR/O2GmRWCxstLgRYP/imBnH7DhGy+D1ceXKlZFjQAAA9kfOrSc5d7ldvHhx5PzgqOtQ09w0YBTHAQAYTW6uJ7mZOnL9HwDqQ46nSfRnAGAWZAyaRH8GDtLqgT4asPTKqnXDIvDMq4pdbE/14nRsT+Yi192cP3++uHPnzou/x7bE3+P72WJRytWrV4umu379evHJJ58MAnW8lmfOnCnef//9sV/T6Bt379590UfKxcplUZyyzVksogAY98MTs7hD16jjW9ylS+VZgFdFXoxjZGTQKGIZf5bH6/i3EydODDLkuXPnirNnz+74YbtlFPunzN6xD+Pv6+vrL8Zpe2X6KA4ad6O/fPnyro8Tr0cs1h8ef9VBbFcU3yz7THXcEV8XLlyY+PxbtlmOab766quX/h77Ogqa7jReiu2K8VX8bLmN5YWLclykPwNAc8m5k5Nz5dyDFNt5//79QV+Ifhd/j+tBe/WfcSjoAgA7k5snJzfLzbj+DwDzIsfTJPozADALMgZNoj8Dc9cHllK8/atfn3322Uwf8/bt2yMfN74/L2fOnJnpfoj2zp8/v+O/371795XHf++999Iev/o4jx492vFn4nHr9NqMK57bqVOnBtt9/PjxwfOJP8vnEv+2n9f22rVrL/1e/H/0k2ivbH/46/Llywfy/ID5K4+lN27cmOt2xOMfxLEozl/Vx5n3cweoW/6M7DgqI0aGLDNlZMlRPxPfX6S8ne3hw4f9S5cuvTQOiv0Z+yTOuZHd488498TPlfszfqYU/x/fi38fJdqI3x91Tpv2a7ex1X7E8xwej8b/x/k8vh/bHP8//O/x/Ief+6SZYdTXqPP78PaV46vYz7Fd1bFWOe6N17Sphvtq+QUATSXnTkfOlXObaqf+tojzqwCQQW6ejtwsN9dBXfKp6/8AcHDkeJpEfwYAZkHGoEn0Z6BOfPoAltQ8CrqMKp6yW7GTeVwQz75QvZ/nWF3okLH4oyoWVuxVKGbRC7qUwbm6iKW6IGGnRSTR/4cLwkQ7o342XptqX55FER5g8RZ0xXGkXMQ2PJiP/y8XIWYc3+MxDmJB16gPLo+7UBCgqeeDanaOY30cI+PfymN9+TPDx/749+rxNX53kXJ35lhs3EXo5e/Fvh0uGDpqwX7s90kX4+/na9Jzevze8BglnstuY/HhcUrZX/Y7dp9kwX5sX9l3Yzujz+7WfvUCRlOzgoIuACwDOXd6cq6c22SjrmWNe22kLvOrADANuXl6crPcXBd1yaeu/wPA7MnxNIn+DADMgoxBk+jPQB359AEsqYMu6FLeGacaZua18DIKdVQXn87iriPlIodxL8zPorDMXsFxkQu6lPtw1EKDeK2r/W63hSz7XaxQXZiy012fgObYaUFX/H24MmscD+JYEt8v76A2fMyY9g5lB7XQatTjzGLhGMCiiGN3NTPH33da0LxT9gwxDqoeZ5clT5bZPfbNJOfDGLdWx3I77btof6evUW3s9vPVr0lUt32c82q1UOVuC+lH7YP4+VFjz+FsU27fOB8KCNX3ReShpn3IUkEXAJpMzs0h58q5TRb7bdQ+HvcaUl3mVwFgEnJzDrlZbq6TuuRT1/8BYHbkeJpEfwYAZkHGoEn0Z6DOfPoAltRBFnQpL4DXqZhLtRjHrAqXlBfu99qe6v6JBQFZyjsT7WVRC7qU+2+nAB12W/hQLlqJxRjjvAdG3c3IAmJotuqCruE7osVxZa9jQBxThxfpTboIa9TxehYLukYt6tvrnAbQVNVjYuT13Y775Yfd9pq4rY6VFmmh8ySG75o6TXaufphwkgny6oL9WS9arm7zJOfu6B/TjuFHFVuNbFOOqyJnTKL6gYJ5jvlnQUEXAJpKzs0h58q5TTcqD0dfW9T5VQAYl9ycQ26Wm+umLvnU9X8AmA05nibRnwGAWZAxaBL9Gai7dgEwQzdv3izef//9l7535syZ4rPPPiuOHz8+l+05e/Zs8cUXXwz+/t577xWPHj0qzp8/X8zLqVOnBl/DPv/88xfbOK0bN24Uly5dKpoqnl+4cuXKjj9T7WuffPLJi/5w/fr1wf7/8ssvB31zvy5evPjK965duzbGlgOL7M6dO4PzSRw/4jxy+fLlV47lVXGuifNf+XNx3Lpw4cLYj72+vl7My+PHj+f22ADzELn8xIkTg8xYimP+8PF8lHv37g3+rI6FqmI8cvv27Zce79133y2a6sMPPxz8GeOTvc6bu4ncHq/DoojXNXLD8Os+yfbfv3//pb9P0ldGPe7Dhw8H2xf79e7du8Ukoh8Pv6Yxnh1+zgBAvci5ueTcX5Bzm+vWrVuvfO/q1asLO78KAPslN+eSm39Bbq4n1/8BoDnkeJpEfwYAZkHGoEn0Z2BRKOgCzESEkwg0H3300UvfLwPRQRVziUUCEbDiovnp06cH2xMXo8uFCPE1j8IyVdX9NFyoZBrxXOP5N3lBaxRlCbsVrakuQIj+GV+x3+P1n6QfjPr5MswDzRbH5ziuxjlt3ONHTAgML4SLhWGLdIye52IygHkt3i2zZJkb91PErzzWxyTuXmLB7/Ai6jKnNnF/lvsy49w37YcHD1L1+Q5P7I8j+uBwX4n9OUlfqV6gKC9iVD8QMK7qYv8YjzexLwPAopNzc8m5vyTnNvcaTPUaS+zraT5EvczzqwAsDrk5l9z8S3Jz/SxzPnX9H4CmkeNpEv0ZAJgFGYMm0Z+BRaKgC5Amwkhc6I9CLhGGhotbRLiJQi77CUSTiseLx42qeq1Wa/AVRVxie2K7YrFAFP2Iu8vEtuwncB2UUcVIykIl04g2IozW6bnOYtHPOMVcSmU1xL0qLu6muogj+hjUQRSxiuNhHAPjmLiIX+Xxu46FkuJ8F8edSc9pccwZLtoVx7J4zQCojxg/VBfcxmLm/ebqOH/F8X6/i35j8fnwz0aOj/NNk3zyyScv/v/cuXNTt7co45yYsB8eJ8SE/jRFRasfVIi+Mu44ZNTjR66ZttjpqA91xvbVMc8BwLKSc/PJub8g5zbXqHnLaW9IYH4VgLqTm/PJzb8gN9eTfAoAzSDH0yT6MwAwCzIGTaI/A4tGQRfghQ8//HDw4fn9fg0XC4jiKfH3uCBdXoyPkFIWUImqdWfOnJnp9keIitB18eLFweMOf8X3498jLMU2x7aOuqvgvIxabBLbNu3ChlgwsFuxk6Ys+tnt7jYPHjwY+f3Yv7F/Ji3mUraxn+/BQYo+GAPTGBjG4q34+yJ+xbbHMXCWhcAmFcfraT+0EMfm4eNP+Zrth+MMwGzFmKa60Hac8Ux5PB9nMXmMB2IcUx2fNcksJq3rfpfLeM7VQp3T3jl21Nhx2lxSjt0zjHp+dX+dAGBZyLmzIef+gpzbTHHMqM5Fxod0p/3w9LznVwFgN3LzbMjNvyA319O886nr/wAwPTmeJtGfAYBZkDFoEv0ZWEQKugAvhZH48Px+v8piASEuSkfoOX/+/ODD95999lnx6NGjqQtmjCMeJx47HrP6FaEsCsvENsXPxHbHnXCiGE0sHqjDxfHYnqrbt29P3F48x/J5NlVZ8Ga3AL3TAon4nVkUu5n2rkUwrXIRVxP6YjyHOh3DyoVccU7JUH1ui7CYDaDpYnF1LLKtZvJxJmzLjBpFMMdRPQ+U47OmWF9f37Po4rgy7uQ6Sx9//PFLf48xc0ZGq/aV6ocCxpV5J9t4ftW7sMZ4e9ptBACmI+fOjpwr5zZVXF+qHjdin05TgNv8KgB1JzfPjtwsN9eRfAoAzSDH0yT6MwAwCzIGTaI/A4tKQRfghbhI3e/3x/6KIilRLCWKuEQAiovz+61od9DKxQNffvnli6B2586dQWGXapg7aFEMp2qaRQ3xesbrcFAFdQ5ahN5Y+LFX4P70009Hfn/au+u40yN1FguO4tg8yTG9Tl/xHEYdG+cpsxBUta34kERdF7MBLIOYUK0uto3z0LjnonLh77iLoEf9/DQFHuvm5MmTaVm8VNdxZ3lej7HmsA8++CCl7WpfiXHRNOOT4dcmw6jnOc2HPgGA6ci5syXnyrlNVV2IFNeaMj7oan4VgLqSm2dLbpab60o+BYDFJsfTJPozADALMgZNoj8Di0xBF2ApRWGXCF/DQerKlStjV9Y7iIUC1UUe+xWLAqohtUnKCoZ73dFmVKXDKOozbaGbUXeNamrxHGB256LqQsM6L2YDaLJYVFvNlXGc/tGPfjR2W5E/IxdOcqfN6u80qWr3cFaOMc6k45xFMepDCVl3Oh017si6q22GUYVF4z3WpP4MAItCzp09OVfObVJ/Hr6+NPyh4PKaWt2YXwUgi9w8e3Kz3Nyk/rwT+RQADlZTcnw8j3L9etyctNVqDb7i/8+ePTv4NzegbL6m9efou2V/jj9Pnz49eH4xFoyilADAwWhaxpCZl1tT+vMokZEjMzf5c8CAgi7AkosFqMMLCSJERQCa12ThqOIkk9ydKJ5HPIeLFy8WTbWfaoixD0a9llevXp368T/77LOFugMUUE/VY9iyLGYDqJuYzK/mxpjgHXeitrwgMGkurN4JM84LTVnIUC2eGWOfjDtTRlX1eRfmHGXUBxIyxwvVtkaNT+Zp1Ditjh8ABYCmk3NnT86Vc5uWc+P9WV0kFHeUqmtBe/OrAGSQm2dPbpabm5abdyKfAsDBWfQcX34YMdasl9k4bgoaa8ajKFzkiti269evDz6kGrnXh1Sba9H7c/xM2Z+jz8bfz50792I7op0YJ8XPxAevRz1fACDfomcMmZkm9efdtif6b7QTX0BzKegCLL1YiDosws+77747l22JwcSoSn3jBrsYnIxqq2lB/PLly7suIh61KGLSCor7abuOC4WAeovJpb3OS3VSnXwAaILIddXF1TFJGwvBJ2lrmlw4Kqeur68XTRAXUariQ4IxCT3N3VjjvDnJazVLMX6rTqpnj81GXRCok3hdqyxaB4CDJeceDDlXzm1azq2+z+ODt7sV1p+3RZtfBaB+5OaDITfLzU3LzU3Jp67/A7CoFj3HxwdOIzdEjous8OjRo8E8XHwoNbJzrI0uv19m6djOyFmjbhzKYlv0/hwfQH3nnXcGzyH6bvTbhw8fDvp0FJ+Mv8efw/PM8R6I31mWcQIAzMOiZwyZmSb1591utlMWcwGab3XeGwAwbxHgYpJweFIwJhcjFEVhlIMWA4kYeAyLSpIx2NivCKl1XhCQIV6zvRYRj7rDT8bC41ELcLLanqXo07Hdy3LnI1gEcReCqr0uUjW5WBfAPFTvPB6uXr06UVtlzpo0F44q5Bj5ra53Qh9HnL9iTFMd68TYq7x4EmOhmCBf9OKUOxWWzFTdP3X7YMeo90C81tHHF/m1BYBFIuceDDlXzm1Szo1+Onzto+7FXCadXwWAYXLzwZCb5eYm5ebduP4PAAdjkXN83MwycnGsTx9V+LCaE8p17LGOvFwfHh/4iwIZdbDId5GP4nZZNwld1v4cOT/6Y/x79Mmdfi4+qxHbFv24fL7xWDEGrGOhTgBogkXOGDJzfcjMeddyyn4QGTr67KL2CWByCroA/LOwX72AXk4axiTiQYrHrC5iiaC234Iusd0RlE1ujl4UMWkFxb3ajX1e94VUwj7Uz6jjRrxXd1vMNuouWV999VX6to2aaJj3RAxAtpi0H3WnzEmzdOTEaXJh3RZdZ4vK+LG/d7rjaoxlygsqsQ9jsnwRF/B/+umnr3wve6xQ9zuw7vR8YzsPeowNAMtIzj1Ycm4eOXd+4rrU8LWPRSjmMun8KgCU5OaDJTfnkZvry/V/AJi9Rc7x8cG9mIcbt4BFZOkyK5ftxLr3+P48nT59unZZdBLznAtd5P4c+fLdd98dPF58WHo/2TI+kB2/F/23FEU+F2U+GgAWxSJnDJm5nmTmya/lxHWOUZ9Dje2Pbah+hhhorva8NwCgDnZaAPLhhx8e+LZEGKsuYBinGmMMWi5evFgsu5jwHbXPMgYQn3zyyUzanbWmLwCDRbTTRawHDx6M/TsHYdRiMoBFVlZlz6jYHZP/0+bCUYtp6140cFwxXtmrYn6ILB8XV2LhxokTJwYXNaL45SLcaX3U6xgXFFqtVtrX8IWnup6jR2WWJlyYAoBFIOcePDlXzl1k8ToOL6BfpMXzk8yvAkBJbj54crPc3HSu/wPA7C1yjv/4448Hf0bOPXv27IvH30vkheo21uFDf03Jd/t9HWZhkftzfMYifv7+/ftjZdq4wW315+M9AQDkWeSMITPXk8w8+bWcKOgSxVvi2kgUGIpiiP1+f3C9JP4NWB6r894AgLqIMFa9E1AEtfg66DvExEKU+KoG0L0qQ0YojAUsEe6W3aiFPBGQMxZCjGr7gw8+KOouBoIWY8BiGDXIL416H+/285lisSRAU5TZuWqait1h0snVnSbtm7ZgvxzbxH6KDwzu92JFuYA/vmJ89qMf/ai2d/IcVUgx+tWkFxD2o4530YzMUs0oikwCwOzJufMj5+aTc2cvroENL5aP60t17YPjOKj5UgAWl9w8P3JzPrm5/lz/B4Aci57jh7c95uXefffd4tGjR/t6rMi/1ecef59nYeYozBHr7hf1Q6qRo+O1mrT/LHN/jp+N1z62dZKxWXweYvhzErEv4gPX0acAgOXNGMOPF2Tm+ZOZp7+WI+MCJQVdAP6ZH/7wh68UdAmffPLJgS8EuXjx4isFXWJhyl4FXeJnIgTWdeHKQYo7SFZlDMJiQDhq4UTd71YZ22wBMyyO3SZsRi3Im8Xit1Ft1nExIMCkbt26tePE8zT5c9JcOGrCucnH3ZhMj68Yg8UC/nHurBqZPCrvx+/t526uB22n6uvLNk4b1X+NSQBg9uTc+ZJzm69JOTfmIGMBXNOKuYRFXRAHwMGRm+dLbm6+JuXmDK7/A0CORc/x1TwUf4+csJ/tf+utt2o3BxZr2vda104z+3OMx8KkhStjLBdFPoffE9GmD7sCwHJnjCAz06T+DDCs/dLfAJbYTosnRhV5mbUIc9VwuFNVwWExmVktBLOsRoX2SSsoVgv8jOo7dQ/gUewHmEx5/J3VZM6o48dXX321awGyg1j8NqrNUXcHA1hU2QUA41yRMUmctT2LIhbtx3OPCvq3b98eLNrY78L2GPvEHXoAAPglObce5FzqLub+4ppJOQc4y2IudZtfBYAgN9eD3Mw81C2fuv4PAMuT40c9jvPx8lrk/lw+1oMHD8Yq0Fm9+e2wyOfz/sA1ADTBImeMIDPTpP4MMExBF4A9Av68JgdHFWYpK1rvdBei2NZY8LLsYj+MWoiQEZJHFfhZhCI6u/UdYGdxF4ATJ04MPtxw+vTp4sKFCwfyuKOqA5cmnTzIuEPXst05Dmi2UTl/0gKAkcUzJokXMWdmiQnyGMtEbo0PEvb7/cGfUZl+t/0a5+q6FS8cda5exjuPjnrOdS+ECQBNIOfWi5zbPE3Jue++++6L48Usi7nUcX4VAILcXC9yc/PUNTfXMZ+6/g8Ay5Pjq+t4I+/uNyM9fPhwbjmC2Vjk/hyPF5k//j22eZJcffbs2ZHtAgDLmzGCzEyT+jPAMAVdgIVRXlRvtVqDSbzsSbvdAv48FlfEYpXqNo0qJjI8aIkL7QYbowNy7JdpF4eURXP2qhJeN6qWw+THkupd3eI4nL0ocNzFbKMWVY1afDWL7XKOAZpkVD46d+7cVPlz0kni+P3qcTfOBctetTvOeZcvXx5UNI8F/HGH1lHnwZgMr1PeHXUen8W5uu5GPWdZAgBmT86tPzl3sTUh58bi+vIa2yyLudR1fhUAgtxcf3LzYqtjbq5rPnX9HwCWJ8fHvz169GiQcePPyLvTPPdlHzMsukXtz6NyZeTqccdlo27EW6exHQAsqkXNGCWZmSb1Z4BhCroACyEWYMRF9TL4xELTKOqSOXE3amJw3hOEowqF7FTU5datW6r6/TMxcKvKWJD8ySefjGy37guDD+qOQtRHHAviGBlFsBb1K+6GFc9hVIGmeR5Lyg85zNpeC6eq/z6L81S1TXfnApom8wNf5Tlj0knZqCC/aEUDxxULoqctyhlFL+M8POoCzah9OEtRaHSnRd6RY6rcgXXvcTcAkEPOPVhyrpy7aDk35o7L60yzLOZS9/lVAJCbD5bcLDfXITfXOZ+6/g8Ay5Pjyw/8jbvd1XWUkY9ZbE3oz9OMe0Y916+++mqsNgCAZmYMmZkm9WeAkoIuwELYaSFE5qKM3e5uMq+CHaMKtNy4cWPHKn+XLl06oC2rt1ELgSatoLhXMZ0PPvigqLMrV65MvTCKxRLHgnJBXPz/on7FYqJ4Dge9+K66L2d9TtjpMfZazFZd0JW9CHBUe5NWsgWoo52Om5N+4CvyeJwfJvn92JZRBcwixzVJPJ+PP/44pa3IB9WMkH0HzWmMOmcu212EdhqDWCAOALMl5x48OVfOXaScGzdOKPvUrIu51H1+FYDlJjcfPLlZbq5Dbq5zPnX9HwD2tsw5flS+unr16kwei4OxyP151OPE98bN+6PGSW+99dZYbQAAzckY05KZm2eZ+zPQTAq6ALW3WzGKzEUPu10Mn9ed/GJys/rYZfGWapEXlSN/oSwEUTVpBcXhfjiq3b2K6MTvxSLp/YjXNsL82bNnixMnTgzu6hR/xt8vXLjwUkGZ+P9Rd3Ya3g/xO/t97GnFvtlp2/dbVCbaiIVW8fNRzCi2PwrxxPOMtuLvVfH84meqjxm/n1HIJvM1OSgxwIzjwbwKUWWK49+owlYHZafXM7OQ007nsb0ubo16P2SeEx88eDCTwlgAdZF5niwzx6R5c9Qi9rjDaBPvJj5qMntSsY+qY6DM9qcR5/FqH1u2BfujssS0YzIAYG9y7nzIuctjkXNuzF+Xi4myirnEXPlu1yDqPL8KwHKTm+dDbl4edc3Ndc6nrv8DwN6WOcdXPyQY65bNfy22Re/Pd+/efdEH48/79++P/bgPHz585XtNWPcMAPO06BljGjJz8yxzfwaaSUEXYKEDWGbwWV9fH/vxD8KoYgbDdxeKwh2xEHeeRQ/qZNQinUkrKFaL5lRFkN+rf8Sii70qLsbAIAqExGKJWJARVUBjQfWjR4+KL7/8svjRj35U/PCHP3xRWCRe/2h31OKN+JmywMlwsZHh/RNFSXb7GkdZOCYWvsTC7biDz+3btwfbH9sdf4/vl89vt8JJsR+iH5d3CY3tj+2N5xm/N/y78e/xHGNQFIPsuANXPG7su/i5+Pd4zPiapLBL5msyD7EvYlv7/f5Cf8UFm3kWqyrf3+WfcRyJfZs5sTNq4dR+nvPFixdf+V5GEaPSqL6scBjQNFljiTJ/TrLwNY631Q+/xXmnenfRpoiclnm+qu6numSxnSb9M5973UV2rrI4HAAOhpx78ORcObfu4jUqPyCaVcylnLff7ZhT5/lVAJCbD57cLDfPW53zqev/ALA/y5jjIxMMr4uOrDlqPTOLZ5H7c2x75P5Y5zvpnPMsbt4KACx2xpiUzNxcy9ifgeZS0AVY6PC1V6GMcex0IXzek4OjLqAPDyxu3bo1CILz3s66iKrfVRn7Jvbzfu6QUw3t8bXb48egIAqCxOKlKF4Ri0XiNY9+H69rfMVEd1RujH+PAim7Fe+Jx4vfiTbiq/rYw/+209d+xbaXhWNiG2P7om/GY8bfo634e0zWx+PGz7/zzju73pEofj4GNTttR+yn2F/x3o+iKlG0JH4+qqfG75T7qXyPlIVZdrtL6KxfExZX+f6Jgj6zKjAz6pi1nzuAlf1w2KeffjqzRXYWcwHLMs7YrfjcXsfySTLnqAwRGafJMu+SGq/h8H4fdfeeeRl1Ph+1kDtD5Ou6fRhg1PhJngCAgyHnzoecm0/OzduP7777bmoxl1C+Nru1V+f5VQCQm+dDbs4nN+9fnfOp6/8AsD/LluPLGy4On8NH5Q0W07L1573Gh7E/Mm/0CwDLatkyhszcbMvWn4FmU9AFWAjDd0kpi5fExebMibudLoTPe+FnPMfqRfvhBRlRuCKKWbDzAqBp7/QTbY4K/Hvt9yh0slvhl2iz3LYoGrKf/hyv924LK6Kd4a/qQDSKj1R/pvq1H/Hcym0vK63vtP3Rf+/fv//iOUexlFFFXeL3Y59GoZRR276+vj743fDll1/uuh+ineHfjwIw+ym6MovXhMVVFvH55JNPDvSYtd9Jgur5qTzmzGK75n0uBJiFURltkjt4xiLsOF+MOzaJ43b1eBs5qOm5IvtCSeadM/drPxcDyoKAw/abtccVOffDDz8s6mLU+CnyjYU3AHAw5Nz5kHPzybnTK+e748/oo5n9qjyu7Pb86z6/CsByk5vnQ27OJzfvX93zqev/ALC3Zcrx5c0My+cXa2JnlSmZj2Xqz6MeuzpuyLzJLwAss2XKGDJz8y1TfwaaT0EXYCGUhTOuXbtWPHr0KH3h6W53AqpDyBpViCKKSJSFXVxo/4WY3B0VzKddvBv7epJ+US4CuXjx4sh///jjj19s3zj9Od4H8xR9bnhQtJ9FV/H8YtBSvk77Ka5Sfd3icaOoSxSHKYs87fX7w/vq5s2bxfXr13f9nUV9TZideP9G35vFXc1GLWaLvrSf/j2qqFQc/yapNrufY2kdzoUA2UZltHHvkBnnhzhujps34zhbXWAdx9plyBSZd2ANp0+ffvH/b7311r5/7+TJky/9fZxzaHmerLZRVV1sEs99kgsJu4ntjnanGfNExs40avy0DH0bAOpCzp0POVfOraN333138NrEHH52kZNocz/zmHWeXwVgucnN8yE3y83zVud86vo/ACxvjo+2I0uUa1yjSHP5wdR4jLjh4qicxWJran/ej2p/Lm8ICgBMr6kZQ2ZeTk3tz8ByUtAFWAhl8YdZhZ5RF9WzHi/j4vqoAHrr1q3BYCMmMedx16FFWfwzSQXFqlELOfYqSFIuAInAv9PijHJ7x92+eb/mw8VcRt1ZaidXr1596blPslgrqqWOsxg7isgMb18smtptYc6ivibMTrnQbhbV/6ttRt8uCx/tR/x89SJWnBumVW1jnG0CWCRxHK1Ozo47mV9mh7gwMMkd0kuRI5apKnxcUMny8OHDF/8/Th6r5r1xFq3v5070Ic7T1eyaPaYtCxLup2DiTjIXrse+qd41dNxiiQDAdOTc+ZFz88i504v3Y+yDeA9mF3MpF0mdO3duoedXAVhucvP8yM155Obx1Tmfuv4PAMuZ4yMfR6HCaD9yXWSKchvjMX74wx8qYNxQTezP43wYe9gyjYkBYNaamDFk5uXVxP4MLC8FXYCFUFZejkm8WVxUH7VoIh5zmovYZWjLuJtNBNDq3VGi/agqOc3CjKaJO0JW7WdB8V5G3SVprwXQ5cKZ3RbklAtjJukjH3zwQTEP0eeG98dwkZb99OPhhTrjDqLiPTnJwvPqa1CtkLnorwkHc/6JQXx18dk0Rt31a5IFfNXfyagqPNxmvG9VkAWarHrcjGPzOHfILPPnOJmzvEN6KfLR/fv3i2nFtkfhvfKCRUZhyVnJrII/fD4dJytWF5CP87qXWXE/i9Crr21cWMp6bcox4ThFFve7WGZSo8an7noAAAdPzp0POVfOrYvY3njusZioem0p8yYJ+3l96j6/CsByk5vnQ26Wm+ep7vnU9X8AWK4cHyKb9Pv9l74ePXo02M7ILrFmvvzwamYxPuqhaf153JuKlvugTkUgAaAJmpYxZObl1rT+DCyxPrB0Hj161I+3f/Xrxo0b/bo7fvx4+rbevXt35P747LPP0tqd5XbG65nhvffee6Xt27dv9xfJqVOnXnkO165dm7rdaptnzpzZ9ecfPny4589V34fjvo7x2uy3bw0/TrzOGe/B+Ir/H9elS5de2p69jLPf97vdO72/D/I1YbFEXyj7ULy/Z3G8ivfGpC5fvpx2/qqeaxYhGwBMq3ocHScvxflhv5kozieRZ7KO/3uNFSbJarNUzWNZY42y3XFz7qh9tl/nz58fnMv3K8YkmZm8mq3HzSfVfhhf4zyfcfbpoo0pd3vNZzUWB4BZkXMPhpwr59ZN+brMal4vXpdyX+/3Meo+vwrAcpObD4bcLDfXSd3zqev/ALAcOX7S83nGmmjqZZn6c+RR87oAcDCWKWPIzM3X1P5c7btZ1w+AevKpY1hCZbGJ6tciBNa4SF1eVM/Y3uGL9NmLCoYDXNa+rW5rZlAbtWhjkS7k71SoaNrCPKP2eyzQ2U9xnL0ee7jdWNwxzkKRctH0fmT1mbJgyX73w37aiMHHQRR0qRaS2WnbD+o1YfGUA+XoI9MeV6ofCM7oN8PH8KziR5O8xwEWVbW44X5ycJwP9puv4jxSzZSZWXtUYcP4ignsuqg+/4wPFAxny0nOz5N+iGCSMV61j007RiwXuUzSj6pjv/Lv05z7IwtX92ed+t8sCqBmLfQHgFmSc2dPzpVz62S478Tzz/iK9+FO78W95vcXaX4VgOUmN8+e3Cw3103d86nr/wDQ/Bw/7Yf83ICkWZahP1fX+cunADB7y5AxhrdFZm62JvZnBV1guSjoAkuoWpUu844rB13UJYLKpB+iimA+amFLRvGVUXfvzghx1aIUWXez2anIzyItgp3lXaeqoX+3hSfl3ZX2szil+nqWv5f9wcCscF/t15O8V6p9ba82svpjtZDMTn3joF4TFtPw3QEmPf5W30dZE0XVAmWTLJAb7v9xfjSBBSyb6iLmvfJ7mfv2yjPV8Vc8TkbRwWGjsnz5VRfVwnnTZtPhc9+k1c+rd/7Zz/aUr/sk58lqDph0jFhm20mf96jq8eV4apKMP2psXffF+hnj5SY9RwCaTc6dLTlXzq2LciHSQX6N21/qPL8KAHLzbMnNcnMd1Tmfuv4PAM3P8dM+Vx/0a56m9+fh56eYCwAcnKZnjGEyc/M1rT8r6ALLpT5XboF0cSE2PngUXxEi4iS/UzGX4RN/XKSOny9/t46FDGKbhkNYXIQeJyiNqpoXfx/nboLD+zkeO/ZbbEe13WqgixAYjzNJsKsuyJ3E8Osa7UV43W2bF6VPjOrbWUG2GpB3mkguF87st/DITh8MLBdTxONEf5l2EJC1Tya9Q9Vu27PXopPq+2dSo/b1qP16UK8Ji2u4OFC8n/bbF+LnqgvZJl1kt9/FcuMsuLOYC2B0cbf4+07HxLLo36hzQfxONZ9GlppVpe7d8nxdcsvwNpbjp0kXaURmy1j0P2pyf7eMW2bFaRajj+pj4yj71TQ5YtSC/eELF+O0Pfxa7PcCSd0Mj3OH50/ieYwq1rrbGL/alkwFQF3IubMj5/6CnDtfsb27vV9m9dW0+VUAkJtnR27+Bbm5fuqcT13/B4Bm5/hpb2o4bTalnpran4fXXijmAgAHr6kZo0pmXg5N6s8KusByUdAFGqwMHfNalHkQygUFwxehI4gNFyApxf9HqKouTignByctUlINguN8TVJAprxYP8mE5qjBSVP6xKj+nhmihyeTI6APh/34/7IfjFt0pBq+d/sqi+uMKyPcx3Osbk9sS3x/3K/qwOkgCrpU2yq3f16vCYutujir/CBvfL88NpTFvkadd+J3Z9Vv4nGHj1d73QGsWiDNxTKAX2Tm4eN8ZL+YsK2OF8oF6KU43sbvVgtAlL9/kOOiWWXiaYy6W2o5Pon9vd+x0fBzzdivo+4eOuo8XS5MnzaThniu1T6210Ls4X457Wu604L9cttie+JndntNYr9V+10d7rAwzzHyqK94zQCgLuTc2ZBzf0nOnZ9prlNN+jVNn6nz/CoAyM2zITf/ktxcP3XOp67/A0Bzc3xWMUeF25qnaf15eOwgnwLA/DQtY+xEZl4OTenPCrrAcmnFfwqgkd5///3i3r17xfHjxwd/P3ny5L5/d319/cX/P378OJJLUWfXr18vbty4UXzxxRdj/d57771XXLt2rThz5szEj/3RRx8VN2/e3Pd+Lvdt7Ne7d+8OtmEcd+7cKa5cuTL43VOnTo39uxcuXHixrfvZ3up217VPxPOK51eK5/jll1++9FynVb7WZfvx2kWf+/zzzwffu3Tp0qA/jfuY8T6N7Y/9uh/RX2/fvr3v17/Var34/9jm6Dvjiud5+vTpItvly5cH+2w/2x7P+7PPPpv4sYbbCnHMiNdsHq8JzRDnno8//njf/ST6RxxHot/PWhwPY9vK41O89yMXxDbE8fzhw4eDfl7+e/TheC+Oe04CaLLIfXFsHB5jRM47d+7c4M841safcWyNn6meDyJnRJ44qGPr8PbGcf1HP/pR8eGHHxYffPDBgZx79nLixInBn9WMHtsb58dy7Hrx4sVB7ixz1ajzVsY4bli8drGvhscT8fjRfvwZjxuPH48bmS9rjDFqHBuPWfax2K74t3jsEI8fPz9t5jx79uyLfVn21Wh31P6Ixzp//vzgNYmxY2zPp59++tK+im2+evXq4OcWTTlGrqq+xqPGzcNj5FL1OBD7L/ovANSJnJtLzn2VnHvwhq9dHJTYL9Fvmjq/CgBycy65+VVyc/3UOZ+6/g8Azczxk34uYFg83zpkfvI1oT8Pr8mojj0AgPloQsbYjcy8XBa9P0dfjT477Wc+gcWgoAvQKOVihggv8f/DYSvCVxnKIuw0YTEBvxSvdYTo+DNe44yFLKNE/4qw/+DBg0HfKgu7xAKVaRcMxUAitnt48cxuorjJfh4zo6BLbFMs7BkWC0JmXcAks6BLLBIbHnztZ1A+q9eEZon+US62K79CvD/KxX6xWHIefSO27ZNPPhkcu6rnxHlvG8CiiONnTOgOjzGGlRO9kUFjUXMcU+tyoSLyW7m4fd5iDBYLm3cah8U5KrJXdT/H/o2F4rFfo414PrPKoPGYZfYrt6EcQ+627Vnn6+rjxvOM5x7POy4aZH1QYK8F+7u9JuXrEdtWjqsVNQSAxSTn5pBzdybn0oT5VQCQm3PIzTuTm+unzvnU9X8AaH6OH7ew87Traqm/Re3Pwx9O3evmnwDAwVvUjLEXmXk5LWp/VtAFlouCLgBQQ2VhouE76FTFgKJ6B6tRFHR5ta0QC3BicdI8XhMAYLGVFdwjG9RhQncRFuxTH/tdsA8ALB85l0Um5wIAB0VuZpHJzQDAspp3ji8LCMafZdG+cV2/fr24cuXKS9+LtaqPHj1K3FIWwbz78zhrzvdz800AoB7mnTFkZprUn/dDQRdYLqvz3gAA4FURwocHDBHSY2AaFSNLcaedGGhmLq6JNmPwW71bz6jCLfFzi3y3pbhz1CK8JgBA/Tx48GDwZ10neIfz2ltvvTXvzQAAYEHIuQAAsDe5GQAAFs88c3ysK43iFvFniDWncXPDcdeZjrrRYNkmy6XO49IYi7777rsT3XgTAJgvmZkmqXNmBpZTe94bAADL6sKFC/seGMYA4vbt24MB6fAA8+bNm6mDyyhSUk6kN2lQGxcIqqpFa+r6mgAA9csVca5fhAne2M5ROQ4AAKrkXAAA2JvcDAAAi2feOX7UmtL43rhGrUuV+ZfPvPvzbmK73n///cGfsb56nGIuH3300UTvCwCgGRlDZqZJ/RlgFAVdAGAOYmAQFUOjgMo4oghJTHLvVaxkFqoDmfX19WJRVPdzDMhPnTq18K8JAHDwyqwQCxDqrLwoUc08AAAwipwLAAB7k5sBAGDxzDvHP3z4MKWdr7766pXvnTx5MqVtFse8+/Nu4oaisX461lSfP39+rN+9deuW/gwAS5wxZGaa1J8BRlHQBQDm6O7duxMVVhmuWv7gwYPiIFy4cGHqbZ+X6rZevHhx3z9b59cEADh4ZVaoe9XuMo+cO3du3psCAMACkHMBAGBvcjMAACyeeef406dPj7yR4LhG3Wiw7mMTmtefdxIflv38888nKuYSRUnjS1FSAFjejCEz06T+DDCKgi4AUIOqj9MWV9mv9fX1if89iqAcP3586m0ffg5XrlwZ+y5ik7hz585Lf9/tcQ/6NQEAFkuZFSa5UHCQYoFELHQYzm8AALATORcAAPYmNwMAwOKZd46vPm58qPD+/ftjtxPFMqo++uijqbaNxTPv/jxK9MPYrkmKudT1OQHAspn3+Vhmpkn9GWAUBV0AYI6i+ueoAeNeTp48+eL/96pIPs4irYcPH+7YXrRz9erVlwqsTFr8JH43iqyMqqI6aTGandy8efOlv8fFgt322UG8JgDAYoqcEDlmESp2R05bhO0EAGD+5FwAANib3AwAAIunDjk+HjvW38a60n6/P7hb/LjFF+M5xHMZFh9O9AHF5VKH/lx1/fr1wTrtSYu5hEneEwBAszKGzEyT+jPAKAq6AMCcffzxx2P/zvAg89y5c7v+7HBxkb0KlcSgZbdiJJcvX37p369cuVJM+pxjcH3p0qV9/05s2ySFVoa3MR7zRz/60b62b5avCQCwmMpidu+//35RZ5GZIpuoKg8AwH7IuQAAsDe5GQAAFk9dcnzcTHGanD5qTet+1sLSLHXpz6Uo5BJrtG/cuDH4wGys897rK94H5Vc8n2gjvqy7BoD5qUvGkJlpUn8GqFLQBQDm7M6dO2MXKolqo8NVSHfzwQcfvPT3asXRYbdu3dpz0FI+dojtjon0ccTvREX2a9euFeO6cOHCWD8fA/m4AFCKCvD7qdI669cEAFhMw+f7OovFElGET1V5AAD2Q84FAIC9yc0AALB46pLj42aKkdHL4hXjiDW/seZ2WKy/lfmXT136c/lB2fLD1vHniRMn9vV1+vTpF1+xXr1sY7ebkQIAy5ExZGaa1J/3Y/jzjnt93hNYfAq6AEANRKGSahDfSQT0cnAaVc33cunSpZf+vlMhlZhcj22o/nxVTJrHAKcsWhKT6WUFy/1s+7vvvlucP39+z8cZ9bjjFHWpDuKjmMs4A7JZviYAwGIqM0+dJ/jLO9jEon0AANgPORcAAPYmNwMAwOKpU46/f//+YDtize1+16fGz1TXzMba2/iwK8unLv05bpi5181Dx3X27NnU9gCAxcsYQWamSf15r35bvZYT13jiBvVAMynoAgBzFoOEKFYSk9F7VVOMfy8nwaNAyX4qkkfhleEiLlF4JCbTqwOBGPDud8AahVE+++yzF48f27TXorCodhoV1eN3Y9vHFc8jCsnE4Coeb7d9Fc+lrNoevxfbGkVk6vKaAACLJ875kZnqXrE7MlDkkXGL57E8qvl2fX19btsCAMyfnEtTyLkAwCzJzTSF3AwALJO65fhYyxofUI21rPEhvXfeeWew7nanNaqxzjfWsA6v940bDrrp4HKqS3+ObYgbe2az9hoAljtjlGRmmtSfQ3wGMgoOxVd89jC+4rOVJ06cGNmv4+fi36Jfx8+Wv6uQPyy+1XlvAAAss3KwGX/G4qoI5THw/OEPf/iiqEgMJh48eDAoZhID0vheFCgZp1pkWailDPAR7ON78TgxAIjBarQ3XPhlL7EdDx8+HBRqiXbjzygWc/HixcGgIZ5TtB3bGt+Pv8fjTLN4LB7zyy+/HAxGYl9FW/H/8f14rBiEf/zxxy+qsMZzHOc5HeRrAgAsZsXu7DvMZIrMFds5SfE8lutixbBqsUcAYLnIuTSBnAsAzJrcTBPIzQDAsqljjo91qZHZY91prHWNdbfxFWtQy68ouhc5bfjDfbGGNdbCKnqxvOrSn6N/VscVGc6dO5feJgCwOBljmMxMk/pzZOfoy2XfLg3//yjRt8v+HW34vCIsvla/3+/PeyNorjj5xQfeHz16dOCPXRYoKMNZeQKLk11M+MS2RSGAvU5+ALMSFROjcMhwqI5jVQwgYxAxfNw6efLkoEJkFC+ZplJkeWws249QH4PVKFxSFn2ZVAwwPvnkk8Fxt5ywLwfL0X4MjsfVarVe/H/spyiaUorHiecS55nh5xJfsZ+isMy4x/h5vCYAwGKIc37knboWcYucUhais2Cf0vBkfuTmyLWjKrpHni3v3ltmaBe1AGA5yLksIjkXADhocjOLSG4GAJZd3XN8uQ421t0Or+kN5VrY+LxD5Hz5jEXozwDA4lmEjCEz06T+DCwvBV2YWVD68MMPX9zFIwq6HFThlLL63vAdROLCc/n45UXqMrzFxeppixgAMBu7FXQBADhIUfgtzKNg6X6cPXt2MM59+PDhvDeFGt2RNxbhT8oFDQBYDnIui0bOBQDmQW5m0cjNAAD1z/EwDv0ZAJgFGYMm0Z+BOlud9wbQLFHl7sqVK4OiKvN47LgQHdX2QlxUjmItUcxllCj4EtsaX7Gg4caNGwe8xQAAACyCsqJ7VHCv8/YpfscoZYHbkydP7vmz6+vrgz/LIrgAQLPJuSwyORcAOChyM4tMbgYAllXdczyMQ38GAGZBxqBJ9Geg7hR0YeoTXRRG+fTTTweFVOL/5yEKyFy4cOHF32/fvr3nyTcKvty9e3dQ0OX69evF+++/74QNAADAK8rFy9PczXKWTp065c6rvOLSpUuDLwCAnci5LCI5FwA4aHIzi0huBgCWXd1zPIxDfwYAZkHGoEn0Z6DuWv1+vz/vjWCxnDhxYsc7cZQFUaLAyrBHjx69uONHtps3b7440cZj3L9/f1CsZS9RgCaKuZRFaN57771BgRcA6qPVar34/zi2u6sYAAAAAAAAAAAAAAAAAABQd6vz3gAWT1nMJYqnxF1ezp07V7z//vuDgijxvevXr79S0GVWhou5hNu3b++rmEuIba4WeAEAAAAAAAAAAAAAAAAAAACAaSjowtj6/X5RB59//vlLxVwuX748KCqzHzsVb4liNVGUBoD6FhQDAAAAAAAAAAAAAAAAAACos/a8NwAmdeHChRf/f+rUqeLatWv7/t2TJ0+O/L5iLgD1tb6+Pu9NAAAAAAAAAAAAAAAAAAAA2JOCLiykjz76qPjiiy9e/H2cYi7hzJkzxfnz51/63rhtADBbd+7ceenvjx8/Lj7//PO5bQ8AAAAAAAAAAAAAAAAAAMB+rO7rp6BG4sP8N2/efPH348ePv1KcZT9u375d3Lt3b1AY5ty5c4MiLwDMTxyTb9y4MSjcEsfm4cJdpbNnzw6O1ydPnhwc/6MY16lTp+ayvQAAAAAAAAAAAAAAAAAAAKMo6MLC+fjjj1/6+8WLFydu67333kvYIgAyRCGXO3fuDAq1hPLPqrLYS/z81atXD3grAQAAAAAAAAAAAAAAAAAAdqegCwv5Yf9hFy5cmNv2AJDn/PnzRb/fn/dmAAAAAAAAAAAAAAAAAAAATEVBFxbKxx9//Mr33nvvvWKRHP5L//WUdtbWvltkeWPlN1LaWX/+WZHlv/32v5LSzhffHkpp5+fFt0WWs8cOp7TzH379fyuy/DfeyHkf/e73vk5p56+8+U2R5bNHb6a08/vfHC2y3Hn8/05pZ3P7ZyntvL7220WWx9/831Paaa3kvE/C0WP/fEo7z57+w5R2Dh19p8iy2j6W0s7/5i99v8jyP/i9Xko7P336n6a002rn9aX2ymsp7fS6T4ssK6s5x7hWa63I0u93Utp59p/9ByntsJh6//FfTGmn+6s5/XHQ1uutom7amzmF0NpJh6X2z/KOub0/ez2lnc7P3iiybKznbNPW0yMp7WxvJh67u+2UdlorOTkgtFe6Oe2s9mq1j0JnI2ec+vRxTp8M6z89kdLOn/7x91LaefiHJ4ssP97Iee3+uL1RZNls5fTLk72cvnSqyDue/OB7z1La+e3f/LMiy/ff+ZOUdt4+9adFlu/8IKettf/e301ph8W09f/7QUo7nTfzznG9pDjYz9ukIumQW6wknQZWv8nLS6s/S9pRP8mZ7widP/1OTjuPc+a8tp/nnCtDr5fYMbP0csap/X5OO92t1dpl5o0nefP6T7/Jea988yjnfbL+1fEiy09+mjPH+PNvcsa7oZd0uHz7zc2Udn7rN39aZPmNd/4opZ23f/snRZY3fivnetOh33hcZOn/as6E1cpf/ccp7bC4nv/x76S0s504P9xb69cr7CaG8HYnZz+tPC/SrH2ds59W1hPz4M9zMkr3Zzn5ZDtxLUQvKRNmzsdm5d3e9krtcnPWmCfrukV4npTBn36dM//9TVI74evHOVl+I2m8E44c2Upp5+3vfZXSzvd+Iy83H//1nG069uuPiixrv5azLq71Kznz6KF7cjulnbW/+OOUdlhMf/BHv5bSzvF23jnucNI6prVWzvk7dPs5uXKzn/O+/TZpfVb4WVL2+sPtvPmqH2/+ako7DzfeTmnnpxt5a0+ebedkge3Eiym9pMzc6eW855538q5fP9vKaetZYobbepbU1tOc4+7qk7y+tPokaV4gJ+YOdJOuX26+lXMeaP9K3tqT77+dk3V/5828HP8XjuXMW//5w3lrRn5zNWc/nfmtP0hph8X16E9yPm9xpFW/3FxHWfl7u8hZhxo6/Zy2nvRyxgThT7o5ueLHW7+S0s7vb+V91vXnnZx5vedJ+yhs9nLev5tJuTlrbBG+7eSEpidbeZ8l+HYjp63nSfPonY3EUgybSfMVraRrjnGt/3jO2orT3/t5Sjt/+XjOut/wzuGc9RC/vpY31/y9lScp7bzZznndwvF2zrn3z30/b61109Rw9SHs7M6dOy/9/cyZM3PbFgAAAAAAAAAAAAAAAAAAAACoUtCFhfH48ePiiy++eOl7586dm9v2AAAAAAAAAAAAAAAAAAAAAEDV6ivfgZq6d+/eK987ffr0jj8fxV/KAjCnTp0afAEAAAAAAAAAAAAAAAAAAADALCnowsK4e/fuK9+rFmmJAi7Xrl0rbt68ObKN8+fPFx988MHgTwAAAAAAAAAAAAAAAAAAAADI1k5vEWbk3r17r3zv+PHjL/4/iricPn26ePDgQXH79u3i4cOHRb/fH/wZf48iLnfu3CkuXLhQnD17tvj8888P+BkAAAAAAAAAAAAAAAAAAAAA0HQKurAwvvjii1e+d/LkyRfFXD766KPixo0bxWeffTYo3nLq1KnBv8Wf8fco6hL/FkVgophLFHW5fv36gT8PAAAAAAAAAAAAAAAAAAAAAJprdd4bANOK4ixRzOXu3bvFe++9t+vPnjlzprh///6gmEu4cuVK8fDhw0EhmIOy/dN/UvR+9uOJfrf99g+K1e/9Tvo2AQBAnfxP/nc/K/6n//ufT/S7/+P/7neLf+tfezt9mwAAoE7+Z/+rr4p/+3/9aKLf/dv//RPFv/mvv5W+TQAAUDf/9r/zVfE//zvrE/3u/+hvnCz+9t+SmwEAaLa/8+8+Kf6Xf+fpRL/7P/wbrxV/42++kb5NAABQN/+Lf+eb4vq/+2Si3738N98o/o2/9Z30bQIAYHG0570BsB+PHz/e8d8uXLhQXL58ec9iLsNFXYYLuNy8ebO4fv16ynYCAAAAAAAAAAAAAAAAAAAAsNwUdGEhrK+PvmPSJ598Mvi3a9eujdXepUuXilOnTr34+5UrV4rPP/986u0EAAAAAAAAAAAAAAAAAAAAYLkp6MJC+OKLL0Z+/+bNm8XVq1cnavP8+fMv/f3DDz+cqB0AAAAAAAAAAAAAAAAAAAAAKCnowkJ7/PhxcenSpYl+94MPPnjp759//nlx7969pC0DAAAAAAAAAAAAAAAAAAAAYBmtznsDYD9Onjw58vunTp0qjh8/PlGbZ86ceeV7165dK957771illa/9ztFEV8AAMBI/9a/9vbgCwAAGO3f/NffGnwBAAA7+9t/663BFwAAMNrf+JtvDL4AAICd/Rt/6zuDLwAAmER7ot+CmhhVlGUc1WIw9+7dm3KLAAAAAAAAAAAAAAAAAAAAAFhmCrqwEKqFV0qnTp2aqt2TJ0++8j1FXQAAAAAAAAAAAAAAAAAAAACYlIIuLIRRhVfC6dOn0wvF3L17d6o2AQAAAAAAAAAAAAAAAAAAAFheCro0wL1794pWqzX1V52NKryyW6GXaTx+/Di9TQAAAAAAAAAAAAAAAAAAAACWg4IuLIxTp06ltzmqIMz6+nr64wAAAAAAAAAAAAAAAAAAAACwHFbnvQEwTkGXL774YuaP8/jx45m2/xeP/Msp7fyDxzeLLEfffDulnd72kyLLJ4/up7TzX1j76ynt/O7RI0WW1w9tpbTzL6y9X2T5l/7cVyntfL2Vc1r5P3zx60WWze5KSjt/upHTTuj0vs1p59mXKe08Ln6/yNIvejkN9fJqzm12/iyppZznttI6XGT5L6/91ZR2/r1/VKT5q4e6Ke38H7/dTmmnnxh3s95z7UMniro5tvIraW21WmpGMr3e252Udra+m9cfu0dz2mnlHCYHVnMiRdHe6Oc01EpqJ1G/265dW91OTq7cTsreqfspsQ+sJQ3BWq2cdnq9pIYSX7utjUNFls2ktjaTnls/8XBypMh57b7TXyuy9JOe4Hf7Ofv7rSN5J6fvvP48pZ3X33haZDn2Zs4J8+hbefNeK2/nPT+WV/dozvGtlzdNUXQP5+T4TO1O0vG7V7/xQNHJyXD9pHYyc2U/aW6w38/LcEViHsyS9vyS2snc3/0a7u+s/dRKGjetrebMn4bXjm2mtJM5LbjSzjnwvnUyJ8OdeCvv+vFrJ3Ly6aHv5GTvsPJGTh8ojuVcAw39o0knX5Zefy3pPJd3qbjor+Qdw7O0svJuL2dHtbqJk0NZGTwzN2dl+e2kjinH7bOdnGaaLivvtldz3ryHDuXNVbzxRk6OO3Ys76Ry9NhGSjtvvvVNSjtHv5M373nojZy8u/L6Zl7/PprTn/qH8rJuP+9SEUvsUNIF1bVW3vEts6266SVNNm8lXlDdSBrwbCReT91Iug66nTRG6SVdc66rXlJmzmqn8dE7KTP3V3La6R5K3OOv5zTTTbye1j2a8/x6b+bM53zntZwMH04cfpbSzvG1vLnmN1dytum1dl6OP5x6gRbqpdvP+nxLc9f+dxNzcydpf2eurMnKzVlZvpN4MSUtoyZm+bzc3Nz33EriOvLVlZxz+Nqh+l2X6yXND7aT9lE48UZOjvvukZx59DdW8nLzkXbOkfdQYq5sJ12czXzPMXsKujSk0MmlS5eKpjtz5kxx7969l763vr6e/jjHjx9PbxMAAAAAAAAAAAAAAAAAAACA5aCgS0MKuty4caNouvfff7+4fv36S997/Hi6u6GNKggT+xMAAAAAAAAAAAAAAAAAAAAAJtGe6LdgDs6dO/fK9x4+fDhVm6MKwpw+fXqqNgEAAAAAAAAAAAAAAAAAAABYXgq6sDCOHz9enDlz5qXvffHFF+mP895776W3CQAAAAAAAAAAAAAAAAAAAMByUNCFhfLBBx+89PcHDx5M1V61IMypU6cGXwAAAAAAAAAAAAAAAAAAAAAwCQVdWCiXLl166e+PHz8efGUUcwkfffTRxNsGAAAAAAAAAAAAAAAAAAAAAAq6sFCOHz/+SlGXe/fuTdRW9fei7cuXL0+1fQAAAAAAAAAAAAAAAAAAAAAsNwVdOBDr6+tpbV27dm1QfKV048aNidqp/t7Vq1en3jYAAAAAAAAAAAAAAAAAAAAAlpuCLqT76quvZtp+FHOJoi6le/fuDb7GcefOneLzzz9/8ff33nuvuHz5cup2AgAAAAAAAAAAAAAAAAAAALB8FHQh3XChlN2+N41Lly4NirCULly4UDx+/Hhfvxs/9+GHH75UIOb27dup2wcAAAAAAAAAAAAAAAAAAADAclLQhTRRtOWjjz4q7t2798q/RQGVmzdvFl988UXa4929e/dFUZco0nL27Nk9249/j58ri7+cOnWq+OyzzwZFXQAAAAAAAAAAAAAAAAAAAABgWgq6MLYrV64UJ06cePHVarUGX1EoJYq2jBIFVKLYy+nTp1/8/HAbUQxm0qIu58+ff1GsJdq/fv36i4Itw48f2x3/XhZ9iWIwUcwliroAAAAAAAAAAAAAAAAAAAAAQIbVeW8AiykKpBw/fnzw/+Wfk7Yzrdu3bxd37twZFGyJYi3xZ3xFoZbYtvje8OPE92/cuDEo6AIAAAAAAAAAAAAAAAAAAAAAmRR0YWzXrl0bfNXJ+fPnB1/37t0bFHiJP9fX1wfFXKKoy5kzZwYFXD744IPB/wMAAAAAAAAAAAAAAAAAAADALCjoQqNE0Zb4AgAAAAAAAAAAAAAAAAAAAIB5aM/lUQEAAAAAAAAAAAAAAAAAAAAAGkhBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkWc1qCNift1qHUtpprRwtshxqHUtp58+98V8rsjzp/yylna+LrZR2/uD54yLLT7/9vZR23j38XymyfPqTN1Pa+edOfpvSztvHNoss/94f/ccp7Rxe+16RZXs7pz+1D7+V0k5v86siS9Y2ZVpZ+U5KO93+T1PaeWPl14ssf+FEznvu1s9zjrnh8bMvU9p5/bXfTWnn22f/nyLLodd+kNJOv+gVWbY3/ySlncNr/3yR5SeP/6O0tlhe3deT2smLzEVvrZPSzkpvrcjSyjqcdJPa2c6rGdvv5rTV77WKLN3OSko7nY2cMeHGt3kdfHsrZ3qovdIvsmxv5ozlVg9tp7TT6+X1741vj6S08+TrpINljJ0fv5HSzjdJ/XIr6RgQDie181Y/5xgQVoqcY9PJpPfciTfyxuBvvP4spZ1jb+S0E46++TSlnbUTOe0MvJm3z1le/bWcY0m/4WX/W0lZt93JOea2Mt/+Wznnpv5m3qXCXlKu7CZtUzdpe1LHFv28MUo/qa1+UtbNGjNljlE6W3lj8O2k57e9nbefshw9kjP+Opw0/gqHDufMw7x5/JuUdl7/Ts5cfDjy+kZKO2uJ19LaR3L2d3Eka5KpKPo50yeQeepttFY35/zU2q5X/g6tTr3y90BS3s3K373EHNdP6ku9xPnBfjfnQNDLem6J+7uXlC17iddS0ubSkw7gK6t5+eRwUm5ur+StFzj62vOcdpLmdQ+9lpdRV44m7e+kscXAoaTXbi3vPNe3ApwEDZ8iTtMrct67nX7OsWQz71BSbCQdTJ72sq7MFsWzbk5bz7s584Mb23nzjFu9pLUnSe2E7aQM10nKzFntZD63zMxcu8mKxBNB71DOwSlxeUbRO5ozJlg7lpNP3ziSl5nfPJQz1/zGSk474bV2zvM7kjahUxQrrcSTJrCnblLezcrfvcTPbXSStulp5lrUflLeTVrb/qybd4Gv069fbu4kLbLazmon8bllrT+po3Y75727spp3PFlNWtB2eC1vjcabh3My4eurObn5WDunncxsuZZ1ITSmmpPOTytJ5yYOhnlYAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCSrWQ0B+/NP+n+c0s4P3vigyPKT/hcp7fy1175fZPn9Z7+a0s73j3RT2vl8Y63IstZ+I6Wdv7/94yLLW9/+eko7vf7rKe08eLpVZOk+/6OUdp53nxRZ1g79Wko7W88fprTTWjlaZOl38vZTlkNHfielnV/7zn8rpZ1/6Y2c90n4uz9bSWnnZ0//kyLL8df/ako7j7/9+ynttNdOFFkOreS09Xo75xwXftZ9mtLOd4qTRZafrOSdM1levUOtlHb6KzlZMFMrcZPam/2cdr7NOZ8Uz/Pe//3NnOmKXidv2mN7M+f5bT49ktLO069fK7JsbR5KaafVzumTYW2tk9PO4Zx2+v2c41J49uRYSjtfP/pOkWX9cc449etvc94n3byuVLy2ktNYXoqPXNlLaef4azn9+83vPC+yHD2W09bho5tFlrWjOXMMrSM5+zv0D+X0AZZb4qkpTauXcw+BVjcpnxZFsZJ0OGk/T8reTxPvs/A8KTMn5vhu0jx6VvbuPM/JuaGX1C/7vVbtDgRZWbfbyXvvdpL6wNZGXh/Y3Dhcq/FXL+mYGw4njZvWDuXlpcNHcg7gr7+RM3965PWNIsvqkZx82k7Mp8Wh7Zx21vJybj/vkAKNzc1FP+9c0E46pLQ7Sbk5b1qgaD9L2k8beQemXlLW6WXl78Tc3E2ak+9v5+3vftJcY7/brtU+CttbOW1tb63Vb5uSxheZc/tZefdQUv4OR47l5NRDxzZrlXVD+3BSRj2UeHE2Ke/2k65b1HWOEDJ0+znvt16R937b7Occv58mPben/bxM8aSXs370cTfnOnj4ZjtnXcWT7Zw5vafbifOM2zmvXSdxfrCb1FY3af67k3idqJOUv7OuEYT+ds5+aiW1k3ioLHprOY31D+VtVOtoTh48kjQfe2wtLzMfXUnapnbeNq0lLY5cSeyYmW2x3HpJk0zdxD7ZbuW01evXb611r8jJzZ2k/B02kvrAs/5a7bL8k15O/v62m5O/w5OkMUGnl5fjtpLa2urmZNSNpHYyn1s3cbIqa243c444y0rSGuLDa0lzqNHWak5bh9rbtcqVmW1lblPWOZzFkrhyFAAAAAAAAAAAAAAAAAAAAABguSnoAgAAAAAAAAAAAAAAAAAAAACQREEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBkNashYH/Wuz9Oaae78ltFlqdb/zSlnT9t/wtFlv/mb32V0s7f+9MTKe38djunnfC4dyylnX7RLbL8vPjDlHa+2foLKe1sF0+LLK2111Laaa+8UWTZ3n6c0k6/u5nSzsrh7xVZjh7+7ZR2Nrs5x4Cw1V1Paef7q2dT2mm3NoosD4vfS2nnjddynlum1cO/ntLO9uafFFk224eLuul1HqW08/1jrxdZvkx67Vhu/XYrqZ1eUTet7cS2tpIa2lhJaaa/kTfF0NvMaaub1E7Y3jyU0s7m85zzybOnOeOKsLmR89z6/Zz3blhZyRnvrKzmjZuybDw/ktLON09yxjrh6fO1lHa2ezl9YK3dL7IcXs05Fxw5nNeXstp6/VjOmPCN158VWY6+ljPeWTvcKbK013L2d2slr18Wq4ltsbRaSd2olRqZc3JlO+8QULQ3c3ZU+3lKM0XxJOecG/rf5mS43kbeNmXl7+2kfLqVlL3D9lbOfup38zJzVv7OaqfXzTkGhM5WTl/aSupLmeOmTlJfamWdCIqiOHQ4Z4LhyNGcfBqOHss58B59PSefHjqSNQlTFCuHck50raScm5l1E6cF3JqI2qljbm4lTntlZfD2RlL+fpZ4QHmalOO+zcuWvWc5uaK7mfPcOs/ynls3Ket0t/NOBP1eTlv9pLnPXjfvuXU7Obm5k9SXwvZ20vWdxPFFltWk6w2Z2TKrrdWk+disudjQWunVb143axwm69JQnX7eMaBb5LzfekVekH+W9PyeJQ2eH/dyrjmHn27nrI19tJ13/fpxJ2c9xLednKz77VbePONGUmbeTsq5oZeVdZO2KWt7Qjcpf/c6iSfwrPFO1vWGxCF4P+s6+KG84/dqUkY9nDUeSFoPNWirnbMQsZ048bWS1FbmNkHdMmon8XNgvX7Sey5xoJqVwbP290bSPgqPeznzXn/W/U5KO4O2Om+mtPOok5PlH3eOFlmysvxW0uuWmcG7/Zx2OplrNHr126a0tSyJ44ssWes9VhI/K9NOOu4CO3NpAAAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQREEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACDJalZDwP5sPf8ypZ03Xz9XZPl5byOlne1+keY//P0TKe38XvfvpbRzdOXtIst2P2d//277Xyyy/L2t/3NKO//Xzh+ktLPafr2om17vaVpb/c6TlHYOv/4XUto5sZrTTnjef5zSTnfr50WWt1/7r6a084M3c967f/fr7SLLN0/+fko7/d5WkeUvH7+U0s7P1l5LaefPnv64yNLv/n5KO92VPyuytFo5cf4/+eZ/W2TpdzfT2gJ218o6pXRbKc30t/Nqxva3V1La6SW1E7a3co65nc21lHa2ktoJmxuHU9rZ7ubt737i+DJDv5fzPgmbW4dS2vn2Wc7rFrpJz29tJeeFW1vN6wBHD+ccLF87mpeZjx3NyUtHk9o59vqzIsuRpG1aO9wpsrRXu0kNJR6YEo8pLLFeTjOtpLfIQNLbpJ13CChanZyNam0mZd2tvLzUS8qDvU7epcJeUh7sJuX47czMnJS9trfz9ne/l9Mve9127TJ81n7a2szJ3qGb1L9XkrJJu510IohrDUdysu7hI3nzgll5cO1QznNrr+XN67eSxk111Mp8anldnCWXlXdbmRm1XbP54cTc3E46FbQ2EsfNz3NyRW8jL1t2k9raTmqn8zwvM209z8nN3cRxStbcblY7vaQcn9lWt5M4t5+0TVl5t5UYUFYP5ZwMVlbzDuArazknulYN93dWuOwn5sq0s1PmNjV3eMEB6iRN6qwkdu52UufuJB4ENpL207NeToZ70jtSZPm6m7NO71HnWJHlyXZOrnzWycm6zxLnGZ8n5fis+fiQ9Vbp91u1u5aattZjO3Gc2qtZXsrrSkWRtNajtZp4TlnJaWslKTO3sy6o1lS3n3TtKqmd0M1L8iy5rNycOSjspfXvvG3qJh3nsrboSVY+KYpivZuTd/+sc7zI8pPOmyntPN7OeW7fdvLWtD7azNmmrcTc3EvqT1m5OWt7MtcQp85/Jz2/dtq6z8S55qz52KJ+tns577lO4kAlq63Mbcrq391WXi/oNHysUgd5R0gAAAAAAAAAAAAAAAAAAAAAgCWnoAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQREEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASLKa1RBwsP5p5++mtbW6diKlnX/Q/6zI8nTjn6S00ypWUtrpHeoUWX515S+ntPMH/a+KLG+s/XZKO4+f/j9T2vlXvvvfKbJ8sfJfTGnn//X8TpGln9ROZ/NPUtr5qr9dZOluP05p56+98a8WWf7yW09S2vl//OxwSjvtoldkWT3y51La2U7qS+H3Nv6jlHZeO/xOSjsnj79bZHm6/Ucp7XQ2ctoJ/e5mUkN5/bJ1OCdXsNzamzl9st1ZK7L0V7op7bSygkCmbk6t135SO5lt9RK3KautbjdpjNLLe27dpLa623nbtJX0/t3aypn66mznvG5hq5PTVidxf7daOe0cPZxzrFxbzcsmRw7njOcPJ7UTDiW1dejwVko7a2t5Y8KV1Zy2Wu28PtBPOsb1t/KOA+0tddapT2Yu2vXrj61OXmhuJx2+W52kk2ViPi26rebm+KTs1dk8VGTZ2siZG9zayhundpP20/Z2Tmbu9VqNHX9lWk3KS6uJGW5tLedguZI0d5LZVmulhhMxWZuUefxOyrqt1MycNyZgubXTsmWrdrfeam0n5ubNnLZaWdMniceTrGNc5rxAL6mtXicnx3UTM2rneU4G72zlZfmseeu0Ofl+/XJzP3Gbsqys5GSBlcTcvLqWk1HbSc8tVVIfyOxLWfO6qXMxnXa95pkSz+Est42kbtRNXBOXNZzPu7pXFE+TjktP+znZ62kvZ74yPOvlZK/nSe2ErW5O1t1Mmh/cSsreYXtztXZjlLS3b1YWSDy9tbLmrWt4yu2vJm1U5qXCpAN4q4YL7HpJ/Xu7n7i2qpd0rOzlzQtsJJ3nstr5RVuZiYBlltWTuv28Y9xK0gkq7wpfXqzImtp/kphRH/eOpbTzdTennfBtN2dc8O12zn562skbp3y7mdPWZuLa36w54qyskzoXV7/4lbauOWt/ryauaV1p12+Hb/Vy3iubSRk1a64iM1t2+nlzAxtJba0lfhZwJTURMEr9VuoCAAAAAAAAAAAAAAAAAAAAACwoBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkqxmNQTsUyvnbdd5+rDI0lp7LaWdX3ntrxRZttbWU9rZ3v46pZ2TKz8osqz3/yClne+1ThdZvtn8xyntrBz6Xko7G928emOrRSulnX6/U6RpraQ08/3X/npKO5d+My8O/IvHc95zx9d+r8hy6w9+I6WdnxaPU9r5wcqJIsuPe5sp7bRWjhVZVlffyGmndSSlncdPHxRZVpOOca2kfRT6/e2cdro57YSjh34zrS2W12rO6aToHc5p5xdt5Zy/W51+Sju/aCsn5xTbOdmrv5mXKbpbOW31tnNet9Dv5ezvXi9nf3e7ec+tV7PnFraT+uVGUr98trlWZNneztnf7cQyzasrvZR2Dq91U9pZXc3ZnrDSzjnu9vut2r3nsrRaeeemrP3UTTx+d54fSmnn0JOcMUpof/MsrS2W18rTnHZa/bxjbtahsp05DbdR1CszJ7UzaCtpDrXfbdUwM2edT/L2d6eTkyu3NnPOS6GTNG7qdHKy7nbSPgrdpLHFSjvvGLd2KOfgtLqaMw+3upqTvUMrKTNnysqVWce4zPmFbtL4svss73jSTmpr5elWkaV1OK+Ps9zaz3OOca1u4tg5KX61Et8m7ZxLjkVrIyl/bSZOfHVWapW/B20lZZ1eUt7dTtpHobOVc07ZfJZ3gWc76TyeNSefOe+VpV3D3Lx2qFu751a3sXPq9Z2s/p14rbD3PCc39zfyru+0nuf079bhvH7ZShpjstye9HPeu0eK+o3juonX954l7aenSQtZniUuiNno5RwrO728nLOV1NZ2WoZLHA90ctpqbSWOm5LWMGSNU1uJ1y3SJM6h9taS2sp6y2XODye9dHVcn9FJGss9387Lp99u54zBv94+WmR5cyVp7Xc7b137WktmJsdG0rFppajfdblu1gE8MYNv9nOOu096eeu9srJ8J+m5hc1ezjhlo5tzftrs5s0NbSadezcS54bS1kgnZp0s/ayImrQWedBW0jrizLUVTZ73yBrTP61lRs1p64121kLEojjSSrqW0m9u/26ixJkcAAAAAAAAAAAAAAAAAAAAAIDlpqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiymtUQsD+vH/tLKe08+fZBkeV3XruQ0s4/fvIfFFkOHX0npZ3V1TdT2vnTJ/+nIktr5VhKO0+6nxdZ2msnUtpZaeWcVv4vz+4XWbY7j1La6XeeFFnah7+b0s6vFjntvPe93yuy/M6v/Tilnb//+3+lyHLvZ2sp7fyk9w9T2nlSvF1kObz2KyntdHrfFFn6/V5KO1u9nPdcr/N1kWXlyG+ntHNk9XtFlv7hnP39WiuvX37d/f20tlhe7a9yjt2H2p0iS+9ITjutrZx2Bm19m7Of+t8eSmln+9uknRTnpmeHU9rZ3szZR4O2tnOybnd7pVbtZLa13c3bpqy2OlnPbbtVZOn2ctpqt/tFltWVnEyxuprTTquV99y2uzn1rLsbeceTfr9efWDtUN75cmsj55zy/EnO3ElYO5zz/NaObRZZVl7PaUu19uW28nVOD2h1co7dA1lRoJvUTrxPniW9U57lZMH+Rt5lud5mUj7dyjvHdTs529RLy8x5+7uTtJ+2EsconU7SNiU9t+52/c5M7bW8XJmVUdtJ2TtT5vgySytpCLaSNEZZ2cg7OW09zZk/WUnKuaGd1Fb70HaRpbWS9/5lua08zTmg9LYT+2TSMa6VmJtbmzkb1dpIygNJWTf0OznnuV5SO4O2ks69vW692gnbSfspK6NmZvlu0jxjL6mdTIcSc0XdZM3Fhl43p63tpLVVobWVc37qJOXdlUM588ODtp7lZMv24cSMutatXdZtJ15PYXmtd3OuyRxpJY5TWznj+V4/77z7tJ9zjHvSO5rTTjennfCsl3R9r5uY4XpZaxiSMlwvMcMlzaO2tvJyTjupraS3blo7ISsO9tby9ndR1Oz8nbk5SZm5n3glvNvOOZ5sJl0De7qVl5kfr+Wcw4+u5J3Dj63kLI5cS5z4ahf1uy7DYnrWW23sOK6XOH+ylXQM3+iv1SrHh05/pVbthO2ktraT8m5WO5nzsd3Muf2tpLbqdxjIW4iY95YrWknrY7PmiLuJx8qihtcJNpPWWH27nfMZkG+28z6X8vVqzhzKsXbeGuK1Vt68dZZu4vNjtPq98wEAAAAAAAAAAAAAAAAAAAAAFpSCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJVrMaAvbn2dYf5jTU6+a0UxTFH/f/UU5DvU5OO0VRbH37/01pp7V6NKed9qEiy+rad1PaaR8+XGQ5t/LXUtr5g+KnKe38aeezIsu/+iv/cko7rVaR5h98ndOf3jmWcxy48eM/X2T5nZ/9Wko7z7fzas69VuTs7+3es5R2HnX+YZFlZeX1lHaOr/1OkWV94z9LaefZVs7x5O3jf72o23Pb6OSc48LKobdT2umt5Z3D31z5rbS2WF79n+Qc39qdnGP3oK0jSfm7k3eO63+dkwe3Hx9Laafz5EhKO4O2nua0tfU8L8dvb+VMoWxvr6S000lqJ2x11lLa6XQSt2kraT91c95z3V7igKDBev2c/dTv5u3vrPdKVl8Kz573UtrZTho39ZNet9BL2k+9Xt7+brX6Ke2sHNpOaWfQ1pGc/G1yf8k9zsmC7a28vl2s5hzfisTzQLGRcx7oP8vJS72neXO620ltbSdm5m5WZs5qJzOfbmZl5px2wtZWUr9MyrqZmaK9knM8abeTjkuJ0vJSYj7Neu2yclfY7qzWq3/XrysVrXa/dm21srJAxArDcJK0nuTkgfZm4oEg6xCeuEmtraSNep5z/O4/z8tMvaS2ekl5MDM3d7PmhhLnPnvdlVplgdBJ2t91zExZuTlzm5qcm+v2uoVe4tqapmbU9mreGstW0mu3krmf0lpimf20+0ZKO6+1N4ssK0XO+6Sb+C7Z6OXMo37VzVkP86Sbtz7j6XbOXPOz7bzMvLmdNEecdM0xdW4oqa3Wdl7/biWdLrNiZeJUc94YPPH8naWVNZar4XqYfuL+7iW957LOck8Sx18rSddAVrMOAkVRrLWSru8kZYHQTTsQsOy+6edkppXEYFHH3Nzp5+S4jX5Otnzay1ujkdXWRi8xN3eTcnM/b21F3fQz5wcz1zNlqOFcXOb8YJZu2prWvNe/m5QJu6mDp3pl1EPt14osR1dy1usebud97m4lKTf3ErPuVoPPBXVhZAIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQZDWrIWB/VlaOprTTPvZOkaWVVdupvZLTTlEUR47951La2dz4pyntHDryG0WWldaRlHaOtd8usvzKkW5KOz84/J2Udv65E//5IsvZ43+Y0s4/enK8yPLm4Zw+8JNvc9r5T79+XmR5vJGzn5508o4nrycd4v786n8ppZ3fe/7vF1m++8bvprTz02/vF1l6209T2mm1D6W08xv930ppZ9DW4Zy2Hh7+vSLLs+0/Tmnn+eaXRZrDeU2xvLb+LCdTrD5bK7K0DuXkpUy9ZznHys7XOWOUraRsEjrPc57b9mZeH+hu50yh9LrtWrUTOknZa2Mzb5ppM2mber1WUTftVr+om27Sfupv5bxuW9t5/ft50jZtd1u16wNZ75PnG3nHymfPcs4FG8/zzim9Xk5/Wl3bTmln0NbhTko7x1JaYVH11pPmmTdz+uPAalJm7ucdc/sbSRnuac5gt5vUTthOyszdrbwM1+2s1urY3U/sS1n6ifm0bs9vZbWX11Y7p61WYvbO2t+dzlqt3idhO+m9203cptWVnHPK5kbS3MlWXmbeTppfyDwGtLLecyt5x4GinfP+zbvaxML6Oid/tQ7njQmLlaTzU2YW6CTlr6Q5+ay579BNmvfIaif0kuZ0+lm5OTGjZuWvdtK5KTOn9pPeuu2kc9wv2sp5bu3Ec3hWTq1bO6G7nfTeTTx+rx3q1Cqj9hLn9jOPTWmyNilxrLpSx/3EwvlJJ2e93xsreWsQ20Xi+DLJs17O2OLrbs7VnUfbeVeJHndyrjc87eTNf29167VeIHUuNqupxFxZtJP2U1G/4W4/aQzeT7yNdivr/J11qEw85LYS11Vk6a+1a5V1n9dwH2VuUdZ6mHYrcZya+gxZZo+TctyhVrd2ubmX9ZnCyHH9pLWo/Zz52CfdnKwbvu3mrGf7ZjtvXdzzbs5+2k6aQ8tcG7uSNGfZTlz/n3V2ypprbmVdb4r9lDSPntkHsvbTdtY1mcz1bFl9IHFc2Fnr1mo9eqZD7ZzntpZ4Ds/STRysbq1YXTFriVMLAAAAAAAAAAAAAAAAAAAAAADLTUEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAD/f/b+/UmvO78PO7/PrS8AiW4Ao9vYsojGMC7LTkIAxCiK7WyJaIpMKru1HgJDbmVTtVUzaGi4W5vaHwiK/ANMgjP8YfcHiwCHlU05WxIJDJnarUo0BAgmshQ7FgCStiVfhg2C0ljSSCK6ce3bc9k6zxgweJNI4g30QffrVfVUA0305/k+5znP93zO95x+EwAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIKSdKgR8Nt2VuUidQX+hpFxe+fNMod5Kpk5Vqn81U6iRya3a2PpySZkoPxGps1wWS8p7C4NMoYXMYWVxZVNJ+c65+UidS73fKymjzS2ROmONuyN1FgeXSsrrC5nP7ubmz5WUL5efitSZKx9E6vyVu//LkjLV+JlInX337Cspv/NnY5E6v9//7UidL4/k8gu3jGWOc//2UuazW+m2NkfqLCyHeoFSytXL/yxWi/Xryh9n9u2RS+MlpRWaAxqtfkkZdDNz3MqVzNzdXepE6gxrrbQidQaDRklpNDI9c2ekG6kzNrZcUpZXMu/dSjfzvlWamc1U2qHPXLOZ25f6/Uytfm46ib13vV6kTFkKzW+VhV6mVi902lzpl8w+cCW0neYXcp/dDRdHI3W2XM7UqXR7mdfXbndzfUU782HZGqnCnao7tzFSp7WY6ykaI6EDQdBgJXQcuJqZl7oLIyWlt5zp4frBHi6l1crsSyPBnnlDL3NNptHMNRXNxX6tzpsGoT43KXlO2F3JXP/o90Pn8qHz5sri0mjtxpQ6Bx+9mlnzWLiaW2NaWhqp3fyd2t6NZr9++0CkCneyfug8tTGSu72q0Qku6tSsbx4shnrUhdxacz81puBxLtU3pebKdmjNujK6IXQfS+i1VVZC1y5SfVyyR01JjqkXW2vO1FlZzs3fy8sjtdpGyXXGsYXM8XJ5Mbju0a3frc2p67yp+Xso9Pmt3+oQt9OPQvdqXu3n5oBOIzO/9ULX5Cor/cy8dKGXWWOYX9lQUi6vZI4DS73c3N0L9V6N0C7QaufO47pjof072Fb2V0LnKMlBpQQPuymhKS62vRu5U8LSWk7tSyVm0MqMqTeWqdMNbaPK1Rpel2mH1oibwZ65P8jdg8T6Nt/L9F9jzdzv3bVCB7po3zzI9IRX+pke9XIvc62wcqGb6eWvdHNXr5b79TqjbwWvFW4YCd23X3K6o6F7kHprea05Vyu1Jt8P3WebupY2lKoV3N690PXLlfHMcaAbev+TPWq7Wb97I/ud3HZaGdTrmLIWOTMBAAAAAAAAAAAAAAAAAAAAAAgR6PIJvvvd75Y333xztYcBAAAAAAAAAAAAAAAAAAAAANxhBLp8gmeffbbs2bOntFqt8thjj5V33nlntYcEAAAAAAAAAAAAAAAAAAAAANwBBLp8gnfffbecOnWqfPOb3yyvv/562blzZ/nqV78q2AUAAAAAAAAAAAAAAAAAAAAA+AsJdPkUVYjL4cOHy/nz58v3v//90uv1ht97/PHHV3toAAAAAAAAAAAAAAAAAAAAAEBNCXT5DKanp8vp06fLyy+/XH7jN36jfPWrX13tIQEAAAAAAAAAAAAAAAAAAAAANdQua9DJkyfLmTNnyuzsbDl79myZnJwsu3fvLjt37iz3339/2bRp0xequ3fv3mG4y65du8rDDz9cfvM3fzM+dgAAAAAAAAAAAAAAAAAAAADgzrWmAl3efvvtsn///mGYy0cdO3bs+p+rYJcqmOXBBx8sDzzwwOd6jioc5vjx4+UrX/lKee2118rf+3t/LzJ2AAAAAAAAAAAAAAAAAAAAAODO1yxrxFtvvVV27do1DHMZDAYf++/V9649Tp8+XZ577rlhoEur1SqPPvpoefXVVz/zc01NTQ2DY1544YXwqwAAAAAAAAAAAAAAAAAAAAAA7mRrJtBl37591wNbPhrgcu17jUbj+uPG/3bs2LHhz3+ecJdf/uVfLqdOnbrlrwsAAAAAAAAAAAAAAAAAAAAAuHO0yxrw7W9/u5w9e3b45+np6WE4y5YtW8rk5GSZn58f/rff/d3fLSdOnBj+/Zoq2OWaa6EvVbhL9agcOHCg7N27tzzwwAMfe85rzwcAAAAAAAAAAAAAAAAAAAAAsKYCXV5++eVhOMvx48c/MXzlRu+9994w2KX6tzcGvHxSuMvhw4eHj8rOnTvL1NTU8FGFuVShL1V4DAAAAAAAAAAAAAAAAAAAAADAmgp0qQJW9u7d+5eGuVS2bdtW9u/fP3xU3nrrrWEgTBXQUtW5MdzlWrBL5fTp0+XMmTMfqnXgwIHwKwEAAAAAAAAAAAAAAAAAAAAA7mTNsgbMz8+XBx988Av97I4dO8qzzz5b3n333WFoyxNPPFEmJiauh7lU4S7XHpXq+9VjZmamfO1rX4u+DgAAAAAAAAAAAAAAAAAAAADgzrYmAl0mJycjdapwl0OHDpXz588Pw132799/Pdzl2mNqaqocPXq0/Nqv/VrkOQEAAAAAAAAAAAAAAAAAAACAtaNd1oAqZGV2djZaswp3OXz48PBx4cKFYcjLtm3bos8BAAAAAAAAAAAAAAAAAAAAAKwtzbIG3H///eXEiRO3rP7ExIQwFwAAAAAAAAAAAAAAAAAAAABgfQS6zMzMlDNnzpT3339/tYcCAAAAAAAAAAAAAAAAAAAAAKxj7VIDDz30UJmcnCy7d+8ue/fuLffcc8/n+vmdO3cOf2bfvn3ln/7Tf3rLxgkJIyM/E6kzKL2S0mqMReo0xnIZUSv9C5E6jeZopM784j8rKV/76f8iUmek1Skpv3c+czj43d4/idQ5f/XekvLB5d+K1GmN/GRJubT0byN1umPbI3W2NqdKyo9670Tq/HTzp0rKSCi/7mI/875taX6+Pucv8lc3LEfq/OxdSyXlP2sOInXm//Q/jtQ5ufiPS8p9K387UudCLxdCuLz4h5E6g/5ipA6kXPzR5kidsatXS8rIhsxc2RrplrrpLmb6yn6vVeqm0cgclyqd0ZVInQ0bF0rdtNqZ88t2a2NJ6bQz53LdXqYXXFnJ7d9LoVoL3dyYFlcakTor/Uyd5VCdSjc0DWRmgB9LHQmWSubF9XrBuTL0mbv0wYZSN6OjmfOvSqvVj9Vi/Vqeyxx326FesNII9bqN0NrCUKhUb3EkUqcf7CkGoeNlcns3Q31lZzw356a0WpnXNjKS6yqWljLnqSvLmXmgG9y/V1YyY1peynx2k+cEvdC589Jy7jL/UmgfSI6pnzonuJy5Btpp5/rTyYXRWh0HKq1Ot1Z1ksenuyJVuJP1LmQ+v82xYH/SGtSujxuEzucHy5njXH8peEwJraENBrl5N/Xepa435Dqm3DlBO3gtZWUp0+v0Qv1gN9Tr/rhWq1bnBMNaode3Euotk+cEi6G1gaXl5KcuY+TyeKTOwtVMneS5U6PZr90c1wyOKaV+eyW304+WNkXqXA5d362MNmt4X0U/0zMv9DOfuCvd3Cd3uR/q45M9c+hej05oXbdklpiGmqHrhN1O7njSXwmdE4bqlF5wXwrdC9EM1ak0uqkxRcqU5nJwnTG0fNKs32Wi0lrIbKfWYu5aynLosxJ6aUPnQ3Ncq4Y9M1zoZe7RWBzkrhe3Suaz0gv9vk1lqZ9ZG1ocZNaGLvdyjdzlXuacZ6kfXP8O9eDNUP892sqdy6XGNJI6JxgeezPH8eXQdYuV4H373dCYet3cfDII9Tqx85Sl3GtrLmZqtYK9/KAR2gc2ZupcCbaDH4R6y04zN590Gv1azZXcHrlZ5CYcP368HDt2rDz55JNl+/btZevWreXRRx8t3/3ud8u5c+c+U43Dhw+XU6dOlddee+2WjxcAAAAAAAAAAAAAAAAAAAAAoLaBLlNTU2UwGFx/zM3NDQNeDhw48KGAl1dffbVcvHjxE2tMT0+XJ554ouzdu7e8+eabt/01AAAAAAAAAAAAAAAAAAAAAADUItBlcnJy+LXRaFx/VD4a8LJv376yefPmcu+995ZvfetbHwt4OXToUHnggQeG4S5CXQAAAAAAAAAAAAAAAAAAAACAdRnoMjU1df3P10JcqsenBbzMzs6WI0eOfCjg5amnnhqGuHzve98r+/fvH4a6PP/886v4qgAAAAAAAAAAAAAAAAAAAACA9aYWgS5btmy5/ufDhw8PHzMzM2Xbtm2fGvBy4/ergJfnnntuGOJSBbycPn16+P2DBw+Wr371q+Wdd95Z1dcHAAAAAAAAAAAAAAAAAAAAAKwP7VIDk5OTw69TU1Nl//79wz9f+3rhwoVy4sSJcvz48eHXs2fPXv+5KtjlmirA5ZozZ85cD305depU2blzZ9m3b1/5+te/Pgx92bRp0218dQAAAAAAAAAAAAAAAAAAAADAelGLQJft27dfD3T5qImJifLII48MH58n4OXa36tQl+px9OjR4aNSBbxUwS67d+8W8AIAAAAAAAAAAAAAAAAAAAAArK1Aly1btgy/Tk5O/qX/9vMGvNwY8lIFu1ROnz5dzpw5c/37VZBMFezy4IMPDsNe7rnnnujrAwAAAAAAAAAAAAAAAAAAAADWh1oEulRhKteCVT6vzxvw8tFwl8rs7Ozw3x05cuR6sMy1gJfqq4AXAAAAAAAAAAAAAAAAAAAAAOCOCXSpQln6/X6s1s0GvMzNzZVjx44NH9cCXu6///7rAS/33XdfZKwAAAAAAAAAAAAAAAAAAAAAwNpSi0CXW+mLBrzcGPJSBbxU/7Z6XLNv377yG7/xG7ftdQAAAAAAAAAAAAAAAAAAAAAA9bfmA10+T8DLqVOnypkzZz70728MebkW8FI5evRomZ+fL7/5m795G0cPAAAAAAAAAAAAAAAAAAAAANTZugt0+SwBL1WwSxXwUgW9fFrASxXuUv0bAAAAAAAAAAAAAAAAAAAAAIBr1n2gyycFvOzZs2f4+MsCXq79GwAAAAAAAAAAAAAAAAAAAACAikCXzxnwUnnjjTeGXwW6AAAAAAAAAAAAAAAAAAAAAAA3EujyBQhyAQAAAAAAAAAAAAAAAAAAAAA+SfMTvwsAAAAAAAAAAAAAAAAAAAAAwOfW/vw/AtyMqdbuSJ2faY6VlH/efy9S5/zKvyop3cUfRuqMjN8TqTMY9EvK1vGVSJ2RZm5MfzCYi9RpNzZE6rx/6X8oKYPeQqROv5v5nFQaoTy1hTIbqXNhPPO+VdrNuyN1fjD4FyXlpxpTkTp3NX86UmehXCopP7z6k5E6v3nuT0vKzubfiNT5hQ2ZufLSyi+WlP9tJfOZG21uKSn9kaVInbs720rK3OXfidVi/brwZ5OROitLnZIydlempxgZz3xuK812ph8c9DK9yaDfKHWT2kaVTlmO1Gm2epE6ndHMeCpj44u1qlO5cmljpM7Vq5lz50tXcufgC8uZ5bjFbi6neaGX+fz2BmXNSr60xVC1+UY3UudqIzMvVUYHof2ynzuGb7yY+fzefX6ipHQ6mfMd1relC5n1nF7ouFRpj2X27UaoX0oa9FqROv1upk60/27kjnKtdua9a4TG1Grlzgfao6F1/bFcH99ZGI3UWV7M1FkI9d6VbjczN3VD57uVxaXMdlpZycwDveA5eK8fWhcINs0LS5ntdHW5VbvzgaXQPtBpZ84HKqOhuakzkhtTo37LTNyhupcz83czNJ8Ma430atfHlUHmQ9cPbad+8Dwl2YOnNGN9ambebQbvPUm9tlYnd17YCh0zu6FrTqnznUq/l+nB+6F+sLIc2k7LSyOROiuhc4tkrdQ5QWV5JTOmS4PMvrSwmHnfkpJrse1Qv9sKXr9M9QO5O8e4E32wlNkDFnq5azvjrfpdR+mHeualfmbuvtrNzbkr/fr1zK1Qj9rsDGrXM6deWze0Hl9ZaYXWY1uhtbjQ2uBQ6F6IElyPbYamuOZyo1bjqYRuYYiOqdkNnYNlbh0svdD7Vhk0MudyyyO586arI5m1uLngvAspF3rjkTqjg/r9Km8/db9X1VcMMsfxxdC9Y5d7mXmpcqU7Wqtzi0oztC7QboT679agdq8tVSdZK7lGnDII7Ze94H3Nqd9vKCuZOo1QnUpzJdTLL+Xmk9RtxM3QPrDczK0zXe5k5u8LI7kTlbHQ2le7Wb/7LPl0uVkEAAAAAAAAAAAAAAAAAAAAAGCdE+gCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAADAnRzo8p3vfKfs3r27PP300+XcuXOrMQQAAAAAAAAAAAAAAAAAAAAAgLUR6PLCCy+U06dPl0OHDpXt27cPw12ef/75cvHixdUYDgAAAAAAAAAAAAAAAAAAAADAnRvo8sorr5Q9e/aUwWAwfFThLgcPHiybN28uDz/8cHnttddWY1gAAAAAAAAAAAAAAAAAAAAAAHdeoMvOnTvL8ePHy9zcXHnhhReGf78W7lJ9f+/evaXVapXHHnusnDx5cjWGCAAAAAAAAAAAAAAAAAAAAABwZwS6XDMxMVFmZmbKqVOnyuzsbHniiSfKtm3broe7HD16tDz44INl69at5fHHHy9vv/32ag4XAAAAAAAAAAAAAAAAAAAAAKC+gS43qoJcDh06VN59991y+vTpsn///mHgSxXsMjc3Vw4fPlx27dpV7r333vL000+Xc+fOrfaQAQAAAAAAAAAAAAAAAAAAAADqGehyox07dgwDXM6fP1+OHz9eHnnkkWGwS/WYnZ0dBr9s37697N69u7z00kvl4sWLqz1kAAAAAAAAAAAAAAAAAAAAAIB6BrrcaM+ePeXo0aOl3++XV155pUxPT18Pdzl9+nSZmZkpmzdvLg8//HB57bXXVnu4AAAAAAAAAAAAAAAAAAAAAMA6VvtAlxvt3bu3vP7662Vubq48++yzZefOndfDXY4fPz78761Wqzz22GPl5MmTqz1cAAAAAAAAAAAAAAAAAAAAAGCduaMCXa6ZmJgoBw8eLKdOnSqzs7PliSeeKNu2bbse7nL06NHy4IMPlq1bt5bHH3+8vP3226s9ZAAAAAAAAAAAAAAAAAAAAABgHbgjA11uVAW5HDp0qLz77rvl9OnTZf/+/cPAlyrYZW5urhw+fLjs2rWr3HvvveXpp58u586dW+0hAwAAAAAAAAAAAAAAAAAAAABr1B0f6HKjHTt2DANczp8/X44fP14eeeSRYbBL9ZidnR0Gv2zfvr3s3r27vPTSS+XixYurPWQAAAAAAAAAAAAAAAAAAAAAYA1ZU4EuN9qzZ085evRo6ff75YUXXijT09PXw11Onz5dZmZmyubNm8vDDz9cXnvttdUeLgAAAAAAAAAAAAAAAAAAAACwBqzZQJcbVeEtr7/+epmbmyvPPvts2blz5/Vwl+PHj5e9e/eWVqtVHnvssXLy5MnVHi4AAAAAAAAAAAAAAAAAAAAAcIdql3VkYmKiHDx4cPh47733ygsvvFBefPHFMj8/P/zvR48eHT4mJyfLo48+OgyCue+++1Z72Kwx5/pvR+r8waBTUha7fxqp0+9eKikj4/dE6nRX5iJ1Hr57X0mZGDkfqfN7H9xdUn7UPxOps7TyJ5E6rZGtJaW78MNInU0Tf7ukXLrwjyN12p0vReos9v68pPxC54FInT8YfFBS3l34/0Xq/LXxX47U+VHv90vK282LkTqXr2SOTZV37hqJ1Pnpqz8bqfPN7bl96YHBRKTOb76/vaT8dj9z7P25wVRJudDJ7eOsXxfmMn1Ov9+I1BnW6rUydbqZOpXO2HKkTqM5iNQpg9z2To2pWXqROsNarUytdlmJ1BkdXyopYxsWI3VGQvtkpd3OvXcJVxdGY7W63cxnZaGX+8xdCU0DKWPBWu3QZuoHt1G/ZIotN/qROouN4FxZMhu8F9zeK6HPyuWruXlg/OJdsVqsX4uXNkTqjPRzuf+DXqZWs9MtdesrU68teT6Q6r8bjdyk2wj1cM1QnUEneIzrZPaBVjtz/K40WvVq4rrB/btxNdMRLi/nrqVdXcise/ZCvUkr+P63mpn9chCc4lKvL9VXLgXXmK4stGt3nroQ+syNXR4vdVuHgZUrmc9KO9QPVgbd0P6dWtethOa5fjfUN6/kbmcbBNfQYlLr383QvtRK9qiZWo3gPpA850noha43VZrLoT4ueH2n2828d8uhfWAQ7OOaoX2pGeq/k1ZWMvP31ZLrUTeE1mMXruZ61PGFzPW0pSu562n6ZhIurWTOCfuDXM+83G/Vau6udENr6cv9zDFuKXTMrawE+5OUVuq9C9VJrZ9VVlLnA436vW8p3WAPN1gJXUsJnlY0Q/eMNDO3H0VfW+h2gehacwlddkxt7xK6X6TSWgztSwu5z1xvLHN8WuhkrslU2sF1D9a3q73QtcJg35yyEpx4l0L97kJoey/0cteLU7W6NdwH2qG15n5wnbGENlN0TK16jWkQvM+6Fzrnjf1OwnDdOlOnEbpOFLpd98dSmyl5z1dov2wuh+6JuZqbK1fGM/P3pbHc+vdYO3OiMtbK3WfZie7kfJL6dQC3ybZt28qhQ4fK+fPny+nTp8v+/fuHgS+DwaDMzc2Vw4cPl127dpV77723PP/88+XcuXOrPWQAAAAAAAAAAAAAAAAAAAAAoObWbaDLjXbs2DEMcKnCXY4ePVr27t07DHapHrOzs+XgwYNl+/btZffu3eWll14qFy9eXO0hAwAAAAAAAAAAAAAAAAAAAAA1JNDlIx555JHyyiuvlLm5ufLCCy+UnTt3Xg93OXPmTJmZmSmbN28uDz/8cHnttddWe7gAAAAAAAAAAAAAAAAAAAAAQI0IdPkUExMTw/CWU6dODcNdnn322bJt27br4S7Hjx8ve/fuLa1Wqzz22GPl5MmTqz1kAAAAAAAAAAAAAAAAAAAAAGCVCXT5jOEuBw8eLO+++26ZnZ0tTzzxxPB718Jdjh49Wh588MGydevW8vjjj5e33357tYcMAAAAAAAAAAAAAAAAAAAAAKwCgS6f07Zt28qhQ4fK+fPny/Hjx8v+/fuvB7vMzc2Vw4cPl127dpV77723PP/88+XcuXOrPWQAAAAAAAAAAAAAAAAAAAAA4DYR6HIT9uzZMwxw6ff75ZVXXinT09PXw11mZ2fLwYMHy/bt28vu3bvLSy+9VC5evLjaQwYAAAAAAAAAAAAAAAAAAAAAbiGBLiF79+4tr7/+epmbmysvvPBC2blz5/VwlzNnzpSZmZmyefPm8vDDD5fXXntttYcLAAAAAAAAAAAAAAAAAAAAANwCAl3CJiYmhuEtp06dKrOzs+XZZ58t27Ztux7ucvz48WH4y5e+9KVy8eLF1R4uAAAAAAAAAAAAAAAAAAAAABAk0OUWqoJcDh48WN59991y+vTp8sQTTwwDX6pgl/Pnzw9DXwAAAAAAAAAAAAAAAAAAAACAtaO92gNYL3bs2DF8HDp0qLzxxhvD7z3wwAOrPSwAAAAAAAAAAAAAAAAAAAAAIEigyyrYs2fPag8BAAAAAAAAAAAAAAAAAAAAALgFmreiKAAAAAAAAAAAAAAAAAAAAADAeiTQBQAAAAAAAAAAAAAAAAAAAAAgRKALAAAAAAAAAAAAAAAAAAAAAECIQBcAAAAAAAAAAAAAAAAAAAAAgJA1Hehy7ty5cvLkyeHXz+t73/teuffee8vjjz9e3n///VsyPgAAAAAAAAAAAAAAAAAAAABgbWmXNei73/1uOXToUDl79uz17x04cKD8g3/wDz5zjenp6fK1r32tvPjii+Xw4cNl3759wz/ffffdt2jUrBd/vXF/pM75xoWS8sehWn9l/KslZWKwKVLnD9vvRupMjK6UlD9bGInUaTYGJaURyvcaDPqROmXQLXVzZfEHsVqN9nikTrM5GqnT6y+UlG5ot7xvZDJTqJSyWP52pM4vbsjMS//L1amS8kH39zOFGrmMv15ZLnVytZt7bXe1M3PcL/7MXEn58z/8hUidezfmjik/N/a/j9Vi/Vq4mjlWtju9SJ1krXYn11c225kxNZuZOWCQm0piGqHXltxOqfetETwfaI90a7e9+71WpM7iQqZn7gTnk5TQ2dfQSsm8d53SiNRpZ8oMjbUyr60V3OAL/dB2GmR63dFg5vdYaExjoX2p0mpk3rxu8NxicTEzN7G+rSx1atWbDGs1M5+3wSA3B6R6pkE/Mwf0e7nXltxOKbEeNVSnEdonf1yrWbs+PnUO1lvJ9N7txdx80mqFzneD27tfs89cK9igtkKfldR5c6Xby3zmNnQydTrB+XtsNLW9S0wvdA6+vJzpTyojoV4HeqH9shFaX6irVG/Z72bmk36oP6kMQseUpEboOB4732nkjnPJfiAmtH+3u5ketdfJ3Q/TTPXNyXOn0H4Zu3YVbOMbzfrdyzRYw+cpqWtO/dCaTqUbOj71VnK3bXeX1+Qt4NxmCyuhtebQ9cZKP3idKKUbmk+WepnP7UroXL7Sq9nxpJIaUXJ9MCbUwyWl1j77ofsre91cTzFohe6PD64LxM7BQmWSn5JBHVuT0P6dmioHuek7phG6h2Wo26hV711ZCvbfrG9L/bW7L13tZ37HrbLQy5xfXOlm7q1aDPXflW6/fpN4u1mv3jLZfzdDN0S0g2ufg9A149T1+VbwXK4dOk9pt4Nrce3QNadUL98M3vPVHtRu/WRQx/PnlNBndyXYVy5127U7zq3lXqcu6nfV+iY99NBDZWZmpszOzpbBYHD9UYWynDx58jPXmZiYGIbCnD9/vrz88svl9ddfL5OTk+XNN9+8peMHAAAAAAAAAAAAAAAAAAAAAO5cayrQ5etf/3o5ceLEMLyl0mg0ho9rzp49+4Xq7t27dxjs8sADD5Tp6WmhLgAAAAAAAAAAAAAAAAAAAADA2g50eeutt8qxY8eGYS779+8vO3bs+Ni/uf/++2/qOY4fPz4MdakCXi5dunRTtQAAAAAAAAAAAAAAAAAAAACAtWfNBLo8+eSTZdeuXeWb3/zm8O9Hjx4tmzZtKoPBYPj3gwcPlvvuu++mn6cKddm8eXPZt2/fTdcCAAAAAAAAAAAAAAAAAAAAANaWdlkD3nrrrfLGG28Mw1aumZqaKnNzc+W9994rW7ZsKRMTE7Hnq8JhvvWtb5Vz586Ve+65J1YXAAAAAAAAAAAAAAAAAAAAALizNcsacPjw4eHXBx544GP/bdu2bdEwl8rMzMyw5pEjR6J1+WJOnDhR9u3bV3bt2lU2b95cGo1G2b59e3nwwQfLc889V+bn51d7iAAAAAAAAAAAAAAAAAAAAACsE2si0OXUqVNlenr6tj7n/fffX06fPn1bn5MPq8JargW3VKEuU1NT5amnnhoG/Ozdu7ecP3++PPnkk8OQl+rfnD17drWHDAAAAAAAAAAAAAAAAAAAAMAa1y5rQBXUsXv37tv6nDt37izf+973butz8u/f7xsDWg4ePDgMcpmcnPzYv62CXg4cODD8WoW/HDp0aPjvAQAAAAAAAAAAAAAAAAAAAOBWaJY1YH5+fhjWcTtt3br1eqAIt8+ZM2fKrl27rm/7o0ePDkNaPinMpTI9PV1mZ2eHXytPPvnkMOAFAAAAAAAAAAAAAAAAAAAAAG6FNRHoUoV5fPDBB7f1OauQkE8LEeHWBffs2bNn+LVy+PDhsnfv3s/0s8ePHy9TU1PDPx85cqQ899xzt3SsAAAAAAAAAAAAAAAAAAAAAKxPayLQpQrqOHHixG19zldeeeV6QAi3x759+66HuezcubPMzMx8rp+vAmCuefLJJ8vZs2fjYwQAAAAAAAAAAAAAAAAAAABgfVsTgS7btm0rZ86cKZcuXbotz/fGG28Mg0UEutw+VWDPjaE9Tz311OeuMT09PQyCuTEgBgAAAAAAAAAAAAAAAAAAAACS1kSgy6OPPloGg0HZv3//bXm+AwcOlEajMXxebo8nn3zy+p8nJyfL3r17v1CdG9+zKgSoegAAAAAAAAAAAAAAAAAAAABAypoIdLkW7nH06NHy0ksv3dLnqgJBzp49O/zz1772tVv6XHxy8Mr09PQXrvXRIJjDhw/f1NgAAAAAAAAAAAAAAAAAAAAAYM0FulT2799fBoNBmZmZuSWhLhcvXhyGuVShMY1GY/g83B4fDV3ZvXv3F641NTX1ob8fOXLkC9cCAAAAAAAAAAAAAAAAAAAAgDUb6PLcc8+VycnJ4Z+rsJWHH364vP/++5Har776atm2bVs5duzY8O/V8xw6dChSm7/cK6+88qG/79y586bqfTTU5dr7CgAAAAAAAAAAAAAAAAAAAAA3a80EukxMTJRnn322DAaD4d+PHz8+DO6ogl1OnjxZLl68+LnqnTt3rnznO98p9957b9m3b1+Zm5sb1m40GuXFF18smzZtukWvhBudPXu2zM/P/4WBLJ/XRwNhqn0FAAAAAAAAAAAAAAAAAAAAABLaZQ2ZmZkps7Oz5dvf/vYweKUKYKnCOq4FdlRBIFWYR/V169atZXJy8vrPVqEh1c9WASKnTp26HiJyLSDmWr2DBw+Wr33ta6v0CtefEydOfOx7NxvosmXLlr/0OW6lP2+cj9T5m+2fKCk/XPp8gUef5o/LOyXlTxqZvKnJ1s3tL9e8c6VfUv75ldFInX+98mZJGQy6pU4azbFgrZFInUHplZhW5vUtL74fqdNojpeUf7L830XqdLo/W1Iemfg7kTqtRmYe+InBT5aUfjuzX37QXy4p9zX/RqTOA381c7z80uhKSfmHP/jpSJ1zgz8tKXOhY+/slU5J6ZfcNmf96vczveBg0Chr2aCfeX2DxqB223vQC+XPhl7bUDNTqxEaU6OZO0dpdjJjao/mcoNHx5cidcY3LGbqjGfqVDaOZ/rv8aVWSen2Mp/f1CwwEvq8VTqt0Gcu9upKGQvN33cPMvtAJ/jaNg4y80DuLLWadzN1/t0ycUS3u2Zy1uGW9IOpPjd6blGzOpV+6vgdPG1qhtaqcj1zcPIumf672c5t8GYrM6b2SOb6QGc0t8Y4OpaptXHjQknphT6/KyuZHq4V6nMrzdD5ZWrOTfZeqWNTPzidbBzPrJ+OjuQ+c61WveZvqKXg7h1bRw2ux/ZD56m9pcz1pl7oeJncTo1Q71Vp1m2tuYbzd7KXT62lp853WqE6lU6olx8J9vJjobX01H4Z7VFD6xWpOeDHtTL7d6eT2S/bob6yMh66TtTprNRuewN/uX7sfD7XMy/1Mr9ysdjN1FkO1Umue7Si13iD9+sGNIM9c2q/TI6pleqZU3WCa5/9dqivHMmNqTcaqhWa4hqh603DWqF2KXipsIRuYSiD0LTbD/4GX2+sXp+TIbdCwG3VC33okn3zQi+zRnxxJTPJLXRzvyOR0mnmet1m6OCb7C25fZK/JdEMFUuufbbaofsYOv3a3T/aD92slep1K41WvX7vpj8WvE4U6ndbyWuF5t11aU0FulQOHTo0DGN58cUXhyEsN4ayXAts+ctc+/eVG2s8+eST5ZlnnrllY+fjroXxJN0Y5FP5LPsEAAAAAAAAAAAAAAAAAAAAAKzb/MvDhw+XV155ZRjCUj2qUJZrj2vf+4sen/Tvjx49KsxlFXw0bOWjYSxfxNatWz/2vTNnztx0XQAAAAAAAAAAAAAAAAAAAABYk4Eulb1795Z33323PPLII9dDWSo3hrV82qNy7WeqOrOzs8M6rH6gy5YtW2665ieFwnz0eQAAAAAAAAAAAAAAAAAAAADgi1izgS6VqampcvTo0WEgy/79+8vExMT1oJa/6FH9u5mZmeHPvfLKK2Xbtm2r/VLWrfn5+dvyPAJdAAAAAAAAAAAAAAAAAAAAAEhol3WgCmQ5fPjw8PHee++VEydODMNaqrCQ8+fPly1btpTJycmyffv2Mj09LcClxmEu1ft0s6r3+6M++OCDm64LAAAAAAAAAAAAAAAAAAAAAOsi0OVGVVjL/v37V3sYfAZV2M7tcvbs2dv2XAAAAAAAAAAAAAAAAAAAAACsXc3VHgB8mvn5+dUeAgAAAAAAAAAAAAAAAAAAAAB8Lu3P98/h9jl//vyaDI+Z+6PjZf6PT3yhn538memy+csPxscEAAB18v/50ffLr//p61/oZ/9PP/nL5b/6qYfiYwIAgDr5f759uvy/3jnzhX72//4f7yz/zX274mMCAIC6OfSPfr98+3f+5Rf62Sf+9t8oT/7dn4+PCQAA6uQP/+Fvlx/+9//rF/rZv/p//k/Lz/7Xfyc+JgAAqJt//MK/KP/bkd//Qj/7CzM/X37xV/5WfEwAANw5mqs9ALjdJicnV3sIAAAAAAAAAAAAAAAAAAAAAKxRAl0AAAAAAAAAAAAAAAAAAAAAAEIEurDuzM/Pr/YQAAAAAAAAAAAAAAAAAAAAAFij2mWdefvtt8uJEyfKBx98UM6ePTsM95icnCxTU1Nl69atZXp6utx3332rPUxKKVu2bFntIQAAAAAAAAAAAAAAAAAAAADA59JeLyEuzzzzTDl27Nhn+vdVwMujjz5aDh48WO65555bPj7Wl81ffnD4AAAAPtl/9VMPDR8AAMAn+2/u2zV8AAAAn+7Jv/vzwwcAAPDJfva//jvDBwAA8Ol+8Vf+1vABAABfRLOs8SCXhx56qOzatWsY5jIYDD7TY25urhw+fLhs3769PP744+XixYur/VL4d+bn529J3SrEBwAAAAAAAAAAAAAAAAAAAABu1poNdPn2t789DHI5ceLE9aCWRqPxmR/XfqYKdpmamipvvvnmar+kdedWhaycP3/+Y9+r3mMAAAAAAAAAAAAAAAAAAAAAuFlrMtDloYceKr/6q7/6sSCXyrXv/UWPyo3BLlUAyPT0dHn++edX+ZWtL7czZGXr1q237bkAAAAAAAAAAAAAAAAAAAAAWLvaZY159NFHy/Hjx4d/vjHEpTI5OVnuv//+snPnzmGAR/X3LVu2DANb5ufnywcffFDOnDlTTpw4cb3ejTUOHjw4/JlvfOMbq/La1qNqe1fvzTXVe3Wzbqx34/MAAAAAAAAAAAAAAAAAAAAAwM1aU4EuTz31VDl69OiHQliqoI6ZmZlh0MuOHTs+c6233nqrvPDCC+XFF18c/r2qWdWrak1NTZVf+qVfumWvg3+vCty5MYDlk8JYPq8quOejqqAfAAAAAAAAAAAAAAAAAAAAALhZaybQ5b333iuHDh26HrxSBblUAS9PPPHEF6pXhb8cPnx4+HjyySfLt7/97eu1Dxw4UP7Nv/k38dfAx+3cubOcPXs2WvOTQmGqkJ7b5Q/mX4nU+fLk/7WkbB79DyN1/ndjP1dSBuXHwUw3a+/UH0fqDMrHg4C+qPsmfxip8/sXfr6k/LP5uyJ1/vt/GylT/nD5fy0x/y7k62YNVi6VlEZ7Y6TOYOVKpk5rOVJnWKu3FKmz3M0dZ39jKbNjbt34n0bqPLDxr5WUP7vaitT52ZHMa6vc96XMZ+XvfunPInU2j1wuKS83fjpSZ67/hyXl8uUzkTqtkZ8oKd2FzHGO9a3V6kXqtNvdktIK1Wq2+yWl0RxE6gwGoX6p1ywpvV7mGBc1yOyXKc12bjyNRmZfarVy+3dnNNOjbrhrIVJnYjF3PrC83InU6fczn93KyJXMmHqhMbVbmX2y0grt38HNXUZC56kbQ/P32CA3546H1nPGa7gPpI6XyXmX9a09shKp00r2FM1cLxAT+uz2u5m5sh/smVO1mq36naOk5slBDXfJOp4TtDqZ892Rsdw6c6qP7/dzn7nUZ2VpaSRSp9fNvbZUn9MNnst32pkxbRjP7JehFn5ow3jmOsp4qE6lM9Kt3VpcOzQmSB0vs+u6mVqD4HFuEFr4SPWo/W79bmfLbe2qAQvtA6ED1Fpfp0i9vtRnN7m23+5k1gZGg31FqrdMXW9YWc7NJ93Q3JQ6d660Q9dUR/qhfjB0flkZ37AYqTMW3L9TPWrqPPzHtep1/ZI7Uyc0l6TqVNqNzHGgG+zi+qFj3Epo/WQ5tGZdyR2ZcvtAp2a3jKTe/6RkH5+q1Qz1OdHrFp3Q+ddobh/opd66ZmaOa3Rz+1Iz1OY0msFr86H5pJ+5raYMgksevbHQ/TBjwc/cSOi+z2CfOxI8D2d9a6aOl8m1uNAF8eiYQpZDffNScK25FVof7DR7a3a/rGPfzG1eRw/OJ6nzgmaoP+knp+/UekXw4tUgtDowSK1/jwZ/J2EsdC0ldE2mMt7O1Bpr5daak8cnbsP15tVUhaxUqsCVKgSkCnj5omEuH1UFxbz77rvlnnvuGf59dna2PP/885Ha/MV27979mQJZPo/z589/LMylCgACAAAAAAAAAAAAAAAAAAAAgJu1JgJdqvCWEydOlEajUfbt21dOnTpVJiYmos9RhX6cPn267NixYxga8/f//t+P1ueTTU9Pf+x7Z8+evamaH/356r0FAAAAAAAAAAAAAAAAAAAAgIQ1Eehy7Nix4dedO3eWl19++ZY9z+TkZHnjjTeGYTHz8/Pl5MmTt+y5KNff04+qAnuSgS5VCBAAAAAAAAAAAAAAAAAAAAAAJKyJQJfjx4+XRqNRXnzxxVv+XFWoy9GjR8tgMBh+5dbbu3fvh/4+Ozv7hWtVQTzV40Zf//rXv3A9AAAAAAAAAAAAAAAAAAAAAFhzgS5nz54tO3fuLPfdd99teb7p6ekyNTVVTp06dVueb7176qmnPvT3EydOfOFaH/3ZKiymCukBAAAAAAAAAAAAAAAAAAAAgIQ1E+hy//3339bnfOSRR4bPy61XhfVUj2vOnDnzhWsdP378Q38/cODATY0NAAAAAAAAAAAAAAAAAAAAANZcoMvk5OTwcTt95StfKfPz87f1Odezp5566kN/P3LkyBeqc+PPVSEx09PTNz02AAAAAAAAAAAAAAAAAAAAAFhTgS5btmxZlXCVqamp2/6c69XevXuHASzXHDp06HPXeO655z7096NHj0bGBgAAAAAAAAAAAAAAAAAAAABrKtClCvo4ceLEbX3O2dlZgS63WRXAMjk5Ofzz2bNnPxbQ8hepAn+efPLJDwXCeP8AAAAAAAAAAAAAAAAAAAAASFsTgS5f//rXhwEf77///m17zmPHjg2DZD6rt99+u5w8efKWjmmtqwJY3njjjet/rwJaqvfhs4S57Nmz50NhLgcPHrxl4wQAAAAAAAAAAAAAAAAAAABg/VoTgS579+4tExMTw4CP2+F73/teee+998pTTz31mX/mgQceKL/8y798S8e1HlQhOqdPnx6Gu1T27dtXnnvuuU/992fOnCm7du0afq0IcwEAAAAAAAAAAAAAAAAAAADgVloTgS6VZ599thw9erS8+eabt/R5Lly4UPbv3z8Mkdm0adPn+tkqdIZMqMvs7OwwmGVycnIY5LN58+Zy4MCBcuTIkeGj+l4V5FI9zp49O3y/rv0MAAAAAAAAAAAAAAAAAAAAANwqaybQZWZmptx3333D4I7333//lj3Pnj17ypYtW8qLL774uX5ufn7+lo1pvTp06FCZm5sbBvlMT0+XU6dODYNcrgW7VKoAl9OnTw//zdTU1GoPGQAAAAAAAAAAAAAAAAAAAIA1rl3WkDfeeKPs2rVrGNxx4sSJ8ku/9Eux2ufOnSsPPvhgOX/+/DAgZNOmTZ/5Z996663YOPi4KsSnegAAAAAAAAAAAAAAAAAAAADAalsTgS4XL14cfm02m+XYsWNl3759ZXp6uhw4cGAY9LFly5YvXPvs2bPl5ZdfHtatHD16tMzPz5e33377L/3ZKvyl+rdPPvnkF35+AAAAAAAAAAAAAAAAAAAAAODOsSYCXSYnJ0uj0fjQ9waDQTl8+PDwkVDVq56jCov5Ij8LAAAAAAAAAAAAAAAAAAAAAKx9zbIGTE1NDUNTbnxU4Ssf/d7NPK4FxtzMzwIAAAAAAAAAAAAAAAAAAAAAa1u7rAGTk5OfGJpyK4JUhLNQF6eX/8dYrU0j90bqjLX7JeU/+tKlSJ3/7Gf+ZaROr98qKfMLE5E6v/1nkyWl1RhE6jz1H1yN1PknP3qgpPzDP/+tSJ3uyp+XlGZrY6ROt8xF6jQGmfc/apCbT1qdLZE6F7tnI3X+56u5PL3/YuJnInV+cGGspPzPP+pG6lxY+muROl+ZzMxLlR/2M7WuXP39kjLoLUXq9HtXInUgZXzjQqTOhrsydSqj45nPW3tkpaS0Wpnj5WCQOc/t9cqaFttO3UwvkGzhms1QsdB5RaU9mvmsbLi7fse4Rmh7d9qZvqsyfuGuSJ0rC51InaXl3Dl4r5/57CaXBNuhz8rG0LyUtKGVeW0bOrlzwtGRTK2RkdyBbnxsOVaL9WtkPLMfdUJ1Ks1Ot1Z9VyU2m+Ta+Nr1FI1mbs5N9YOxfaCGx8qkVB/fameOcSPB41u/HzpvCvWClUZo/26H+vjFhdya7kq3VbsbD5qjofOmTmb/bgXnyvHQGtPY+GKkTrJWav0sXYv1rT2WaeSaI7l1mGbo2Dvo1e//4dXvtWp3DE9phY4pyX0g1n+Heq/a9vKh7dQMrXsl96V2aG7q9FZq18unJNcYUrVS5xbJJrwZ6nc7wePl+IbMdd6RsVxfmTrvTV0Dq7SC25z1a2Mns29vaAfXmkNzZTd4XErVWmm1anUNtNIMlRoJXr/uhI5NqeNuL9kzp+rUcP079dlN3Q9V6Yd+t6HbCfaVoc9vL3TjUKske+ZQnWTP3KhXnX5wIb23IfRZCd1TUWmF7vUYCV13rox3anihlztSp9GrVZ3k9atOMzemfqhHWQ5NmO3gNb5Ur5M8dxppZubL/iDT73ZDdYa1Qr/Hmdonh7VCDUGql0/+JmBs7TNS5d/VChVrhNb2G+3cFh/0Q9d3khs8tZ1C/WAreL/uWOh68cbg7wGNtzO1Rlu5vrkd7FFYw4EuW7ZsKYPBYBi2Un0FAAAAAAAAAAAAAAAAAAAAAFgNayLQZXJy8vqfd+7cWQ4dOlSmpqaGQS+r6fz582Vubq7MzMyUM2fOrOpYAAAAAAAAAAAAAAAAAAAAAIBbb00EulThLdecPHmybNq0qdTBxMRE2bZtW3nllVfKV77yldUeDgAAAAAAAAAAAAAAAAAAAABwizXLGrB169brwS51CXP5tMAZAAAAAAAAAAAAAAAAAAAAAGDtWhOBLpOTkx/6Wkd1HhsAAAAAAAAAAAAAAAAAAAAAkNEua8CWLVs+9LWOBoNBuXDhwmoPAwAAAAAAAAAAAAAAAAAAAAC4hdZEoMsjjzxSZmdnax3ocubMmdUeAgAAAAAAAAAAAAAAAAAAAABwi62JQJfKtm3bSp3VfXwAAAAAAAAAAAAAAAAAAAAAwM1rBmoAAAAAAAAAAAAAAAAAAAAAACDQBQAAAAAAAAAAAAAAAAAAAAAgR6ALAAAAAAAAAAAAAAAAAAAAAMBaC3T51re+VZ5++ulyJ3jqqafK448/vtrDAAAAAAAAAAAAAAAAAAAAAABqpjaBLocPHy6HDh0qd4JqrNUDAAAAAAAAAAAAAAAAAAAAAKCWgS53msnJydUeAgAAAAAAAAAAAAAAAAAAAABQMwJdvoD5+fnVHgIAAAAAAAAAAAAAAAAAAAAAUEO1C3S5ePFiqbMLFy6s9hAAAAAAAAAAAAAAAAAAAAAAgJqqXaDLG2+8UersxIkTqz0EAAAAAAAAAAAAAAAAAAAAAKCm2qVmvvnNb5azZ8+WHTt2lLo5c+ZMeeaZZ1Z7GAAAAAAAAAAAAAAAAAAAAABATdUu0GVubq4cPHiw1NVgMFjtIXCHa45ujdRpNHIf3wtL/ypS53u9H5WU37/0i5E6T//rK5E63/jpXy4pv3H+3UidS1f/h5Iy6C9G6jz2U/+XSJ0vbVgqKf+Pv/afROq89acTJeUfLf+jSJ1Nk389Umfuwv9S1rJmczxSZzBYidT588W3Ssp92++K1Pmjy2Ml5c97y5E6S73Mce6l9zsl5b3F/zFSZ9DNHJuiGs3VHgF8yOSWi5E6GzddLiljd2X6pdZI5nhSaTQydfq9zBzQaOTOl5v9Xq22UVK/nxlUv9uK1BnWCr137U7mfat0RjOflVY7M6ZW8LU1W6ExtfolpRN6fefn7o7UuXB5tKQsLec+KynjoSWdTmgXSE6V46F9acNY7jM3PpaZTzbdtVBSJjdneh3Wt5GNmf60PZ45j680Q8fdwSA3M/VXMseBZui4m+q9k1Kv7cfFMn3lILSdUu//sFavfj1FI7S9W51upE4JfnZH+pm5adDPfeZSc1OqTi+4T/ZC26nRyM0nrZKpNZI63w2dx1VGxzLXwMZDvUBlbMNirdbPKqPB/pv1rRVaY2qGzi0rjdQ6U2idsdIY6dbqnKC/Urvb2UqjGeybQ8enQagfCF3ejY6pjlL7QHJfSq1bt3vd2p07pa6BtNvB1xaad5uD3D7QDJ0XprbTyGhuQhkdz/TNo8F70Dpjy7Wqk17bY/3a0M7sR3e3c5+3djPUVw5ya0NjrW6t6iyO1K9nbgf7nGaoZ+6G1r0Wurl7EJPreinNRr3et1SPk+y/m+3gtateqFaoTugWraFGaq0ieDktdSgYtDP7Zb+T278Ho6H9O3h/xkhoLW48eI/leDtXi/WtE+pRx5q5fXI0WCtlQzNzfnFXK3N+cbGb+V2iSj90l12z1O93k1OvbaGX65tTvXw3eF5YN/3gPRopyb079XsJqfOUQfD+qkHq/CKYddBoZ15fK3Rj81hw3XNjaN062VeOhNaH2sH7dDqN4Mkhn6h2q3mNRqPWoSl1Hx8AAAAAAAAAAAAAAAAAAAAAsHpqF+hyLTQFAAAAAAAAAAAAAAAAAAAAAOBOU7tAl8FgUOpK0AwAAAAAAAAAAAAAAAAAAAAAcEcFujz44INlYmKi1M38/Hw5e/bs8AEAAAAAAAAAAAAAAAAAAAAAUOtAl1deeaU8+eST5fjx42Xfvn3lwIED5YEHHih1U43x29/+9moPAwAAAAAAAAAAAAAAAAAAAACooWapib1795bZ2dly+vTpsnnz5jI9PV22bt1ann766fL++++XuviVX/mV1R4CAAAAAAAAAAAAAAAAAAAAAFBTtQl0uWbHjh3lhRdeKP1+vzzzzDPl9ddfL1NTU+Whhx4qr7322moPr2zbtm21hwAAAAAAAAAAAAAAAAAAAAAA1FTtAl1uNDMzU06dOlV+8IMflPvuu6984xvfKFu3bi3f+ta3yjvvvLPawwMAAAAAAAAAAAAAAAAAAAAAuHMCXa6Zmpoqhw4dKufPny+HDx8us7OzZceOHWX37t3lpZdeKhcvXryt45mcnCzz8/O39TkBAAAAAAAAAAAAAAAAAAAAgPq7IwJdbrR3797y+uuvl7m5ubJv377yzDPPlM2bN5dHH320vPnmm7dlDIPBYBjqAgAAAAAAAAAAAAAAAAAAAABwRwe6XDMxMVEOHjxY3n333fL9739/GLKyZ8+ecu+995bnn3++XLx48ZY9dxUm88EHH9yy+gAAAAAAAAAAAAAAAAAAAADAnemODXS50fT0dHnllVeGQStPPPFE+fVf//WyefPm8tBDD5XXXntttYcHAAAAAAAAAAAAAAAAAAAAAKwTayLQ5ZqJiYkyMzNTTp06VX7wgx+Ue+65p3zjG98oW7duLU8//XR5//33V3uIAAAAAAAAAAAAAAAAAAAAAMAatqYCXW40NTVVDh8+XM6fPz/8WoW8bNu2rezevbu89NJLqz08AAAAAAAAAAAAAAAAAAAAAGANWrOBLjfau3dvef3114fhLg888EB54oknSqvVKt/61rfKO++8s9rDAwAAAAAAAAAAAAAAAAAAAADWiHUR6HLN5ORkOXTo0DDY5fvf/3754IMPyo4dO8q9995bnn/++XLx4sXVHiIAAAAAAAAAAAAAAAAAAAAAcAdbV4EuN5qeni6vvPJKmZubK0888UT5tV/7tbJ58+by6KOPljfffHO1hwcAAAAAAAAAAAAAAAAAAAAA3IHaZZ2bmJgoMzMzw8eZM2fKkSNHyp49e4bhLgcOHBh+/5577lntYbKW9JcjZVYWf1hS2mNfjtTp9i+XlN8b/Fakzp4N/8dInZ+5a66kbJ77K5E6V9pnS0p34UKkzm/86P8dqbPprl8oKV+b/A8idVqNQUlZuPROpM5icyRSZzDolroZlH6s1vLCbKROs7M1Uqe/kptPfuePNkfqbJu4UlLOnP+TSJ12MzNXTpa7SkpvMfPaGjXMVBws5fZLSJj40nykztjdCyWls2EpUqfZ7pW66a9klgb6vUapm0Yz18MN+pnX113qROqsLGZ6wUq/2yp10+pkPiudscw5eKtTw555kPvM9UP798pKZl/q9pq1207JMXVKbm6qm07oODc+tlJSJu6+GqmzZWumPxnW+kn9NzdvJNTrtsYzx8pKc6SGvW43M38Pltu1Gk9SoxU8LoVK9UI9c3ch1zMPlhq16+FSmqHTgUHwfDfVf7c7uZ6iPZLZUJ3QOXgnNC9V+v3M3NQP9syN0DWZVmi/bLVy+/do6Dx1bDyzVlUZ35jpK8ZDvXdl9K7FWC3Wt9aGzGeuGfrsVhqd0HXQ4PXrZmgOH4TOLwbJ9coa9l+pteZBaC2u0cz035XuYr3WKyvN0LXZ/iDzmWsGr1v0m5n5pBmqM6wV6ptS19PawbX91Plc8rww9d51RjLnTp3R3DnYSOjYm7pONKwVOs6l6lTawVqsXxOdzAF8Yzt3nrqhWb99e2WQ6b0WOpk1y6V+cG2ohj1zv2TGtNDL9LrN4PlXKZl9IPkpSe0DqTW9VJ1k/x1aQv2xUK1B6vpOK3jvSTs0puC8lNpOg0696lQao6F7q0Zy501joXOLjSO5We7uEWvNZIw2urXrdUebmc9cK/i7O6nXl6oz0c7dR77Y79Sq162s9Fu1Ot9pBu+L7IX6geT5zkqvfvdap/RreEtr3e6vaQTPCRrt0LwbfN+aoeuXqd5yLLi2vyF079DGTm7ta6yVGdNoM7edkrX4ZPW7c3QV7dy5s7zwwgul3++Xw4cPl9dff71s3769fPWrXy2vvfbaag8PAAAAAAAAAAAAAAAAAAAAAKg5gS6fYu/eveXFF18sO3bsKKdOnRr+vdVqlccff7y8/fbbqz08AAAAAAAAAAAAAAAAAAAAAKCGBLp8xMWLF8t3vvOdcu+995b777+/vPXWW8PvDwaD4ePw4cNl165d5bHHHlvtoQIAAAAAAAAAAAAAAAAAAAAANdNe7QHUxauvvjoMazlx4sTw71V4yzWNRuP6n699/8b/DgAAAAAAAAAAAAAAAAAAAABQ1nugy7lz54YhLkeOHCnz8/MfCmr5pBCXyszMTDlw4EDZsWPHKowYAAAAAAAAAAAAAAAAAAAAAKizdRno8t3vfncY5HLmzJmPBbZ8UpDL9PT0MMTlkUceWYXRAgAAAAAAAAAAAAAAAAAAAAB3inUT6PL2228PQ1yOHDnymUJcJicny8zMzDDIZdu2baswYgAAAAAAAAAAAAAAAAAAAADgTrOmA10uXrw4DHCpglzOnj37mYJc9u7dOwxx2bNnzyqMGAAAAAAAAAAAAAAAAAAAAAC4k63JQJeTJ08OQ1yOHTv2mUJcpqamhiEuMzMzZWJiYhVGDAAAAAAAAAAAAAAAAAAAAACsBWsm0OXcuXPDEJcjR46U+fn5DwW2fFKIS6UKcKmCXHbs2LEKIwYAAAAAAAAAAAAAAAAAAAAA1po7PtDl1VdfLc8880w5c+bMxwJbPinIZefOncMQl/3796/CaAEAAAAAAAAAAAAAAAAAAACAteyODHR5++23y+HDh8uRI0c+U4jL5ORkmZmZGQa5bNu2bRVGDAAAAAAAAAAAAAAAAAAAAACsB3dMoMvFixeHAS5VkMvZs2c/U5DL9PR0efLJJ8uePXtWYcQAAAAAAAAAAAAAAAAAAAAAwHpT+0CXkydPDkNcjh079plCXKampsqBAwfKzMxMmZiYuGXhMpVNmzbdkvoAAAAAAAAAAAAAAAAAAAAAwJ2ploEu586dG4a4HDlypMzPz38osOWTQlwqVYBLFeSyY8eOWz6+ycnJ0mw2S7fbveXPBQAAAAAAAAAAAAAAAAAAAADcOWoV6PLqq68Og1xOnDjxscCWTwpy2blz5zDEZf/+/bd9rBMTE7f9OQEAAAAAAAAAAAAAAAAAAACAeqtNoMvu3bvLmTNnPhTY8kkhLpOTk2VmZmYY5LJt27bbPs733nvvtj8nAAAAAAAAAAAAAAAAAAAAAHBnqE2gy+nTp4cBLlVwyycFuUxPTw9DXB555JFVHGUpx44dW9Xn58436C1F6jSanZLSXfxhpM7ohntLSrc7H6nzw95ipM7v/vFkSflR77cjdTaM/FxJ6Xe+HKlz5fLbkTqXl94tKf/dH//zSJ27x//DktIozUidTXf/J5E6Fy78Vqmb1thPx2qNdH4qUmdpOTNXlv5Kpk4p5eif/reROo3mSEnpr1yK1Hm3/N8idX6v949K3QxKv9RNoz2eKzbo5mqxbm3ckplLRjYtlJTOhlAfP1LDz0gv05v0u60S8+OlgJv375cXbtqglynWvToaqdO4UGJWFjO9QKOVO8Y1mplazXamTmvQKymd0Uw/ODK2XFI2bMzMl0uLmf17aTnXn3a7mTluJTjHNRqZSe6GJdTaaIc+c6MjufOmu+6+GqkzsTnTn1Q2bbkYq8X61b4rs+7Z2pjpcyuNkV7teopBPzNZDlLHgdBxKfnaklLbqRk6b2o0UycWOb2V5HlTaP8O1Wk0G7Xrl5rB+aQZOkdptTJzZbuTO0fph9ase83c/r2Wt/fo2FLtzglHQutenfFcX9EJ9iisb80Nmc9Kcyx3nlpSvU5rUL++IrSGWoI9U2xMoW2U7Jv7S6Hb/kK9V1LySkp/JbOdGqHdstGr3/ZO9d/JWrl+MHdO0G/3anUOlux3O6Fj00jo+kelHRpTOzmmUK1WsK9oBc8LWL82tTPXCTe1M2vWlQ2t0HlqI7h+Msis7S72M/d+rwxyPXOqVnJMS/1MDzfSzBxPmrGbWJJy19RTeqHrFsn+lM8geC1l0Er1uskxZWoN2qExdYLXLUK1RoL3M453MrU2dnJ97t0da83Uq0cdbebOCTc2M2Nq1fB3G5YbmXlgQ2gbVRYHmV5+KXROUFlshMY0yPTfzRr2calzucpy6Dxlud9as9s7ufb572IFAnVS99aUmNg5T273rt2a/Eg72KO2M8fesVZwTK3MmMZbwd8lCNai5oEu11wLdalMTU0NQ1xmZmbKxMREqYNnnnlmtYcAAAAAAAAAAAAAAAAAAAAAANRU7QJdKvv27StPPfVUue+++0pdvP3222X//v1lfn5+tYcCAAAAAAAAAAAAAAAAAAAAANRU7QJdJicny9mzZ4fhKXVQBbicP3/+epBLo9Eog8FgtYcFAAAAAAAAAAAAAAAAAAAAANRQs9TM3NxcmZ2dHX6tglNW+zExMfGhvwMAAAAAAAAAAAAAAAAAAAAAfJp2qZl9+/aVl19+udTNmTNnyv79+8tbb7212kMBAAAAAAAAAAAAAAAAAAAAAGqqWWrm0KFDpY527txZTp8+XSYnJ1d7KAAAAAAAAAAAAAAAAAAAAABATdUu0OWee+4pdfarv/qrqz0EAAAAAAAAAAAAAAAAAAAAAKCmahfoUnf79u1b7SEAAAAAAAAAAAAAAAAAAAAAADUl0OVz2rZt22oPAQAAAAAAAAAAAAAAAAAAAACoqVoFukxOTpY7xfz8/GoPAQAAAAAAAAAAAAAAAAAAAAComXapibm5uXKnuJPGCgAAAAAAAAAAAAAAAAAAAACsw0CXiYmJcqe4k8YKAAAAAAAAAAAAAAAAAAAAANw+zdv4XAAAAAAAAAAAAAAAAAAAAAAAa5pAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIaacKAZ9No70xUqfZytSp9Bb/JFJnMFgpKa3WpkidhbIQqfPbK/+mpHR7FyN1+sHtvan9c5E6VxqNSJ2fH/svS8ofDP5VpM7XN3+lpLzaGIvUmbv8O2WtGvQyn91Kt5n5zJXeYqRMZ8O2krKy8H6m0KBf6uZfl9lazbmVRiPUOjeCmYqNVv3GNJAZyc0b2ZQ5DoxuvlxSWncvReo0x3I9XGmF5u9BpocrvVCdakjdzPw26AfHtJwZU3OkF6nT79dvvh0MSu30u5ntNAhu79R2ajRyG7wVmk/a7W6kzkgnN1d2Op1SN6nWq93KzCdJrWZmvxwbze0Do2OZY/joeOacsDKyMVeL9au1MdSf3rVcUhrjoc9uO7dOEesGU71uL9hTpMYU6r2TPXOj3anXuU7y3KKZ6036K616nX8Ft3dK8pwwJdXHN5u5uTJZq27bqdWu17nOj2tl+vh28LypPZJ5fe3guld7Q6bXgdR6bGNjrm8uofXBZN+c0qjhWnNjpbl2++bUNYKk0D4Q7S1DtfrB87m6SW7vVK06nl+ketTk2n6ql2+E6jSDa9atTqZHbXWCYxrJ9BWtYN8cvfbMurWpnblmsaV9paRsaGbOCTuN3Pl8Sj/0/+JdHuR+BWRlkOlPl/q5tc+r/ZFInUvNzL26Sf3QlYtu8B6GXqhWs34tXD3vh6nhvTUxjTU8plCdRqt+9/p0gn38eGjdekM7txZ3d6jXgQ3NzH65MdTrJms1S26dsdWo15rlSrBvXgz1u1caoyVlNHT/Qar/bgYbnX4rc/Bd6uf2gauh7b3UzIxpuZe7brGm15rXcB8f+jXeaK1m6l6P4Dp6O3RsGm3l1plGm5laG1rLtet1+HRr90ojAAAAAAAAAAAAAAAAAAAAAMBtJtAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAABAiEAXAAAAAAAAAAAAAAAAAAAAAIAQgS4AAAAAAAAAAAAAAAAAAAAAACECXQAAAAAAAAAAAAAAAAAAAAAAQgS6AAAAAAAAAAAAAAAAAAAAAACECHQBAAAAAAAAAAAAAAAAAAAAAAgR6AIAAAAAAAAAAAAAAAAAAAAAENJOFQI+m0ajE6nTW/ijktLo3B2pM9b6qZJy8fLvRuqca/7bSJ1S+qE6pTRaGyN1RtpbS8rV/p9F6rRGfiJS5/eu/HqJaY5Eyvx/5zOfk8qg9CJ12qNfjtTpNv6kpPRXLmUKNXMtSncpNF/2ViJllrs/KHUz6C/HarVGfzJSZ27p9yJ1ugt/UFIaofmk0c4cByrtzpcidfr9hZLSXfhhrBbrV3s8My+1Ni1G6gxrTYY+J3fl5tzSyfWoEb1GrFRjuZUptJjrKQYLmXO5QT+TrdtZzIyn0l/JbO/uYuZYWemFxpTa3r2V3L60EtpOK0u5fWB5ObRW0QvtS6E6lX5oH+j2crnYjdD03WwMInVardzxpNnM1Gq1M+fNlWYzs52arUydSquTe32sX80NmXWKxl1LJWZjN1OnHexzQ3NA6Tfq1zOvhI5Nqd67GtNSqGcKHeMG3dxra4X601TvPaxV6tUz94PbO1Ur1Z8ma6XqpPrcZK3kmFJ95SB0GGikjifDvrJfqzrJWq2Rbm5Mo7larG+N8UzfXMaD++RY5pxwEO2bQ3VCQ2oE++ZYD57smxdbteqbm6nznUpoDa0Z7Jt7jXrdHjkIbu9BDfu41Jhia/vBdd3kdqpf3xycB+q2rhvaRsNaoWNvsxPsm8f0zdy8ifbVTJ3WlZKyqZW516PTyH1GWiUzL/VKZs5dGeR6nOVBpve62h8tKZ3eeKROM/S+9YPHym4/s70XW7n7BZZ6NeuZg9u7H+q/k3187JpTqs2JvrZSP3Vr40Pn8sNSqXtGguvfnWZm3WtjK3eP5V2t4PVw1rWNzaVa1amMNVbWbN+c0gtto+R26jRy941d6WfuRW2FDuLJ978fOnda6OXuax5pZd67Vrd+TVOqB09dnx/WqlkvHz0niMlt8NR7lxpR8jy8Gbppu526+bu69NzKHJ82NHN984Zgj8KdcXoKAAAAAAAAAAAAAAAAAAAAAHDHEugCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAABAiEAXAAAAAAAAAAAAAAAAAAAAAIAQgS4AAAAAAAAAAAAAAAAAAAAAACECXQAAAAAAAAAAAAAAAAAAAAAAQgS6AAAAAAAAAAAAAAAAAAAAAACECHQBAAAAAAAAAAAAAAAAAAAAAAgR6AIAAAAAAAAAAAAAAAAAAAAAECLQBQAAAAAAAAAAAAAAAAAAAAAgRKALAAAAAAAAAAAAAAAAAAAAAECIQBcAAAAAAAAAAAAAAAAAAAAAgBCBLgAAAAAAAAAAAAAAAAAAAAAAIQJdAAAAAAAAAAAAAAAAAAAAAABCBLoAAAAAAAAAAAAAAAAAAAAAAIQIdAEAAAAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQ0k4VAj6bfvdCpM6g9CN1hrVWMmO6cOG3SsrY3X8rUmfp6mykzoaNf7OkXL38zyJ1riz+SUlpjmyO1Gl1tpS6aTQ6kTofLL1TUnaO/h8idf5l+2qkzvKVH5S6abUnY7UGzY2ROv3epUidZnO0pPSXz0fqNFrjkTo/LpbJC+yvfBCpM3rXXy85rUiVje2fKSnL/cx+eWXxDyJ1IKU1tpypM7FYYrZmavXv7paUwUiplUbmbRtqXu1lCrVz502NQSNSp7mY2QdaI7l9qdnKbaeU3nKmj19ZytRZXsx94JYWMv3gwpVcD3f5YqZnvnxpQ6TOlau5nvnS1cx7d3Up0wtWmmUQqTPSySztjgXnk7HRzFzZ6+a2d7+fGdMgdByoNBqZfYD1rTG+kim0Mdif3pWpNRjNfUYGqekkNKRGbnOXxnJmXmpcDfaCzcyGavRCvfdS6HMy7OMzfWUj2HsPQse4XrdZu+N3d7ldqzrJWstLmf50KXiOkhpTt5fbB1rNzGdlpJ9ZrGiG5rfKyMhKreaASiM1fwfnuOZobg5nnRsLNWDjwb55rF+/vjn0vwNrhKaBQb+GfXMreC4fWheIrVn3cv8/uMFyph9oNEdqd5xLHXv7we2d6uX7oTqV7kpmH1gJ9d8roWsNlW43M6ZBcDrptUOfudC81Btp125dNzXnJvvdxkjoOmhVazS42MS6dXczcy/Eplbu/oy7mwuROmON3Lllp5H57PZDzfdy6D62ymI/c7wcCW2jSjN4j3zC0iB3jFtoZXrddjO3vVP6g5r1AcM+PvOZG4SuWwyFajW6oXPC0HnzsFb9dsvSD23vfmjRY9AJnoOn1gWCPXM7tLY/2sr1uRtawZsaWddSvWWyR93QXIrUGSnBPi61SByyErtppPpNksx82Qped2yFtnerhveypd67q8HjQLsR/L2rmkn1Fcl7LGNjCvWDg+A6eknd05q8dhXSDf3uRi+4L6WMNoM9anO5VnWSfQWfLjiLAAAAAAAAAAAAAAAAAAAAAACsbwJdAAAAAAAAAAAAAAAAAAAAAABCBLoAAAAAAAAAAAAAAAAAAAAAAIQIdAEAAAAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAABAiEAXAAAAAAAAAAAAAAAAAAAAAIAQgS4AAAAAAAAAAAAAAAAAAAAAACHtVCHgzvUTk/95pM4HV367pPR6V0KV+pEq3f7VkrLhrv8oUmdp5U9KSqM5GqnTXfyjSJ1Ge0NJGYT2pfbol0vK35xYjtQ5f+HeSJ0rnX9RUvorlyJ1uos/LCmNVmh/6mfet9IcD352O5E6o2P3lJS7WpnPyvnFtyJ1Wo3cfDLanIzU6Q1WSsqVy29H6gxS+3e1X8qMJKA5Fvqc3L2UqVMdBia7kTrdu0tMfzTzeWv0BpE6rYVMnWQf3+xl6gwtZfaBRrtXqzpDzcx71+83SsrKUqbPWbo6Fqlz9VKuh7tyeWOkztUruTFdvpTpmS5ezozpwuXMOWpl7mpm+fNCL7h/l8xnbmwpM6a7Wq2Ssmk0s73brdz8PbFSvyXwZnIOZ/0ay/Qmg/Hc/tjfEOopcoe4MmiF5u9+5rU1c0sCpdEOjank9oHGILO9G8uhnrkTPB8IHptSBv3MOWE/dKzsLmd6+MrK8kikzvJirq9cXMicWywuZMZ09WpusrwaOm9aXs71XY1GZo4bH8use/ZDn7dKZyRzMOh2c9t7EDqfbzRzc2VjRM9MSGhfGozm9u/+eGaOG2QOlz+uVbNLO41uDfvmRr92fXPphubKUP9daYT65lSd5HGu38usofWCa1W9UD/QXcn18qnzguWlzCS3EOp1K0uh84tkb9nuZCbMXmj/brVzn93RDaHPSmrODfa7yb65WGsmYGMzc1/Fhkbu/oy7m4uROmON3GekE7qHod/IzEu9kpvfrobWiFuD+q2hrgwyx5MNzdwJ2IVmZnu3k8eTkFSf0+vl+qV+6jp/8H6BRjdTq7mU2U6t3PRdWqF7GEJT7lBoGijd0P7dDa1TVPqhz0o/2DO3Q8fekWZucWhDM3d/NOvbWGhf2hDqvytjjcw1p5HgxNsMXeNLSb625dAc1wz2zc1+qFao/eoFjympXn40eEzphHr5QWg79YLrjKl+IPXakrUG3dB2CvXfyXOCpP5oZkzLrcxxoDuWu6+5H7oQmrxWOBa6iXA0eDNiakx8uppdkgcAAAAAAAAAAAAAAAAAAAAAuHMJdAEAAAAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAABAiEAXAAAAAAAAAAAAAAAAAAAAAIAQgS4AAAAAAAAAAAAAAAAAAAAAACECXQAAAAAAAAAAAAAAAAAAAAAAQgS6AAAAAAAAAAAAAAAAAAAAAACECHQBAAAAAAAAAAAAAAAAAAAAAAhppwoBn9FgUOrmz+b/p1I3g5UrmTqlH6mzdPn3I3WGtcra1exMZAr1u5k6pZS7N+yI1Gk3xkrKn14ZjdT5WyOdSJ122VdSZpffjNRpNsdLysrKjyJ1BoPMfFK6FzJ1qjH1MjPK0uK5krK48s8jdTobt0fqjLW2lJTuYDFS59LlUyWm0cjVghppjPQyhUZDc3cppbchVSeXqzoIndE3lzJzyaBZv3Od0giOqVHDMdVMv9uK1eouZ3bwxSuZPv7K5Y0l5dKFuzJ1LocmpqpWaDtdvpo5R5m/mluy/PPQIeVPGyu57d3InPN2QlndW3q57f3TC5laG66OlJReLzM3NYLzd7OV61FYx1qhfbKT27f7mSWv0h/JnesO2qFa/VCdYM/c7GdqDYL7QCO1X6bmyWb95ttBal+qjnErrVr13qk6lZWlTF+5vJypU1lazPQnV69m1r4vXcqtoV8I1bp4Jbe9u6HPyl3jmROCn+rm9u+RkeVInbsnLpW6iR0HajqHc4cK9TqDkdz+PQid8vZHg31zc+3OJ6mXluybSy8zxzWW+vWbv1O1kuvog0at+u9UnWStXjc3CayshNb2FzKLDJeDa/sXLmRqXVnIrX2225l54EubL0bqtFqhBflSyvhdVyN1+v2aHeSG826u12109M3cvLFm5hrYxmbuztiNoWtpY43cvNSp2S1aK8nbDlJTZXBKWmm0a7V/d6L7UqZWswTPU0M9czd03O0F7z0Z9EI7eLBnbnQz27uVWWYs7Su5Ca5zOVOnvRi8fhla2l2aDN1f187tS72NzVrNAZVm6Hw+Oe+Oho4FsLGRmXjHgvegpfrdTrCRa9Xs/the7Mbf3HZqBfu4VC+fWj9Zbub6uKuh3ytMHlNSPXg3dFFmJdXrDn//tn5Sv8JXVjLbqXUlt393Qj148JAS+x2X0GlKWdqQ295163V/XCuzg4+F+pMf19I332r1u1oBAAAAAAAAAAAAAAAAAAAAAHCHEugCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAABAiEAXAAAAAAAAAAAAAAAAAAAAAIAQgS4AAAAAAAAAAAAAAAAAAAAAACECXQAAAAAAAAAAAAAAAAAAAAAAQgS6AAAAAAAAAAAAAAAAAAAAAACECHQBAAAAAAAAAAAAAAAAAAAAAAgR6AIAAAAAAAAAAAAAAAAAAAAAECLQBQAAAAAAAAAAAAAAAAAAAAAgRKALAAAAAAAAAAAAAAAAAAAAAECIQBcAAAAAAAAAAAAAAAAAAAAAgP8/e38fI1e654d9p7qbLzNz594ezt67L9rsapsWbMkbR+nhYCHFjhMvaQh2/rKaZP6wEUTAkDASxLCMkBkEsa4s2DRp2HEEA0nzBpFhI4hnSNtAYEdGukcObNmWfEn6RfbaXonUruTVru4uyb5z540v3RU81azqOqeeOl1V/auu6lOfD8DprvPynKeqnjr1fU5V/yaIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCrEQ1BIxm+czPhLTT3vsmpJ39tl7EtPPqJ0WU1ql3Q9ppv/pxSDuMZi/o8W4tnS6i7BWvQtr5+fYfLKK8dzamT//bv+vXQ9r5D37vZ4so/85v/sNzV3Hu9JmYdv79b/58SDsfnPpjRZS/XvxGSDu/cvoXiyi7e62Qdn771W5IO79V/M0iyucv/7ugluJG+NJKzPvl7u6PiihLZ34qrC0W2Oug18mrmHNSshTz9l0svWrHNJSy7m7M/Vv+Zi+mna+KMK0XS/M1liLb2otppx3UTkfQ+3dkn3Zfx1yyevUqpp2XL04VUb75Jma+89XXcfOmr7+JeZy+erEc0s4XQee3ZKeIyZV/eynuOszvLMWcMJeKmMfp97XeKaKc2X07pJ2fex0zlpJ2O2g8teLew2GexmR7KXBsB0WB9krc+8Be0OmkFdSldszb0vz+Lxvm7VwZ9R4wp32Keo/bm8M5yt5uTFuvg+YDyatXp+ZqbvHlV0EXvlPW/XFMW78VeI77vPU6pJ33Po8ZA+32t4oo3/n2FyHtvA6aNyftOTt9Q6T2Ssy1z3bcpaFiL6itvVOtZmfLIO3doLlT4DfsWlHzsKh2AnN82H0LFHZtKKidsP4EipoTJLtB1/Vevoy5/v3jH8dd+/yN34n5bP43Xse9TpaDrhH/wS9jHu+33o75DmLynXMx30FrB80vQ89xy4HnyuWYrMNiO9uK+TLE2aC5/H5bMRcZ3g58212OukgcZKmIO5fsBn2e+qoV+J24Iuh7LEHtLLXizrdL83YdPVBU1m3uI7Qv6BRXLL2MebxPxVyu7Hjnd4LO37/zsojSXo55nD7/xZjr6Ltn486VL76zNFff+44Uea48FfWiY+G9G/TdsbdDc3NQZmrwpea9wPNJ4Ne/w+wG/b3cXlCW/6YV92HK2aAv7ke+D6ws7c7V+9xS4Gs3qqlW4Gsuan7RCvp7ktOfxz3g7/xWzOP0zt+Oe0958Z2Ya/vP/u6YD9RerMadT/aCRnjUNYbIc1PUuTJ5Zynu+j4nIycBAAAAAAAAAAAAAAAAAAAAAJxYCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQRR0AQAAAAAAAAAAAAAAAAAAAAAIoqALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCArUQ0Bo9qLaaYVV4+pvfcypp2o+5baevXjsLZYbO+1/gch7fwdZ+Nec2eWY15z//e/dj6knR8+j4sDv/bq3w1pZ/fV7xVR2rsvQtppLb8V0s5/1touovxPTl8Kaef/9S//60WU9qmY18o/+r/5X4a08/bLXyqivHXm2yHtfH7mR0WU08U7Ie387Rf/Tkg7EGX3q9Mh7Sz/+GwRZemd3ZB2VgIzc0rgEVrfhDRTLH0VWDP2q6B88nVczml/eXquxnf7deCcsN0q5k4rZnwvLcW85paXY84BnbZWYto6FdTOflsxj1MraCjF3bOi+KYVc98+b8XM45LfXvqymCffacecl5KYV25RnFqOe79cWXk9V+eTZG9XnXUCzOH79xx2ad6iSRH0trTfVtAbZut14BMXlVFfLYc004483+615mswdd6bgjJzUNaNaidZPhXz/r0S1E50FojwIuh1kuzsxozvv7r8RRHlbyz9JKSdX9h7N6Sd734Zcx02eflqpblvvHGnuPm8f5xMKzEDsx132i3aK63569OcTVOXorJXp7HIk1OQqPsX1U7gObcd1afA520p6Drq8umgjPrq9dxdY4q8/t0Keu6i7tuXX8dd+/zrr2Pu21849TtFlL2gOebyFz8X0s4vfhHzvZpkb29prsbkfmNBzQRe/y6W5/B9jhPnbOtVUDtx7ydngl5vp6I+vOy0FXNe2mvHvG53Ayfhy6ET+vmyO4f/7+O9oPy9FHiteTno2uepoFz5eiXueXsVdO2zvRT4HZ2oTBEUKVa+jhtLb/92zPe1Vx79ejFv3l3+gyHtfPUzZ4ooL4Lm4K3A88lK0Pnk7FJMPklOt+Lm4Sy21aWXc5V1k7NBeXc5asLbySjz9flOVP5Ovgn7/nfc3OlV0MX9qO9YLoV+Rz7GcuAXdU4FtfXWSsz73Ncrp4p583oOvxcZ9b2olcCv/X7nSVBu/ov/ZRHlnZ/9mZB2vv6pXwhp54vfH/hB6Jxl3eTtoFzx7aVvArPO12FtkTd/Z0gAAAAAAAAAAAAAAAAAAAAAgBNKQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQRR0AQAAAAAAAAAAAAAAAAAAAAAIoqALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAICtRDQGjObXyfkg733zxXxdRWitvhbTT3i3CtKLqTS2fCmlm5czPFVH2dr+MaagVV5Nr79WPQ9ppLZ+NaWcpZkwmz9t/M6Sdv/xN3AB/+5t3Q9r5/cvfCmnnb7UeF1Fef/WbIe20i71i3rT3Xoa08yLo9dZx7lJIMz/5Qz9VRHl9JiZevm63Qtr5b4pfL6I8/+qHc3eOW1lZDWnn7W+vF1Fe730V1haLa/eb0yHt7H0R006y9HnM+8BS8aoIs9wOaab1MuacW3wVeInhi/kbA7tfxGTd3Z/EtPM66HWStPdixsDSSlxmPnU65rVy9u1vQtppB2WTpLUU89o9fep1EWVlJWZu8ep1zDz1+YvA124r5vF+HdROpLfaMefdM+3lIso7Rcxr5e23Yt53kzNng97Dl/bm7rzLgpvD89Icdmn+7MU9SK2gqUXr67j3geLLmPem9lcx1/XbL+LmKO3Xy3OVBZPloMx8+q2gzxoCM3NU/t59FTcGXgZlipWgHL8UGCdeFTHj8ouoE1NRFL+79HVIO99tx1yL3Q3Mb62gplqB+XQp6hpT4DlOsCBK+1TMWGrHXaoo2qdiTgRBlwX22wqKA635+4g3TOR9a70KejMIuhbXfhX4/4PbDbpvge+9SysxT97KmZis094N/K5P0OO0EpibV1Zez1VuXg7MTLtBufnHSy+KKK+D+hT1aUMrMMMtL8d85rQUNCY7bQWNy9bpwC9ZRrbFwjobNJ8/24obj2eDJs9nW3HXPpeCvtO8FxQso67ndLRj2toN+pwweVXEPHff7MVca/5q90wR5VXQZ7N7gddjTy3FvH7PBl2z3g28b1GZee9V3PmkvRJ0rWJ5vq4JJK2gz8H2vpq/76C2doOet8j/JXvQdd1Ty3HzptNLMZn5TCsux78dOAdjsb0b9OHc24EZ9VRgW00VdT0nWQqa8+zuxc2dvom6cB30MO1F/S1o+nw+6EOQqPwd6e2VoL9NOxX4nZigdl4Efbcm8lpjVP4KzXFB2q/jMlPxKugzkKDp3HLg3yR8ayUmD35nOeZ7LMnqcszfl68uxc2dVpfivrdN3hyeRgAAAAAAAAAAAAAAAAAAAAAATiYFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQRR0AQAAAAAAAAAAAAAAAAAAAAAIoqALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAkJWohoDj9dPf+YfC2loqlkPa+Z0vt4soSyvfCWln7/WPQ9rZ3f28mDvt3bCmvvfuPxDSzlftZyHtfPP6R0WUs63VkHZ+rvjpIsof/d6XIe082dkLaefzF79ZRGkXMX1aOhVzDkhaS2dC2tl9ETMuf371jxdR/n+f/7mQdv6NP/G/KKKsLLVD2vnzn98PaWdp5d0iypkzvxDSzotvfqOI8v7ZXwlp5/O93yqifGvl58PaYnEtnXkV0k5rJeZ9KVIrLsIV7aIV09BeUDuv42rGtr8+FdLO7udvFVFe/+RsSDuvvohp5/WLmMco2X0Z11aUlaDzwFtB2WTl9Osiypm3XoS0czaonWR5Jebk9M2LmEuNZ34SNyZPtWPOcStB7STvtWPmKN8OaudcUDvJu0GvubffellEOX3m5dydB5ZPBQYCFteZmKzbDowB7eWYc2XgKXfutNqBbb0KeqC+ivl8IGn/OCjr7rwd0s7ul3HvcbtB+bu9GzdvWlqOGVDLQe9xUbkraQe1tfsqbnyfCZo3nT0bk03eOhszZ0q+1Yp5rfzUXsw5INkrYj7b+dm9mPPJd07H5bczQfn0dNBYipyDLwWOy9ZbcW2x2NqnY9rZOxX3PrcX9PbUjnubC9NemsP/PdnenOXv5JuYJ6/9ZUw+2fsq6IWS2vompq326/kb4EtB11CXT8e9x50Kml+8DvyM4FRQrjhzNub697vfiruO/gtPYz5z+p+//H1FlFbQZ4V/4GzMyfI7qz8popx5J+a5OxV4rXkpKKO2zsRday5Oz9/n4Zw8by8FnbsD49KpVsx73KlWc0PzUjF/nzW9Cpyk/GQ35n332e47Ie08fx1zjSn5yauYa2gvoyaXgU4txbwvnQnK3snuqZjX3G7g57t7UX06E/MZwet34k7gX/9MzPj+1h/+Q8W8fX75xc/HzHdfvRv3YeHyWzG58t0zcfOm1VNfh7TznZWviijfXvomrC0W25k5zKgrQX8LuBx035Ld9nzNU5civ6QR1NTZVtxj9JOgTkVl+S/34r6j8cVuTK74ajfw+nfQtbiVoDFwZiXuGtOL3Zjv/q4EzQkivxPzOug7dq/ejTtX7pyPea18660Piyg/PhdzHvji98c83r8v8Frzz56N+fvynzoV16fVpa/m6rpe9LU9pv8ROAAAAAAAAAAAAAAAAAAAAADAQlPQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQRR0AQAAAAAAAAAAAAAAAAAAAAAIoqALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACDISlRDwGi++erXQ9rZe+ubIsq3Vn4xpJ3/2bv/qyLKb+w9D2nnN9ufhbTTbr8qoiwvf3vu+vR3tn4ppJ1/ZO1bIe388rdjHqPkr30Z06dvn/rtIsq/8dd+NqSdX3v5RUg7L774tWLe7L36cdFUv/WT/09cY+3dkGZe7MXV+Pt//8b7Ie2cPh3zOnm9+3lIO5229mJec+1XPymiLAXVZ/z65d8oovzi2b8nrC0W16n3Y15vre9+WURpfycme7VPt0Pa2W8sqqGYc0mriNN+HdOnvRdxlz1ef306pJ1XX50Jaef1y7j71g7MAlFWTr+eq3ZOn30Z0k5kW0tLe0WUVy9PhbTz9lsx9+3scty58vSrmPH9ThHzGHUEPXXvtWPOJ+/vxZ1PvvNWzBzlzJm419ypUzHngVNB4zs5sxqXUVhce+/GjO3dd0Ka2W/rbEwibM/jJ1e78/UeENqnwMy891VMZn79xdmYdoL6k+y9Xg5pp90OnDm1YjLTctB7ZRF436Ie71Nn4j5HOX06pq3Tp1/OVfZO3j8Tc0L5pW9iXrvJz+zFZN2fbsXMB376/bhruu9+O+a619lvfV1EOf1uTFvL78Z9ft36dtwYZ7EFnU6K9qm497movNuev0t6RSsqowZqRWXwyPv2MihbfhkzwPeC2kl2v4m5hrYX9BlBpKWVmEGwfCruvu29junTSlDWTU4HZfCzb70Iaec7QdkrWfvpmPH97vO3iihnTsec5H7/z/8opJ33vxfzfb/krW/HXEM99a24jLr8Tsy4LN6Ke82134682MSieqcVc23obCsuM58qlufqe1WRdkODZYzdoG97fNOO+zz1872Y98vnr2I+BHn2Mu7DlJ+8jsnfLwM/441yajlmfL8K/A7LynLM+WR5Je49d+9UTFu7Z2Iep1ffijt/f/EzMY/3q7fj/o5gN+iazlc/G9POq3NBn8mkv214Oyafvnfmq5B2Om2dimlrdTmuT+8uxV1Lh3nLqMtBn4NFiurTbtt8dxR7QVn+y6APU3Z23y6i/Hg3Zk7w1V7c90Z2I7/vEWAl8EOZqCy/shz32j0V9P3v3bMxGfXle3HP/0+WY86VX/6+uHn4y/dinrt3finm70H/wHd+t4jyM2di+rS6HPe937NLMdeIl+P+oIhjMH/JDQAAAAAAAAAAAAAAAAAAAADghFLQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQhx6dKl4r333pvJsZ88eVLcvHmz04fz588XrVar8y/1Jy27c+dOsbOzM5O+AQAAAAAAAAAAAAAAAAAAALBYVmbdAU62R48eFR999FHnZ5IKp6yurh7Lse/fv1/cunWrd+zk4sWLxfr6eq8vDx48KLa3tzsFX27fvl3cuHHjWPoGAAAAAAAAAAAAAAAAAAAAwGJS0IWJPHnypFMkJRVVmcWxr1+/3inUkqQCLqlYSyrmkpMKvqS+pn+PHz8uNjc3j7nHAAAAAAAAAAAAAAAAAAAAACwKBV0YuYhKKozywx/+sFNIJf0+C6mAzOXLl3u37927V2xsbNTukwq+bG1tdQq63Llzp7h06dKh+wAAAAAAAAAAAAAAAAAAAADAJBR0Yaj33nuv2NnZya7rFkRJBVaOy927d4vr1693fl9dXS0+++yzTrGWw6QCNKmYS7cIzebmpoIuAAAAAAAAAAAAAAAAAAAAAEyFgi4M1S3mkoqnrK2tFRcuXCguXbpUXLx4sbPszp07x1bQpb+YS3Lv3r2Rirkkqc/VAi8AAAAAAAAAAAAAAAAAAAAAMA0KujBUu90u5sGjR49KxVxu3LjRKSozimHFW1KxmlSUZt7s/t5vDixb/qlfnElfAJK9Z39rYNnSuZ+bSV8Aku9///sjLaO5/pl/878fWPZP//Gfn0lfALr+pQf/+cCyP3nhD8+kLwCJ3Mw/8399OrDsn/7H359JXwCSf+E/+SsDy/73f+R/OJO+ACQyM3/m/zKYmf9P/4TMDMzO7f/w1waW3fz7/tBM+gLQJTfzZ/+lnwws+9/9yXdn0heA5L//1//iwLKf/8f+3pn0BSCRmfnn/8XPB5b9H/6pb8+kLwDJf/v/+OHAsr/rT3w4k74AdH1/wXOzgi7MvcuXL/d+X1tbK27fvj3yvufOncsun8diLkn72d8cXKigCzBD7ee/PbhQQRdghv70n/7TCz2Boyj+zL89WGxMQRdg1v7PD/+LgWUKugCzJDfzZzafDyxT0AWYpX/xL/9XA8sUdAFmSWbmn/2zg5lZQRdglu78xf92YJmCLsCsyc38K//ylwPLFHQBZulv/T//o4FlCroAsyQzcydTBFFBF2CW/rs/92BgmYIuwKz96QXPzUuz7gDUuX79evHkyZPe7XGKuSTr6+vFxsZGadm4bQAAAAAAAAAAAAAAAAAAAADAqFZG3hKO2aNHj4q7d+/2bq+urg4UZxnFvXv3iu3t7U5hmAsXLnSKvAAAAAAAAAAAAAAAAAAAAADANCjowty6detW6faVK1cmbuvixYsBPQIAAAAAAAAAAAAAAAAAAACAekuHrIeZ2NnZKe7fv19advny5Zn1BwAAAAAAAAAAAAAAAAAAAABG0Wq32+2RtoSKO3fuFDdv3iwte/78ebG6unrktlO7qf1+izBUW63WwLJFuN/A/HJeAuaN8xLGADCPnJuAeeO8hDEAzBvnJWDeOC9hDADzxnkJmEfOTRgDwLxxXgLmjfMSxgAwb5yXgHnUWvBz09KsOwA59+/fL91eX1+fWV8AAAAAAAAAAAAAAAAAAAAAYFQKujB3dnZ2iidPnpSWXbhwYWb9AQAAAAAAAAAAAAAAAAAAAIBRrYy8JRyT7e3tgWXnz58fun0q/tItALO2ttb5BwAAAAAAAAAAAAAAAAAAAACzoKALc2dra2tgWbVISyrgcvv27eLu3bvZNjY2NoqrV692fgIAAAAAAAAAAAAAAAAAAADAcVk6tiPBiLa3tweWra6u9n5PRVzOnz9fPHjwoLh3717x+PHjot1ud36m26mIy/3794vLly8XH3zwQfHo0aNjvgcAAAAAAAAAAAAAAAAAAAAALCoFXZg7T548GVh27ty5XjGX69evF5ubm8XDhw87xVvW1tY669LPdDsVdUnrUhGYVMwlFXW5c+fOsd8PAAAAAAAAAAAAAAAAAAAAABaPgi6cGKk4SyrmsrW1VVy7dq122/X19eKzzz7r3b5582Zn33nw/e9/v2i1Wtl/Of3r074AANB0MjMAAEyemQ/LzTIzAACLwrVmAACo51ozAAAczrVmAACOQkEX5srOzs7QdZcvXy5u3LhRXLx4caS2UlGXzc3N3u27d+8Wd+7cCeknAAAAAAAAAAAAAAAAAAAAAOSsZJfCjDx79iy7/JNPPumsu3379ljtXbt2rbPPkydPOrdv3rzZKQiTir0AcLg/9af+1Ky7AFDivATAPPL+BMwb5yUA5o33JmDeOC8BMG+8NwHzyLkJgHnjvQmYN85LAMwb703APPpTC35uUtCFudItvFJ19+7d4uOPP56ozY2NjeLOnTu92x999FHx8OHDifsIsEi+//3vz7oLACXOSwDMI+9PwLxxXgJg3nhvAuaN8xIA88Z7EzCPnJsAmDfem4B547wEwLzx3gTMo+8v+LlpadYdgFHs7OwU165dm2jfq1evlm4/evSo2N7eDuoZAAAAAAAAAAAAAAAAAAAAABxotdvtdt9tGNmdO3eKmzdvlpY9f/68WF1dnbjNVGzlgw8+GFi+trZWPH78eOJ2W61W6fbFixeLra2tidsDAAAAAAAAAAAAAAAAAAAAgJyl7FKYM+vr60fav1pkZnt7+4g9AgAAAAAAAAAAAAAAAAAAAIBBCrowV6qFV7rW1taO1O65c+cGlinqAgAAAAAAAAAAAAAAAAAAAEA0BV2YK7nCK8n58+fDC8VsbW0dqU0AAAAAAAAAAAAAAAAAAAAAqFLQhbmSK7xSV+jlKHZ2dsLbBAAAAAAAAAAAAAAAAAAAAGCxKejC3FlbWwtvM1cQ5tmzZ+HHAQAAAAAAAAAAAAAAAAAAAGCxKejCQhR0ydnZ2TmW4wAAAAAAAAAAAAAAAAAAAACwOBR0Ye6sr68PLHv27Fn4cVZXV8PbBAAAAAAAAAAAAAAAAAAAAGCxKejC3Ll06dLAsp2dnSO1mSsIs7a2dqQ2AQAAAAAAAAAAAAAAAAAAAKBKQRfmzoULFwaWPX78+Eht5grCnD9//khtAgAAAAAAAAAAAAAAAAAAAECVgi7MndXV1WJ9fb207MmTJ+HHuXjxYnibAAAAAAAAAAAAAAAAAAAAACw2BV2YS1evXi3dfvDgwZHaqxaEWVtb6/wDAAAAAAAAAAAAAAAAAAAAgEgKujCXrl27Vrq9s7PT+RdRzCW5fv36xH0DAAAAAAAAAAAAAAAAAAAAgGEUdGEura6uDhR12d7enqit6n6p7Rs3bhypfwAAAAAAAAAAAAAAAAAAAACQo6ALoZ49exbW1u3btzvFV7o2Nzcnaqe638cff3zkvgEAAAAAAAAAAAAAAAAAAABAjoIuTOzp06dTbT8Vc0lFXbq2t7c7/8Zx//794tGjR73bFy9eLG7cuBHaTwAAAAAAAAAAAAAAAAAAAADoUtCFifUXSqlbdhTXrl3rFGHpunz5crGzszPSvmm7jz76qFQg5t69e6H9AyPLruwAAIlVSURBVAAAAAAAAAAAAAAAAAAAAIB+CrowtlS05fr168X29vbAulRA5e7du8WTJ0/Cjre1tdUr6pKKtHzwwQeHtp/Wp+26xV/W1taKhw8fdoq6AAAAAAAAAAAAAAAAAAAAAMC0tNrtdntqrXOi3bx5s1OcpatbHGVc/UVUPvvss2J9fX2idi5fvlzcv3+/d/v27dvFtWvXSu2nPt66dau4c+dOb1kqBnPv3j3FXAAAAAAAAAAAAAAAAAAAAACYuqXpH4KTrL+ISyqIMsm/bjuTFoTpSkVZ0r+1tbVewZn33nuvOH/+fPHBBx90fk//usVc0nZbW1udf/NczOXSpUudfs/CkydPOo9j6kN6HFutVudf6k9alh7Loz5vwMmyvb3dKaDVPa+mc0I6PzgnAEch7xDBOALmhcwMTIOsQwTjCJgncjMwDfIOEYwjYF7IzMA0yDpEMI6AeSI3A9Mg7xDBOALmhcwMTIOsE6vVbrfbwW3CsYSMVNwl/Xz27FnnhZeKtqQiLhcvXiyuXr1arK+vF/Ps0aNHxUcffdT5mTx//vzYCs/cv3+/uHXrVu/YSXrc+gvwPHjwoHdCu337dnHjxo1j6RswGynEbG5udsJOOhekc8KHH37Y+f3x48ed8233nJHWpW27BbYAhpF3iGAcAfNCZgamQdYhgnEEzBO5GZgGeYcIxhEwL2RmYBpkHSIYR8A8kZuBaZB3iGAcAfNCZgamQdaZklTQBTg+jx8/bm9sbKRCSqV/z58/P5ZjX7x4sXfM9fX19tbW1tDtHz582Nv+2rVrU+8fcPzSeWFtba13Xrhx48bQ81E6X/Rve/v27WPvL3AyyDtEMI6AeSEzA9Mg6xDBOALmidwMTIO8QwTjCJgXMjMwDbIOEYwjYJ7IzcA0yDtEMI6AeSEzA9Mg60yXgi5wDCeSe/fudYJROolUT2bHdVJLfeg/Xro9qtT3cfcB5l8KLqurq2OfF/rD0UkJPMB0yTtEMI6AeSQzA1FkHSIYR8C8kpuBKPIOEYwjYB7JzEAUWYcIxhEwr+RmIIq8QwTjCJhHMjMQRdY5Xgq6wBT0h6Lqv1Sh6rirVG1ubvaOk/qWgtsoUgWr/hNxCm5AM6RzTv+5Kp0nxqE6JyDvEME4AuaZzAwclaxDBOMImHdyM3BU8g4RjCNgnsnMwFHJOkQwjoB5JzcDRyXvEME4AuaZzAwclawzO630nwII1Wq1Oj9XV1eLtbW14sKFC8WlS5eKixcvdpbduXOnuHnzZmmf58+fd9ZFu3v3bnH9+vXe7a2trU4/xrkf/ZwyoBnSOWl7e7vz+/r6evHw4cOx9k/7pja6Hj9+3DnfAYtD3iGCcQTMM5kZOCpZhwjGETDv5GbgqOQdIhhHwDyTmYGjknWIYBwB805uBo5K3iGCcQTMM5kZOCpZZ3ZWZnhsaKx5eeE/evSodEK7cePGyCe0brir2tnZmcrJFzg+6fXd/xr/+OOPx24jnUvS5C+dZ5LLly+PPREETjZ5hwjGETCvZGYggqxDBOMImGdyMxBB3iGCcQTMK5kZiCDrEME4AuaZ3AxEkHeIYBwB80pmBiLIOrOzNMNjA1OWQlVXqpZ1+/btkfc9d+5cdvk8n9CA0fRXyUuv6Y2NjYnauXr1ailEdSd0AMdJ3iGCcQRUycxAk8g6RDCOgBy5GWgSeYcIxhFQJTMDTSLrEME4AnLkZqBJ5B0iGEdAlcwMNMnlBcw6CrpAQ6XqVE+ePOndHueElqRqe9VgN24bwPypTrZGrVyXUz1HbG5uHqlvAOOSd4hgHAFVMjPQJLIOEYwjIEduBppE3iGCcQRUycxAk8g6RDCOgBy5GWgSeYcIxhFQJTMDTXJ9QbPOyqw7AMRLAe3u3btHrrp37969Ynt7u3NyvHDhQudEB5xs1YnWhx9+OHFbqfpdv3TeMZEDjou8QwTjCMiRmYGmkHWIYBwBw8jNQFPIO0QwjoAcmRloClmHCMYRMIzcDDSFvEME4wjIkZmBpni0wFlHQRdooFu3bpVuX7lyZeK2jlKxD5g/n376aen2UcNKmsj1V8S7f//+RCEKYFzyDhGMIyBHZgaaQtYhgnEEDCM3A00h7xDBOAJyZGagKWQdIhhHwDByM9AU8g4RjCMgR2YGmuLWAmedpVl3AIi1s7PTCVH9Ll++PLP+APMjTbbSOaKusua4qpPAra2tI7UHMAp5hwjGEZAjMwNNIesQwTgChpGbgaaQd4hgHAE5MjPQFLIOEYwjYBi5GWgKeYcIxhGQIzMDTbGz4FlHQRdoeIWqk1hpCpiO7e3tgWVHncSdO3fu0GMARJN3iGAcATkyM9AUsg4RjCNgGLkZaAp5hwjGEZAjMwNNIesQwTgChpGbgaaQd4hgHAE5MjPQFLcWPOso6AINU61QVa2YByyuaVTMXF1dHaj8CTBt8g4RjCMgR2YGmkLWIYJxBAwjNwNNIe8QwTgCcmRmoClkHSIYR8AwcjPQFPIOEYwjIEdmBpri/oJnHQVdoEF2dnYGAtSFCxdm1h9gvlTPD9UJ2CTef//9gWWPHj06crsAw8g7RDCOgGFkZqAJZB0iGEdAHbkZaAJ5hwjGETCMzAw0gaxDBOMIqCM3A00g7xDBOAKGkZmBJtiRdYqVWXcAiLO9vT2w7Pz580O3TyfA7klwbW2t8w9ormroOXfu3JHbzE0E03EWrUIecHzkHSIYR8AwMjPQBLIOEYwjoI7cDDSBvEME4wgYRmYGmkDWIYJxBNSRm4EmkHeIYBwBw8jMQBNsyzoKukCTbG1tDSyrnqjSSez27dvF3bt3s21sbGwUV69e7fwEmlfJbhaTRYBI8g4RjCNgGJkZaAJZhwjGEVBHbgaaQN4hgnEEDCMzA00g6xDBOALqyM1AE8g7RDCOgGFkZqAJtmSdYmnWHQCmW6Wqv2JeOpGlqlUPHjwo7t27Vzx+/Lhot9udn+l2OpHdv3+/uHz5cvHBBx8Ujx49OuZ7ABznBC5XUXNcucqeT58+PXK7AMPIO0QwjoAcmRloClmHCMYRMIzcDDSFvEME4wjIkZmBppB1iGAcAcPIzUBTyDtEMI6AHJkZaIptWUdBF2iSXCW8bsBKJ7Tr168Xm5ubxcOHDzsnsG4Fq/Qz3U4ntrQunQjTCS2d2O7cuXPs9wOI9+zZs2M7lqqcwDTJO0QwjoAcmRloClmHCMYRMIzcDDSFvEME4wjIkZmBppB1iGAcAcPIzUBTyDtEMI6AHJkZaIonso6CLrAI0gkqndC2traKa9eu1W67vr5efPbZZ73bN2/e7OwLNK8qJ0CTyDtEMI5gscnMQNPJOkQwjgC5GWg6eYcIxhEsNpkZaDpZhwjGESA3A00n7xDBOILFJjMDTfdogbKOgi6wAAHt8uXLxY0bN4qLFy+O1FY6saVqVl2pwtVJq1YFzK4qpwkjMC3yDhGMI2AYmRloAlmHCMYRUEduBppA3iGCcQQMIzMDTSDrEME4AurIzUATyDtEMI6AYWRmoAlknX0KukDDA9onn3zSWXf79u2x2kvVrNbW1krVqlK1K4B+q6urs+4CsEDkHSIYR8Bxk5mB4yTrEME4AmZBbgaOk7xDBOMIOG4yM3CcZB0iGEfALMjNwHGSd4hgHAHHTWYGjpOss09BF2iIJ0+eZJenClMff/zxRG1ubGyUbn/00UcTtQMAEEHeIYJxBAA0maxDBOMIAGg6eYcIxhEA0GSyDhGMIwCg6eQdIhhHAECTyTr7FHSBhtvZ2elUnJrE1atXS7dTlart7e2gngFNOccAzJq8QwTjCJgWmRmYB7IOEYwjYJrkZmAeyDtEMI6AaZGZgXkg6xDBOAKmSW4G5oG8QwTjCJgWmRmYBzsLlnUUdIGGOHfuXHb52tpasbq6OlGb6+vrA8tu3749UVvAfJ4jAE4SeYcIxhEwjMwMNIGsQwTjCKgjNwNNIO8QwTgChpGZgSaQdYhgHAF15GagCeQdIhhHwDAyM9AEss4+BV2g4XInpnFUT4jzXqUKAFg88g4RjCMAoMlkHSIYRwBA08k7RDCOAIAmk3WIYBwBAE0n7xDBOAIAmmx9wbKOgi7QEMMqUaUqVdHVr+b9xAaMZmdnZyrtTloZD+Aw8g4RjCNgHDIzcNLIOkQwjoBxyc3ASSPvEME4AsYhMwMnjaxDBOMIGJfcDJw08g4RjCNgHDIzcNLIOvsUdIGGyJ18kvPnz4efLLe2to7UJnD8pjWxevbsWXiYAhhG3iGCcQQMIzMDTSDrEME4AurIzUATyDtEMI6AYWRmoAlkHSIYR0AduRloAnmHCMYRMIzMDDSBrLNPQRcWQqqq1Gq1jvzvJAa0YSe7eazkB0zPcU6s3n///WM7FrBY5J3pk5tjLeo4gpNKZgaaQNaZPpk51qKOIzjJ5GagCeSd6ZObYy3qOIKTSmYGmkDWmT6ZOdaijiM4yeRmoAnknemTm2Mt6jiCk0pmBppA1tmnoAs0yDRCWu6kmKvCB5y88BPxWs6FnGlVAAVI5B0iGEfAMDIz0ASyDhGMI6CO3Aw0gbxDBOMIGEZmBppA1iGCcQTUkZuBJpB3iGAcAcPIzEATrMk6CrpAkxxX1b15rlIFjB5SIl7LT58+HVh24cKFI7cLMIy8QwTjCBhGZgaaQNYhgnEE1JGbgSaQd4hgHAHDyMxAE8g6RDCOgDpyM9AE8g4RjCNgGJkZaII1WadYmXUH4Lhe7NeuXSuabn19vdje3p56RSkV9+DkniOePHky9ZBzXAELWEzyznTJzbEWdRzBSSYzA00g60yXzBxrUccRnHRyM9AE8s50yc2xFnUcwUkmMwNNIOtMl8wca1HHEZx0cjPQBPLOdMnNsRZ1HMFJJjMDTbAu6yjowmJIgWJzc7NoukuXLhV37twJrSiVOykKaHAyffjhh8X9+/cHzhFHCSrVc0Q6P8xz8AFOPnlnuuTmyRlH0AwyM9AEss50ycyTM46gOeRmoAnknemSmydnHEEzyMxAE8g60yUzT844guaQm4EmkHemS26enHEEzSAzA01wSdYplmbdASDOhQsXBpY9fvz4SG3mTornz58/UpvAbFy8eHFg2VGrdFb3n+fQAzSDvEME4wgYRmYGmkDWIYJxBNSRm4EmkHeIYBwBw8jMQBPIOkQwjoA6cjPQBPIOEYwjYBiZGWiCC7KOgi7QJKkS3vr6emhAGzUIAvOven5IHjx4cKQ2q+eYy5cvH6k9gMPIO0QwjoBhZGagCWQdIhhHQB25GWgCeYcIxhEwjMwMNIGsQwTjCKgjNwNNIO8QwTgChpGZgSZYlXUUdIGmuXr16lQDWqq4p+oenFwbGxthlexSFbtqJbsrV65M3B7AqOQdIhhHwDAyM9AEsg4RjCOgjtwMNIG8QwTjCBhGZgaaQNYhgnEE1JGbgSaQd4hgHAHDyMxAE1xd8KyjoAs0zLVr1w4NWaPKVbi6fv36xH0DZu/jjz8u3d7e3p64req+aYKYquUBTJu8QwTjCBhGZgaaQNYhgnEE1JGbgSaQd4hgHAHDyMxAE8g6RDCOgDpyM9AE8g4RjCNgGJkZaIJrC551FHSBhkkBqnpimzSkVfdLbd+4ceNI/QNma319vfOv69GjRxO3tbW1daJCD9Ac8g4RjCNgGJkZaAJZhwjGEVBHbgaaQN4hgnEEDCMzA00g6xDBOALqyM1AE8g7RDCOgGFkZqAJVhc86yjoAnPi2bNnYW3dvn27VBlvc3Nzonaq+1Wr+QEnU/W1fPfu3Yna6d8vTQwvXrx45L4BzSbvEME4Ao6DzAzMiqxDBOMIOC5yMzAr8g4RjCPgOMjMwKzIOkQwjoDjIjcDsyLvEME4Ao6DzAzMiqwTQ0EXmIGnT59Otf10Qksntv5qU+NWqrp//36pWl8KZ/NeoQoYzcbGRqkyZ//5YlR37twp3b53715I34DmkHeIYBwBsyIzA8dB1iGCcQTMktwMHAd5hwjGETArMjNwHGQdIhhHwCzJzcBxkHeIYBwBsyIzA8dB1pkeBV1gBvpPFnXLjuLatWulCnmXL18udnZ2Rto3bffRRx+VTpICGjRLek13q9k9efJkYFJ22Dni5s2bvdspRK2trU2ln8DJJe8QwTgCZklmBqZN1iGCcQTMmtwMTJu8QwTjCJglmRmYNlmHCMYRMGtyMzBt8g4RjCNglmRmYNpknelR0AWOUTpxXb9+PVsxKp1E7t692wlTUba2tnontnSi+uCDDw5tP61P23VPgCmYPXz4sBf2gGZIr+3PPvusdztNylJ1usOkc8Ov/uqvliZwJ6GCHXB85B0iGEfAPJCZgWmRdYhgHAHzQm4GpkXeIYJxBMwDmRmYFlmHCMYRMC/kZmBa5B0iGEfAPJCZgWmRdY5BGwh348aN9urqau9feqlN8q+/jYcPH07cn42NjVK7t2/fbj9//ry0Tbqd+t2/3cWLFwe2A5olnVvW1tZK54eIbYHmk3eIYBwBJ4HMDExK1iGCcQScFHIzMCl5hwjGEXASyMzApGQdIhhHwEkhNwOTkneIYBwBJ4HMDExK1pmdVvrPcRSOgUWSqtvduXMnpLJTt1pUqhS1vr4+cTup2l7qV3+VqlSBKvUxLesep7t8c3OzV+EKaL50fkiV8tK5IJ0Xrly50qlYlzx+/LhTXS9V2ks2NjY61TjTuQJYXPIOEYwj4CSRmYFxyTpEMI6Ak0ZuBsYl7xDBOAJOEpkZGJesQwTjCDhp5GZgXPIOEYwj4CSRmYFxyTqzo6ALLJgUxO7du9f5+ezZs15gSyeydBK7evXqkU6ewMmWAtAnn3zSCTvdwOMcAZw08g4RjCNgGJkZaAJZhwjGEVBHbgaaQN4hgnEEDCMzA00g6xDBOALqyM1AE8g7RDCOgGFkZqAJthuedRR0AQAAAAAAAAAAAAAAAAAAAAAIshTVEAAAAAAAAAAAAAAAAAAAAADAolPQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQRR0AQAAAAAAAAAAAAAAAAAAAAAIoqALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsA0HiPHj0qzp8/X9y5c2fWXQEAgLklNwMAQD2ZGQAADic3AwBAPZkZAAAOJzcDTdFqt9vtWXcCAGCaLl26VGxvbxfr6+vFw4cPZ90dAACYS3IzAADUk5kBAOBwcjMAANSTmQEA4HByM9AUS7PuAADANO3s7HQmb8nFixdn3R0AAJhLcjMAANSTmQEA4HByMwAA1JOZAQDgcHIz0CQKugAAjfbpp5/2fr9+/fpM+wIAAPNKbgYAgHoyMwAAHE5uBgCAejIzAAAcTm4GmmRl1h0AAJimzc3Nzs/19fVibW3tSFU9nz17Vjx+/LhzO/3+5MmTzu/pZ6r2ubW1Fdx7AAA4HnIzAADUk5kBAOBwcjMAANSTmQEA4HByM9AkCroAMDdSEH7vvfdG3j4F8ocPHxbH7f79+8Xly5dH3v7atWu9SQTHK02sHj161Pn96tWrE7czyrhcXV2duH0AgHHIzUSTmwGAppGZiSYzAwBNJDcTTW4GAJpGZiaazAwANJHcTDS5GWiapVl3AAAmDcEpmKfJ1HG7efPmWNsL9rPTP3FOE+lJ3bhxo9jY2OhU3RxW1fPDDz+cuH0AgHHJzUSSmwGAJpKZiSQzAwBNJTcTSW4GAJpIZiaSzAwANJXcTCS5GWiaVrvdbs+6EwBQV1ExTZjSRC1NhFLVzn4pUG9tbR1bf9Kk8YMPPugcd3t7u7Qu9e8HP/hBZ51J23w4f/58ZwxFj5O7d+8W169fLy17/Pjx0MkdAMC0yc0chdwMACwCmZmjkJkBgEUhN3MUcjMAsAhkZo5CZgYAFoXczFHIzUDTLM26AwBQJwXie/fudSZE6fdUFbFfmkSlgH6cFR5TH3ITtI8//njoOo5fmmx3x0Z1shWtOz4BAGZFbmZScjMAsChkZiYlMwMAi0RuZlJyMwCwKGRmJiUzAwCLRG5mUnIz0EQKugBwIpw7d643ScpNqo5LrhJj1/r6+rH1g8P1j4vqxP+oHj58WLqdKn4CAMwDuZlxyc0AwKKRmRmXzAwALCK5mXHJzQDAopGZGZfMDAAsIrmZccnNQBMp6ALAidCtcpkmSdXKh2lSdRzScVI/hPWT4dNPP53K5K1bCbbfpUuXwo8BADAJuZlxyc0AwKKRmRmXzAwALCK5mXHJzQDAopGZGZfMDAAsIrmZccnNQBMp6ALAiVOtiLmzszMQqKdV4fHatWtTPw5Hl8ZDGhfJsAqqk0rtPnnypLTMpB4AmEdyM4eRmwGARSczcxiZGQBAbuZwcjMAsOhkZg4jMwMAyM0cTm4GmkpBFwBOnNwkKk2upikF9kePHoVPBpiO7niYRgXV6sWCdIxqlVgAgHkgN3MYuRkAWHQyM4eRmQEA5GYOJzcDAItOZuYwMjMAgNzM4eRmoKkUdAHgxMmF8vv37/cqME5rQpCOKaifDGk8JFeuXAlve2trq3RbNU4AYF7JzRxGbgYAFp3MzGFkZgAAuZnDyc0AwKKTmTmMzAwAIDdzOLkZaCoFXQA4kXKVMe/evTu146W2VeM8WZO3ZBrPWbUi59WrV8OPAQAQRW5mGLkZAGCfzMwwMjMAwAG5mWHkZgCAfTIzw8jMAAAH5GaGkZuBJlPQBYATaWNjo1OZs1o1c5oTgnRM5l93HKTqqevr66Ftp6qvT548KS1TkRMAmGdyM8PIzQAA+2RmhpGZAQAOyM0MIzcDAOyTmRlGZgYAOCA3M4zcDDSZgi4AnFjXrl0r3U7B+tGjR1OZEFy5ciW8XeKlCVa3YuY0JtzVapxpkli9kAAAMG/kZqrkZgCAMpmZKpkZAGCQ3EyV3AwAUCYzUyUzAwAMkpupkpuBplPQBYAT6/r16wPLoqtydicEuWMxf+7evdv7fRrP2dbWVum2apwAwEkgN1MlNwMAlMnMVMnMAACD5Gaq5GYAgDKZmSqZGQBgkNxMldwMNJ2CLgCcWKka4vr6+tAAHyG1l45RPQ7z6ZNPPun8TM9XGh/Trsh56dKl8GMAAESTm6mSmwEAymRmqmRmAIBBcjNVcjMAQJnMTJXMDAAwSG6mSm4Gmk5BFwBOtFzVxfv374e1nyp8qsZ5Mjx58qR49OhR5/dpPGepOms6Rj8VOQGAk0JupktuBgDIk5npkpkBAIaTm+mSmwEA8mRmumRmAIDh5Ga65GZgEazMugMAcBTXrl0bCOu3bt0qNjY2QqovpsB+5cqVYhrSRPPZs2edicHTp087x0q/d5el28+fPy9WV1cH9kuVJ9Nkpbttqj6Z/qUKkem+T6MaZa7/qR+pn92+p76mY1+4cKHzvBxnJdM02e6axnNWrcaZ7mf1uUnPSerHgwcPBh6Tq1evFjdu3AjvFwDAKORmublLbgYAyJOZZeYumRkAYDi5WW7ukpsBAPJkZpm5S2YGABhObpabu+RmYBEo6AJAIyZxd+/eLYXoFJ6POolJQTxNhqohPULq3+XLl8faJ93Hmzdv9iZsqRpk6lu6nSYMaYKR/qVt0rrU/+iJXDpWar//8U6TtPQcvP/++8Xjx4879y2tT/9SP27fvn0sE7luJdbu4xJta2urdLv/IkF63NOENd33dF9TH86fP9/bL/WtO7m7d+/esU5sAQC65Ga5OZGbAQCGk5ll5kRmBgCoJzfLzYncDAAwnMwsMycyMwBAPblZbk7kZmAhtAHgBFhfX+/8y3n48GE7vaX1/7tx48aRjvf8+fNOO1tbW9n1GxsbA8cctu2w9i9evNi5T2trawNtdf+l7dK/tF26nY77+PHjoY9Dd7uox6Hf5uZme3V1tdd26kvq2zDp8ejv9zT1j4F79+5N5RjV56n7fKfHON1O93XYc5O27d839RcAYBrkZrm5jtwMACAzy8z1ZGYAgH1ys9xcR24GAJCZZeZ6MjMAwD65WW6uIzcDi0JBFwBO/AQuF67TROOok5XU5jBHncBV9U/SqkE/9SPdn1Hbr/YtYvLUnaR0/6XHZ1Rp27RPmrBOy7Vr13p9m4buhL46uU73adRJY3fb7mQPAGAa5Ga5uY7cDAAgM8vM9WRmAIB9crPcXEduBgCQmWXmejIzAMA+uVluriM3A4tiqQCABrh+/Xrp9s7OTrG9vT1xe5ubmwNtTtPq6mpx+/btgeWXL18unjx5Ujx8+LC4ePHiSG3du3evWF9f792+f/9+cenSpYn7lh6HO3fulB6ba9eujbx/2jbtk56Pu3fvFtPw6aefdn5ubGxMpf3qWEqP782bNzvLt7a2Rjpuei67Hj16dKTxCQAwKbn5gNwcT24GAJpAZj4gM8eTmQGAppCbD8jN8eRmAKAJZOYDMnM8mRkAaAq5+YDcHE9uBuaFgi4ANEJuQpEmDZNIE6YUsMeZpERYW1vL9iVNEHLr6nz22WedSWFXmiz0T8JGlSZ//ZOuNIkc53FJ/f/ggw96k+HcJPWo0n1LE/ZkWpPu9Bz0S+MjPS5p+agT63Pnzg20AQBw3OTmMrk5ltwMADSBzFwmM8eSmQGAppCby+TmWHIzANAEMnOZzBxLZgYAmkJuLpObY8nNwLxQ0AWARkiTlWqQTpOPbrAfR5pkpLb6J0DHoRrwkzRZGnWC0C/1/eOPPy4tSxUkx5k0pMlXfxXJSSbFafLWf8zUZvoXqdun3BiIkque2R0no6qOp8ePH4f0DQBgHHJzmdwcS24GAJpAZi6TmWPJzABAU8jNZXJzLLkZAGgCmblMZo4lMwMATSE3l8nNseRmYF4o6AJAY6QJSlV/NclRffrpp1Or7Diu6gRqHDdu3BiYNOQeo2Gq26bJyjiVQdNELTeBjp7ApYl6cuXKlWIa0n2o9nl9fb3z+I7bzjQfBwCAUcnNZXJzDLkZAGgSmblMZo4hMwMATSM3l8nNMeRmAKBJZOYymTmGzAwANI3cXCY3x5CbgXmioAsAjZGrojluBcnuZGBjY6OYB7kqneNIFT2rlSVHqcqZJhfdx2KSyV9d38eZBB6mf4I+rUl3rhrnD37wg7HbqU7YjrviKwBAl9w8SG4+OrkZAGgSmXmQzHx0MjMA0DRy8yC5+ejkZgCgSWTmQTLz0cnMAEDTyM2D5Oajk5uBeaKgCwCNUp2wpNA8yoSlf8JXbeMku3r16sCyW7duHbrf7du3B5ZduHBhrGOnCUq1amV6bCMncPfu3ev8TG2mKpnTsLW1VbqdJveTHOuHP/xh6faHH3545L4BAExKbi6Tm49ObgYAmkZmLpOZj05mBgCaSG4uk5uPTm4GAJpGZi6TmY9OZgYAmkhuLpObj05uBuaJgi4ANEquKuOoVTl3dnY61RenVdlxFtJEo1r5sVppM+fTTz8t3U4TpEkqSKaJ4MOHDzvPQZoIjVshdZTna9oVVKsVOXOT4knamdaEEwBgFHJzmdx8dHIzANA0MnOZzHx0MjMA0ERyc5ncfHRyMwDQNDJzmcx8dDIzANBEcnOZ3Hx0cjMwTxR0AaBRcpUZ7969O9K+qVJl2jeyYuQ8yFXSrKtSmqqYpslR1GQj7ZsqcV68eLGI1P+8TmvSnR6H9Hj0m+R+5B7TcSucAgBEkpsHyc2Tk5sBgCaSmQfJzJOTmQGAppKbB8nNk5ObAYAmkpkHycyTk5kBgKaSmwfJzZOTm4F5o6ALAI2TC/OjTOLSNk2qxlk3+apWhzxs3TxOaj/55JPOz2lOunNVNCepTBrVDgBAJLm5TG6enNwMADSVzFwmM09OZgYAmkxuLpObJyc3AwBNJTOXycyTk5kBgCaTm8vk5snJzcC8UdAFgMZJ1R+rNjc3Dw3YqWJibt+T7v333x9Y9vTp06HbP378eKQ2ZilVuOxWFZ3mpHtra6t0e9KqolHtAABEkpvL5ObJyc0AQFPJzGUy8+RkZgCgyeTmMrl5cnIzANBUMnOZzDw5mRkAaDK5uUxunpzcDMwbBV0AaKTqRCyF/RT6h0kTvCZO3pJc5ce6xyJNZEdpY5b6J+RXrlyZ2nGqlTQ//PDDkHYuXbp0pH4BAESRmw/IzZOTmwGAJpOZD8jMk5OZAYCmk5sPyM2Tk5sBgCaTmQ/IzJOTmQGAppObD8jNk5ObgXmjoAsAjZSr0jisKmeasNy/f3+qlR1n6dy5cyNN0rqePXtWzLu7d+/2KltOa3KZHqPqRHeSSprp4kH18VaREwCYF3LzAbl5MnIzANB0MvMBmXkyMjMAsAjk5gNy82TkZgCg6WTmAzLzZGRmAGARyM0H5ObJyM3APFLQBYBGWl9fL9bW1rKhv+rTTz/tbJv2aaLchKxu0pOb8M2T/gnRNCfd1SqaaYxMMln85JNPSrc3NjaO3DcAgChy8wG5eTJyMwDQdDLzAZl5MjIzALAI5OYDcvNk5GYAoOlk5gMy82RkZgBgEcjNB+TmycjNwDxS0AWAxqqG+27lzarbt283thrnsOqb1cltv9wkpa6C53Hrr6w6zcnQ1tZWSBXN6pi7evXqkfoFABBNbt4nN09GbgYAFoHMvE9mnozMDAAsCrl5n9w8GbkZAFgEMvM+mXkyMjMAsCjk5n1y82TkZmAeKegCQGNdu3atNvx3qzs+efIku21TPH36dGDZ+++/P3T78+fPDyx7/PhxMS9SBdXjqGz54MGD0u1Lly6N3UZ3fPVTkRMAmDdy8z65eTJyMwCwCGTmfTLzZGRmAGBRyM375ObJyM0AwCKQmffJzJORmQGARSE375ObJyM3A/NIQRcAGitVlqyG5e3t7VJ1yTShS9vkqlA2RZpEVNVVl8ytq05CZiVVt+w+f9OsopqOUX3c1tfXx27nk08+Kd02eQMA5pHcvE9uHp/cDAAsCpl5n8w8PpkZAFgkcvM+uXl8cjMAsChk5n0y8/hkZgBgkcjN++Tm8cnNwLxS0AWARsuF/Lt375Z+n+ZEYB6kSWu/NFmtm4ysra0NTGir1SlnpTshSv2rm4QeVfX+puOlx2Vc/WMtuXr1am0l1Or2AADHRW6WmychNwMAi0RmlpknITMDAItGbpabJyE3AwCLRGaWmSchMwMAi0ZulpsnITcD80pBFwAaLYX86mQkVeHsVnec9kRgHqtxXrly5dD9qtukCpURVTlTO+lxP+q+o9yHo9ja2irdnmSMpMe+v/prXUXOtG16fCeZJAIARJCb5eZJyM0AwCKRmWXmScjMAMCikZvl5knIzQDAIpGZZeZJyMwAwKKRm+XmScjNwLxS0AWAxrt27VrpdgrKKTDfunVrYF3TdCer/W7evHnofrltJp149UuP+SjHz/n00097v0+7imq1iumlS5eO/NjXjbXutk2+mAAAzD+5uUxuPpzcDAAsGpm5TGY+nMwMACwiublMbj6c3AwALBqZuUxmPpzMDAAsIrm5TG4+nNwMzCsFXQA4MarVDUeVC/sfffRRZxI37YnAUR21Cubdu3cHJhGjVH1M21SrR+Ymg5P0Z9JJSvf4qW/r6+vFNMdZtZLpJH3un3Amly9frt12WLVOAIBxyc3jk5vHJzcDACeZzDw+mXl8MjMAcNLJzeOTm8cnNwMAJ5nMPD6ZeXwyMwBw0snN45Obxyc3A/NMQRcAToQ0kXn27NlE+6bAXw3gKaCnScAok5lZ+uSTTybet1r5cnV1tbh9+/bI+1e3Tc/BUapypn3T5GiSipz9k6ppT7ofPHgw8LiNO05Sf6sXHIZNAlP1z7Ttxx9/PEFvAQDK5Obxyc2TkZsBgJNKZh6fzDwZmRkAOMnk5vHJzZORmwGAk0pmHp/MPBmZGQA4yeTm8cnNk5GbgXmmoAsAcy8F924grlZKHFUu9B8lME9aHXSSSc8kVTnTPnfu3Cktu3fvXmcyMqo0aUn7VCuZTnrf076p6uQkk+b+yqLTrly5tbVVun3hwoWx26hebKirIJomtGn9NKuMAgCLQW6Wm+VmAIB6MrPMLDMDABxObpab5WYAgHoys8wsMwMAHE5ulpvlZoB9CroAMPdS8M/9Po5c6D/KRCA3qZp0cnmYS5cujbV9mmBV90nVNYdVhKyTHqMbN26U2p7kOUj9Sfv+4Ac/KCaxubnZ+XkcVVRThcyjPP5JtY/D+pwm6GncTPq4AAD0k5vlZrkZAKCezCwzy8wAAIeTm+VmuRkAoJ7MLDPLzAAAh5Ob5Wa5GWCfgi4AzKVuRcn33nuvNDFKv6dlad24lSqvXbuW/X3cfqUKirlj37p1qxPII6t1poqYqbrjBx98MFK7aZtf/dVfLfUvTX76J2HjSpO//v3Tfbx8+fLI+6cJUJoUpUqX41QE7Ur3pXt/cpVVo1Un4pNMfKuTttwErjsZTmNRNU4AYFJy8z65WW4GABhGZt4nM8vMAAB15OZ9crPcDAAwjMy8T2aWmQEA6sjN++RmuRmgpA0Ac+L58+ft9NY0yb+072EePnzY2z79PorV1dXOv0n61N33xo0bE9//1M/Hjx+319bWOm3du3dv6P5bW1ulvqZ90rIo6djjtL+5udnr91H6kR6/cZ7no0j9rD4HR3m8um1sbGyU1nWf0/X19YBeAwCLRm6Wm3PkZgCAAzKzzJwjMwMAlMnNcnOO3AwAcEBmlplzZGYAgDK5WW7OkZsBDqyUy7sAwOyNW7Vx1AqYqerhxsZG7/dx2p+kkmR336NW6EzVHB8+fNip3pgqYabb6X6cP3++s/7x48edKpndqpWprx9//PGRqnDmpGOm6pSpIundu3c7x0vVNtPxrly50unP06dPOxUtHzx40LnfafvU90kfvyQdK0ltHaWdSXTHy6T7pmqbqf/p+UlVZNNzlyqTpmXp/qTfAQAmJTeXyc1yMwBAlcxcJjPLzAAAOXJzmdwsNwMAVMnMZTKzzAwAkCM3l8nNcjNAVytVdendAgBmJk143nvvvdKyNPnpn2ymbW7dutWZJKUJVPqXJjVpYnDhwoXOBC9NDI5DmpR88sknvX6kvqV+pH+pz9evX+/8fhTb29udSWJy7969I02oRpWOl44bNcFKj9Pm5mZnUpuk5yk9NsdxXwAAmkhuHiQ3AwDQT2YeJDMDAFAlNw+SmwEA6CczD5KZAQCokpsHyc0AZQq6AMAJmsAtmjTR6VbkFFkAAEjk5kFyMwAA/WTmQTIzAABVcvMguRkAgH4y8yCZGQCAKrl5kNwMULZUuQ0AMDe6kzfVKwEAYDi5GQAA6snMAABwOLkZAADqycwAAHA4uRmgTEEXAGAu3b9/v1SZEwAAGCQ3AwBAPZkZAAAOJzcDAEA9mRkAAA4nNwMMUtAFAJhLm5ubnZ+rq6vFxYsXZ90dAACYS3IzAADUk5kBAOBwcjMAANSTmQEA4HByM8AgBV0AgLmzs7NTbG9vd36/cuXKrLsDAABzSW4GAIB6MjMAABxObgYAgHoyMwAAHE5uBshT0AUAmDuffvpp7/fr16/PtC8AADCv5GYAAKgnMwMAwOHkZgAAqCczAwDA4eRmgDwFXQCAubO5udn5uba2Vqyvr8+6OwAAMJfkZgAAqCczAwDA4eRmAACoJzMDAMDh5GaAPAVdAGBOPHv2bKRlTffkyZPi0aNHnd9V4wQAoEpu3ic3AwAwjMy8T2YGAKCO3LxPbgYAYBiZeZ/MDABAHbl5n9wMMJyCLgAwJ3Z2dkZa1nT379/v/b6xsTHTvgAAMH/k5n1yMwAAw8jM+2RmAADqyM375GYAAIaRmffJzAAA1JGb98nNAMMp6AIAc1KF8qOPPhpYfvPmzV51ykWxubnZ+bm+vl6sra3NujsAAMwRufmA3AwAQI7MfEBmBgBgGLn5gNwMAECOzHxAZgYAYBi5+YDcDDDcSs06AGCKE7YPPvjg0Kqb/dutrq52fn722WedyU0Tpclqus/J9evXZ90dAABmTG7Ok5sBAOiSmfNkZgAA+snNeXIzAABdMnOezAwAQD+5OU9uBqinoAsAzEiauKVJWXdiNuo+z549K5rqk08+6f1+5cqVmfYFAID5IDcPkpsBAOgnMw+SmQEAqJKbB8nNAAD0k5kHycwAAFTJzYPkZoB6rXa73T5kGwCAY/Hee+91JqkXL14stra2Zt0dAACYS3IzAADUk5kBAOBwcjMAANSTmQEA4HByM0C9pUPWAwAci+3t7c7kLbl+/fqsuwMAAHNJbgYAgHoyMwAAHE5uBgCAejIzAAAcTm4GOJyCLgDAXFldXS02NjZm3Q0AAJhrcjMAANSTmQEA4HByMwAA1JOZAQDgcHIzwHCtdrvdrlkPAHCsVTkvXLjQmcQBAAB5cjMAANSTmQEA4HByMwAA1JOZAQDgcHIzQD0FXQAAAAAAAAAAAAAAAAAAAAAAgixFNQQAAAAAAAAAAAAAAAAAAAAAsOgUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQZCWqIWC4vb294unTp7PuBgBA47z//vvF0pI6lU0gMwMATI/c3AwyMwDA9MjMzSE3AwBMj9zcDDIzAMD0yMzNITcDAEzP+wuWmxV0gWOQJnDf+973Zt0NAIDG+dGPflR897vfnXU3CCAzAwBMj9zcDDIzAMD0yMzNITcDAEyP3NwMMjMAwPTIzM0hNwMATM+PFiw3L07pGgAAAAAAAAAAAAAAAAAAAACAKVPQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBVqIaAsaz/Au/XBTLK5W6Svu/t1pvlrVaA+uK3rqD/VoD61rD1xXLB+sqbbWKvuO1lkv797btLOu20Rpss7d9ef/9e1C3rnK8vnXd7bvbdNvp3y6/rrxsuX1w/7rLqj/Ly1qln/u/d+9xa+Ap6q7r7ZdZ192+VbQP1rWq29St62uz93t74Hjd9uva7G7T32Z3u+6ipb79qn0vHa81/HjdxnLresfJ9WWgv8Vgm5X+9reRa7P2vtf1r+Z5q9uvev/6j5l9jGuOV/v4V5aVzhzV+1yM9rxVl+XvQ7fNzH69PrVr+ll3/3L7ZY5XWVZ+HtqH3odcm4Pb96/bO3S//PHK68qvkb3yfqXXXfc4b7Y52OugjaXMfa+0WT7em9+7697sX7o/vf36Dlg9Tv/xlqpt9u1X1KwbuA+Dxxt4QZX26x6/f113/8x+1WV16/ra7L19HJzoB1VP2H1ttetfnG+OkXtDaY23rnX4frm+HCzr7pe7X+VtSvtljnfwmL1Z13fS6m3XW9fXl14fKsd908az33tR/H1/+N/t6yBN9+6pP1m0Wm+X8lf351Lf4Knmtu42uXX9p8SB/JbZr5uR+7Nyb7/24H7d7aptl9saXFc97eUyaHdtqc3eKbF83MP60j09H5z+Bo9X3T+3rnR6HrJNeVn1Po19Wq491Q9mreLo2a5yCsxl5IPTZC7bVZ7c/iyReX8cWJfdr+9OD22zJvvk8kYmi1QzQW6/7H2v7Uu1D7k2a+YqmdxQl7Wqxymtq+Sb2vtQOl6l7Zr96taV+zLs8ck8D3U5M5e1Rrh/vZNQX/v5573Sp7rnNvMcFeM+ZpXHJdfmQR9ybb5ZkOln7nEZzLwHqwa27+/L0ihtltvJtzk8Y/efCAf6kBvz1f1zj0emn9n7ULtfpQ+ZMZi7fwP7ldqv3C5lxsExO/DGkFnXrrad2a+cgw9f11tWytYj7JfL5AP5Obeu8rOzrvzYdvd7+nS3+JX/8d/oOzhN9vbpf7JYKd7JZub+3JzLvMt1OTjzsq62kc+6mQxZyc3ZbJ1ZV83G+Zf+4PGqubl8+ilvX9eXvreW2ow8mLsH19Vn3lyb1W1GWzdS7h48DQ3k4VGvPVbfc+uya+568kBm7luYza5Ldbk2f9x++Tar/Rwtvx3k/MPzafa+1/Yl835cvdaZnbPkMlr+uPllmXXZa48196EyFvK5ti7z1hyvmg2z2a6vycpjlhtLo+TTbLar+3wll9Hqntua+cVIj1nmcRloszQuhj9vuWvNA5kum60z97myrn9c1rdZaavu+c602btmnMuzNc9p3TXx6nXsbFu1+/Wtqy6ruX/5/YYfbyAz57Yvv0HnM3P/9pn96vNpTR7uHWeE/TIXdKqZub+tgT6V+jA4ltJ+MvPica15Ma81T/wR4uBpaKTP4nPXo+uuL+aya/V6a/l45Sc3m10rmTnXh1yWHDhGqc1cPw/Pb9XM3N9GPmMPXzdKPs3lnOpjXDcXGDXzVo9Tf/0719ZBS64157Oda82HtVluJ9/mAl9rzl5Aqmbmzq1KX/pWVa8197/t1X2XZaR8Oriueq25Pep+A9876d+vlc/MpfvXXTc4lnrXmp+9LH7lD/9W38402R8p/sHiVOts5/dWb3z1JcjqsvJFrzc/eifcg3XV7xz17dfbPvO9pIM3kEyb1eCW6UtdP/sungztZ/Z1k7sQWv2uU+mcX22z/3hD9s/cv/L8urIsE6QPvnd1sKrav2yb1eN32jj8ePl+Vo6T+15Z9/bSmPtl70PNssz9qn88hvzM9q8Yer+y66p9yhyn/nGsWVeM2c9R1hWj7Vfbp0rOqHus65+Hg0et9PgNvQ+5HDa8zcHHbHBdr6nstcdM71p1GbS6TX8/h88hDr6PW2m79JLM5fZRvjdUDJ/fVe9mpq26z1dy36deyuxXXZY7Xret7H7ZeWH5e9/9faker9Rm7zjl/ZPl3nH2Btpcruvnm++Cd5ctv9m/f/vusm7b+8cr35fu8Uv9q7S9v92b7bP3vbxff5vd/ZZq799e5j6Ut+9f122/+riW1nUflzft5B7Hcj+763qLBi5bL/etG/gLqL4XV/VaYOl62pvtqn9jtL/9UvF7z3aLv+fv/5sHB6Lx/kjrjxWnitMH+bj/b/IyObqaM/v/Ni/zBdSB/QYyc/921exbWla5nTtOTT+zb1y5vyfo/lrKdNXj9G9f07+BvyMoxsrdo2TIbCbszY/7+1IMb7OyTemzq9osWe1nf1+GbJPLzaPuN0YmzOXT3GNdf/+GHHfYslH6OaTt7H0YtS91farpS+26IX3Kblf7eLZHHLvD1/Vy92D3Rsq8dW3mH7NKPi0dr+Y6Wk2uLUY4HeWvVefb7t/u4CUzPA/Xf28o02YlM/cfJ5e/6z5fqebZuqyc/3vUETJvNpsPZslqDqvL37k2+nNbNTcv1x2nPwtWcnM5l5Zz88Fftw/m5v7sOZDJ+443mOUH9+u2WcqstfevnJtL96+Sm0s5v9KH8hyg3Ifc833Qz/513bbLP/f78OZn5uXazc21n59XMnN5+/1lz561i1/++3+zWGQKusCsLK8UreVTlU/A30ziMkVbDr6BOEpBl6UJC7osjVnQpbtu1IIuyyMUdMkUZqkt6DJ8XXXZcumLWEvZn/uP0NKhX7bqXaxp1XxJK7PuYL43/M0w94WVUYqTjFpgpa6oydIUCrpU59K5i8fZP9gc0qdSm4EFXer7V96vvGxwv7rne9KCLvVfBisv6388qoVHytc0asbJwDa55zQ3eaj2qV3Tz8yEJLCgy8BEpu6PhUdeN05Bl73RvlA1TkGXzLpxC7rUfel9vC8cjVjQpRVU0GVp3IIulf3728i1WbNu4KJgfqY9WUGX3AXA3nFa4euqxVtKy6ofwPcvG2W/pUkLugy2OaygC4snfcF+qfWtIV+kn+xL9uWXfnXd4H6t7Lr8/uXti5o2x11Xbbv/eNW+FCP1pXq6G/tL9u3c8UZps3w7t660bPjpdciXBSrbZPPl4dku/8eRw9fli5qUt6/9snvpc7FqbphwXUBBl2r/6r6UX/sF9ZovYte3WYz1hf3Rviw/mGHG/5J9Zfsx79/kX7If5bEuJtovfx/Kt0u/j/DcZj8MyX7xuy5n5o87eptvFkyYeXP5dKQ8nG2zu/FkGTv/Jfvhz9+Rv2Rf86X3uv2yX7If5cv5pbYqt0sfSA/e54kLutR9aX1g3eB+B33qz6yj7Df45jZOQZfSuspjW/ojXBYrMxf5zHzYtc66gi51ebY+Bx+eu+uKqNRn3XFzcDlj57avLy7Tv1+17dzxisF1ldw8epvVPg1fl73GWbdfJfvmlo197bGSmXPr8kVNytvmlk1e0GXUNuv6MjxP1WX6kTL2EfPp6AVdJsynE+fv/Db7nT5qX8q3S79PmL/H3a8uL9bn2po2a56/yQu6DB9ftV9smrCgy0i5e9KCLmO22btmnLkP2ft31IIuNQVW6vbL5eG6OcBYBV1qM3aunzUFXTJvRL3cnF1XXlb+g6xK1q3db/DNbdyCLr11mfmI3LyYXGtezGvNmdPQIdk8l4dHydHtmv1yuWH4usGiJv3rRsiulcyca2vsdUcs6DLqddClKeTT0Qq6TJhPR8jf+baKMa/TTpZ1azPkSPfrYDfXmkfMvCPOHVxrnvK15lELutRm7GqfDlYNXGvOvBENZObSusH9qteaxy7okr0eXW6r7hp3eS7Qfay696H/TyFoulPFmeJ0t6BL5g88B5ZlAk5rKbOuumzcgi65Ngc/xM+sq7Sd26/mj1vriq+M+0enRy7okptfV7YJKejSa3O0gi7j/fFoa7RCVuPsV3e8bFujPh6TtpnfP9v34ujHm3TdNAq6jPbHtO2JHuvq/gPbDe1L5j2+ps3Bx2xwXTaHDTweuf2G59qBtvvar5tDDLRdOnXkcvvoBV1y88L8d/LLbWX3q+yfXZeZw41dfKWy/dLYBV3KhU9GLeiSXdc7zvACK6MUdMkXPBle0KXadv+yuj+APfgD01w/y23n7l+5aMsoBV26+7VqCrrUrcs9D0XmON3+9q9rVdaNVtDl4A9YlzLr+t/EWBSpmEvKzb183P83eZkcXc2Evczcvy6bo99sP0quzbU5QuatLeiSv6A5sG6UHFy7fWRBl9x3uaq5MpcJe3Pn/r4M2T+Xi2oKuoyau0fK1tMs6JLdL/eYVdoau83B/Wr7WRw1g062bhoFXUbL5pnMO9J+/cfL5O6hfanJtZk284/Z4bl28oIuuRxdbrvu+yrZ68qV26V1vVNdbt0IeTj3d5eZftbl6EkLuoxUfGWEPFzf5vDCJ7k2skUIezm4PVKBlVEKutRn5Ezfawu6DM+z1dycK+hSLahY3m8wW9cXdCnn5nxBl7p1uechn5n3j9Nd18qs6y7rHu/ghdBbVsnM5XXdHL1XLDqzBwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgyEpUQ8B4dp/9drHy3V+YdTcAjs2/+ug/6PxsvbndKtrF//qD/+lM+wQAi+LX9v6t3ntw1y+3/viMegMchz/7X/6wl7vf/FL8E/+jC7PtFDA1t/7Zp0W7tf96/+rLvVl3B2Bsf/6bf2v/lzcTl5Rh/uG3/pGZ9glOmjv/0X9VXtBqFzf/3r97Vt0BgJn5S8W9zs/+a+J/tLg8s/4A/HOf/frBjTfX8P6Pl/7A7DoEQCM9+evbReUia/FL5y/OsksAE/urf+4vleb16XOjv/NP/MoMewQATMvv/KV/7+DGmwDw03/kj82sP0Csv/R/+yudn603r++lol380X/8l2fbKZgBBV1gVn78t4tCQRdggfxr/9l/OLBMQRcAOB7/TfFvDyz75UJBF2iyf+WvPBhYpqALNNc//889m3UXAI7k33s5OGdR0AXG8y/8x782sExBFwAW0V8u/s2BZQq6ALN06y/81YFlCroAEO03fuMvDCxT0AU4qR7/q//pwDIFXQCgmX70l/+/A8sUdIHm+E/v/tcDyxR0YREtzboDAAAAAAAAAAAAAAAAAAAAAABNoaALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAkJWohoDxtXdfVeoqvfm91f3Zqlk34X7F8sGqgbb69mt1t8sdb7m0fbuvzdab7Vtv9u/e7m8rv668rN23rrt99zildb3tB9ftvVm21N2mfXD/usuqP/f36y5rlX72PRrF3ptl/Q91d11vv8y67vaton2wrlXdpm5dX5u939sDx+u2X9dmd5v+NrvbdRct9e1X7XvpeK3hx+s2llvXO06uLwP9LQbbrPS3v41cm7X3va5/Nc9b3X7V+9d/zOxjXHO82se/sqx0Bqje52K05626LH8fum1m9uv1qW8sZOx8/eWQ+9f/uJSXlZ+H8rLy89A+9D7k2hzcvn/d3qH75Y9XXld+jeyV9yu97rrHebNN32PXa2Mpc98rbZaP9+b37ro3+5fuT2+/vgNWj9N/vKVqm337FTXrBu7D4PEGXlCl/brH71/X3T+zX3VZ3bq+NntvHwcn+kHVE3ZfW+36F+ebY+TeUFrjrWsdvl+uLwfLuvvl7ld5m9J+meMdPGZv1vWdtHrb9db19aXXh8px37Tx7Pde9HWORdBuf/XmDJiG7Zv8dfDiOtiul0sHX+DVdXvtmvxWyn2t/HH792sP7tfdrtp2ua3BddXTXi6DdteW2uydEsvHzfWl6pv2532nv8Hj5favriudnodsU15WvU+HnJbLp/whxxneVv1+uQwzuK4229W02et7772z7/5Vs0H/fR/IDbl1fTsM269dk31yeSOTRXrv329eiLn9Dt4iarJPf94Y6EOuzZq5SiY31GWt6nFK6yr5pvY+lI5Xabtmv7p15b4Me3wGs1ldBi3nsEFPv/k6f5xMJhy4n/2PwyjPbeY5qmbR/H7DH5dcmwd9yLX5ZkGmnwePa/8bw/D7MLB9f1+WRmmz3E6+zeEZu/+ENtCH3Jiv7p97PDL9zN6H2v0qfcjk/dz9G9iv1H7ldultf3DMDpyMM+va1bYz+5Vz8OHrestK2XqE/XKZfCA/59ZVfnbWZR5bFjQzD8+u3QE1mJn3t6wuq+bmchYs59F81s1kyEpuzmbrzLpqNs6/9HOZt3K80umnvH1dX/reWmoz8uAcYHBdbebNtlndpmZdtp+5vuR/Hr5fu6Yv7Zo224e2OZCZK36y9/mQ67W5/FZdN9hedr83ubm6f/92uYx2kPPLmTm3fe5aej4TDl9XzbPZa/fZjJY/bn5ZZl322mNdjs4ft/RY1WbemuNVs2E22/U1WRyev0fJp9lsV/f5Si6j1T23NfOLkR6zzOPS7/e+epHNzdmcn3m+BzJdNltn7nNlXf+4rG+z0lbd851ps3fNOJdna57Tumvi1evY2bZq9+tbV11Wc//y+w0/3kBmzm1ffoPOZ+b+7TP71efTmjzcO84I+5U/BKts05dbqsfJXMTKZea039Onu30bswhca4691ty/X2+qXtl2lteac75qf57dP7esvi+5/cqZudxWu6bN9qFtlt62Ku87+c+Va9Zl9+s7+LD9Kpm5f7u6/FbNzLlrzeWMPXzdKPk0l3Oq84N8/s6sq8thxTjXv3NtncBrzQO5u6afrjWXthuW05Pf/eLFYF9caz76tebsBaRqZu7cqvSlb1X1WnP/217dd1lGyqeD66rXmtuj7jfwvZP+/d7klpGufw+Ope5+T5/JzYvkVfGiN1hamUHXGmHS19rrnXAH1vWdwA7WVL+7nHuj7A7I/Jc9B/vSe+PJ9LPah+yXS9+8frIhbXg/e991Kt31apv9xxuyf+b+lR/qyrK6EFwUxcuXX2T7l22zevxOP2uOV9vPynFy3yvr3l4ac7/sfahZlrlf9Y/HkJ/Z/hVD71d2XbVPmePUP44164ox+znKumK0/Wr7VMkZdY91/fNw8KgNJKzsfci8x9e0OfiYDa7rNZW99pjpXasug1a36e/n8DnEwfdxK22XXpK53D7K94aK4fO76t3MtFX3+Uru+9RLmf1yy/q92Pm611Z2v+y8sPy97/6+VI9XarN3nPL+yXLvOHsDbS5XjlNus9zWct+HS93tu8u6be8fr3xfuscv9a/S9v52b7bP3vfyfv1tdvdbqr1/e5n7UN6+f123/erjWlrXfVx6V/EGH8dyP7vreosGLlsvt4b9BVRad7Cye61rOXdt7812vb70rUt9+D2ZeeG8Kl52TscH+fhg1OVydPVNtJeZD39DeLMocxau5tL+QFXNpf1tdvtSzcy5dbnj5f6eIHOXMx8a921f07+BvyMoxsrdo2TIbCbsTR36+1IMb7OyTemzq9osWe1nf1+GbNOn9zSPut8YmTCXT3OPdf39G3LcYcuq+1W8/uqLwce67j6M2pe6PtU8ZrXrhvQpu13t49kecewOX9fL3YPdGynz1rWZf8wq+bR0vJrraDW5tuYywuB15dw1y0rb/dsdvGSG5+H67w1l2qxk5v7j5PJ33ecr1Txbl5Xzf486QubNZvPBLFnNYXX5O9dGf27L+erZN/nj9GfBSm4u59Jybu77i/mB3NyfPQcyed/xBrP84H7dNkuZtdK/bjul/Sr5u7x9JudX+lCeA5T7kHu+D/rZv67bdvnnfh/e/My8XLu5uZqZ+5dVM3N5+/1lz57Vj4lF0Gq3+/7CB5iK3/3d3y2+973vzbobAACN86Mf/aj47ne/O+tuEEBmBgCYHrm5GWRmAIDpkZmbQ24GAJgeubkZZGYAgOmRmZtDbgYAmJ4fLVhuPuT/2wsAAAAAAAAAAAAAAAAAAAAAwKgUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAkFa73W5HNQbk7e3tFU+fPp11NwAAGuf9998vlpbUqWwCmRkAYHrk5maQmQEApkdmbg65GQBgeuTmZpCZAQCmR2ZuDrkZAGB63l+w3KygCwAAAAAAAAAAAAAAAAAAAABAkMUpXQMAAAAAAAAAAAAAAAAAAAAAMGUKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAA///27seqab5hA3B5zjuA4ASPbCA6gbIB6ATCBnCcwAMbgBMobABOoLABPBM86AZ85877hTfW/k3TNmmv6xyOFNsktAm5f2lytwcAAAAAAAAAANAMhS4AAAAAAAAAAAAAAAAAAAAAAA1R6AIAAAAAAAAAAAAAAAAAAAAA0BCFLgAAAAAAAAAAAAAAAAAAAAAADVHoAgAAAAAAAAAAAAAAAAAAAADQEIUuAAAAAAAAAAAAAAAAAAAAAAANUegCAAAAAAAAAAAAAAAAAAAAANAQhS4wB9fX1739/f3ezs5Ob3Nzs7exsdHb3t7u7e7u9k5PT3u/fv1a9iICAAAAK8JxCABglSXTJOMsimxFV1hXAWD0fvLw8PC3/WT+zb4y+8/z8/Pe/f19Y/PLtDL94+Pj2tPNvjv78Cxzlh3oLlkdgGWShYEukqEBgGGcMwLdYfuB4TYeHx8fR/w/MIXsVM7OzooD0s+ePeu9ffu29/r16+L7u7u7Yod0e3tb3Df/l/u+ePFi2YsNMDcJ3D9+/Oj9/Plz2YsCAMyRfT4sh+MQsN7sf4FVlxzz4cOHpzyTv3fJOfMiW9EV1lUAGO7y8rLIkJOeEJp9ZS48zb+zyP434/RS9r2ZZk5YffXqVXG7P8tmX5599vfv33/bf8fNzU3v5cuXMy0TsHiyOgDLJAsDXSRDAwDDOGcEusP2A+MpdIEGZEeTg9Fls/jR0VHv48ePA0Ni2Xxe3vfk5KS4P8AqWfTAGQBYDvt8WA7HIWC92f8Cqy65JRcS5AKEqnn9vZOt6ArrKgCMlv1k9oFxcHBQ7AurF4Jmv5iMWZ5QWrW3t9f7/Plz7bzZfxHrLC4uLorlAbpDVgdg2WRhoGtkaABgGOeMQHfYfmByCl1gRrlw4s2bN0+N5pMeTO4/eJ6D5ABdt+iBMwCwHPb5sDyOQ8D6sv8FVtWoT2Od99872YqusK4CwHDZP2Y/mf3lpJ/ql/F1Pi2wKo+5urqq9YmATVzEmqybfXx+B6A7ZHUAlkkWBrpIhgYAqpwzAt1k+4HpKHSBGWRn8/fffz/tdLLzyE5kUtvb2xrFgE5b5sAZAFgc+3xoB8chYL3Y/wKrbHNz8ynT9Cvf3J93gZVsRVdYVwFgtJ2dnWLMPO1Jn+fn58UnAVYlb/7zzz9T585ZL2JNBv78+bPxPXSMrA7AssnCQNfI0ABAOGcEus32A9NT6AIzqLaBvXz5sndzczPTQey7u7ta7eYA6zZwBgDmzz4f2sdxCFh99r/AutjY2Cj+zd+v5JFXr14VOSWfwJqf5RNi80mx8/x7J1vRFdZVABgumTHZMTny6uqq9uOrsp/M/nIRF7FmuXOiavbxQPfI6gAskywMdJEMDQCEc0ag22w/ML2/ajwG+P+dRrnTiY8fP049jYTM6oHo/f39xpYPYF7KC8syEM7fsDQoXlxcFIPj/Pv69etlLyIA0AD7fGgXxyFgPdj/AusinzeRr/x9y5v6+aSWFFctqqBKtqIrrKsAMFw+uS8ndecEzzoXsEYuIO0/QbScbh35BMEsS/4tTzwvlSemJ/cm/yYL574uYIVuktUBWCZZGOgiGRoAKDlnBLrL9gP1/Kfm42DtVVv+EhbLT8id1vv373u3t7fF9/k3Xw5QA22WQTMAsPrs86FdHIeA9WD/C7AYshVdYV0FgNEXoEb/p3ROK48/PDz87WefPn0qSlanPXn8+fPnxUmo+QJWm6wOwDLJwkAXydAAQFvIJVCf7Qfq+avm42CtlTuI0iwHn/t3WGkUBAAAACg5DgEA0BzZiq6wrgLAaOfn58W/udh0FoMe/+vXr97Xr19nmi6wumR1AJZNFga6RoYGANpCLoH6bD9Qn0IXqKF/5/D69eva03rx4sXAg+wAAAAA4TgEAEBzZCu6wroKAMNdX18/nShaPXG0rkGf+HdxcTHzdIHVJKsDsEyyMNBFMjQA0BZyCdRn+4H6FLpADf3N44MOZs+y87m8vJxpegAAAMDqcBwCAKA5shVdYV0FgOGurq6eLmbd2dnpbWxszHSi56BPECwvlAXoJ6sDsEyyMNBFMjQA0BZyCdRn+4H6FLrAlO7v73u/fv0aueOYVv+OqzzYDgAAAKw3xyEAAJojW9EV1lUAGL+v7Hd4eDjw55PY3t5uYKmAdSCrA7BssjDQNTI0ANAWcgnUZ/uB2Sh0gSkNah2fdceztbU1dh4AAADA+nEcAgCgObIVXWFdBYDR+k8YnXX/1r+fLNW9KBZYXbI6AMsmCwNdI0MDAG0hl0B9th+YjUIXmNI8Wr6ePXv2220HwQEAAIBwHAIAoDmyFV1hXQWA6fZr4y5GBWiKrA7AssnCQNfI0ABAW8glUJ/tB2aj0AWm1L9TGHZgfBrPnz//42e3t7czTxcAAADoNschAACaI1vRFdZVABjt8PDwj59lf/n27dta03t4eBj4cxfFAv1kdQCWTRYGukaGBgDaQi6B+mw/MBuFLjDjjqeJA9aDdl7axAAAAADHIQAAmiNb0RXWVQAYLRerXlxc9F68ePF0+9u3b7VPHr27uxv48yZORgVWi6wOwLLJwkDXyNAAQFvIJVCf7Qdm858ZHw9r59evXwuZjx0PAAAA4DgEAEBzZCu6wroKAOPt7e0VX00Y9Gl/uTC2iX36+fl57+rqqtjv5isnp+bi23wdHh42Mh9gcWR1ANpAFga6RIYGANpCLoH6bD8wm79mfDz01n2n00QD+aA2sn///Xfm6QIAAADd5TgEAEBzZCu6wroKAIt3fX39x892d3dnOtl0f3+/t7m52Ts+Pi725blg9eLiondyctJ79epV7/LysphH7pMLXYH2k9UBWEWyMDBPMjQA0BZyCdRn+4HZ/aeBacDaeHh4WNi8NIkBAADAenMcAgCgObIVXWFdBYDFGnYB6dHRUa3p5eLUXMCaE1lz0ere3t7A++Xi1tzv9vb26QLXfDVxAiwwH7I6AKtGFgbmTYYGANpCLoH6bD8wu78amAasdZMYAAAAwDw4DgEA0BzZiq6wrgLAYp2cnDR2AevZ2VlxYerBwUHv58+fQy9gjRcvXvRubm56L1++LG5fX1/33rx5IwtAi9k+AVg1sjAwb7ZrAKAt5BKoz/YDs1PoAi1tErOTAwAAgPXmOAQAQHNkK7rCugoAi3N7e/vHJ/3l4tJBF7ZOItPKBay5mHVSFxcXvy1PLmQF2klWB2CVyMLAIsjQAEBbyCVQn+0HZqfQBVrg2bNny14EAAAAYE04DgEA0BzZiq6wrgLAnz58+DDyotJpvX37dqoLWAddNJsLWY+Pj2svA9A9sjoAyyALA10mQwMAbSGXQH22H9aJQhcAAAAAAAAAAADWxvn5eXHBaP8FrC9fvqx98erV1VWtZTk4OPjt9unpae/+/r7WtAAAYBxZGAAAAAAWR6ELtMCvX7+WvQgAAADAmnAcAgCgObIVXWFdBYDf94uHh4e//ezk5KS3t7dXe5r9F6JO+wmE/RfPHh8f154e0C2yOgCLJAsDq0CGBgDaQi6B+mw/rBOFLjCFra2tZS8CAAAAsCYchwAAaI5sRVdYVwFg/vb39/+4gPXo6Ki3TK9evfrt9uXlpRNZoWVkdQBWgSwMLJIMDQC0hVwC9dl+YHYKXQAAAAAAAAAAAFh5x8fHvevr61ZdwBo7Ozt//Ozr169LWRYAAFaTLAwAAAAAi6fQBWY0rwbwZ8+ezWW6AAAAQHc5DgEA6+f29ra3vb3d29jYaN3X5uZm7/DwsNdVshVdYV0FoCnrni3Pz897p6enrbuAddinG15dXS1lWYDJyeoA3SELy8JAO8jQADCddR/LzJNcAvXZfmA6Cl2gBTuDh4eHP3724sWLucwLAABonoPlwDw4DgEAxI8fP3r39/e9tr45nwsBukC2oiusqwDM0zpnyxzHrx4rPzs7a80FrMMywPX19VKWBRhMVgfoNllYFgYWT4YGgNmt81imSXIJ1Gf7gdn9p4FpwNpY5M7g+fPnC5sXAACw+gfLc0IO0C2OQwAA8e7du97d3V2R7Qe9kb3sT07d3d3tdYFsRVdYVwGYp3XNljl+/+bNm6fbFxcXvb29vV7bfv9FfbohUI+sDtBtsvB/ycLAIsnQADC7dR3LNE0ugfpsPzA7hS5Qo02sepC4iSA86KDzvFrLAACA5jlYDsyL4xAAQPbTJycny16MlSBb0RXWVQDmZR2zZfaBOzs7T/vCq6ur3tu3b3tdkQtwfRohtIesDtBdsrAsDCyHDA0As1nHscy8yCVQn+0HZqPQBWpcDFndUTTRAP7vv//+8bNXr17NPF0AAGAxHCwH5sVxCACA5shWdIV1FQCav4A1x/G/ffvWe/nyZWPTPz097X369KmY/t7eXu/z58+1TzQd9rgmcgDQHFkdgK6QhYG2kKEBgLaQS6A+2w/M5q8ZHw9rp8mD2aN2XhrFAQAAAMchAACaI1vRFdZVAGjGmzdvevf398UFojc3N43uYy8vL3vHx8dP+9jc3t/frz29YSe+2l9Du8jqAHSFLAy0hQwNALSFXAL12X5gNgpdYEqvX7/+42eztok9PDz8sdOp21IOAAAArA7HIQAAmiNb0RXWVQCY3e7ubu/29rbY5/3zzz+NnwD65cuXP352fX3da5r9NbSLrA5AF8jCQJvI0ABAW8glUJ/tB2aj0AWm9Pbt2z9+lgbzWfQ/XosYAAAAEI5DAAA0R7aiK6yrADCb/f394oLS7O9ubm6mPvnz8vKyt7GxMXL/O+tJqv0GzctJq9A+sjoAbScLA20jQwMAbSGXQH22H5iNQheY0suXL//42Y8fPxrd8eRgOgAAAIDjEAAAzZGt6ArrKgDUd3h4WFyEmv1pnQtY4/v372NPHB30fwcHB72mPoUw3r17V3t6wHzI6gC0mSwMtJEMDQC0hVwC9dl+YDYKXaCGvb29327f3d3VnlZayvubyh2EBgAAAEqOQwAANEe2oiusqwAwvdPT0975+XlxUum3b99qXcAat7e3Yz8FcHt7u/g388rX0dFR7+zsrFdXLrjtt7u7W3t6wPzI6gC0kSwMtJkMDQC0hVwC9dl+oD6FLlDDx48ff7t9fX1de1r9j81Ore5BdAAAAGD1OA4BANAc2YqusK4CwHRy8erx8XFxQWkuCJ1lX5dPFBz0SYNVb9++Lf49PDws5ndyctKbRf/+Osvff2Is0A6yOgBtIwsDbSdDAwBtIZdAfbYfqE+hC9RQNopX28jrurq6+u12Dm4DAAAAlByHAABojmxFV1hXAWC6kz6zf8uFpbmgdBb39/fFJwK+ePFi5P2yn859zs7OZppfOc98Vc16USwwP7I6AG0iCwNdIEMDAG0hl0B9th+oT6ELNNQmlnbzOqqPy86sbC0HAAAAKDkOAQCsu4eHh8amJVvRFdZVABgvJ4vu7u4Wn9zXf/JnHeXFo69fv57ovpn/5eXlTPM8Pj7+7XYujj04OJhpmsB8yeoAtIEsDHSJDA0AzMI5I9AOth+o5z81HwdrLwe/s6MoW8RyYHraA8inp6e/3b64uGh0GQHaNHB+9uzZshcDAJgz+3yYH8chgGHsf4FV9O+//851+rIVXWFdBYDR7u/ve2/evCm+//XrV3Exa92xdR6f6VUvJJ10X72/v9+7ubn57VMJJzXoItgmLsYF5ktWB2DZZGGga2RoAGBSzhmB9rL9QD0bj4+PjzUfC2svB693dnaKA9nlzufo6Giix+Yxm5ubT7eneSxAm+UTE/qD9d3d3URv8gEA3WGfD4vnOARg/wusi1x8cH19/ceb9zkpoCmyFV1hXQWA4fu5v//++2kf2bRJT6nLvnp7e7v4ftoLWQf9Dk3nXmB+ZHUAlkUWBrpKhgYAJuGcEWg32w9M768ajwH+Xy6U+Pbt228XVPQ3hQ/b6ZSt6GGnA6ySsmFx3M8AgG6zz4fFcxwCsP8FVl3+ph0eHv5xYk58+PChd35+/tsnxc5CtqIrrKsAMHg/Vz1RtGnTFKfmvldXV8X3Wab+ItZR2bf/AtZMxwWs0B2yOgDLIAsDXSZDAwCjOGcEusH2A9NT6AIzSpt4WsXLA9j7+/sjD0gnWOagdXmhhZ0OsCoWOXAGAJbHPh+Wy3EIWE/2v8CqyRv5+bSV8mtjY6P4Sm7J37Rhb+rnb2E+8bW8f3UadQquZCu6wroKAH+Ohec5Dp7mItZ4+/Ztsa9+9uzZU9bNvnrQRbbZP2dfXr0IN/O7u7srpgN0i6wOwKLJwkDXydAAgHNGoPtsPzCdjcfHx8cpHwOMCJMJjQmIOTD97t27YicTOdicCy7KHU5axLPTmfbAN0Bb/taV6n7SQ/5OltLKmCAPALSHfT60n+MQsHrsf4F1+nuXN/Grf6/qKv9W5iSBWf7eyVZ0hXUVAHq93d3dgaWnTckJpNmHzpJ1S9lfb21tFd/3X3ib/8t8Dg4OZlxioA1kdQAWQRYGVokMDQDryTkjsFpsPzCeQheYg8vLy96XL1+Kg8/5KndE2cmkQfz9+/cuogA6q40DZwCgefb50B2OQ8DqsP8FWD7Ziq6wrgJAe2W//PXr197FxUWxn354eCh+lv109tf21bDaZHUA1pksDNQhQwMAbSGXQH22HxhOoQsAAAAAAAAAAAAAAAAAAAAAQEP+ampCAAAAAAAAAAAAAAAAAAAAAADrTqELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAAAAAADREoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAA0RKELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAAAAAADREoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAA0RKELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAAAAAADREoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAA0RKELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAAAAAADREoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAA0RKELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAU7u/v+/d3t4uezEAAKC1ZGaA9aXQBQAAAAAAAAAAAAAAAJjK9fV1b3t7u7ezs9M7Pz9f9uIAAEDryMwA602hCwCseHtnBnunp6fLXhRWVNphc1AhBxcAANadN1oAAGA0mRkAAMaTmwEA6JLj4+OB368K+RwAgFnJzADrTaELAKxw0UYGRL9+/eodHBwse3FYUS9fvuy9ePGit7u7a/ANAKy15O5k8K2trWUvCgAAtJLMDAAA48nNAAB0ST4MMPm1mmdX6VxS+RwAgFnJzAAodAGAFS5ziZubm96zZ8+WvUissKurq6LY5fDwsHd6errsxQEAWNobLvH27dtlLwoAALSSzAwAAOPJzQAAdMnx8fFEP+sq+RwAgFnJzAAodAGAFS5z+fbtmzIXBiobXXd3d3ubm5u9jY2N4ivfZ/3Z398vylmqLbCjZF178eJFcVBhlZpiAQCmKblLHpK/AQBgMJkZAADGk5sBAOjShZuDzjEtz09dBfI5AACzkJkBiI3Hx8dHTwXA8iWc39/fF1///vtvEcwfHh6K2+X3JycnvYODg2UvKi2W9SVlHFlnMiDSbskgl5eXvQ8fPhTryaT29vZ6nz9/HjnAtv4BAOtse3u7yD9nZ2fLXhQAAGglmRkAAMaTmwEA6IqcLzrsQwNzrunPnz97XSefAwAwC5kZgPjL0wDQDilX2N/f7x0fH/dOT0+LlsWULpRFL9MUL7C+dnd3i3UlxT/KNBjW7pq/NVk/bm5ueun2ywGAfH90dDT0cfl79PXr15HTTqNqSl8i88jfLgCAdZAMnuyTPA4AAPxJZgYAgPHkZgAAunQuas5xz4cFDvqw0mTbnAvfZfI5AACzkJkBKCl0AWiJlCskoL98+bJoWIRpHR4eFoOglGo02WqZAWSmnVbQzc3N3sbGRvFvGjRT2pHBo+KO7shrlgMBFxcXxd+byN+cfH9yclKUuwwrdsm6NU7+juUrg/LMCwBgHSQzh1JFAAAYTGYGAIDx5GYAALoiH2AaHz9+fPq+X85J7TL5HACAWcjMAJQUugC0RAJ4ChZubm5GFirAsAFQ2crZVJnL5eVlUdySlsxMO62gKemoNmjmPil7SblL7lcOxGinvF557UYN+FPuUha7pPilLJjK36RJB9ifP38uHpd1ZthBBwCAVXJ1dVWU3ynnBACAwWRmAAAYT24GAKALcq5wzg8tP8g0GTbf98t5xuW5zV0knwMAUJfMDECVQheAlup6wyKLlVKVyOCuiVbLlLPs7+8X5R8p9UjR0OPj49PX3d1dsY5m0FUdbFYfR/tkoB+TDJRzn5QDpdglr/k0f5PKUpg4PT0tDkIAAKyyZGHt8gAAMJzMDAAA48nNAAB0QflBfx8/fnz62bBzTLt8Prx8DgBAXTIzAFUKXQBarFqWAcOkMKMs6ph1EJcilp2dnacBVYpbUuqRNtD+dfPo6Kj4//xbdXl5WUyjXCbaI69XLKJgJUVAZXHMhw8f5j4/AIBlSYZO9k25IQAA8CeZGQAAxpObAQDogpxfnHNQc45x9dzinFecD6Xsl4yb84q7Rj4HAKAumRmAfgpdAFqsLEOAYTLwKVs7M6ibtQTozZs3xaAxZRxXV1cTTS8lMil96V+ulLpkcEb7fPnyZSHzKQuGsk518eACAMCkb7xEfwkiAADwXzIzAACMJzcDANAF5TnLgz6ActiHUpaP6RL5HACAumRmAPopdAGADqsO2IYN6qaZVtkA2l/QMk4KYI6Ojn77WcpcUurSNVnuPA+raHt7u/j39PR0IWU7WS/KYqoPHz7MfX4AAMuQIsRknlnLFQEAYFXJzAAAMJ7cDABAFy7YLM8zHnTRZrJsPpyyXz4ksmsfCiifAwBQh8wMwCAKXQCgo1LIUQ7WMtCbZQCUgV9KPjKNDKjqSKFM/zKU0+2SN2/eFEU0ZVPoKqkeDPj06dNC5plSl3J9PT8/X8g8AQAWKbkxeRwAABhMZgYAgPHkZgAAuvIhlKM+gHLY/1U/wLIL5HMAAOqQmQEYRKELAHRUtZDj8PBwpmmVg8FZB3+DHp/lTJlHV6SEJtKIumqqA+UU7ZS/6zxV181RByQAALooOTeZand3d9mLAgAArSQzAwDAeHIzAABtl3Nq85XzUKsfLtgvHwy5t7f3x8+Td8sPsWw7+RwAgDpkZgCGUegCAB11fn7+9P2ggVydaR0cHMw0nUGPzyDt69evva7oUvnMrKUusxYBTSIHGsoDERmsp4EVAGBVlNlGwzwAAAwmMwMAwHhyMwAAbVd+4OMkH+w37D6zfujkosjnAADUITMDMIxCFwDooBSwlMUjs5awVAdRaQKd1aAW0YuLi5mnSzOqJS557avFQIuY5yQHJgAAuuLq6qr37NmzosQOAAD4k8wMAADjyc0AALRZzi3O+aY5z3jQOcL9kmsHfVBlPhTw8vKy13byOQAA05KZARhFoQsAdNDZ2dnT97u7uzMPoiIDx52dnd7GxsZMJR+D2jXL0hiWLwP+DJqrZSsZ8M9TdZ3IulCWEQEAdFXyTHLN169fizcjmihGBACAVSIzAwDAeHIzAABdcHx8/Nu/kxj24X/TTGPR5HMAAOqSmQEYRaELAHRMBj/VAc+gApVpDCrzmKXkY3t7e6blYf4ODg5+uz1rKdA4GaRXW1czcAcA6JLk77xBkty0ublZfOX7MpuXxYjJwsnS3qAAAGDdyMwAADCe3AwAQNckk+aCzZcvX051vnLOGc0HEPbLucmXl5e9NpDPAQBogswsMwOMo9AFADqmWoaRwd6zZ89mml4GUYNkMFnH1tbWwJ/XLYiheR8/fvzjtcnAeZ6qByUuLi7mOi8AgCYkJ5+enhZvMuQNh3yf7J0sdXV19dSMf3d393Q7b66cn58X98+XNyYAAFhlMjMAAIwnNwMA0GW5eDPK3DrLuar901wG+RwAgKbJzDIzwDgKXQDolAT6DARSPrG/v198v24y2ClN09w5zLBCmGHFLHRfXvODg4PffpaBc77mJQ2spR8/fsxtPgAATUgu+vvvv4s3RB4eHoo3G37+/FkU0x0dHRU5PG9E5A2IfOV2fp6snp/ndtk8v8w3VQAAYF5kZgAAGE9uBgCgy5JF8+GQ+fDJOucrD3tcPoTw8vKyt2jyOQAATZOZZWaASSh0AVhTCfUpRElA3tzc7G1sbBTNiSldSGCeZxNipp15VOedf8uwnkFHvwxuypbGs7OzYlAQ5XTWSXVA9vr165mnl3KcQYUfdctiytemn4KYdhnU/Jp1YdD214QcZKi2tc5rPgAAs45VMi5KLkpmSQle3ojImw39RYgZowzKzHmDIm9MlAV6KaGsltsBAECXycwAADCe3AwAwCooL8AcdL7ppIY9dpEXd8rnAADMi8z8PzIzwHAKXQDWSAJ1gnUKVFLmkrCdAJ3gn6bEstgjgTklKQniCdlNyfwSxDPtzKMM+Jn/u3fvitv5eVksUxY+ZLlyO8H+5uamaGzM8pYFIZnuMlonl6G/aKdaklFX1oE8n3l+y9vfvn37Y8A1qbw+g9SdHs3LtvXp06eB/5e/DfOQ9au6DjT5twUAoKlW+YxVkpWSW/KmQsokBykL6ka90ZDHlm9YJPsMKlIEAIAukZkBAGA8uRkAgFU5Xzn5M+cp1/2AyBj2+OTgRZz7LZ8DADAvMvNgMjPAnxS6AKyJhOvNzc3i37LxMMUbKVNJqcre3l7Rmpifp0ExPysDdr4SuJsI92WJQwpEyvlnvgnruV0G/twvxS55TB6b5cpjqgUm1UKIsvxl1fWXYJQlLLPK65/n//HxsXiuZymK6S+diVkGpjS7/pRlTSlPGvS65PXLNjcPr169evo+6xkAQFvkzYLyDYO8GZEiyVEZtszl43Ju9Q2NZCyldgAAdJXMDAAA48nNAACsiuPj4+LfnOc9q2HTGPbBhE2RzwEAmCeZeTiZGeB3Cl0A1kA1XJfFHaOCcwJ4gnNZuJDQ/Pfff9cuTUnwrrYpZrpZjkFSJFMN7SmXqDYz9v9epWHTWzV57UqzlK7M06BB1qjmTeavWs6UbSrbWdalbIspVBp2UKFp1QKiQcU/AADLsL+//1uh3bdv38YWJyZH5T4ZO42S+1THKlrmAQDoIpkZAADGk5sBAFgVOb8z5wLnPOUmPtBx2HTK+cyDfA4AwDzJzDIzwDQUugCsuGq4Tri/uLiY+LEZCJSlLr9+/ert7OxMXcKQ+1dDd4okxg1Ucp9qWUnKJTL/fimiSCnF4+Pj2AHDqvjx48fT9238nasDuapBpSEsxuXlZW97e7sYwJdtqSlJKtefjx8//vGYbG+np6eNL0uWo1S3IAoAoEkZayQvlTL+maQ4Mdlq0jdg3r9//1sG0jIPAECXyMwAADCe3AwAwCopPxTw5OSksWkOm9Y8PoBQPgcAYN5k5vFkZoD/UegCsMJSyFAN12lKnFZCdlnGkZKHFMQMKlcZ5sOHD7UGEdUSmMyvfzptLjWZp2oJRht/90GDR2Uuy5PtLdtsZGD9zz///DHATslLSpT6ffnypfHl6V9nlboAAMsuI6yW2E1SPlmOT5JjUng5if78NU3JJgAALJPMDAAA48nNAACsknyQZy60zPmek16oOWmeHTS9cn5Nkc8BAJg3mVlmBpiWQheAFZWwXi1PSalGihvq+Pjx49P3Cd7DylX6ZbCQ5Shl/pOWkPQPBFJMs+7lDxn4VMt0tre3e22S17r/Ncrr3WTbKJPL9l8OsPM63NzcDP0bMKhoadDrOSuFLgBAWyRXV0skk5Mmza3lmyKTvgmztbU18PEAANBmMjMAAIwnNwMAsGrK80nnce7vsGlO+mGh48jnAAAsgswsMwNMS6ELwIra398fWsoyrYTztC1Wy1UmCdH9zYmTlrkMu2/mu876yy/6BzbLNqjoR3vmcvS3pV5dXY3d3vqbT+cxWFboAgC0NbvmzYhJCzCTraYpq+yf7sPDwxRLCgAAyyEzAwDAeHIzAACrJB8EmPNGk1H39vYan37OUx108Wc531nJ5wAAzJvMLDMD1KHQBWAFpfikWpSQID9puJ60IGaSZscfP37ULnSJ/oKJ79+/99ZZ/8Bl2udz3gUiGRz2l7kMKglhvjJAr7alnp2dTbSuDCp9uru7a3TZ+v8ONT19AIBJJLdWyyL7CywnyVuTtsuXbfajbgMAQNvIzAAAMJ7cDADAqvn06dPTRZ3zMmzak5yXPop8DgDAIsjMMjNAHQpdAFZ4cFBqolSjP3BP0uxYLZVpQtPT65q2DlyyXNUCkXLwOI+mUaYrX0qRy6SD60GD6nlvc21dpwGA9RovTfNmRPJLMtLu7u7Ej9EoDwBA18jMAAAwntwMAMAqST7NxZ0573Se5//mnPZB56tOcl76KPI5AADzJjPLzAB1KXQBWDEJxwnoVdOE5VEy4Ki6uLhoZLrUkybMthWIlGUuR0dHS1uedZZinWpJyjSNr1mf+rfxeRe6GJwDAMtQbZeP/nLCUco3QqZpmO8fn/VnLgAAaBuZGQAAxpObAQBYJcfHx1Ofd1rXsHmUy1CHfA4AwLzJzDIzQF0KXQBWzKCmxa2trUam3R+cx7U6vnr1qpH5Dpv/umlj+UUGgtX1QJnL8qR85fz8/Ol2ncbXtLhWVcthVq2ICABYT/1vRgwqtRvl6upq6sd8//79t9vrPq4BAKDdZGYAABhPbgYAYNXOP03GrXPeaR05V7X/fNXygs9x56YPIp8DADBvMrPMDDALhS4AKyYBuV9Tgbe/iCGDkXwN0z/f/mbFcfqn/fr169466y/XaKqop66Uh5yeni61zCXryPb2dm9jY6Oxr2pZTVPT3NzcnKq5tIn21Trz61+n5l2+Mo/CGACAacZL0zTFR94EqfOYqv39/akeDwAAiyQzAwDAeHIzAACrJOfLDjoPdZ6GzatclmnI5wAAzJvMLDMDzEKhC8CKGVSw0lQpw6ACkVGFLv2FEqPuO0nZwyIaLJlMynmqr+/Z2dnCy1zK5Zh2vVqGrMt1GlCnmX4KdqoODg6mnk7/34p5lAYtu4gIAFhv/dlxd3d3qsyVx0/7mP5iy3fv3k38eAAAWDSZGQAAxpObAQBYFcmml5eXxYd4LvI87VwM+vLlyz9+ntw77fm28jkAAPMkM8vMALP6z8xTAKBVFl1u0V+6UpVBQwYr1WWatJGxf2CRAU+mxf88PDw0VtYzjbyeb968ebp9cXGxtLKdzDfzb3K9L5tKs55OM9gcJa/TtE2k0/j69etvtzOvJtaNeaxfWW/nOX0AgFH6c+M0ZXPlGGWaXPfp06e55DQAAJgXmRkAAMaTmwEAWBXlObPlv4t0cnIy8DzdLMvNzc3E05HPAQCYJ5lZZgaYlUIXgBUzqmBlHqrlDIOkbGNnZ+fp9tnZ2UQBPgOOUbebULZDphSkiemnbTO/X6abrww0Xr161dvf3y9aJGcdeLRh4JL1K69nuZ5dXV3NtahkEk2XyZQD7KwbR0dHvS7I61BVt4im/+/H69eve/M0zQEAAIB5mKY0MpkrmXyax5yfn899XAMAAPMkMwMAwHhyMwAAXZRznXPuc7LpwcHBwuef84/z4aG3t7e//Ty3J/0A0UHkcwAAmiIzy8wATfirkakAwBAZNFRLMTKI6R9E9Mt9yvbGMvhPE/onHRhsb28/la/MIsu6ublZFLfk983y/vz5s2i6zO3Dw8Pi//sHI7OWXyy6vKda5pKBWH6/ZZe58F/V7SXqvi79BU1Zf5tWXW/bUFIEAKyXWfLHtG98JP9Xs0+KCOeRrwAAoEkyMwAAjCc3AwCwCsoPQCz/XYZhF3ZOc8GnfA4AwLzIzDIzQBMUugCsmEHFJ00Vf/SXPQybX7/d3d3fbr958+aPAopqaE8xSinlKE2UhpSNmClX2djYKP5tQpa3/P3u7u6KwVCek7J5MrdT7pLvM8+m5rsMed3yPJZlLgZT7ZDtu38br/va9JctvXr1aqZlAwBom/7xy6AxziDJW8nC/WObUffvf/Pm8+fPUywpAAAsh8wMAADjyc0AAHRdeV51zgk+ODhY2nLkHPFB57zmPPNxHyBaks8BAJgHmVlmBmiKQheAFTOoMXHSkD3OoGKYra2tsY9LiUkGLilnyQAi00mQ39nZKUJ6SlHy7/b29lPhSQYbKUiZtcwl00yBS/5NUczXr197R0dHExXRjJOBT7m8FxcXQ6eZ1yS/e+R3zVcddQdPTcjrlUFeluGff/5p5PmjGRkYV83y2lSnVRYTNan/b8jz588bnT4AwDjv37+vVX5ZFlJOOj7J+KY67YwXms5WAAAwDzIzAACMJzcDANB15UWW+eDKZRu2DP0Xgg4jnwMAMA8ys8wM0BSFLgArZlBAnjRkjzOoQGRQw2N/cE9JRAJ5lu3m5qb4SsFLluv09LQoRUnJSQJ6ylby/ylAaaI0JPM9Ozsrpvfz58/iK4OYJgYDKYgpn4NxA5P8LmUbZ37fOq9J//PRX+QxL/k98zpm/nltpn3u0kaaUp1FLe+66d8ux22Tw/S3spZlRfNcVsVAAMCi9ef2snhxnNwvOXiS/JL8Wy1xzPhjb2+vxtICAMDiycwAADCe3AwAQJflfN7kzWTT8tzmZefrQee+5tzl/nNbhz2+Sj4HAGBWMvP/7iczA8xOoQvAitnd3f3jZz9+/Ghk2v2FHJO0K6ZMJarBPQOI/Pzu7q73+PhYfKVoJWUhCet1CykGyaApX1nWJhsdU0RTlrJMWnxRvd+kDZhV/cuf52/esswZUOU1qVPmEt+/fy/+Vd6xGFtbW7UeV7amluYxaO7/G2KdAAAWrf+Nla9fv06clSYZ/+R+ZfFjZF4prQQAgK6QmQEAYDy5GQCALsu52tV/22DYskxyvrV8DgBA02Tm/5KZAZrxn4amA0BLDArJKeJoooihLDApVYP2MGl5bLJIpS3KopqYZGAS1aKaNE5WpzGpFGCUpRj9r0fTUlqT5cxyf/v2rfbrmHVAccfiClzqvk5fvnx5+j6v+Txes/51tsnyJgCAad7QKBvgk0/y/aj2/NwnGXzcGx7JvdWCzczHmxEAAHSRzAwAAOPJzQAAdFEyaZljc375pB9quSy5MDQZedz5pvI5AABNkZn/S2YGaI5CF4AVlNCbMo5qMJ9VwvWoZsZhHh4eigCfr1UpdslzUZaqxDTFF9VClsvLy97e3t5U864+vroMTcugLAOuDOZmLQT68ePHxKU3TK+J4pWsS9VtfF4NsnW3GwCAJmVccnV19fTmQXLvu3fvho5XyvHUqEyb8Vf1DYtMXwYGAKCrZGYAABhPbgYAoIuq54eWF3O2XTJysvEo8jkAAE2Rmf9LZgZozl8NTguAlvj48ePIsoY6zs7ORs5jmK2treLfr1+/9lZFtSBn2pKaaonFuIHSINW2zBSlzOv3S3toBlCzlrlk3UuZj/KO+ck6WH1+6xT9VLfvrGPzGjx///796XvrBACwTMk7FxcXxffJqzs7O0NzVHJ7f+Yq5TF5Y6N8MyLTvbu782YEAACdJzMDAMB4cjMAAF2S3NmVC1L7z2ue5Dx4+RwAgFnJzP8jMwM0R6ELwApKWK62QQ4qZJlGAnq1xCRB/OjoaKLHlqE9AT3TWQXVUoqysGZS1QKY6nM6qbIFM/J8Nv2cZvCWeezt7dUqnOlXroevX79uYOkYJq9XqU55U/Vgw+fPn3vzUl22ajkRAMCyMlQKDJPR88bC9vZ20RTfL7m9/w2GMjfnMfn/jHuSn/OluA4AgFUhMwMAwHhyMwAAXdF/bnmXlBeKjiOfAwAwC5n5f2RmgOZsPD4+PjY4PQAalJbDagFCBgWTFqnE/v5+7/Ly8ul2wnadEoX+6aQxcdKQncFAGerzmPwOCfPVYpNlP7cZiJTtkpPIoKNsn8zvMk3xyeHh4W/lGXV2wxsbG0/fZ95NtVfmd8rzkpKYWab58PBQTKPa0Fl33VuG8vmddntbpjzfm5ubT7d//vw58TZW3Ubz+87z4MO81l0AgFklD3369OmpMDFjhJQSZgyT8VBu5/uMIX78+PHb/ZLx5RoAAFadzAwAAOPJzQAAtFn1/OeuyTmxOTd2GvI5AADTkpllZoB5UOgC0GIpaCiDbt2yhWpxSYL5P//8M1WZSoJ5taExxScJ3XWLJiaR5dva2ir+TejPQCBlIE2G/FkKXaqlFNMWulTLM6Yt3hi07E2VjuR1+vvvv39b35rUpbjRxUKX/nXr4OCgd3Z2NvYxWY+yPkW2sRTvzEt1Xl1bJwCA9ZG2+IwN8qZDtVwzMjYpv9IuP824CAAAVoXMDAAA48nNAADQHvI5AACMJjMDzNd/5jx9AGpIqUa13bCUsoaUm0wTfFPQkLCcYJ3pvXnzpvft27eJSkT6y1xSXDJtqUrmk2KM6nTGyXKWv3sGAZeXl0/TSlHFx48fpy5BmZdZl+Ph4WHqaeQ1KAdH379/780qz3WKNuZV5pIBG/OX7SzbedaN8/Pzogl11PZa/j0oX6P8XZinLFtJAysA0FbJKdWskvb4ZCtldAAA8F8yMwAAjCc3AwBAe8jnAAAwmswMMF9/zXn6AEwopSubm5u9jY2N4t+UqQySkobcp7xfwvE4KWI5Ojoqvk/Zw99//z3ycblPlqcsYUnZQ4ph6pYwZN7l/GeRAoo8L5P+3l1Qp0Qlr02pLLuZxYcPH3r39/e9eVHosjgpZXn58uXTejJs/cg2Xpb45P7ZvuddkpS/Q9W/YwAAXZCmeWV0AAAwnMwMAADjyc0AANAe8jkAAIwmMwM06z8NTw+Amh4eHopyhWlKFXL/SQtBTk5OinbElLSk5CHf52tvb68o3Hj+/Hnv7u6ud319/VTukWXJ4w4ODmr/XplWplEWsGRe+Rr0e1Z/lzxuVMlIlj33b6IoZt4FLONe92llQJTnr1yWlHOUJR5t+J36zbJsTCfrRcpZsp2n/CjFKXn+s85sb28Xr3WKVbKdR7afbJ+LUM4zDOoBgC5IdkrWXlReAgCArpGZAQBgPLkZAADaQz4HAIDRZGaA5il0AWiJlDDMW4pULi4uimD99evX4vsE7BQt5Gdl0UpKHt6/fz9zEUdKXFK8EplW5pd5TCOlLlnGlFCUpTCllFaUhTSLUqeAZR5lKinZSWFHfPnyZabXKs8tqyWD5o8fPxbbTLntlNt4vsqipmkKpJoqc8m6ushtFgBglnb5UEYHAACDycwAADCe3AwAAO0hnwMAwGgyM0DzFLoArKGUOKTMIV/zkrKVsnAkAb5uaUhZQJHilrOzs97+/n7v8vLy6f9zexFlOLMWsDQtRTnl85vnQ+sl/cpypnwtW8qcSimaAQDognIMM2vRJQAArCqZGQAAxpObAQCgPeRzAAAYTWYGaN5fc5gmAGvu9vb2qWwkpRJ1y1yGFUNUi2gyr/v7+96i5Pdpw/RSclMOjPL753mAtjo/P39a31POBADQBdfX19rlAQBgBJkZAADGk5sBAKA95HMAABhNZgZonkIXABr34cOHp+8/fvzY+PTPzs5+u315ednrqq2trdqPrT63/c8Js5fsNF3es66q2+c8/h4AAMxLShN3d3eXvRgAANBaMjMAAIwnNwMAQHvI5wAAMJrMDNA8hS4ANOrXr19FcC/t7e3NZT4vX758+v7u7q63rAKW/L6zmKU0JM9t+fjz8/OZloP/effuXfG8ahNtxqdPn56+Pzg4WOqyAABM0y4fMiEAAAwmMwMAwHhyMwAAtId8DgAAo8nMAPOh0AWARj08PIwsQGnKq1evhs5znmYpYBlUADPr8/P58+en75W6NOPs7Kz38+fP3osXL5a9KJ2Xcqey4CllLrNuPwAAi3J1dfVHkSQAAPA/MjMAAIwnNwMAQHvI5wAAMJrMDDAfCl0AaFR/Qcn9/f1c5lOd7uvXr3uLVC2lmLZMpv/+sxZc7O3tPRWPHB8fzzQtaFq5TmY9Pzk5WfbiAABM1TDvzQgAABhOZgYAgPHkZgAAaA/5HAAARpOZAeZDoQsAjUpxQzW4f/nypfF5/Pr1qxgglN6+fdtbpFevXv22LHWLaMoillldXFw8Lcvp6Wkj04RZ3d7ePm2nnz9/nrm8CABg0Vnm/fv3y14MAABoLZkZAADGk5sBAKA95HMAABhNZgaYD4UuADTu5OTk6fsUjFRLTJrw4cOH38pcFt38uLu7+/T9w8PDVI+tFsA0tdyZzsHBQfH9p0+fGpkmNLWdZhvd29tb9uIAAEysLKVbdHEkAAB0hcwMAADjyc0AANAe8jkAAIwmMwPMj0IXABqX4H50dPR0e2dnp7FSl+Pj497l5WXx/YsXL3oXFxe9RasOTKoFLZOoPg/VYphZnZ2dFc9Hlufw8LCx6UId5+fnRStruW4CAHRJMnWy9aKLIwEAoCtkZgAAGE9uBgCA9pDPAQBgNJkZYH42Hh8fH+c4fQDW2OnpaVHAUkqxw8HBQa1ppQglRSVl22MGBylzyUChjpTMlIUTe3t7UxfDbG9vP5Wz3NzcTDRYycBmc3Pz6fbPnz97z5496zUlv09+r7i6utKIyVJku8j2Mes2DwAAAAAAAAAAAAAAAAAAXfXXshcAgNV1dHT0W9lJCllS9HB+fl6Um0wiBS77+/vF48oyl3K6dctcmpDfpbqMk6jeLyUyTZa5RJ7nFGhEnrNJn2NoUta9SJGLMhcAAAAAAAAAAAAAAAAAANbRxuPj4+OyFwKA1Zcyk5OTk99KTVLI8vbt26KspSw3SQnJv//+27u9ve39+PHjqZQk902JSgoimihCyTzv7++fylUuLi6mnsbm5maxfFm2u7u7iYouLi8vi+9z/3kV0hwfH/dOT0+LgpcU38CiZBtNYVO266urq2UvDgAAAAAAAAAAAAAAAAAALIVCFwAWLqUm379/L0pbUqry8PDwVNySspatra3i31evXvV2dnaKcogmy08yr5SxlCYtZOmX5c/yxdnZWVE2M0yKbHZ3d4vvU2xzdHTUW0SxRt2yGphWSoRSJqRICAAAAAAAAAAAAAAAAACAdafQBYCVliKVlMaUhTEpbil/VpUSihTHPH/+vLhdFsrk55OUWERKLAbdP/NK8UuWIaUvKX9ZhLLUJeUxKZGBeZY07e/vK3MBAAAAAAAAAAAAAAAAAACFLgCsurLUJAUt00j5SkpQUoYyTgpiUmZRFrZknim2SJFLii7KwpcUueT/F6ksnFnGvFkPWc+3t7d7e3t7vYuLi2UvDgAAAAAAAAAAAAAAAAAALJ1CFwBoSIpjUmjx48ePotwlJTIvXrzovX//vihTmbZUpsnCjciyQNOyrmedf/v27bIXBQAAAAAAAAAAAAAAAAAAWkGhCwAAAAAAAAAAAAAAAAAAAABAQ/5qakIAAAAAAAAAAAAAAAAAAAAAAOtOoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAA0RKELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAAAAAADREoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAA0RKELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAAAAAADREoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAA0RKELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAAAAAADREoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAA0RKELAAAAAAAAAAAAAAAAAAAAAEBDFLoAAAAAAAAAAAAAAAAAAAAAADREoQsAAAAAAAAAAAAAAAAAAAAAQEMUugAAAAAAAAAAAAAAAAAAAAAANEShCwAAAAAAAAAAAAAAAAAAAABAQxS6AAAAAAAAAAAAAAAAAAAAAAD0mvF/7dvS2BbhJwkAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fields = [\"p3m\", \"gp1\", \"gp2\", \"gp3\", \"diff_gp2_gp1\", \"diff_gp3_gp1\"] # fields to plot\n",
"\n",
"figname = \"_\".join(fields)\n",
"slices_dict = {\n",
" \"p3m\": DELTA_P3M,\n",
" \"gp1\": DELTA_GP1,\n",
" \"gp2\": DELTA_GP2,\n",
" \"gp3\": DELTA_GP3,\n",
" \"diff_gp2_gp1\": diff_gp2_gp1,\n",
" \"diff_gp3_gp1\": diff_gp3_gp1,\n",
"}\n",
"titles_dict = {\n",
" \"p3m\": f\"P3M $n_\\\\mathrm{{steps}}={nsteps}$\",\n",
" \"gp1\": rf\"$\\phi$, step {steps[0]}\",\n",
" \"gp2\": rf\"$\\phi$, step {steps[1]}\",\n",
" \"gp3\": rf\"$\\phi$, step {steps[2]}\",\n",
" \"diff_gp2_gp1\": r\"$\\phi_3 - \\phi_2$\",\n",
" \"diff_gp3_gp1\": r\"$\\phi_3 - \\phi_1$\",\n",
"}\n",
"\n",
"npanels = len(fields)\n",
"fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)\n",
"\n",
"ims = []\n",
"for i, key in enumerate(fields):\n",
" ax = axs[i]\n",
" data = slices_dict[key]\n",
" title = titles_dict[key]\n",
"\n",
" if key.startswith(\"diff\"):\n",
" im = ax.imshow(data, cmap=\"viridis\")\n",
" elif key.startswith(\"gp\"):\n",
" im = ax.imshow(data, cmap=\"plasma\")\n",
" # im = ax.imshow(np.log10(1 + data - np.min(data)), cmap=\"plasma\")\n",
" else:\n",
" im = ax.imshow(np.log10(2 + data), cmap=cmap)\n",
"\n",
" ims.append((im, key))\n",
" ax.set_title(title, fontsize=fs_titles)\n",
" for spine in ax.spines.values():\n",
" spine.set_visible(False)\n",
"\n",
"axs[0].set_yticks([0, N // 2, N])\n",
"axs[0].set_yticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
"axs[0].set_ylabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for i, ax in enumerate(axs):\n",
" ax.set_xticks([0, N // 2, N])\n",
" ax.set_xticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
" ax.set_xlabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for ax, (im, key) in zip(axs, ims):\n",
" divider = make_axes_locatable(ax)\n",
" cax = divider.append_axes(\"bottom\", size=\"5%\", pad=0.6)\n",
" cb = fig.colorbar(im, cax=cax, orientation=\"horizontal\")\n",
" if key.startswith(\"gp\"):\n",
" cb.set_label(r\"$\\phi$\", fontsize=fs)\n",
" elif key.startswith(\"diff\"):\n",
" cb.set_label(r\"$\\Delta\\phi$\", fontsize=fs)\n",
" else:\n",
" cb.set_label(r\"$\\log_{10}(2 + \\delta)$\", fontsize=fs)\n",
" cb.ax.tick_params(labelsize=fs)\n",
" cax.xaxis.set_ticks_position(\"bottom\")\n",
" cax.xaxis.set_label_position(\"bottom\")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.png\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
" transparent=True,\n",
")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.pdf\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "d72ee660",
"metadata": {},
"source": [
"## Residual momenta"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "23a0401c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[10:11:29|\u001b[38;5;113mSTATUS \u001b[00m]======|Read field in data file '/Users/hoellinger/WIP3M/notebook11/p_res/p0.h5'...\n",
"[10:11:29|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]========|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[10:11:29|\u001b[38;5;113mSTATUS \u001b[00m]======|Read field in data file '/Users/hoellinger/WIP3M/notebook11/p_res/p0.h5' done.\n",
"[10:11:29|\u001b[38;5;113mSTATUS \u001b[00m]======|Read field in data file '/Users/hoellinger/WIP3M/notebook11/p_res/p24.h5'...\n",
"[10:11:29|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]========|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[10:11:29|\u001b[38;5;113mSTATUS \u001b[00m]======|Read field in data file '/Users/hoellinger/WIP3M/notebook11/p_res/p24.h5' done.\n",
"[10:11:29|\u001b[38;5;113mSTATUS \u001b[00m]======|Read field in data file '/Users/hoellinger/WIP3M/notebook11/p_res/p49.h5'...\n",
"[10:11:29|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]========|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[10:11:29|\u001b[38;5;113mSTATUS \u001b[00m]======|Read field in data file '/Users/hoellinger/WIP3M/notebook11/p_res/p49.h5' done.\n"
]
}
],
"source": [
"component = 0\n",
"slice_cijk = (component, N // 2, slice(None), slice(None))\n",
"steps = [0,24,49] # Steps to compare\n",
"DELTA_P1 = read_field(momentadir + f\"p{steps[0]}.h5\").data[slice_cijk]\n",
"DELTA_P2 = read_field(momentadir + f\"p{steps[1]}.h5\").data[slice_cijk]\n",
"DELTA_P3 = read_field(momentadir + f\"p{steps[2]}.h5\").data[slice_cijk]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "1b01111c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAADAEAAARiCAYAAABvIA+pAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs3QmYXFd5IOzTau2LpZa8G4Ml2awBbC1AgASCpGBIJgkgWWQjG5ITZpKZ/BnkcfJP8mcmM0YeyDqTIDtkmclMsGRC9hBLBrKwBEvCxmAWW/ICGG9aLVuypFb/z9fMFaVydauXr7vqdr/v85Qllbu/unXr1r3fOfd853T19fX1FQAAAAAAAAAAAAAAoONNafcGAAAAAAAAAAAAAAAAQ6MIAAAAAAAAAAAAAAAAakIRAAAAAAAAAAAAAAAA1IQiAAAAAAAAAAAAAAAAqAlFAAAAAAAAAAAAAAAAUBOKAAAAAAAAAAAAAAAAoCYUAQAAAAAAAAAAAAAAQE0oAgAAAAAAAAAAAAAAgJpQBAAAAAAAAAAAAAAAADWhCAAAAAAAAAAAAAAAAGpCEQAAAAAAAAAAAAAAANSEIgAAAAAAAAAAAAAAAKgJRQAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoCUUAAAAAAAAAAAAAAABQE4oAAAAAAAAAAAAAAACgJhQBAAAAAAAAAAAAAABATSgCAAAAAAAAAAAAAACAmlAEAAAAAAAAAAAAAAAANaEIAAAAAAAAAAAAAAAAakIRAAAAAAAAAAAAAAAA1IQiAAAAAAAAAAAAAAAAqAlFAAAAAAAAAAAAAAAAUBOKAGCSWbNmTenq6hrzR09PT1m6dGlZvnx5WbduXbnpppvK3r17y2Rx7bXXDmt/xX7qNPGZDfdzBwAAAAAAAAAAAGBsKQIAxsTBgwf7B/3v3r273Hrrrf2D4qMoIIoD4u/x//mWaj91kuuuu67dmwAAAAAAAAAAAABAk66+vr6+5ieBiSsG3+/fv/+Mv2/btq1/1vdWFixYUDZv3lxWrFjR//ehxq/+3L59e9mxY0fLQf9r167tj71kyZKEdzb4NsU2xLbs3Lmzvzih2p54T/H68f5iNv5rrrlmSO9zJPs5Xv/GG288/brN+2T16tX9P9MJYn/FqhHLli3rL1BoFtsaxRyx7xr311h/lgCdJs6Rq1atKhs3bizXX3992jUkrstbtmzpL8iK2NnbfMstt/T/GdfEeFTXw3isXLmy/xrtnA4AAAAAMLq+3sWLF/fff4z+XgAAqAN5LNSHIgCgXwwyrAaoN4oLecbgwxhgGAP+WxUbZL1Gq4Hs8Zrx53DEAPfYH/FnttjHETsGV1aDLxsdOHAgZQDpaK1bt+6MAopGURiwa9euNm0ZQGepiqYqcX6PIqmRXENiRZi4Jlbn3bgexPk2azB+xI1rUFXcFefzqgguxGtFsVzj/4/r6FhcDwEAGJzCTQAAJrPIf6OvtMqHqwnIGnPi6JeNvstOzonjflv0+8Y27tmzp92bAwAAHZfHVpMkxsS5kfdXk/tWE9OuX79eXzgMQhEA0C8uoEuXLn3W83GBzRz8F68TiULz7PKZs+DHa8QAzGoQZSQBEb/qDGwcZF/dSI+OxEhemrcpns9MIiJJ6enpOZ2cNBdexGDLTZs2lXaqtjE+j1ZFFGNVtAEwEYoAGlXXnjjfx4D6hQsXnl4JprpxFdfDaqWaxhVi4uduv/32/t/LbKQP5frWfB2Nc77qfgCA8aFwEwCAySz6MCMfbp5EazDRzzkWK6pm9h0rAgAAoC7GK49t7gs/m+gLv/nmm9PGUMBEoQgAOGPgd7O4uTwWF8/GwYiZM8xHzGoW+xhof/311w95+yOpiN9t7ljMLoTo6urq37a4Sd9ceNEJnYBRXRlJVqxKEEldcxHAtm3b+rcfgMGLAEYqswAgru8xYKy6tg2nkKtavSbEtsQ2dcJqNQAAE5XCTQAAJqvmScSqCVaqyVWqn4lH3LdrtQp49F3GfcF2T7ZViXuAVb9sJ9z/AwCATshjm/u2Q4xDixn/I/9v7BOPn2me2FdfOJxpStO/gUlqvAf1xUDy5oH10bE3moGUMXg9OgjjvUQHYLzGcAZQVkUIzTfYY5uaCxYyVDNDNyc6Q61wHCuRKF1zzTVt3QaAySqujffff3/bCwBC3CyLgrUQ16Zq9lkAYOyL5JlcIm+LGyvVcRB5W/RrDLYyYfy/agW/qk8k8rXG1aUAAOpCTjy5xcCeyIejDzIG/8Qgo8h1o38y+kujrzQe8f/iufh/MZFV82D/yIVjUpO4r9fuvHi4qxkAAGSSX9OpeWyV+1cFAJHnR/5fTUjb3Cce7YH4f/GoxjZGX3j2RI1QZ4oAgLZpvEA3L/UzXNExGFWCkQzE4MmRztxfFRA0a7VCQIbY5mbtrFasihBabRcAYyeuP9Vgr6zCvMZrVzSYR7IcdnWjLUQsjWkAyBc3Y+644452bwZtonATAEBOPJlVK602TvA1WDFsJX4+8uAYMNT88xFz8eLFbRuEH68bq6wCALSL/JpOzGObB+/HOIRWk/W2EuMdYjxgNZaiakcAigCANqqW5WwWCcVwZ8OPgY4hkoPRDp6M5KLVDfexSB5azbi/devW0s6GQKsVCgAYXJw7R3L9id+JgVvRYB3JIP3BGtCNy+fdfPPNI47VWJwWMSM2AJCj3bNT0n4KNwGAyU5OPHlVuWv0kd5+++0jmuAr+mXj3mDzfa04rtq1IoCJtgCAdpJf04l5bIwzaIwf+XurSXoHE+2GKBoeKCZMVooAgLYa6Ob2hg0bhjVwPToKY5Bi5uzJzeI1GgdUZojtjZv8zQl59usMVexDCRLA8MUqNrEEddxwihmo4tweDdfG61L8PW5Kxc2s+Jn42fid+HvW9atx2evGQWGjiR/b3Hititg6jwAgx/79+9u9CbSRwk0AADnxZFbdi4uBPKOZnKoqImjuA437eqtWrSrjKe5ZRj6e2d8LADAc8ms6LY9tNXFN5O8jEWMtGscaNvexw2SkCABoq0geWs3sESsBDHWZzupGdwxK7OnpOWMWvZEaaLaRxpvqWVoNuh+L1zmbap9nzkQNMNnEzaoYdB83rqpB/n19ff2P+HssTx0V7fEzY7Xqyg033HDGIP2M4q7GlXsidrwGADB6w10Fj4lD4SYAwDfJiSenalXwxlWtRqN5VtBKvMZ4FchG/h2TnMV9thUrVozLawIANJNf02l5bHMBQLzOaPrCG/vVg8lumewUAQBtN9AgyKEOhN+5c+fppCQeUZ3YnECMRKuEYyyS5ejcbH6teA/jfbM+9nerbQGgfjfQGgeDxWO0mlc1MLMsAOQYbQE79aVwEwDgm+TEk1PkqtHfGKukZol7XK0KCsarQLYajJT5ngAAhkt+TSflsTGuoPmYHO3rxPiHxrw/4hu/wGSmCABou5UrV7Z8PgbCD0Wrjru4wI92wH6rQZNjlSxfc801z3pu69atZTzF61VLrwJQT82N28bZYEersSEd114NaQAYvTvuuKPdm0CbKNwEAPgmOfHkE3lq9C82FrFmaZ4VNMRrjfU9t2rFgZtvvtlkWwBAW8mv6aQ8tnnAf4xfyHid5kl1FOIymSkCANpuoBvdox1wv3///lIXrWb8G+pKCBmqlQdiySUA6qv52jFQod1INMdqtbw2ADA8O3bsaPcm0AYKNwEAvkVOPHn7MMfintRAK16P9T23mGQrinIzc3sAgJGQX9MpeWyrVQDWrFmTErt5BbB4Hcc+k5UiAKDtBqvwG8rynAMVEaxYsaJkG6vZOyKhan4fUW05Xst0ReenjkmAeotrZvMqOBkzyjZeqxpFI3o8ltEGgIkq2nuupZOTwk0AgG+SE0/ePszmVawyNQ8ICvGaY3WsxSpfcSzLvQGAdpNf00l5bKu4rXL1kYi2RPNYiPGcbBc6iSIAoPZaJQ2xzM9oOw9bDcDPHEw5lNUAYob+sRYNgBjI2er1AaiPVpXtzQP3R6NVcZ1qegAYufFo79F5FG4CAHyLnHjyaexPjFlH495Uc348WgPNLrpz586SLXLt6667rmzatGlM7yECAAyF/JpOymNbjSXIfK3mggJjF5isFAEAbTfYzeihDOSPG9wHDhzor+iLx549e/qTlLHYrrFYXaDSatnT8ahS3Lp1a/9+zqq2BKA9tm/ffsa/s2fSahXvjjvuSH0NAJhMbrjhhnZvAm2gcBMA4FvkxJNPNQFXDPyPQWo33XRTWb58eeqAtYEGFo3F6tsbNmzo7zeNyckAANpNfk2n5LGt+qSzxy8sXbq05SS4MNkoAgDabv/+/S2fH071XyQKMYg+HhlVgwPNOhKzkoyVVgPxo0MyewaUVoUGrQoQAKiX5pmsxqJiv7lhPtbXKACYqGKAi9nZJyeFmwAA3yQnnpz27dvX8vmYhTTLwoULWz6ffbzFAKM4jlutWA4AMN7k13RSHtvcDz5Ynj5SrcZDGL/AZKQIAGi7gS7AmTPhDdctt9zyrOfGY7b8VkUGY7kaQFVkEMutAjCxrqfZjehWDemxWEIbACbLLDtMTgo3AQC+SU7MWM3SP1Ch7UAFCKO5p7d27VorbQMAHUF+TSflsa0KUrInxGnVt96q+AAmOkUAQNsNNCNdOwemx/KjzcZjKc9WM/Jv3bp1zF4vCgwiKRqLQQcAjJ9WA7uyG9GtCgui8W5GCQAYnmjrun5OXgo3AQDkxJPZ0qVLWz6f2Zc50LG1aNGitNeIlQvidW6++ea0mAAAIyW/ptPy2Mwi34G0GuumL5zJSBEA0BHLDLW6ULdr5ozYnubkOLan1QD9sRDVlo1iW2IZprEqdpgMqwDceOONZfny5aWrq6u/gzmqWlsVegzl2IiEOGJFnIhXxVyzZk3/62hYAe3QqhE9FgPKWt2M05AGgKGL9sRI2iJMDAo3AQDkxJPdNddc0zIHzrwHN9CAo6wJsSJ+3A+KycPGIp8HABgO+TWdmMfu37+/tIO+cCYjRQBAW8Xg9lYX3/GYdX+wBLnZtm3bxu31Ww3Kjxn7x6rYYbyKG9oh3l8M0I/PNJLZKCyJRDOOu9jP8f9aDcJoFklwT0/P6YH+ESsS4ogXncbx76pAIH6u1TEEMN6N6PG6ATUeVfwAnSJyvsgJI+eLYtAoDo28cjjnwsg/q8LSKk5VqDpWxb8MrCq6js+xKvatPpehFBHH70Ub4WziGIk4Q/nZ8RTbFcdjHNetCp3j/bUq3B9O/Pj92Mfx3uO1Yj9Urxf7erAbVNX3JX6n2r74nfisqs+lTh36CjcBmAjkxBOPnFhOPJ4iV7399ttPTwQW/457gpn3Bce6CCD2e8TatGlTSjwAJjf59cQjv5Zfd6rxzGPHYx8ONB7C+AUmnT6A/ytOCc2PXbt2jelrLlu27FmvuXbt2r522bJly7O2J57LNJT3uGDBgmdtx4EDB1K3Y+PGjX2rV68e9Gfi/zdvx7Zt2/rqYsmSJf3bvHnz5jOej/3f+J727NnT8vfj+K9ixGcScVr9bHw2zcfy2fYtMDFs37590GtFnEc2bdrUf06ozifxiL/Hc3FeyTi/x2s0n6/juWxx7Wh+neZzLMBE1XgOjNyvOf8723k3zveNeWjklxEjrgeN+X/8Pa4vjK3I6xs/0+q6HO2d2P9xDY8/4xofP1d9Ro3Xvfh7PBf/v5WIEb/f3P7IeIw2f4j32XgMx9/jGI7nY5vj743/v2oPjbZ93erRKo9q3L547fh8Yj9XeVVzmzn28UDtuk7Sap+MRc7W6pjL7tsAYHKSE08scmI58UQ10PGWofpMz3b/tPn+WvQHA0Az+fXEIr+WX3ey8c5jW40HHIuceKifP0xkigCAthUBVMlr8wU/e7D7UEXy1pzUjUViUCWLwx3MORbFCGcb0F/nIoBqH7ZqNMRnfbZEs7HxMNSGR+MA38EaZsDELwKIf1fXlGjgxvkgziXxfNXJ0XjOGG0nwngNzm/1OmMxcA2gU3PLOKc3tleq68DZzomNbZ84l7Y65ze3AZxfx06V6w/3JkP1e9FOinbRYHl/HCfZN2Eybsg03xiM9zJYu7+xMLpqOw21n2AkN2Ri+6p2aGznYDcn4/ea22CdXpyocBOAOpMTTyxyYjnxRNZqoq2MiZvis4nYQ7n3owgAgLORX08s8mv5dSdrRx7bqlBlvIoAJsJnBsOhCABoSxFAc8OlEwoAmhO5sRrsXiWWZ9ue5v0Tjb8sVePhbOpaBFDtv8ESyMGSwKoxHEnwcL4DrRocE6kyGDh7EUBjp8VAq4c0inNq402pkTZIW52vx6Jx22rgWjtX8AHohNyy+RzcnC9XHZ2Rz5/tuuCmzNir9nF8niPJ1eNa3zygZKCO84g/0KNVjMF+vvkxEs3bPpzjq7nDfqgzh1XbGz/fKo9ozqNi+4Zz06fVd7D5xmknUbgJQF3JiScWObGceCKL/dZqH2fc24pjID6foexbRQAADEZ+PbHIr+XXna4deWyrPurYhkwDFcY4zzHZKAIAThuvIoBWA6XbmTA1ztYcj0hoxnJbhjpgsrkoIXNAebWs1VB+biw6SsdalegPtnpCcwOoKrKojs+RFKW0SjCtBgCTpwigKrAa7nWkuRBtJIPqWy2nN15FABmzaAF0sionHqgDuvncWOWVcS2ozs/DyQmb2wGWac7TOJPSaNpWzYNKRpLzN7dHxrpTunmbR5InNOcbI+kvaLUiYORR1Y3PkeYVzTeM2jnJwGAUbgJQV3LiiUNOLCee6MZqsFF1/Ax11W5FAAAMRn49cciv5dedrl15bKuxgdlFAK0m2NUXzmQ0pQCMk927d5c1a9aUa6+99oznN23aVHbt2lUWLFgwLtuxd+/esmPHjnLdddeVpUuX9m/PwYMHy7Jly8r27dv7H+O1LYNp3k9hy5Yto44b7zXe/7p168pEddNNN/X/uXHjxkH3Q/PxGY/Y7/H5j+Q4aPXzsa+BiS/Oz3FejWvacM8fS5Ys6f+dyq233lqrc/T+/fvbvQkAY952iLbC6tWrW/7MokWLzvh35JTxe6tWrer/e1wbhpPHN7cDWrULGJkNGzacbifE9Xek4niIz7Uu4jhcvnz56X/HsTyS7b/99tvP+Hcc48PV6nX37NnTv31Vm3wktm3bdsZnGt/BxvfcKdqZNzW3gQFgqOTEE4uc+JvkxBPX1q1bn/Xc9ddfP+q40V8bn89g950AYCjk1xOL/Pqb5Nedq115bKvzW3YfdRyHregLZ7JRBACMqbjg3njjjf2D/yMZahwQHRf8GPy/efPmMXv9eL143Z6entLV1dX/iIH/sT2xXZGkRaITCWBsy0CNrHZolYBVg9tHI2LE4NROeq+ZYvBsJHTDKQBoblDEsTDSBlrzwN84xqATROFTnA/jHBjnxDo+qvN3JxbXxPUuzjsjvabFOaexsy7OZfGZAdBe1Xl9sJsi+/bte9Zzcc2tbsYM99rQnMdGPhnXBXLaCSGj2C5jEMl4aX6/cfNipG2dxhsqsT9HcsOwua0VbfNWN3yGq/lmTnx33ND8FoWbAIyUnHjikBN/i5x4Yor7X833f2Jfj3ZAXXU/caTHDQA0kl9PHPLrb5Ffd6Z25rHxmbSaODFzgL7xWPBNU//vnwADVq0uXLhwWDeV44Jd/dksLvDXXHNN/8DG0VTBDlW8Rgx2b7UtkQzEIzoF4xGVj5GsxfZ1wkoA1UD9xsGu1Sz+oxnAH4NMJ/JMJbfccstZG1k7d+5s+Xzs39g/ozk2Wx1r8VwnHFNMXnEMVg3dur+PqiHXaYVMsT2jXa2lKiKo3mN8ZuvXr++/Pp2NanaAsZ1BcLgFpvFcXBtGUhzWKm+Ma8zatWuHHYtntxPCihUrxqS91omijdvYER43VEbTNokbUY15ZbSlh9u+b/X68V0ZbZupGtzTvH3RNuy03BEA6kROPHHIib9JTjxxtZpUZbR9tnHsRNzYr+NxXxOAiU9+PXHIr79Jft2ZOiGPjfF3zZPdxnitrH030CoPJsRhsrESADCoqCSOBHOoj2oZshBJRAxcjIZDJFcxu/qBAwdGPch6OOJ14rXjNZsfkQzECgCxTdWgy0hWY7bpSNg6YUBlqwrS0VRoVoUPdapMHa6qQTRY0jjQklDxO2NRIKEAgHarOgwmwrEY76GTzmHV4P+RLiPYrPm9ZcwaAcDIRM4YbYKz3QhpVWAa16vR5O3N7aVO7/Svg4HaAKPR6dfpeM/NHeyjnU2q1apyox1UEzGz2mGt3l8nfU6d0M8AAMMhJ55Y5MTfJCeemGKAU3O+HQOeRjvAKPpr4/MZy1XNAZg85NcTi/z6m+TXnakT8thWRbqZ3xvnMfgmRQDAoCKx6uvrG/YjBtbHAPsY+B8NkehoG8pMxu1QLS91//33n04sY9muKAZo98zZrRp/zQn1cD/P+Bwm6mwlVaP5bJ26d9xxR8vnR9uQGItGHmSJQepxbh7JOb2THvEeOm1WiszioVbLcY7mvA/A6GfxWbNmzbBzwOgUHk3xXavf1Zk5Oo0zvwy0MthwZczuNJZuuOGGM/4dbcGMotDmGxyjzVUyZ0xqXj46RBtRPgUAIyMnnljkxHLiiSr6UJvv5410puRGca8wzjujGXAJAI3k1xOL/Fp+3ak6JY+NsWnNYzsaV9AY7XuMz2aijn+D4VAEAPB/RXIQg2Qbk8GoSjxbA6wdg0sjmRmJSEI7aQbtbFUj9WxVt60asxlLYLVq2Ek4geFei5qL5swyBdAeVc4Yy5UOtwh0LFaXUnA6OgsXLkwr/q10aqF7NQimud24fv36lNjNN1Dihsdojs/GzyZDq/cpnwKAkZETTyxyYjnxRNV8Tyjuy2Ss3Lphw4b+QUuZg8gAmNzk1xOL/Fp+3ak6KY9t3k/xucaxlFGQMtB5Mfvzh06nCACgSXQMNg7cjobY0qVLn7WM6HhpNaB9JA2IeB/xHgZrUNZd1ak7WCIb+6DVZznaJcpCrHxRp0Ya0Jmaz2HRCDYTB8D4qjqYo10w2Cw2rc7PGTPftMpX9+3bN6wYsf1RALx8+fL+Vc66urr62zVR5DzSouI6a2zjxfuf6PugVZsxq8O/VaFz1kxXGVqtfiefAoDhkxNPPHJiOfFEzIlj8qvGAWLVhF+jFeeOOA/dfPPNo44FAEF+PfHIr+XXnZhfd1oeG/utuRAgJuQdjdjvcT4aaJxXxuoUUCeKAABaaF4SKZK3VatWtWVbImluTlCqAf3DTchbxZpIIlE824z+rZLwszW0h6pV7HavJAHUT3SWNWv3Un2DUUkPTERV5/LZOrBbDSzI6PRuNQvKUPP/6PiMmzDx2Lp1a/8MNXEdiYLVqmM1Co3jBs1oO1rrpDkvj32QsVxvzKbTiTl/qxtOmQXKzbFaFUS3U6vvYcZAIACYTOTEE4+cWE480XLiOE80r34d3/XRrtAc55D4bsRgpYl8Tw2A8SW/nnjk1/LrTsuvOzWPjXFcjfsvjqXRrPQQ37XB3qPxC0w2igAABkgumxO4qqq5HVotYTTcxkMkUe3a/vESn9nZltwaq0ZzNJBbNZw7YXmtwcQx0YkNSJjMVqxY8aznzjaLQCc14gEmyrk4cvCz3bAYiyLQgW687N+/f0g5f9yIibZLdKoeOHDgdOdqtHHiPUU+HI+4dtx44439P9+uVc/a3aaqZq0azQxNcbMrbsp0klZtk+xcobkTPWP53kzxuTbrxFmZxpMbHwAMl5x44pETy4knWk7cfK6J73XGPZkNGzb0FxLEuQMAssivJx75tfy60/LrTs5j47huLPSIgfwjOU/E753tPRo7wWSjCABgAK0aX83Lio6XVoP3Wy21NZDY7khyOq2h0A5jNVt/q7ixz0c748xY67SGE9B6ucP4rg7WCG41qGu4S3gORatt0IgGJqI4t0W+PVguN1C7YLQDDgZa4vZseWXcXInOzxCdn4MVx8Y2xiw68T6rWZwmunivrTqF4/1Xs1RFuytuztT9BtVAq59lar7+D+WG4Xhq9T2Mz7rdn628CYA6kRNPPHJiOXEn5MRZ4r5O4/2NrAKA6j5gJ6/MCkA9ya8nHvm1/LqT8utOz2Pj841zRFUIELn8qlWrht0GiPd4++23D3qcLFq0KGGLoT4UAQAMksC1ukEflZPjLZLn5qWvIiEa6gDuSPKuueaaMtmN5Wz9t9xyy5jEHWud1nACBh4cNlAH3WC/Mx7MKgtMVq06vTOWvh3oRs9gnZaxLVUR81BWx6raGDfffHP/3yNHrm7mTGSxXwYrjI5O8tgPPT09ZenSpbW9QXPHHXeM+Q2ZTp+VaaD32+7tVLgJwEQjJ64fOXEeOXH7xIDExvNPVgFAHOdxzMesvhnnMgAYLvl1/civ88ivJ0ceG4UAVfFMnJvie3G2yXjjfBQ/F/u6KjYajL5wJhtFAAAjqOSs02oAkexFQtTq9yebgaqTMxLAVrHXr19fOl0nNEiAoRnuSgDj1XkUDW6AySgGGTTLGHTQKu7ZOtQbc/2zLSfdKG5OVHHjxkOnLV07FqJAutUyza3y5FY3aOqwj1rlAPH5xsxTWY/YN51eFNiqndfu9o/CTQAmGjlxPcmJ5cR1Fp9j43c8qwCgmgQs9tlQBjkCwFiQX9eT/Fp+3W51y2NjO/fs2dN/voj9FyuHxPchzjVxHMSxFYW/8f2I52MFgPjZ+J3mz6DVsblixYpxfDfQflPbvQEAnWzlypX9yUWrWd/Hu3oyZvJvHsgfyc/Zkrj4mVYrCUxGY9VoHmiJr05fCSC2uW4V5jCZDdaB0KrDYSxW+mgVUyU9MFm16piPjsjRGu7SzJHvV9eI+Jnh5qDRxqhu4sSfMYvKRBfF1PFZxfsdagd9dYMmHtG2ihmtOrWN1ep6HR3k119//Zi9ZifmA3GTqLm90+6V0BRuAjDRyInrS06cT0489uJeTOOMwvFdzToG43wW9wPju9GJnyUAk4P8ur7k1/k6MSfrxPy6rnlsnFuigCb259atW/vHc8V7ie9DPBf/Px7VCget3ttAfeud+j2CsaIIAGAQAyUGkUCNdwVlJDTRuGps+FWz/A/W6IpEzyoA3xSJ41g0mqMopNWx0+kJdnMlNTB0cf6NDrOq8Zktzh/NjdZ9+/YNWrTWahuztYrZibMwAIy1gVYGG20R6GBFmgO1TRpXBxvJ60dHfXVDJt5X3HgYi2tbp4n3HY+qc3w4sy3FfoqZaeL3hjLD03hrdQxNxsLw4dwUGC8KNwGYSOTE9Scnnvg6MSceqfherlq1akwKAELcR4t4nXg8AzA5yK/rT3498XVifl33PDb2aWz7SLa/VcHNZDsmIUyxGwAGNtDAxnYt59RqMH9jA6xZ1aCKhsZkF/thrGbrb7VaRB0KLwY7doCBRadVLNEYRUQxo2rj7FNjadGiRQP+v/HqOGs1oExDGpiMWnXeZ5wPWxWtDpazRo7beHMobhIMV/M1ZLLliNFWihlmDhw4cHrZ5qF+lpHzx5K0MFQKNwGYSOTEE4ecmE4X+W30xVZ5bnYBQDVjbxz/ANAu8uuJQ37NeJnseWyrsXsrVqxoy7ZAO1kJAKh9QlMtBTQWy2MNNlNevOZ4z6QXjYXm2aFbDUBvbEzF/pgMVdUjaTTHfhntZ1gVWjS75pprSieLbW5XMQvU/VzS3PES5+G4FmVW17cauDXY+arVtW8sZpUdaJYHgMkmOvDHori0VdzBVq9qbguMtHMzzuVVbtiOVc86QVxnq5maGnP9uPZXy9AO1CatZqrpFK2uze2ejagdhptPjQeFmwBMJHLiiUdOPPF0Yk48ErECQPX9zC4AiLjR31sd91n3TVrl5GeLrZ8VYHKTX0888uuJp5Pya3ls6+0a6NwGE5kiAKC2ogI2Bl02L4+1Z8+etARjsJnyIplox030GFze+L6rRlOr2f6jqnsyNqaG2rjN+PxuueWWlnE7vSN9vGYup7POmTt37qx18Ueck+O7Fee1jE6vzI6yuPk01s52bWvsTAtj8Vk3xzSYDJis4po6Fh2LAxX4DrSyV/N1aaTtoMZrSLWCVqfns+MhrnPx2LRp0+nP54YbbnjW0tyRZ0Vu0ikDNlp9dmNRHNjpWr3ndn9GCjcBmEjkxJODnLjeOjEnHsm9jOp4yy4ACFXsOLYHm3RrtOK8EqvKDibOZ+3q9wag/eTXk4P8ut46Kb+Wx5Zyxx13POs54xeYjKa0ewMARqp5IHwlc9D7YElruxookew3a7V8WlQNR0Oqk6qD26m50TSWjeb169eXThaV4632BxNXnAvinBmfe/y9ro9q+cl2FjcNNKNB5jVhoNcYrDCtVQdD9uwLreJZTg+YjKrrafY5caD8LM7vA3UiN98YGun1qDl+qxtOdVflQqMRN8Zi0El1g6bReOcnXV1dA7aJW3XIm5VpaPnUeGj+vincBKCO5MT1JCeWE3dKTjyc+2HVPZixKAAAgE4hv64n+bX8um759UTT/P2L9kKnFM7AeFIEANTSYIl05g30wZLWdiUOrZKWasB/c2HAQNXbk001eLjZaCtR4zhsFfdshRfxe7Es11DEZxuD9mOVi56env6GV/wZ/44ZcBqLEOLvg1Xgxn6I3xnqa49W7JuBtn2ohQgRIxqa8fPR4R/bH8Ub8T4jVqsVDeL9xc80v2b8fkbxQ+ZnMt5LDU6E2RXi/NeqGGq8DPR5Zhb/DHQdO9tNrlbfh8xr4ljNQAJQN62W6I3r02ivs61WmAqRd7RSzZ5UGc3rN//uQCvf1Fnsx5hRKUPcfGm+ATPQzZF2aHVzsM6rQY3EQHl/JwwaUrgJwEQgJ64nObGcuFNy4qGIfv7qmBrLAoDoN+/r60t/tDpHnu13rAIAMHnJr+tJfi2/bmd+Pdnz2FbjwNo5jgTaSREAUEuDNTYyB+cPtBJAuwfStkpcGhsAkezE4GMJzsCN5vgMR3ustFqBIZLbsx0fMVB3oIZ1YwMiBpXHANtIXK+//vr+ju4DBw6U+++/v9x8881l5cqVpwejx+cfcVs1tOJnqkHxrVYuiP0TA9kHewxHVWwQg6Wjoz4ahNu2bevf/tju+Hc8X72/wQa9xH6I47jq8I/tj+2tOiAafzf+f7zHaGhHQysayfG6se+qmfDjNeMxkmKAzM+kHWJfxLaORUNwPB979uxpa4FT9f2u/ozzSOzbzMZ9q8H2Q3nP11xzzbOey1z1o9WxrNgMmIxa3azI6OBslafF9WagAtPMHGPRokVjFrvT2wUjFTMzNV8HM+OPRuQlzW2SifqZDief6pQBNQo3AZgI5MT1JSeePDo5Jx7KuaC6h5JVABD3DsZrgiQAGC75dX3JryePOufXE9HWrVuHPWErTFSKAIBaGmzw9tkGVw/HQIMn253ItRp02TggPZKdSMDbvZ0TvdHcKqlsNaCjuSEUj8FePxpyMYg8Bq7HgOcYYByfeVXtH49oZEUjMP5/DKofrOAjXq+aCT4eza/d+P8GegxVbHtVbBDbGNsXx2a8Zvw7YsW/o+M+Xjd+fvHixYPOfB4/HwP6B9qO2E/V6gIxED8GusfPR4Ifv1Ptp+o7Ug3mH06Hf/ZnQn1V358oAhmrooRW56yhrDRQHYeN7rjjjrTtiu9tIwUAwGQ1FgNsB1phKq43AxnLpXYnaud97LPMArnmmZk6ab+1am9kvvdO15y3dNJAeIWbAEwEcuL6khPLiTtdfEbVfZasAoBqUqF2rfANAGcjv64v+bX8mvZoHlOhAIDJTBEAUFuNszFXA94j6crsxBto8ORQBmOOpXiPzR2fkfxXCXYMdpbgDF4dPdpkPGK2agSfbb9X1fYDFQtEzGrbYqD5UI7n+LwHG9QRcRofzclwNVP/YI+hiPdWbXts92Dfxzh+b7/99tPvOQbYt2rAxu/HPo3B9a22PVbriN8NMRv/YPsh4jT+fhQNDGWg/lh8JtRXVfgx0PKZY3XOGmrhUvP1qdUMH1nb1e5rIUA7RL7dKgccbYFpqxWm4noTOdBAmnOnhQsXlixjebOn3TJnToq8oPGzj+LATtHqOt3qZmKGxrZop2hVsN0p+bnCTQDqTk5cf3LifHLivP24atWq1AKAUH02mau5AkAW+XX9ya/zya8nnqowN0PEaR4HYZJOJjNFAEBtVYOtoxI2Zv6Owb3ZHXgDJeudkMi1SmCiIVclwwZnfiv5azW4fCwazUM5LqqBw61mfww33HDD6e0bzvHcXBHeztl5BprJvFk1c371OQ0lKW/+3OJ1oxAgCgqal58b6Pcb99VNN9101hUB6vqZMHbi+xvH3lh0PLQqMIpjaSjHd6tCpKzGdKtzaSdcCwHGW6v2QVUgNppzbOQkzc5WiLlv376SZTIt4zuUPHU42jGIZCjX9mrVqkZDLe4drsjjN2zYUDpFq3wqcvlOmvVT4SYAdSYnrj85cT458ehVk/HEn9n3+6rvcye/fwAmL/l1/cmv88mvJ47Ydz09PWXp0qX9f2YM1m8+v8UYCQW/TGaKAIDaqhKDsRpoO9BM7xmvlzEgs9Ug8qg8jcHprVYKmKxaNZqjwTnaZLzV4N+zJavVoOFoDAzUaK+2d7jb1+7PvLEAoFXjbyCNyw3Gex9JlXw0LIfTCRKFB43bFysCDDaYu66fCWMnjpnGP8ci9lBn5GgWP99cCNBqVoLhao4xnG0CmOid+aO93lcFh40inxpt0SpjPytTiI7ryqJFi4b8e82zaA2njVjdMDvbTFzNeUW89+ybbbHdEXc0x2sU9WZqVbDdaQW6CjcBqDM5cf3JieXEnShWAIjPJs4x2d/9iDmagZQAMJbk1/Unv5ZfM/hYosZjMQbwj3ZSnMZzXOT5PgsmO0UAQG3FANu4cR4J5VgMxGyVJMRrjmbgY5XYZCSckcg038yP+DGruWWOBm80r1ixYtRxR7K6QJWIDpaAVoPRR3KMtGuGxzjmGvdH48D+oRzHjZ0YrRpPw1kOb6iaP4PBqsjr+JkwPtef6HzInLW11eoCI2mwNv/OcL9XZ4upIQ1MZq2Wth3NwN3IoZpXJYrz7M0333zW321+XQMahq7VLFgj1bgc83BuzjUXmA4n1xzqLJaRrzQfF9nX8KqNM5o2aObqSrFvmvOz4a7oNR4UbgJQZ3LiiUFOnEdOPHqxAkDsg5jwZywGJ8Z5K+O+EACMBfn1xCC/ziO/njjic2h1PhvN6hkxPrAxZhx/zlVMdooAgH4ZM861QwxsjIt5NGIyk+qBZiQf7VJWVQMuK+EcKOltHkwwmbX6HKNDOdvZEvyqYRA/N9DPNn4P42eH+71s11JjzVW2w23sNHa+D3dA9UiT+SigafzdVoOv6/yZMPaqxmRUrmfNbtC4okZ1Lh/J+bx59YCBju+hap7BQQEAMFkN1Fk5mll+WuXzt99+e207LGMfxfUs8u14b53azswokKs0XmOHM1ilOWceTj5R3bwZSt4dx1OjaDdnfS5VEfpwVgJrJd571mxZrb5TmZ93JoWbANSRnPjs5MRy4pGYrDlxtb3x3uP+21isYlWt+q2vHoBOJL8+O/m1/HokJnN+XQcjPR81FznF8Wp8HCgCAM5SAdqpCXSrBkskXs0VzSMR77l5IGaIDsjRVnI2rliQsa2R8DcnR62eyzwuspfNGkvxWY5kxv6haN7HZ2uAVA2DwSrsI2Zj3OXLlw+rYTZYgcFYaR4YP5J921yUkb1c3kCuueaasy6LWMfPhPERx0VVGBbHxWiLu5qLCeK4GU3nQQz4ajz2BlvtYijbVokOFw1pYLIaLEcZycow0THeHDNmP6lr7hDvJa6JsS/i7/H+Fi9eXDpRXLezVvOpCr2Hmwc358DDySXiOBnqDZA4npoHgrdq746mfZsx0DxjNbtWxfyRr3XqYB+FmwDUkZx4cHJiOfFoTMacuJrgK/pBx6IAoHEl8fhuAkCnkV8PTn4tvx6NyZhfd5qB9tNIP5vG4yxiNxekwKTVB9DX17dp06a+OCU0P5YsWdJXB7t27epbsGBB/zavXr26b8+ePSOKc+DAgf733LwfNm/ePOptXLt27bPibtmyZdRxN27ceEbMbdu29WWIfdjqmFi2bFlfXWzfvv1Z2x/HSYY4zhrjxndoIHH8nO1nBvo8q98b6TE9kMb48V6yjuuRfFeaj7Wzxcg6HuO7MpRjY7w+E+opzuOjPf82f4/iOxnXo9GKGNW1cajnoMGO/7g+ZmwXQF0153/VuXEk+VSrPHW415HmHGU0bbfG61n1GK5W7aiRXn/GQuM1Matd0JhPRpt0tNs01GNgJHl38/E72jZudcyMpE0bOXxzTh9/Rk40UpGbN+/PTjn2hrM/RtO+aXz/o9mXADAYOfHg5MRy4qGSE5957MT7z3jEd3Cg72Gcc8ZL9KGO1b0pACYW+fXg5Nfy66GSX3duHtt4TotzzEjH2TQeb7FNxi3AtygCgEkmLoJxQY1HJIzREBioAKB6xIU0EsP4+ep3O3Hwa2xTY2IXycNwkuLYF62S9JF0DMZ+jteO/Rbb0Ry3OfmMZDheZyRJfPzOaBpOofFzjXiRVA+2zXU5Jlod26MZ8D5YI3qgxkPVSBvqYI6Bii+qRna8ThwvIzlWGmXtk5E2IgfbnrM1nJq/PyPVal+32q/j9ZlQX42dMfF9GuqxED/X3HkV14xMzcVtw+l8UQAAcKZW+XHkzVXH41DbDa1yi5HkUJ12Q2awNmWnfX4jvZE2ULHdSK/fzft9KNtTFRiP5LrcXHg40qL0KvcZ6ftuviETcar21UhuFLUq5q/TzRiFmwDUiZx4cHLi4ZMTT86cuPm+1ng8xjNHbnU+Gc45EoDJQ349OPn18MmvJ2d+3cl5bBVzpN+N+CyaCwA6cXwatFNnXBWBtlYSj/TRqaoEtTHZjgSvcdB6Jf4eCUdzQhiPSFZHmji0mjl8qI+RJE9V8jmSKtbm2dAn0jHR6njPWH2hVYOmudI0/l4dB8MdqN6qSv9sBRnDNdyG31CrgGNb4vnhPpobZEPd9tGuTNFq+9v1mVBvzQP6qwKveL46N1QFYq2uO/G7Y3XcxOs2nq/OttJAc1GdmWQBBh6gUBXRDrXjsTmniPP/SNsczQWvo7kh09yGGkluP1gRcScUSzZuX1WwPdLrXHxmGTd1QnNOMFg+UN3MG83Nhua26nBvqlTH3WgKF1vdkGk8DocTu/GzGIs233hRuAlAHciJz05OPDJy4smVE7eaUXU8HmM56Vp1HqwmBhtsO+L4qcMkWwCMPfn12cmvR0Z+Pbny6zrksdXYrfichvPdjddr/J6dbZwDTFadN2ITGFPVhTUukvGolsYcyqP6neoC2+kimRtoebDBHsOZxXkgVXI01P3cuF9HUgQQic9IG3NVQ6Tx850ox0Rz1fFYLAnVmAhH/HjN5hUpRvKarVamGOwRrzmcz7/5mB+JwWbIH81jvFYCaI51tsbbWH8mTAxx7RnOcRLn0tEujTic833j+Sm++/Ha8Xwc+/Hda/z/8XezUwEMfMOicQnUxpy6VT4ROUFzbjraIqtWxc/tjNVqH3VSB3mrGZSqzy3e71CveY3vM2Pmn1YzCrW6KVPdeBht/hvivTa+Zuybs+UjVZsz4/Mc6IZMtW2xPWfLQ2K/NR9zw72B0GkUbgLQ6eTEw48hJx4aOfHkyolHM4nWSB8Zx8xwvu8jeXTCOQKA8SW/Hn6MTrt2yq+/RX5dH+3KYxsncY39Gr/XOKFi46SK8T1oPobHa0wF1FHnjdgESFbN9l8Nzm5ekiueq1YKYGKpBkXEZx4J5VgNyI6GQsSvjq2qGCCjMTDQShUDPYb6mhlFAK1mJxiPQe+ZnffNg7WH0nAYq8+EiSU+97i2xPersYEaf4/nouHarmOjaji3uia2e9sAOlWrFaaaZ45pLBisOpSbrwPVjZiMnKl5WdbMGzIjzbFim6r3W3WOV6vjtFtVvNw8qDo+i8Zi+fhcqyK5gQrlMgrHBxv8XX2e8Vy8drV92bPctCqcr9rH8bpVLtP4vjOO3cFuyDTvj9i+2Jb4HOLziG1u3lcRbyK15xVuAtCp5MRD3yY58fDJiSdPTtyOIoCxKJitzhkjmWCr1SRbnTCQEYDxJb8e+jbJr4dPfj158us65bGNhR9DecRrxGdl8k0YXFf8pwAAHW/Hjh1l+/bt/X/u3r275c8sWLCg3H///f1/Dqarq+v031evXt0fd7hiG5YvX37Gc3v27ClLliwpY6lx25ctW1Z27dqVEits2bKlbNy4sS2fCQDQuXp6esrBgwfPeG7btm1l7dq1z/rZ66677ozcIHKAFStWlDVr1vTnGVk5QbxGxKxE3AMHDowo1rXXXltuuummUeeHrUS+GPE2b95c2in2VbzPVp9ZiM839kG877179/Y/qv26cOHC/rwzYsR7Gat8N14z8tE4dqptqI6fwbZ9tOL1brnllme9brzPeO/Zx24cE425c8SO9z2Uz6T6PGLbYrtin4x1+6Ndqs8lvuvx3qtzULzfeMQxuX79+v4/AWA8yIlHTk48dHLiM032nBgAJjL59cjJr4dOfn0m+XVnqI6P6jOo+r+rY7PxswDOThEAANRUNMKj4XLrrbee8fxADZqRFgFEsh1Jd/Pgkng+OicaRZyIV9cigIE6VsbjMwEAOlOrwscQNz/aWeQX+dnSpUvPeG6kXTzr1q07I3/ZtGlT2g2UTrkhQ+cY6g0ZAKBzyIlHR05MMzkxAExu8uvRkV/TTH4NTGZT2r0BAMCZjeHmiv+BRMM2Bq3HIPjGzoCoXB5qjKEObF+1atWznm/VAZH5umOtqrRv1GoWzU78TACA8RO5ULOYhaTdq/xkzkTTnBetXLkyNfaiRYvS4gEAMP7kxKOPLScGAKAivx59bPk1AHyTIgAA6BAxSDyq4Vs1+gcTA9dj4PnZBriPheZZ//fv31/qonk/V8vP1f0zAQBytVoxaaxXPhqq5gLGkeYbzcWKrQojR6pawhUAgPqSE4+OnBgAgEby69GRXwPAtygCAIAaNPrPJjoFYkmzys6dO8t4iFnyR7vt7dK8rddcc82Qf7aTPxMAIFera/iaNWtKJ2i+MTTSGzKNv9eqMHKkqhs9mTNIAQAw/uTEIycnBgCgmfx65OTXAHAmRQAA0GGGO+v8QAPyh+pss/cP9v9j4Hxjlf1It73xPVx33XUjnkFgOGKG/0aDve54fyYAQGeIGxWt8o1OmZVp/fr1Z/x79+7dw47R/P4aixizbmatWLEiLSYAAONLTjw6cmIAABrJr0dHfg0AZ1IEAAAd2PAfSWN64cKFp/9+tsr34SyPt2fPngHjRZzrr7/+jAb9SAfMx+/GwPylS5emFTAM5Kabbjrj32vXrh10n43HZwIAdJ5WeU0sW9wpSw3HtjQuozyS1Yua32PzTZ7R2LZtW38O1Cn7CwCA4ZMTj46cGACARvLr0ZFfA8CZFAEAQAe64YYbRrWk3tkq3xsHpJ9tcHsMzh9sAPumTZvO+P/Dmcm/+T1HY304MwHEto1kcH7jNsZr3nzzzUPavrH8TACAztPqBkenzMhUufbaawddRno47zFyusYbPKMVN3s6bX8BADA8cuLRkRMDANBIfj068msAOJMiAADoQDEj/nAHt1eN6Wj0nq3yvbnavnGwerOtW7eWNWvWDOm1Q2x380z7ZxO/c+ONN5bNmzeX4Vq3bt2wOy0alyCM2QKGMlPAWH8mAEA9ZmU6W1403qKAssozqpWVhqMxb9uyZUvadkXeFDlm4w0jAADqR048cnJiAACaya9HTn4NAM+mCAAAOlQMbm8crD6YaOxWjemhNKSbZ9sfaPB9dELENpxtdv6o4I8B71VnQDS8W3VgDLTtq1atKmvXrh3WKgDV6w6nECD2UWOnQxQADGemgLH8TACAzhLX8lbX/U5c3adxVaPhrMoURZiVyMUyZ1CK7cie5QkAgPElJx4dOTEAAI3k16MjvwaAZ1MEAAAdKBqu0YBdvnz5oLP0h/j/1ewAMai9Ghg/mBis3zjwPwarN89yHx0QMZh/06ZNQ9rmaMDv2rXr9OvHNp2tQyA6AZYuXdr/u7HtwxXvI4oPouAgXm+wfRXvpZoVIH4vtjU6HjrlMwEAOkur2Y3imt6Jq/tETlPlbJGHDOWmTOR+1c9FnjOSXGwgsQ2Rnw3n5hAAAJ1HTjxycmIAAJrJr0dOfg0ArU0d4HkAoE2ikX/77bf3/xmD1mOQfDSyV65ceXogegzQ37lzZ/8A+OgsiOdiUPtwqt6rRnvVUI7B7fFcvE40omP2+og30CoBrcR27Nmzp39wf8SNP6PA4JprrukfFB/vKWLHtsbz8e94neGuAND8mvfff3//LP2xryJW/D2ej9eKzoYbbrjh9KwK8R6H857G8zMBADpHXNObZc5alC3ym0WLFp3OwarnWon8KFZiCpGrRM6SKfKlyIVGk+MxcTUX1O7fv79t2wIADE5OPHJyYgYjJwaAyUl+PXLyawYjvwYms66+vr6+dm8EE1cM+IwBkQcOHBj3164GsEaiGX+vLvgxgDOW0opti+SwEytqgcmrp6enf7B548DxOH9FYzoq2xvPZQsXLuzvFIgB76PpHKjOl1X8GMweDejhrAIwkBgMf8stt/Sfi6OhVcWu4g9nJv5KV1fX6b83dyDE68R7iWtP43uJR+ynKEYY7nm/HZ8JANBekVNEgWSzkRQTtmPbIxeJHKXKuSKPiTwlnovcLHK0yF2uv/76Ued7zaLQM14zZnkaSa7HxBbHYBTUtiokBgA6i5x45OTEDEZODACTk/x65OTXDEZ+DUx2igAYswRww4YN/X+GKAIYr8H2kVjGjM/Va4cYiFm9fjVTczUjdCTT2QkoAGNnsCIAAICRaCyGvOOOO1ouy1ypVgOq2phVEWCnFZi3Ko5sLIofi3Zw1dke+yhzqWfqqyqYrfpiog+meVamEN+hajav6rsUfwcAxo+cOIecmGZyYgCYnOTXOeTXNJNfA5xJEQCp4qIay0A1J6/jUQQQrx0X70ikq4GhcaEfaCbmSE5jW+PnY0WASFQB6HyKAACATLGMcbQNR0Nx+TfFTFbR8W6GHRpn6BqpyPMbV+MCAMaOnDiPnJhGcmIAmJzk13nk1zSSXwM829QWz8GwBt7HYPqoWo3B9I2z74+nKDqIpacqQ1kCKi7q27dv70+8IwGPqlTLRgEAAEwujQXr8feYZamV/fv3n/57tbJc9TsDFZ9PJtXMTwo0adY4g9nZVN+zxu8YADD25MQ55MQMRE4MAJOL/DqH/JqByK8BvsVKAAxbT0/PgBfGahD9eK4E0FjlF69x++23D6lqL4oWogCgKlyIBDqKAgDobFYCAAAAAAAAAAAAYDKzEgDDVhUAxID7JUuWlBUrVvTPoh+D6OO5mFW/uQhgvJb5iRUAhrpsT2xzc1EAAAAAAAAAAAAAAEAnUwTAsHXK4hExg39jAcCmTZuGvBzWQAP+o8BhrFYsACCfJdsAAAAAAAAAAACYbKa0ewNgpNatW3f677EiwebNm4f8uwsXLmz5vAIAgHrZv39/uzcBAAAAAAAAAAAAxpUiAGopVgDYu3fv6X8PpwAgLFu2rKxdu/aM54YbA4Dxd+uttz5rJYBYGQYAAAAAAAAAAAAmi6nt3gAYrhjsedNNN50xe3/zgP6h2LZtW9mxY0d/McGKFSv6CwMA6Cxxnt6yZUv/YP84XzcWgFWWL1/efw6PVV7imhBFXbFCDAAAAAAAAAAAAExEigConRtuuOGMf19zzTUjjrV69eqELQJgrMTg/5j9Pwb3h+rPZlWBQPz89ddfP85bCQAAAAAAAAAAAONHEQC1HAzaaN26dW3bHgDGVqz00tfX1+7NAAAAAAAAAAAAgI6hCIBarwJQx9n8Z3zb96bFmjbt3JQ487ovLVn2H92VFusHz/uBlDh7j0wvWZ4oR9JiLZ89IyXOhw59tGT5V/Pyvk9Xnn8oLdbL5x9OibPrwPyS5cHDs9Ji3Xrwcylxnjn5eMkyd9plabEOHv6nlDhd3TnfmTBr9ovSYj391BdS4kyftbhkmTpldlqsP/i256TE+bf3nCpZHnvqH9JidU3JO66mdM9JiXOq96mSpXtq3nmvq2taSpy+vhMly9N3/WlaLOrpAx//w7RYn92Xcx395fOuKFmm9ZyfFuur07tS4hz5td8vWfb/bF7baMWTOeeW3zjy9ZJl0yUvS4v1R/vuTYv1X/9+b0qcmY/lXa+6TvamxfrjTd+XEufbDh8tWX7l8T1psR586nhKnBecM7Nk+frTOdsUfuTyF6TE+X93fb5k+eB3vykt1nN6u1PiPHXvXSXLif370mKdfN0b02ItevpYSpyDc3Ny9HDqb86cmGQ0Fn1XzjXw8g/9ecny+C/9Wlos6uvPPrU1LdZz51+QEueFF+ZcG8KBpw6kxTp3al7fYJaTTz+ZFuupB+5JiTP3qteVLLNnzk2L9Vef+0harL/7ak6ut27pt5Uss6bl9XdN787pD5o1LS//nJkY63mLcvrBj/fm5cRf2//VtFjHTuTkVL19pzry87v7kZy28sNP5d3PWn7BkrRYX3sy757PolnzUuK88Ct57duDd3w5Lda5v/DzKXHueviLJcubVubc56beHv563nE+Z0ZOLvTEkSdKlundeeMwDjydk6u/+OKXlCxPPZM3NmT6iZz+695nni5Zjh9KPBYufX5arClTcvrPPrX3MyVL95QpabGef15erpBl0bzz0mIdezjn/sOMhReWLCenTu24dul9j3yldFrOH95+220pce56x8+VLF8/9HBarN5Tefei/t0//FVKnFu/56dKlqOPPZQW68t9Odebi8/J+y5femneOK+JJu8qBeOgeRWAZcuWtW1bAAAAAAAAAAAAAADGmyIAauPgwYNl794zKwZXrFjRtu0BAAAAAAAAAAAAABhveeudwBjbsWPHs55bunTpgD8fBQNV0cCSJUv6HwAAAAAAAAAAAAAAdaYIgNrYvn37s55rHtgfg/43b95cbrrpppYx1q5dW9avX9//JwAAAAAAAAAAAABA3Uxp9wbAaFYCWLBgwem/x8D/WBlg586dZdu2bWXPnj2lr6+v/8/4dwz8v/XWW8u6devK8uXLy+7du8f5HQAAAAAAAAAAAAAAjI4iAGojZvlvtnDhwtMFANdee23ZsmVL2bVrV/+A/2qVgPgz/h2FAPH/onAgCgCiEODGG28c9/cBAAAAAAAAAAAAADBSigCovRjQHwUA27dvLxs3bhz0Z5ctW1Zuv/320/++7rrr+n8XAAAAAAAAAAAAAKAOprZ7A2AoDh48OOD/W7duXdm0aVNZvXr1kGJFIUCsGFAN/o9VBJYuXdofYzycfOwr5dTj947od6ecd0WZev7z07cJAADq6C/+6M/LX/3xX47od//Vj31f+f4f/4H0bQIAgLq65fe3la1/cOuIfvean1xb1r9zXfo2AQBAXb3vfb9Tfv03/seIfvf/+fl/XX7hF342fZsAAJhYrARALezfv7/l87fcckv//9u8efOw4sWKAUuWLDljRYBYUQAAAAAAAAAAAAAAoJMpAqAW9u7d2/L5mMX/+uuvH1HMtWvXnvHvDRs2jCgOAAAAAAAAAAAAAMB4UQRArR08eLB/Vv+RWL9+/Rn/jpUAduzYkbRlAAAAAAAAAAAAAAD5FAFQCwsXLmz5/JIlS8qCBQtGFHPZsmXPem7z5s0jigUAAAAAAAAAAAAAMB6mjsurwBhpNZB/OKKAIFYTqIzHSgBTz39+KfEAAABG5ft//Af6HwAAwOitf+e6/gcAADB6v/ALP9v/AACAsWIlAGphoNn+YyWA7BUGxqMQAAAAAAAAAAAAAABgJBQBUAutBuuHpUuXphcXbN++fVQxAQAAAAAAAAAAAADGiiKACSBmru/q6hr1o44rAQxUHDAaBw8eTI8JAAAAAAAAAAAAAJBBEQC1sWTJkvSYrYoI9u/fn/46AAAAAAAAAAAAAAAZpqZEgXEqAti7d++Yv85YrwTw4pnflxbr7oM3pcSZNf+8kuXUySfTYt1y4PaUOK+c9qaS5cpZM9NizZ1+PCXOy6atKVm+85J9abEOHc+7xHxw78UpcZ7p7S5ZvnEsL9aJU0dy4jx9f8lysDyYFquvnMoJdCqvdvGZE4+kxSpJ76+7a0bJ8pppr0qL9T++mBPnVdN7cwKVUv7yyMm0WH2J6XDWd3DK9J7SiWZ3X5ASp6tLHTJ5Lp23KC1Wz4w5KXF2Tc1bZe3VF12WFuucv/qfKXGe90vvKll2Pv1oWqwZ5+eco97x3Lx93nPJS9Ji/dyJZWmx3nLfb6bE2fG9LyxZ3vmq9Wmxfvuf/yQlzqtfenXJ8ktL846FV33wT1PifPB7f7JkmTl9Vlqs7V/6eEqcH1ycd304+P9tSYt13rX/KiXOote9pWTZ9+TjabGePpbXJ/TItv+TEufQ2h8oWZ53+fPTYv3KPR9LifPQT74zJQ5U5iflxOHxpw6kxDn61c+VLK+54tVpsY58/d6UOFOm5fUH7fvHv06LddHbrk2Jc/jooZLls4nHwnlzWq8+PRLXvvQ1KXEefypvgqrjvSfSYh06ltN3PSvxWD9vTt4q4Qeeztnvvafy+j57+5L600spc5LO69O7p5csi+admxbr4UM5/QoXzc1rPzz+dN595tWJ160njuTc/9t52bGS5Y2veXNarDsezxlDMHf67JQ4UDmQeE44Z9b8lDizpuWNd8h0+dyc/t2TR/P6Jnq/kTc+6VRPzvvLNPPcS/JizZybFuvL3/hSSpznn5c30eyefQ+kxXo0qS9uZuJ3edrUvFxv/vnPTYlzckrevbaSmKufSoq14Gt543HmvzhvbMjvvGZlSpwLf/vXS5at3/PtHdlW/pPv+YmUOCcSj/W5l+bdtzu655M5cU4cTYnD4BQBTJDB8Rs3biwT3bJly8qOHTvGfNb+BQvyOn8BAAAAAAAAAAAAADIpApggRQBbtuTNStap1qxZU2688cbUWftbFRHE/gQAAAAAAAAAAAAA6ERT2r0BMFQrVqx41nN79uwZVcxWRQRLly4dVUwAAAAAAAAAAAAAgLGiCIDaWLBgQVm2bNkZz+3duzf9dVavXp0eEwAAAAAAAAAAAAAggyIAamX9+vVn/Hvnzp2jitdcRLBkyZL+BwAAAAAAAAAAAABAJ1IEQK1s3LjxjH8fPHiw/zESrVYRuPbaa0e8bQAAAAAAAAAAAAAAY00RALWyYMGCZxUC7NixY0Sxmn8vYm/atGlU2wcAAAAAAAAAAAAAMJYUATAu9u/fnxZr8+bN/QP2K1u2bBlRnObfu/7660e9bQAAAAAAAAAAAAAAY0kRAOn27ds3pvGjACAKARpn9B/uagC33npr2b179+l/r1692ioAAAAAAAAAAAAAAEDHUwRAusbB9YM9NxobN27sH7hfWbduXTl48OCQfjd+bsOGDWcUFWzbti11+wAAAAAAAAAAAAAAxoIiANLEQP9rr7225az8Mej+pptuKnv37k17ve3bt58uBIiB/cuXLz9r/Pj/8XNVwcCSJUvKrl27+gsBAAAAAAAAAAAAAAA6nSIAhu26664rPT09px9dXV39jxhcHwP9W4lB91EgsHTp0tM/3xhjpCsFRCHA2rVrTw/wj/g33njjs1YFiH/Hdsf/rwoFooAgCgCiEAAAAAAAAAAAAAAAoA6mtnsDqKcYVF/Nnj+aWfSbB+uPxLZt28qtt97aP8g/BvjHn/GIwf2xbfFc4+vE81u2bDm9igAAAAAAAAAAAAAAQF0oAmDYNm/e3P/oJLEaQDx27NjRXxQQf+7fv7+/ACAKAZYtW9Y/6H/9+vX9fwcAAAAAAAAAAAAAqCNFAEwoMdDfDP8AAAAAAAAAAAAAwEQ1pd0bAAAAAAAAAAAAAAAADI0iAAAAAAAAAAAAAAAAqImp7d4AmGwWdU1Pi9XVPSslzvSu2SXLJfPenBbryb7HU+IcKsdLloeOHkyL9diRe1LirJrxupLljkfnp8V64cIjabHOm/1MSpz/8bWPlSwzpp2fFuvkyZzjasqMRSXLqWf2pcXK3K4s3d3npMXq7XssJc687otLlhf05H3/tj6Rcy4++PT9JcvcOVemxTry9OfTYk2fc0VKnL5yqmQ5+czDabFmTHtRSpxHD/51ShwIzz9vSVqsv7v30ylxvnzoQMmy5kXflRbrX172kpQ4dz94R8kye+q0tFivuOy5KXE+ev+nSpb37Lw9LdZXnz6ZFuvnln1bSpyLu/O6lJ7YuT0t1oYX5nxvHvrD3y5Zfu+FF6XFesuSuSlxvv8vPlCy/O3bfiYt1qtnnJsSZ/WKV5QsfVf9q7RYtz24MyXOdxzLy/cf2P/VtFjPuevOtFjTXrkiJc6ChZeWLA/c+L/SYr33f/xGSpwHfn9zyXL5v/uvabGor+O9JxJj5eQvt9yXd2759iWvTIt16kROn/PcS3L6EkL36h9Ii/VU0rXmY/fltLNCb9+pjjs+w46Hv54S56+/8GTJMuvrebnCL7z9xSlxXnHh0tKJ56onjuT0g59/IO/e0d/vvy8t1osX5fQ5v3bpt5csjx1+NC3Wyy7JOT6XbfzPJcu81Tn9E+F3Z81Li/W1J59IifNDy99Ssnz+q5/ruPPCwll598whHD1xLC3WF77xxY7bphXPvSot1vTpOWNfdj24u2R54SXPT4tVns7Jz2b0XFiyHDx2KC3WP3xhR1qsK/fl5MVPfeELJcvsL+bcLw/3/sTqlDjPW5B3LPTMXpAW6xf/Iaf/bEZ33rzWP3dOXv/goUP7U+JcsGp9yXJ4z11pse58/KGUOH/8xmUly91P5PVf98zIudaEP0867y2YMadkWdyTN+Zo7vScvHj61LxxsgzMSgAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoCUUAAAAAAAAAAAAAAABQE4oAAAAAAAAAAAAAAACgJhQBAAAAAAAAAAAAAABATSgCAAAAAAAAAAAAAACAmlAEAAAAAAAAAAAAAAAANaEIAAAAAAAAAAAAAAAAakIRAAAAAAAAAAAAAAAA1IQiAAAAAAAAAAAAAAAAqAlFAAAAAAAAAAAAAAAAUBOKAAAAAAAAAAAAAAAAoCamtnsDYLL5St/X02JdMW99SpxH+/aWLK+f85y0WA8+fWFKnOfM7C1Zdh+blhZr2pR5KXE+ffLekmXRkYvTYp3qm5sWa+dTx1Pi9B79WslytPfJtFjTpl+UEuf40T0lS1f3rLRYfSfy9lWW6TOfnxbronPelhLnO+flfWc+8Xh3WqzHn/p4SpwFc19Vshw88um0WFOm9aTFmt6dE2vulJzrX3i896m0WOeUhSlxHu3Ou5bCFx+9Ly3Wm67IOU8986V/Lln2/PavpsV67buuT4nziYf/d8ny44uuSIv16o98KCXOgY/m5Yv3vOdfp8U6uDPnehyOf3J3SpyTTz9Tspxz7S+kxfrKgYdS4jzvrT9Ussz5yj/lxZqa05V3620Plyyren83LdZP/vcHUuJ8z395bcny6ycPpsX6uaf6UuJ8ac6CkuX/fCXnnBB+fNkr02LtPZBzjH7Pibw+oat+571psVbf8lspcW799u9MiQOV113xmrRY/8/2P0iJ8/YrXlaynDhyIC1W77GnU+J8+tqfK1l6Fuf1LR3+0R9OibPvWF6/xGXnnJsW68f+6B/TYv3M1c9NifObay4pWf76q3ntmvfszLmn9furzitZpk/N61s6Z2bOfZoPHX6wZHnj0hVpsQ79p5xc/e5NOfsp3Ls/7/h83u9+NCXO8Yvz8uvHD59Mi/Vfdu9Mi3XPjpzv8s9e/sWS5Y/evCwt1usv//aUOA/uy/suQ+Z1JuzZl9Pn9dwFOfelw8xpefeTTx3P6Wt86YKc3Cwc+3revfdZl74wJc7ur91Vsly6IG9syEvuuz8t1sd/+3MpcZa+JG9e5Lt3nkqL9dold6TE+YOX5I3N+rcr8o6F82bNTInzwgUXlCxHLsy7F3XDZ/4uJc5/2bk9JU544pJL02L90X2PpsT59982u2S5/RtPpMVaee45abE+9fihlDjnzsgb23Pwy19Ki/XOF+Rct3pm57W1GJiVAAAAAAAAAAAAAAAAoCYUAQAAAAAAAAAAAAAAQE0oAgAAAAAAAAAAAAAAgJpQBAAAAAAAAAAAAAAAADWhCAAAAAAAAAAAAAAAAGpCEQAAAAAAAAAAAAAAANSEIgAAAAAAAAAAAAAAAKgJRQAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoCUUAAAAAAAAAAAAAAABQE4oAAAAAAAAAAAAAAACgJhQBAAAAAAAAAAAAAABATUxt9wbAZLO/9960WL3dz0uJ89TxB0qWb0x5WVqs73/evpQ4n/pGT8ly2ZS8WAdPzU6J01d6S5YnylfTYh0+/oK0WCfLUylxuqbNKVmmdM9Li3Xy5MGUOH29z5Qs3TPOT4s1a8ZlKXGe6c05J4TjvfvTYj1n6vKUOFO6jpUse8o9abHmzcl5f5mmzrg4LdbJZx5Oi/XMlBml05w6cSAt1nNmz02Jc3/i5wdrXvhdabF6+3JyqmtfenXJ0r3irWmxtuz8cEqca5e9qWQ58ME/TIv1V+t+JCfOCz5Zsvzxg3ekxXpyfl73zTtm5LQjF3173rHQNaU7LVZ3UqzH/+bPSpafftuPpsXasy+n/f4Tb1lQsvztzJNpsdZcf05KnNlLv61keeLuj6bFuuD7rk2JM/Nz/1yy/OYbc7YpHD/0RFqsvQdy8vT/fV/evvq+F70uLdZfr1qbEufwPZ9JiQOV7V/6h7RY73rZd6TEOXL86ZJlyrS8dvv0+eemxPngbXn9eetXp4UqF/zNX6TEWbTypSXLb3/h7rRYX/iRVWmx3vTGX02J829f8JKS5YYfvigt1pvnTUuJ8+jTh0qWC+ctSos1vXt6Spw9T+a9v2XP5NwPCfe9M6ff5K0LnluyHDr2ZFqs6f/vO1Li3H9JXvvhLz5/W1qsLx14PC3WPVNy5oY879ycc0L2eeFvv/TxlDi7Hn+kZHnvC16dFov6OnA07zh/7oKc6/ucGXn3yx9M6qcKC588khJn6uycvqWwf8ffpsU6uTLnPveVV+b1TRz4l4+kxXrrtX+aFuuXlr04Jc7Fb15Rslz2jgvTYt36M3+ZEueP35H3Xf43y06lxfqhl7whJc5XHt9bssyaNjMt1m8s/56UOK/+yIdKln9X8vLr3399zjnmT7+8s2T5xANHSyd6y3NzxjycOytv7NnTJ5/puHb3U4ntWwZmJQAAAAAAAAAAAAAAAKgJRQAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoCUUAAAAAAAAAAAAAAABQE4oAAAAAAAAAAAAAAACgJhQBAAAAAAAAAAAAAABATSgCAAAAAAAAAAAAAACAmlAEAAAAAAAAAAAAAAAANaEIAAAAAAAAAAAAAAAAakIRAAAAAAAAAAAAAAAA1IQiAAAAAAAAAAAAAAAAqImp7d4AmGyOH70/Ldb8uStS4jxx6ljJcrIvLVT50IM9KXHu6f1UyTKr+7y0WCf7cvb7lVOuKlk+dfzv0mLdduKhtFhTp8wtnebUqafSYvWdeDIlzoy5LyhZeqbmxTradzAlTu/xJ0qW8+a8IS3WFfNzvsufOHSyZDn85KfTYvWdOp4S56ULNpYsj0+bkxbrkafuTYvV1/tgSpze7kdKlq6uvHT/44f/MCVOX+8zKXEgrN76W2mxvvSZ/aXTvOv7lqTF+tcXvTQlzrxZOTl6WNo3PS3WhX/7oZQ4/7w273r1kfs+kRZr2YMPp8U6Z9mrUuJMmXNOydLd1Z0Wa1r3tJQ43/iu15csm/5ua1qsqV1dKXG++mRvyXL1pbPTYl36/BelxPmuS64oWf7gspekxfrHr/xTSpw7n847J1x+z+1psVZc+rK0WK95IqedfMEb1pcsxw/ntUl/M2m///SK70+JA5V3f+butFi/tvxESpzZ02aULH/2pY+mxfquoznX5FdelpcTzzwnL6fat2ZNSpzj+79Wsqy97DlpsW59+htpsT70O2tT4nR1583b9onLLkqL9d9nzeu4nP/rhx9Pi3X8ZM656jsuuqxked6i53bcvjp09ydLlsuen5dfP3z40ZQ49zx8T8nyD9/IO+8tnpd3b+zd78jJ1V9x0eUlS8/sBWmxHki63jx/ft42QTjyzNNpsWZNzcuLs1w8Y35arCe/lnOPbd7ibytZzn3TW9JiHfvGAylx9j2Zlwcd+Ghe//WOT/9OWqzjT+T0e3XPzsljwz+fzBnvEG78qZxc77bveWPJcs6svL7+f9r7Lylx7ng0b7zR+++5My3WP3w1Z2zIWy/Py/NedcmL02IdOpbTJ/uFg3njEH/52y9Ni3XLAznth0z/8lhe+2HdFcvTYh3vzWkrHzp2JCUOg7MSAAAAAAAAAAAAAAAA1IQiAAAAAAAAAAAAAAAAqAlFAAAAAAAAAAAAAAAAUBOKAAAAAAAAAAAAAAAAoCYUAQAAAAAAAAAAAAAAQE0oAgAAAAAAAAAAAAAAgJpQBAAAAAAAAAAAAAAAADWhCAAAAAAAAAAAAAAAAGpCEQAAAAAAAAAAAAAAANSEIgAAAAAAAAAAAAAAAKgJRQAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoiant3gBg5B448YmUOFOn9ZQsd/ftSov11LGvpMTpKt0ly6npJ9JiXdj90pQ4D/XtK1nmTbssLdbBpz6TFusHzv3hlDh7u7+9ZPns0VvTYvUlxTnxzMNJkUrZ13cyLVbvyYMpcV4/70dLlpcuejIt1r88PiMlzpRyqmSZOvOStFgnk46re479dckyZ8bitFgLF6xKi/XUya+lxDlxLCdO6Ot9Ji1W6cs5Rrtm5OUd8Lv3P5YW67LNv5IS5y8+f1vJ8rrFK9JiXfFbf5AS54deeUfJ8vG1b0uL9W8+/pcpcS7/0etKlte/44Vpsf7oZF6e8KFLrkiJc+Tr95Ysdz39eFqsdb/7tylx9m7+pZJl2549abEO3fH5lDjP+bGfKFmuu/v2tFhLPv7JlDh/e+J4yXLJOeelxXrt5a9OifPjH/10ybL6OTnttfDmb/vutFi3vOdTKXG+/3VvKVn6evPayefOnJ0SZ8axoylxoPJry/PylysWXZoS59CxvD6cF52/NC3Wg0/tT4mz8k9/tmSZPnV6WqxPPXRX6TQf3JvXX/LFv3ogLdY/rss5rv73D/xcyfLzv7M5LdZtP/CmlDiHjh0pWU6e6k2L9fwDh1PinPeKq0uWT9ybkxOHxT0Xp8S5szuv/6X7QN53ef7MeSlxnrfouSXLDz8/rz925UUvTot11+M5bfjPfCOvL+AVF+X0T4R9SfnC7Gl511IIs6bl3EMM585dlBLneG/eeIe9Rx5NizXnuUtS4kzdk5fHdk3JG2fSs3JNSpxtd/1NybL6Da9Ji3XwXz6aFmvKtGkpcQ7fvbdkOfmpvP6XO7b9ckqcf3nwsyXL5RfkXZMvTDpXnXv4iZIlL6MqZct354xZmTl9VunEvoB7H83J9X7mRS8oWS5f+Jy0WC8990BarIvnX5ASZ+WJYyXLI0/mfW+6p+TMLb9w1vyUOAzOSgAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoCUUAAAAAAAAAAAAAAABQE4oAAAAAAAAAAAAAAACgJhQBAAAAAAAAAAAAAABATSgCAAAAAAAAAAAAAACAmlAEAAAAAAAAAAAAAAAANaEIAAAAAAAAAAAAAAAAakIRAAAAAAAAAAAAAAAA1IQiAAAAAAAAAAAAAAAAqAlFAAAAAAAAAAAAAAAAUBOKAAAAAAAAAAAAAAAAoCa6+vr6+tq9ETCZTH/RqrRYfSeeTInTNW1OyfKcOW9Ki/XoybtS4pw8eahkuWDmt6fFOtL3WEqc87uWliwPPPPRtFhdU2akxXrTnDemxHnseFfJ8pmn/09arL7eYylxLp33r0qWjc+dmhbrqgU538EF046WLFsfujQt1l89fjIlzhXdPSXLjqf+LC1W36mc/T5t+vkly5ypz0mLdfCpnWmxpia9x97enOt7OHXiQFqsvt5nUuLMnndVyXL4szenxaKeHnjo82mx5nz9wZQ4987Ny4H+4It556j/9Jq3pMR59D3vK1l+ecVz02Ltfux4Spxjx06VLB+75s1psZactyQt1r/b8UcpcV6+cGHJMnvqtLRY3/OC70iJc+9je0uWBw8/mhbrV3bdlxLn2Im87sBdV74wLdbHZuVs16v3fL1kmX31urRYV/7PP0yJs+z86SXLJbPzvn+PHjuRFutDb/t3KXH+6nMfKVk+9vD9abGWnjM/Jc7PvGp9yTJ1bs42UW/7H3soLdbXDnwtJc7Rkzlt0f5YJ3L64EJ3V3dKnAvmnVuy7NmX9/l1T+m8OcTufiLv+v66S1+cFmvbvbtS4rz9Ba8oWR46+EharPkzc+4fXfWcl5Us9z6WkxOHl/Q8LyXOf9v9lyXLdd/xI2mxPrX3X1LirHhuXn/eZ7/6udJpZk3L68uZ3p2XX3/9cM59xPDyi1+UEuerBx8uWQ4dy+sHP3oip19o4axzSpbvePl3p8Wivr5wb855OPTMXpASp/dUXv/n0RN59257+3K26wUX5fVT3f/YnrRYx5LaIsd78/pe3vQbt6bF+rufX5sW6+c/kTNm5b++4tUly6FjR9JiPf+8xSlxzp2b15b8+y//Y1qszzyWkyv86X1547z+w1V5YwsWn5Oz379jyStLlocPfaPjrjXTu/P6r6c8kff+7j6Rd1wtf15OG2nXg58tWebOmN1xfWgPHsq7P/aDr/3htFgTTef14gEAAAAAAAAAAAAAAC0pAgAAAAAAAAAAAAAAgJpQBAAAAAAAAAAAAAAAADWhCAAAAAAAAAAAAAAAAGpCEQAAAAAAAAAAAAAAANSEIgAAAAAAAAAAAAAAAKgJRQAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoCUUAAAAAAAAAAAAAAABQE4oAAAAAAAAAAAAAAACgJhQBAAAAAAAAAAAAAABATXT19fX1tXsjYDJZuPzfpsV68sjOlDgvmPfDJcuXn/zTtFjTZy1OitSbFKeU40cfSIvV1T07JU5f77GSZcq0nrRYU6fOK53m5IkDabFOHd+fFmvKjHNT4iyf+daS5bdX3JMW6/kX3ZsS59MPvrxkeffnLk6L9cCpO1PizJ5yXsnyVO8jabFOnDqcEqcrsfZ0enfeuerI4c+kxZo1L+cYnTZlbsnSV06lxZrTlXOMHup9sGR58rMfSItFPf3KX/1mWqy3v/i1KXF+a/ftJcvvfPeGtFjHDz2eEufH//HWkuWlPXn54m/+08MpcWY9dLBk+fG3vyAt1k8+sC8t1us+mXMs/PAP5r2/mVPy8oTf+3zOvjp5PO8a+l9em9W2LeW2h/PyvCybX/PmtFh79j2UEuflj+d9l794YV6evm3P51Pi/NYb864PP/7X70+L9Z0XnJ8Wa9e+J1Li3PC69SXLonl5x8Kn93w6Jc5Lpi0oWea/cEVaLOrr43f+XVqs+TNzcr3eU3l9u5mOnngmJc6hZ46ULPcfzjl3hufOXZgSZ9a06aUTHe89mRbrU4/k9HOcTLxd+/qLl5RO052Y819yzgVpsebMmJMS5/DRnD7U0DM7r+/z8498OSXOb3/h7pLl379sWVqsnY/l3LP72VddU7Lc+dW70mJ1T+lOi3X0RM69xEPHnipZFvfk3ae5/0BOv9D8mTnnhPD6K9+UFov6+sre3Wmx5iZds6YknluOJZ1bMs9TJ04eL52WJ4SHDz2aEufcpDw9nEpsax05/nRarM8/nnN970n8/C5M3O9ZbeVMn33kK2mxHnryYMe1H3qmz0yLtf5lV6fE2fvE/SXLzGl57++pZ3JyvSufe2XJcs/Xv5AW69y5izruupW1z7PbD4eOPZkSZ+70nLGR4WUveHVarInGSgAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoCUUAAAAAAAAAAAAAAABQE4oAAAAAAAAAAAAAAACgJhQBAAAAAAAAAAAAAABATSgCAAAAAAAAAAAAAACAmlAEAAAAAAAAAAAAAAAANaEIAAAAAAAAAAAAAAAAakIRAAAAAAAAAAAAAAAA1IQiAAAAAAAAAAAAAAAAqAlFAAAAAAAAAAAAAAAAUBOKAAAAAAAAAAAAAAAAoCamtnsDYLJ5+vhX84Kd6k0J8/W+L5Y0p06khTp+5EspcbqmzkqJ0x9ryvS0WFOnnZsSZ8qMGSXLiu7Xp8V6qDyWFusbJ3alxPnRC76vZOnqSgtV7j6Uc1wtnp1zTghb7r08LdbzH78oJc7Rk3m1i3NK3nf55KmnU+IcOPGFkqW7e25arAXTnp8SZ/+xu0qWp4/nnV/OW/CmtFhZ7/HYiZzrX+iefl5arFPTcq7x87uflxIHwqsuvCwt1ie/endKnFs/+XjJ8vKFf5YWa+VFV6TE+fQjz5Qs73nt96bF+vevuTglzrV/d3PJsv4Fr0yLdc4rc/Kp0HvXb6TE+c/f8SMlyzMHHk2L9aoL96TEeUX3/JLltqcfTov1wTf9VEqcKdPy2pH373sgLdbDTx1IifPPJw+WLL96xVvSYr3ysuUpcY5+7d6S5TcuWJoWa8b5z0mLdem8nPPClK/mnBPC3n/YkhZr1vfkXANvP7C3ZHlrWZEWi/rq7upOi3W8N6cNefTEsdKJ7y9L76lTabF+5pXr02J9au+/pMTp7cvrr5zePS0t1o6H7kmLdc70nH7Gn5h7acny5ekz02IdOZ7T9zl/5ryS5RNf/XxarGUXXt5R57xw6NiRtFgLZ+e0a/776/PurRw+9mRarD/Zk9MHc860vyhZLp6zIC3W/Jlz0mIdPZHTnzNrWt69lceT2n/h6ZNJ76837/1Bp+aNmdes3qTxKpkuWpDXj/rgvofSYr1sxsKUOI925d0vvyLpnkH48jfy7m1+dl/O9f0935V3D/jPv7A9LdbsqftT4vzAy99csiyauygt1qmk88KeJx4sWY6ezOtXOHz0cEqc5/RcUrJ84+A30mJdMO/8lDi9x3LakZlt0nDoiSMdd1wtXZQ3duLRJx/vuHZp95TO64ubiKwEAAAAAAAAAAAAAAAANaEIAAAAAAAAAAAAAAAAakIRAAAAAAAAAAAAAAAA1IQiAAAAAAAAAAAAAAAAqAlFAAAAAAAAAAAAAAAAUBOKAAAAAAAAAAAAAAAAoCYUAQAAAAAAAAAAAAAAQE0oAgAAAAAAAAAAAAAAgJpQBAAAAAAAAAAAAAAAADWhCAAAAAAAAAAAAAAAAGpCEQAAAAAAAAAAAAAAANSEIgAAAAAAAAAAAAAAAKgJRQAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqYmq7NwAmm+7uWWmxpsxenBKnK7MeaEp3WqiZs1+SEueZYw+ULNNnXpoWq7trZkqc2VPOK1kumNmbFuuKGeekxXphzytS4ixf8NWS5YtPLkiLNX9GzrHw6JGcOOEfDh1Ni3XwWM6+evJE3vllbuJp7/Kpr06Jc8/R/1WynDvvyrRYjx25PSXOqZNPlSxdU6anxbq073l5sWbkxNoz456S5emTX0+LdfSZ+3MCzcgJA+FvHvpKWqwbrnxTSpyvvP5AyfLy8y9Li9UzO+d6vHPFy0qWKd/4WlqsX/7sjpQ4t/3j4yXLjO5/TIv1e2/cmBZrx3/44ZQ4R0+dKFlW/s2tabGO/PFdKXFu/M23lSznz56fFuv1f3ZTSpznzM7rEvzeS5+TFuu/f/HBlDi/8G1LS5b//PE/TIv1p/fnXCO+79K89vZLF56bFuu18+amxXrH//rLlDiP/IdfKFkempvX5v71z+ZcI/7b669JiQOV47151/dZ03Iaf72nTpUs3d15fUvdU3I6l153Tl5/c+nKC3XeX/5dSpwvr3lNyTJ/5py0WNe9cl1arF/+xJ+mxNl3xcUly3/8+N+mxfr5l7w4Jc65cxaWLD8w/cm0WI90T0uJc/TEM6UTz8W9fTn3fL568OGS5bVLc/rTw/a3XpgS58TJvH2+8fa89u3ay/LaWn/+YE4/8aYrc+7XhcefPpgWa0bSdxmynUg8p0+fmnNv7Kln8u7XTUv87k1PitWTmHPMn5aXfz585LGUOE8lnjtv/pdtabEuOyevf+klC3I+w0cPP1qyvP3K70uL9dN/93spcV4/e3dJc35eWySrDZ/Vp5Ad63jv8ZQ4j+7LOSeErx/Ou6919GROu+aSRXl9HSsuybsvecmVP5QW66YlObn6ye/Ou269/EeuTYv1xe5HOq6tzMCsBAAAAAAAAAAAAAAAADWhCAAAAAAAAAAAAAAAAGpCEQAAAAAAAAAAAAAAANSEIgAAAAAAAAAAAAAAAKgJRQAAAAAAAAAAAAAAAFATigAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqQhEAAAAAAAAAAAAAAADUhCIAAAAAAAAAAAAAAACoCUUAAAAAAAAAAAAAAABQE4oAAAAAAAAAAAAAAACgJhQBAAAAAAAAAAAAAABATSgCAAAAAAAAAAAAAACAmlAEAAAAAAAAAAAAAAAANaEIAAAAAAAAAAAAAAAAamJquzcAJpuTJw6kxeo7dTQlzpETT5Q0vSfyQp16OidQV16905zui9NizS/npcQ5Xo6VLPcf7UuLVY7mXWKOnTgnJc57HzhYsjzZ+4W0WDOmLEyJM7NrXslyrO/JtFi3Hc35LvdMeV5KnHBxuSAt1oGyLyXOJfO+t2RZ0nVRWqx1l61LifOJx2eWLPec+ue0WBdPz7tGLJyZcw38+pN53+WT3T1psY4ez8kXnj7yuZQ4EP71lW9Ii9V36mRKnM8deKpk+fdHnkmL9dS//HVKnL7nLS5Zel9wZVqs//SiV6TE+amXPViyfPyBO9Ni/Z87/yot1hPHcnKzHzz++ZLllefNSIt18S9/Z0qc82fPL1me/9m702L97neuSolz3j152zTvJavTYv3AS3LidB85lPddnvGltFg/eGfOOeaS71lbsjzvTz6YFmvOnD1pscrsnD6F//KJ/1Oy7Dt+PC3WridyYu2471Mly49cdHlaLOpr7ozZZSKbPnVaXqzunFhzLrqiZNn+xY+lxTr4XStS4lw0c07JsnBWXn5256N51/fnz8/pe7nigrxjofdUWqgyP+kzPHwsr7/52N/8fVqs7p98R8edXzJlbVd34n22933iT9JivWRhTj/4yy96UcnyE1fk5VQ//z/+IS3WJ9+4JCXOpVe8umT5yb/6nbRYz583NyXOKy/M2U9QmTkt795YlmlJeWzo7ctLOqZPmZ4S59jxnDE0YcqU7rRYPbNzcsannsm7/3DB7JwxGGHu9Ly25KsueWFKnJ5Def2Dhw/dlRZr04rvTokz59zLSpaZT+aNY5u56NKUOL19vSXL8ZN5fXpZnrfouWmxLph3flqsc6fOSonz9GMPlSwvujWv//qffirpBkQp5ZHvvzolzsy78u7VfPLfvCct1o/Pzblv99e//CMpcRiclQAAAAAAAAAAAAAAAKAmFAEAAAAAAAAAAAAAAEBNKAJo4fd///fLxz6Wt2wqAAAAAAAAAAAAAABkUATQwnve856yatWq0t3dXd7+9reXu+66q92bBAAAAAAAAAAAAAAAigBaue+++8rOnTvLO9/5znLbbbeVZcuWlVe84hWKAQAAAAAAAAAAAAAAaCtFAAOIgf9btmwp+/fvL3//939fent7+59717ve1e5NAwAAAAAAAAAAAABgklIEMASrV68uu3btKrfcckv54Ac/2L8qAAAAAAAAAAAAAAAAjLepZQL66Ec/Wnbv3l327NlT9u7dWxYsWFBWrlzZP5P/ihUryjnnnDOiuGvXru0vCFi+fHm5+uqry0c+8pH0bQcAAAAAAAAAAAAAgElRBHDnnXeWDRs29BcANLv11ltP/z2KAWIw/5o1a8ob3vCGYb1GFBRs3769XH755eXDH/5wectb3pKy7QAAAAAAAAAAAAAAcDZTygTx2c9+tn+G/igA6Ovre9b/j+eqx65du8qNN97YXwTQ3d1d1q9fX/7sz/5syK+1ZMmS/mKD97///cnvAgAAAAAAAAAAAAAAJkERwLp1604P8m8e9F8919XVdfrR+P9ilYD4/eEUBHz3d3932blz55i/LwAAAAAAAAAAAAAAqEwtE8B/+2//rezdu7f/76tXr+4f0L9w4cKyYMGCcvDgwf7/d8cdd5QdO3b0/7sSxQCVqlAgCgLiEa699tqydu3a8oY3vOFZr1m9HgAAAAAAAAAAAAAAjJcJUQRwyy239A/o3759e8sB+43uv//+/mKA+NnGooBWBQFbtmzpf4Rly5aVJUuW9D+iACAKBaLgAAAAAAAAAAAAAAAAxsuEKAKIQfkDzdjfbPHixWXDhg39j/DZz362v4ggBvVXs/tXBQFVMUDYtWtX2b179xmxYqUAAAAAAAAAAAAAAAAYL1PKBBCz+a9Zs2ZEv3vVVVeV97znPeW+++7rH+j/7ne/u8yfP/90AUAUBFSPEM/HY+PGjeWtb31r6vsAAAAAAAAAAAAAAIAJXwSwYMGClDhRELB58+ayf//+/oKAWC2gKgioHkuWLCnbtm0rv/d7v5fymgAAAAAAAAAAAAAAMFRTywQQA/P37NmTGjMKArZs2dL/OHToUH9hwOLFi1NfAwAAAAAAAAAAAAAAhqOrL6a3r7mf/umf7p+5/4477mj3psBZzbvqp9Ji9ZXelDjdXTNLlq7EBUZOnDqUEufkyZw42X7ywjenxJnefapk+cL+uWmx7uj9dFqs86ZckRLnoSN/WbJ0Tz8/LVbvyYMpcWbNXFqyLJqyJC3WoyfvSonz0qmrSpaZieeqO099JiXOwimXlSyvnZOzSlK48rwnU+I8/PT0kuUvHzuZFuuR3nvSYl3Z/ZqUOLt7P16yHD/21bRYfaeOJQXKa36c+Mon02JRTz3/7/Vpsd796otT4tx9MOe8GX7jgrxr+zkvXFE6zYkZee2Ql7zrV1Pi/PJPv7Jkefuly9Ji3bw3L7f+84ceT4lz2/e+o2TZ/5nb0mK988CjKXFef+HCkmXtC1+bFut/3v2xlDhvf3HeNv3tfXn9ce9c/n0pcXpP5fSXhHkz8trJJ/pytmt6d15u/dQzR9Jife+HP5AW697P7EuJs+c/vqtk+a3P552rrjrv0pQ4v/2Fu0uWv/vx/5gWi/q6ffffpMWaNW1GSpyjJ54pWbqn5PUHdXd1p8SZO2N26UTvuH1HSpz3vSovJ144a35arO4pOZ9feOjgIylxXn/5t5csX3r0K2mx7np0b0qc5y/MaXOH6d3T0mI9cmR/Spy50/Pat7Om5sXqREeOP50W67w5PSlxfuuuT5Qs/+nJvLbIxW99Z1qsP7gr5xp/TU9eX9Xc574wLdaFv/nbKXFufWteW3nVsu9Ji0V9fWXv7o7LX46dSLrXk9z/Mm1qTl/H3OlzSpbPP/LljrtmzZqWlyecM/OctFi9SX1e4a6Hv5QSZ/7MvGPhZV15sfp6c/bVvgV57aPnnZs3TuGpYzl9jTOOHS1Z+hLPVVMWnJcS5+jez5eOlLSvfunNef3EP/uJf5cW65de9Z/TYv32f88Zv/TrP7+rZHnphXlt5at/NaeP4tjL8+67Lr3s5WmxJpq8Hs822rhxY9m9e3d58MEH270pAAAAAAAAAAAAAAAwsYsA3vjGN5b169eX9773veWBBx4Y9u8vW7asXHbZZWXdunVjsn0AAAAAAAAAAAAAANAJOqIIYPv27eXWW28t1113XVm6dGlZtGhRf1HA7//+7w+5KGDLli1l586d5cMf/vCYby8AAAAAAAAAAAAAAEzaIoAlS5aUvr6+048DBw70FwVce+21ZxQF/Nmf/Vk5fPhwyxirV68u7373u8vatWvLxz72sXF/DwAAAAAAAAAAAAAAMCmKABYsWND/Z1dX1+lHaC4KWLduXenp6SlXXHFF+Zmf+ZlnFQVs3ry5vOENb+gvCFAIAAAAAAAAAAAAAADARNMxKwFUGlcEGKgoYM+ePeWmm246oyjg+uuv7x/4/6EPfahs2LChvxDgfe97XxvfFQAAAAAAAAAAAAAATMAigIULF57++5YtW/ofGzduLIsXLx6wKKDx+SgKuPHGG/sH/kdRwK5du/qf37RpU3nFK15R7rrrrra+PwAAAAAAAAAAAAAAyDC1dIAFCxacXhEgZvEP1Z+HDh0qO3bsKNu3b+//c+/evad/r1ohIMSg/8ru3btPFwrs3LmzLFu2rH/VgGuuuaa/UOCcc84Zx3cHAAAAAAAAAAAAAAATqAhg6dKlp4sAms2fP7+87W1v638Mpyig+ne1WsC2bdv6HyGKAqIYYOXKlYoCAAAAAAAAAAAAAACojY4oAli4cOEZKwIMZrhFAa1WC9i1a1f/agGVKD6IYoA1a9b0Fwhcdtllqe8PAAAAAAAAAAAAAAAmTBFADMAfaCWAsxnpSgFVQUDYs2dP/8/ddNNNp4sRqqKA+FNRAAAAAAAAAAAAAAAAnaAjigBiIP+pU6fSYo22KODAgQPl1ltv7X9URQErVqw4XRRw5ZVXpmwrAAAAAAAAAAAAAADUrghgLI20KKCxMCCKAuJn41FZt25d+eAHPzhu7wMAAAAAAAAAAAAAACZ8EcBwigJ27txZdu/efcbPD7RawLZt28rBgwfLRz7ykXHcegAAAAAAAAAAAAAAJrNJVwQwlKKAKAaoVgoYqCggCgLiZwAAAAAAAAAAAAAAYLxM+iKAVkUBq1at6n+crSig+hkAAAAAAAAAAAAAABgPigCGWRQQbr/99v4/FQEAAAAAAAAAAAAAADCeFAGMgMH/AAAAAAAAAAAAAAC0gyIAGGdLulemxbpoysyUOHefur9k2X/iS2mxTh77Wkqc6bMuK1n6+k6lxVo060RKnOlT8rbpob4DabGmds1Oi/Xgk3+eEqev92jJcupk3vemq0xJiXO07ClZDs3K+/ymTpmXEufevs+XLBd0LUmLNXfKhSlxjpYnS5avPX1+WqyPPPBYSpxlU15Usrxyds75Mzx54tvTYv3LiZzv4IwpC0uWU9OfSYs1b9rilDgHjnwiJQ6EH1uW9335jktekBLn4aN3liy/89TDabFufs/vpsR58ZXzS5YVC+ekxTp+QU6+8ZknHi9Zvn9KXm62/IK8Ns0bnvfSlDhHHvhCyfKNK3K+f+EPvz43Jc6b7vtKyfKuK3Ly/XDJnJxj/YJ5efniFw8dSov1I3/zhylx7vjkEyXLd70ub18d681pvx/r7StZXtaTdy6+5c3r02L90JRbUuL0neotWd57xyNpsWZ9Oecc+oo3PSclDlTmzsjrD+ruyrv+Zek9ldePeuT40ylxjp48VrL8yq7PpsVadVHO9aG7q7tk6U3smz9yLOfzC/Nn5uyrv/3Sx0uWt77wDWmxvm3exSlxPv3EfSXL9OnT0mLNn5Hz+X3iLdtKlh/9paVpsbZfnvP5nTsrpx0STibmZ8d7T6bEubHn0pLlRMlri3z5v/5qWqxV5+e0lee+660ly8W/9esd10c4f2bOfoLK3KTrTGYu2z0lLz87fvJ4WqwTvTn3/p54al/J8vBTBzou1tIFOfelw7TuaR2Zq1++KOe6fP4Tedfkp55zXlqsRVOm5wR6Jq9P9r5H702L9dwpSf0K06bn3S8/kXe/fOrxnFj3z8zrM1namzf8908ezemz/ImPbSxZDv5/W9Ji/cdrLkqL9es/vyslzs/8XN79h+P788bEveyfctrwn3rpipQ4DK7zemEBAAAAAAAAAAAAAICWFAEAAAAAAAAAAAAAAEBNKAIAAAAAAAAAAAAAAICaUAQAAAAAAAAAAAAAAAA1oQgAAAAAAAAAAAAAAABqoi1FAO9973vLypUryy/+4i+WBx54oB2bAAAAAAAAAAAAAAAAtdOWIoD3v//9ZdeuXWXz5s1l6dKl/QUB73vf+8rhw4fbsTkAAAAAAAAAAAAAAFALbSkC2Lp1a1m1alXp6+vrf0RBwKZNm0pPT0+5+uqry4c//OF2bBYAAAAAAAAAAAAAAHS0thQBLFu2rGzfvr0cOHCgf1WA+HdVEBDPr127tnR3d5e3v/3t5aMf/Wg7NhEAAAAAAAAAAAAAADpOW4oAKvPnzy8bN24sO3fuLHv27Cnvfve7y+LFi08XBGzbtq2sWbOmLFq0qLzrXe8qd955Zzs3FwAAAAAAAAAAAAAAJm8RQKMY/L958+Zy3333lV27dpUNGzb0FwlEMUCsGLBly5ayfPnycsUVV5Rf/MVfLA888EC7NxkAAAAAAAAAAAAAACZnEUCjq666qn/Q//79+8v27dvL2972ttOrA8SKAVEssHTp0rJy5crygQ98oBw+fLjdmwwAAAAAAAAAAAAAAJOzCKDRqlWryrZt28qpU6fK1q1by+rVq08XBMSKARs3biw9PT3l6quvLh/+8IfbvbkAAAAAAAAAAAAAADB5iwAarV27ttx2223lwIED5T3veU9ZtmzZ6YKAWDEg/n93d3d5+9vfXj760Y+2e3MBAAAAAAAAAAAAAGDyFgFU5s+fXzZt2lR27txZ9uzZU9797neXxYsXny4IiJUD1qxZUxYtWlTe9a53lTvvvLPdmwwAAAAAAAAAAAAAAJOzCKBRDP7fvHlzue+++8quXbvKhg0b+osEohggVgzYsmVLWb58ebniiivKL/7iL5YHHnig3ZsMAAAAAAAAAAAAAACTswig0VVXXdU/6H///v1l+/bt5W1ve9vp1QFixYAoFli6dGlZuXJl+cAHPlAOHz7c7k0GAAAAAAAAAAAAAIDJWQTQaNWqVWXbtm3l1KlT5f3vf39ZvXr16YKAWDFg48aNpaenp1x99dXlwx/+cLs3FwAAAAAAAAAAAAAAzqqrL0bFTxKHDh3qXylg69atZffu3f3PdXV1nf7/69at6y8OeMMb3tDGrWSim7/sp9NiTemalhLn2MnHSpZTJ59MizV1Wk9KnJMnDpQsV89blxbrtZfsT4nzhX3zSpYPH/7muTHDMyceKZ3m5NGvpcU6Z/5r0mI9eehTKXGmzVlasnQlnV/CK6flXFcf6tuXEqc/1tHb0mI9d9Z3p8R5tPeekmXalLlpsY48dWdKnEVzv7NkubBcmhbrnUsPpcXq7ftWXjkaH3nw3JLln49/Ii3WC6e8MiXO547/dcly7O4/T4tFPX1lb17u8q8//jcpce75eF4O9ONrL0+L9X1//vmUOL+5Oi/fWDRjalqsNZcsSYnzyqd6S5aZF12WFus/fOHjabEWz8vJE36sO6e9FnpeeXVarG135XyXnzz+TMly2Tl51/Zfv/vunDj3PFyy/OyLLkqL1XsqJ84PLbk4J1Ap5S+/+o20WP/+ZctS4rz3c3nXv//6qu9Ki7X/6bzc+od/L6fNNuclC0qW33r1y9NiXTh3UUqcc2bm9Qk9f0nO8Um9fe7Ln0yL1duXc1J/5MknSpbLFj4nLdapUzl549ETx0qWLzz+QFqs7ik5c4g903uyZPm28y7ryGvW8cT3mGXWtOlpsaZ35/QTH+89UbIsXfS8tFjnfCPnnsGu/7ytZFn5az+WFuvL03LOVXsP5uXE58+enxbr4LGnUuIs+/RdJcsv3vCltFjL/2RNWqw378jpFzrvjd9Rsrz9ofvSYv3o0px7BjO68/qqfuQ7fjQtFvX18Ne/nBZr4bQ5KXGe7Mu7Js+ZkXc/cl9S3r9nX15OfCjpOhPmTp+VEue8OXl9snNm5BxT4fCxvHFCWXljd9eUjsuJw8xpM1PiPHX86ZLl5c+9snSafXf9Q1qs7tl5/WfT5+f09fcey/v8js7P6/88f/6FKXH+8R0/W7Jc9f5fS4v161f9UlqsN38kr92W5TPfuDct1uypOee9Fy3KG9vz6peuTos10UzYlQBamT9/ftm0aVPZuXNn2bNnT3n3u9/d/1y1QkCsHLBmzZqyaNGi8q53vavceWfOoDcAAAAAAAAAAAAAAMgwqYoAGi1evLhs3ry57N+/v+zatats2LDhdEHAgQMH+lcMWL58ebniiivK+973vvLAA3nVogAAAAAAAAAAAAAAMBKTtgig0VVXXdU/6D8KAmI1gLVr155eHSBWDIjVA5YuXVpWrlxZPvCBD5TDhw+3e5MBAAAAAAAAAAAAAJiEFAE0edvb3la2bt3avxrA+9///rJs2bLTBQG7d+8uGzduLD09PeXqq68uH/7wh9u9uQAAAAAAAAAAAAAATCKKAAYwf/78/gH/O3fu7C8IeM973lMWL158uiBg+/bt/SsGdHd3l7e//e3lox/9aLs3GQAAAAAAAAAAAACACU4RwBALAjZt2lTuu+++smfPnvLud7+7/7mqIGDbtm1lzZo1ZdGiReVd73pXufPOO9u9yQAAAAAAAAAAAAAATECKAIYpVgPYvHlz2b9/f/9qABs2bDhdDBArBmzZsqUsX768XHHFFeV973tfeeCBB9q9yQAAAAAAAAAAAAAATBCKAEZh1apV/YP+T506VbZu3VpWr159uiAgVgyI1QOWLl1aVq5cWT7wgQ+Uw4cPt3uTAQAAAAAAAAAAAACoMUUASdauXVtuu+22/tUA3v/+95dly5adLgjYvXt32bhxY+np6SlXX311+fCHP9zuzQUAAAAAAAAAAAAAoIYUASSbP39+/4D/nTt39q8G8J73vKcsXrz4dEHA9u3b+wsGzj33XCsDAAAAAAAAAADw/7P3J+B1XeW9+L80erZk2ZknW44JkARs2QHCcIFEThhKC4kUU2hvB7BdUtreXoqNubSl5RZHTqH/29sW5EApLaUkNqEFOoDlhHmK7TiEMCVS7MyTJXkeNJz/sw8/+XoKWPYr6eyjz+d5hNCJ9D1b1jrrvHuf9Z4FAAAwLJoARlC2+H/FihXpgQceSJs3b07vfve7i00CWTNAd3d3sVEAAAAAAAAAAAAAAABOVvVJfyenZcGCBcWPtra2tHHjxuJtV1111VgfFgAAAAAAAAAAAAAAOaIJYAxcffXVY30IAAAAAAAAAAAAAADkUOVYHwAAAAAAAAAAAAAAAHByNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5UZ3K2LZt21JXV1dqbGxMs2fPHtbPfvazn03vec970uLFi9PKlSvTRRddNGLHyfhyScWisKzuip0hOY8H5WTOm/SisKy6wvSQnIerH0hR6ib0hWU9vb82JKeyopCiVAT2hhUKg2FZqdCfSs3eA/eHZVVUTwrJqayckKIMDO4Py+oPGqLza+tjglJKB9LLwrKunBwzV311X2OKsqP/h2FZqSJmXhhIh1Ip2tcfN+9NrY6Z9648pydFeebhF4dlzZsS82C+aOIbQnIg86WuTWFZb248PyTnT3bE1Yu/PHd+WNZZ718ckvOcezpSlD948XVhWTW7Y85p3nDf51KU9VPrwrLe8+LXh2WdV3duSM6+x7tSlK/e/42wrFXfjanTv/urb01RlnesC8u6+96YsV57Rsw5SOYjr3pdWNarX//HITm//q1PpCivf/xTYVnbq2pCcj7ZeFmK0j/tjLCsFd+6MyzrxjfODcn53bOen6IMHNgXlvXBH38vJOePBuMey6mxKS6L3OreH3eduKqiKiRnf3/c9YSfPr0tLOuMKTHXqQ4NxJ0/zGs4LyzrS9t+EJJz9uSpKUpV0DWqzKSauOuohwZirl3v7ou7HltbFffy756BuOOKcs2/3h6W9ZVzZobk3HR93LXdt/7mP4ZlvbG9JSRn58RpKcrAYNxrR/fseCIk5+pXX5uivKdrR1jWc19yQ1jWF6c1hOS89j1x101u+mDcdeLayph575ypMXMCjESt11t5ICRncHAgRbn3mZiaMXNW0PWJM6bEzHeZ2qDrOJnu/btCcnYe2JOiTJkwpST/rfYcjLn+svNg3L/V2YHPDwNB62imB9Znd/74q2FZl++LmWP6d3WnKFWT4/6tug72huTs6Yu7zjh7MO73e+qbnw/J2bw0bu3gxHfFvGaQufLysKh01re/lUrN7nNj1i5lzgu67jW1dnJIDuNwJ4CPfexjad68eWnu3LnFRfzZ5xtvvHFYGc3Nzem6665Ln/nMZ4pNBG9+85vT7t27R+yYAQAAAAAAAAAAAABg3DUBXHvttWnZsmWps7MzFQqFwx/t7e3pjjvuOOmcurq61NbWlrq7u9Ott96avvzlL6f6+vp0551x72gFAAAAAAAAAAAAAADjtgnghhtuSB0dHcUF/5mKiorix5CurlPbqr6lpaXYDHDVVVcVdwjQCAAAAAAAAAAAAAAAwFgomyaAu+++O61fv77YALB06dK0YMGC475n0aJFp3UfGzZsKDYCZE0Bu3fvPq0sAAAAAAAAAAAAAAAYt00AK1euTAsXLkxvf/vbi1+vW7cuTZ8+PRUKheLXK1asSPPnzz/t+8kaAWbMmJFaW1tPOwsAAAAAAAAAAAAAAIajOpXJLgAbN24sLtAf0tjYmHp6etKDDz6YGhoaUl1dXdj9ZQ0F73jHO9K2bdvS7Nmzw3IBAAAAAAAAAAAAAKDsdwJob28vfr7qqquO+29z5swJbQDILFu2rJi5du3a0FwAAAAAAAAAAAAAACj7JoBNmzal5ubmUb3PRYsWpc2bN4/qfXJiHR0dqbW1NS1cuDDNmDEjVVRUpLlz56bFixenNWvWpN7e3rE+RAAAAAAAAAAAAACAEGXRBNDV1ZUaGxtH9T6bmpqK98vYyRb4Dy32zxoBsjGwatWq4s4QLS0tqbu7O61cubLYGJB9j78XAAAAAAAAAAAAAJB31akMZO/0ni0GH00zZ860qHyMZP/uRy7qX7FiRXHxf319/XHfmzUHLF++vPg5GyNtbW3F7wcAAAAAAAAAAAAAyKOy2AkgW/y9Y8eOUb3Pzs7OEy46Z2Rt2bIlLVy48HADwLp164oL+5/tb9Hc3Fz8W2WfM9nOAFlTAAAAAAAAAAAAAABAHpVFE0BjY2Pxnd5H02233Va8X0Z3x4err766+DnT3t6eWlpaTupnN2zYcPjvtXbt2rRmzZoRPVYAAAAAAAAAAAAAgJFQFk0Ac+bMKb5D/O7du0fl/jZu3FhciK4JYHS1trYebgBoampKy5YtG9bPZ00DQ7IdAYZ2EwAAAAAAAAAAAAAAyIuyaAJYsmRJKhQKaenSpaNyf8uXL08VFRXF+2V0ZDs9HLnbw6pVq4ad0dzcXGweOLKpAAAAAAAAAAAAAAAgT8qiCaClpaX4ed26denjH//4iN5XtvB/6B3kr7vuuhG9L9JR79w/pL6+/vDffLiObNzIdo/IPgAAAAAAAAAAAAAA8qIsmgAy2S4A2W4Ay5YtG5FGgF27dhUXkGeNBtkuANn9MDqOXayfvaP/qTq2eaC9vf20jg0AAAAAAAAAAAAAYDSVTRPAmjVriu8Qn8kW6L/mNa9J27dvD8m+/fbb05w5c9L69euLX2f309bWFpLNL3bsQv0rrrjilLMaGxuP+nrt2rWnnAUAAAAAAAAAAAAAMNrKpgmgrq4u3XTTTcXdADIbNmwoLvjOmgHuuOOO4jv5D8e2bdvSX/7lX6Z58+al1tbW1NPTU8zOdgG45ZZb0vTp00foN+FYt91221FfNzU1nVbesY0AQ80dAAAAAAAAAAAAAAClrjqVkWwHgM7OznTzzTcXF+tni/azZoDsY2jxd7aAPPs8c+bMwzsHZHp7e4s/29XVlTZt2lT8OjPUVDCUt2LFinTdddeN0W84/mR/j6G/xbMt4h+ubAxkuUOy8dHS0pJGyzMV3WFZl1afEZLzyMHhNcn8PI+ne8KynqiI6VOqrzq9MXOke/YOhmXdu3dCSM5P+u5MUQqF/lSKKionBuXUpiiFNBCWlapifr9DB2J2wMlUVE4Ky/rOoU+G5NT0X5CiXF/38rCsqoqYeeGMwpkpymB13PjcMXgoJGd+5fNSlKvOj3sunTWhLyzrn+4/OyRnW+GpFKUn8Hm5c29NSM5givs3h7MmTQvL+toTD4fkfOfNv5qi7O/bH5bVv+5TITlvv+E3UpTt3Q+FZc2Y/P/O70/HP13TmqL8tPfRsKzVd/5rWNYVs2Le1GDFFXHXRt618YthWYNbnwnJ2d9yIEX55o/2hGX99XUvDMk5a+ZzUpQDQY+/TN/rLgvJ2XP3V1OUWb8UN+/9++Z/C8m58kVxc9UTX/qnsKyPT5oalvX47MtDcioH464D/Nfv/nNY1g0fe2tITtwzaUrnB2aRX3sOxdWfUc6bHnMNPHOoP+58dFJN0PW8gbhjGhiMu3Z97ezLSu6Y9hzaF5YVeVxVlTGvY5w5uS6VooGBmH+rfX0HU5T3zp8dlvWjaTNDcr5QPydF2f7Tj8Rl1cXUZ2s3fz1Fedslzw/LuvLsi0JyHpocc90zM/Vd7wjL+mTQ+UNm256Y14JvXv0rKcqvXHZNWNbgYMxrIl954FshOTBkW3fMNefMudPPCskZKMTVQdMnxl2fr6qoCskZCJoPMo2z4mqO2UHHtb8v7ppl5LlIZWXM3y8zqWZCSeVEnv9FjtEpE6akKJfviVkPkNn74x+E5FTUxC1pPfMVbwrLmvWVmDcaPv/CeSnK9t1Ph2U93RBz/vB3X/9JivK/L4pZg5G5+Mq4eeFlDTHXnQ8EnXNn3nzuxWFZzzkjZq1l5zNx69gYJ00Amba2tuKi8ezd+rOF+0cu5B9a5P+LDH1/5siMlStXptWrV4/YsXO8jo6O42473SaAhoaGX3gfAAAAAAAAAAAAAAClKObtKUpMe3t7uu2224oL97OPbCH/0MfQbT/v40Tfv27dOg0AY2BoF4dIR+4AkTmZxhAAAAAAAAAAAAAAgFJQlk0AmZaWlvTAAw+k66+//vBC/syRC/yf7SMz9DNZTraDQJbD6Dt2gf6xC/hPxcyZx2/tuWXLltPOBQAAAAAAAAAAAAAYaWXbBJBpbGwsvoN/toh/6dKlqa6u7qR2Asi+b9myZcWfy3YUmDNnzlj/KuPWsU0ADQ0Np515okYCuwEAAAAAAAAAAAAAAHlQncaBbBF/e3t78ePBBx9MHR0dxQX+vb29qbu7u7iwPFsYPnfu3NTc3GzRfwnJ/kajQRMAAAAAAAAAAAAAAJAH46IJ4EjZAv9sVwDy2QBwonfxH64T7SawY8eO084FAAAAAAAAAAAAABhplSN+D3CKsl0aRoudAAAAAAAAAAAAAACAPBh3OwGQ750AykHPYxtS7+Mdp/Sz9ec0pxnnLg4/JgAAyKN1H1+f1n/i9lP62Zbfui61vq0l/JgAACCvPn3LrelfPnbbKf3sr779hvSWpUvCjwkAAPLqHz76qfTJ9k+f0s/+xvK3pN/8nV8LPyYAAMqLnQAoWaO5E0C5NhwAAAAAAAAAAAAAAOVFEwDjTn19/VgfAgAAAAAAAAAAAADAKdEEAAAAAAAAAAAAAAAAOVGdxpmtW7emjo6OtGPHjtTV1ZV6e3uL7wzf2NiYZs6cmZqbm9P8+fPH+jAZQdnfHAAAAAAAAAAAAAAgj6rHy8L/1atXp/Xr15/U92dNAUuWLEkrVqxIs2fPHvHj48QaGhpSOZpx7uLiBwAAcHpa39ZS/AAAAE7fW5YuKX4AAACn7zd/59eKHwAAMFIqU5kv/r/22mvTwoULiw0AhULhpD56enpSe3t7mjt3brrxxhvTrl27xvpXAQAAAAAAAAAAAACA8m0CuPnmm4uL/zs6Og4v7q+oqDjpj6GfyZoBGhsb05133jnWvxIppd7e3hHJzXZ/AAAAAAAAAAAAAAAodWXZBJC9+/973vOe4xb/Z05mJ4DMkc0A3d3dqbm5OX3oQx8a499sfBmphfnZ3/NYWaMHAAAAAAAAAAAAAECpq05lZsmSJWnDhg3F/3/kwv+hReWLFi1KTU1NaebMmcWvGxoaiovCs3eY37FjR9qyZUtx94AhR2asWLGi+DNve9vbxuR3G29Gc2F+Nh4AAAAAAAAAAAAAAEpdWTUBrFq1Kq1bt+6ohfvZov1ly5YVmwMWLFhw0ll33313+uhHP5puueWW4tdDuwJkWdni9Fe/+tUj9nvw/2R/v6xB4+e9i/9wHZl35P0AAAAAAAAAAAAAAJS6smkCePDBB1NbW9vhxfrZou6sKeDd7373KeVlDQPt7e3Fj5UrV6abb775cPby5cvTT3/60/DfgeNlOzUcuWj/RAv4hyvb8eFY2Q4Ro+Wh3tvCss6t/92QnBkTLk9RXjnxorCsQvpZQ8/paml8PEUppOPHz6maX/9ISM4Pdz4/Rfl+79SwrE89GhaVHj70rZig/69JLEKhb3dYVkX1lJCcQt/ekJxiVtWhuKyBgyE5h/rjnns/czBugM6c8tKQnKumXJiiPL2vKizrgtqY32/+rLjHzCtmPR2WNaN2T1jWrRVnh+T0DD6couzZsyUsq6r2jJCc/v0xz3+Q+av74p4b/vPlrwnJ+a2vfDZF+djzXhKWtfXrT4bkLPj1mLolU1NdE5Z13+M/Ccl52fkvTFGu/co3wrLe3NgQlvXbB2P+3QcOxNWeNz73/LCs9z4ZU8fOmjorRdm+9K1hWf/7Bz/b/fJ0vW563Ln7r//nv4RlTXpkZ0jOJ/ueSVE2fXFtWNZX/+SrITl/dvW9KUr7214RlvXqmXPDsv6lM+Y6wPufOP03FBny3rW/GpY1v2FOSE7jn//fFOWJ9uawLPKrbkLctcEo+/sOhGVVVcRdL6mtCqqpBgdTlEkTJoZlNc6aHZLTtznmuS9z6LK413Ge2RN3nf8502J2tX5y91Mpyv6+mOuxPxPzGDxjyowUZdaUuPOj8ybH7BS+rf1DKcqkdywPy3qyO+Y63F+/6voUZc+huHPJzh0PheRMnzgtRfnAd/8jLOvywDex++4zMdfB//6Ox1KU86fFXG/O/FtXzDnSPT37UpRfetF1YVnk19antqdS0zCpLiyrpro2MCumvr74rHkpSmFX3DWFSbPOC8l56JltKcqMCXHX+qcGnktOnji15P6tDvXHrZ0YGBwIydm1f1eKsvfMuOfkFy76w5Ccnh/flaI89fXPhWW95amYdSavrYm71nH1hZeV3HWTz7/+dSnKHdvvCcu6J+DNp4fsONgXklNXG7d8u3t/3JqcM6bGzAsrvxb3uvkrXnhNWFa5qUxlIluYn8kW6Tc1NRWbAk61AeBYWXPBAw88kGbP/tlFz87OzvShD8VdzOHZZX/LaCdqJMh2dwAAAAAAAAAAAAAAKHVl0QSQLfjv6OgovlN/a2tr2rRpU6qri+teHVokvnnz5uIOAVmjwQc/+MHQfE7siiuuOO62090NoPuYrq7sb5vtHAEAAAAAAAAAAAAAUOrKoglg/fr1h981/tZbbx2x+8kWim/cuLHYYJAtRL/jjjtG7L74mebm47eh7urqOq3MY3/eLgAAAAAAAAAAAAAAQF6URRPAhg0birsA3HLLLSN+X1kjwLp164q7AWSfGVlZY8exsp0eIpsAst0jAAAAAAAAAAAAAADyoCyaALJF3dli8fnz54/au9Nn7x5/uovROTktLS1Hfd3Z2XnKWdkODtnHkW644YZTzgMAAAAAAAAAAAAAGE1l0wSwaNGiUb3P66+//rh3lGdkrFq16qivOzo6Tjnr2J/NGgyy3R0AAAAAAAAAAAAAAPKgLJoAskXco72Q++KLLz7uHeUZGdkuD9nHkC1btpxy1oYNG476evny5ad1bAAAAAAAAAAAAAAAo6ksmgAaGhrGZEF+Y2PjqN/neHXsbgBr1649pZwjfy5rLGhubj7tYwMAAAAAAAAAAAAAGC1l0QSQLebu6OgY1fvs7OzUBDCKWlpajtoNoK2tbdgZa9asOerrdevWhRwbAAAAAAAAAAAAAMBoKYsmgBtuuCF1dXWl7du3j9p9rl+//qhF6b/I1q1b0x133DGix1TuskX79fX1xf+f/b2PXdT/82Q7RaxcufKoJgJNHAAAAAAAAAAAAABA3lSWy7vE19XVHbXIeyR99rOfTQ8++GBatWrVSf/MVVddla655poRPa5yly3a37hx4+Gvs7931oxxMg0AV1999VENACtWrBix4wQAAAAAAAAAAAAAGCll0QSQuemmm4rvFH/nnXeO6P3s3LkzLV26tNh4MH369GH9bNaowOnJdl/YvHnz4Xfxb21t/bk7AmzZsiUtXLiw+DmjAQAAAAAAAAAAAAAAyLOyaQJYtmxZmj9/fnFx/vbt20fsfrJ3lG9oaEi33HLLsH4uezd64hoBOjs7i4v56+vrizsCzJgxIy1fvjytXbu2+JHdli3+zz66urqK42LoZwAAAAAAAAAAAAAA8qpsmgAyGzduLC4Kz94lPnpHgG3btqV58+alBx98MHV0dAxrF4C777479FhIh9/Vv6enp7gDRHNzc9q0aVNx8f9QM0AmW/Sf7RyQfc/Q7gEAAAAAAAAAAAAAAHlVncrArl27ip8rKyvT+vXrU2tra3FReLYYPHsH+Oyd+09V9i7yt956azE3ky0mz97Vf+vWrb/wZ7u7u4vfmy1MZ+Rkf+PsAwAAAAAAAAAAAACg3JVFE0D27v8VFRVH3VYoFFJ7e3vxI0KWl91H1mBwKj8LAAAAAAAAAAAAAACnqzKVgcbGxuJC+yM/sgX7x952Oh9DTQan87MAAAAAAAAAAAAAAHA6ynYngMxILL63oJ9SsvnQf4TkTK+dl6JMrB4My3rBrN0hOf/tnB+lKAODVWFZvfvrQnK+8XR9ilJVEbdzyarn7AvL+s6TV4Xk/NMzX0tR+vueCcuqrJoSktOfelKUilLcxaYQN79U1TSEZe3q7wrJ+cq+uN7M19WdE5Z1/86JITlfebI/Rdl58MKwrIvr4+aqRwZjsvbu+2GKUhg4GJY1OLA3LAuivPvy54VlTb3wuSE5D9z5nynK9HlNYVkfeMO3YoK+8A9xc/C02rCsLz4YM0f95FfOSlHuaPm1sKyJPTvCsvp2xtSxO+/5Rory+j0x536ZxXUxNeOmt78vRbnyH9aEZf3BoteH5Hz3sbjz5OZz42rrTc/dH5Kz69ChFOV3nj8/LOvXPn1JSM5rLn5ZirK7856wrFd2/FtY1kf/2ytDci5tiDtP3vr0trCsF18QM65uf+cvheTAkC9u+0FY1jUXxMx5+/vjzmun1k4Ky/rJM9tDch7cFVfnvfrzW8Ky7lt6XUjOxQdintsz1d/7SljWpS+Lmz+/8sjWkJzZDeenKAOR11ErY65ZzpgU83pI5rGdT4Zl3frDmNcMPvKd7hRl385/Dsu67S0xNVXPvria6oudm8OyXnVBzHWhA30HUpTOXX1hWf/+7s+GZVXWxry+uezDr0lRvv7oT8KyLm+YFZLzue0xr/fAkLcvemNY1lceiLm+2xD4nFxVEffa5pl1Z4fk9B+Ie93vPx+7Nyyr9smYa3EvPDfuNZGndj0VljX1jKlhWfsO7AnJmTU15rkh81jvY2FZVZUxz8lTJ8SsMcl07ngoLOuSnphaffesM1KUnsk1YVkfueSykJwZk+PWec2aFvdv9Uj3wyE5Z06Pe61tX+emsKx7uuOuMf3FFQtCcvYcijsXmVQd97rr1zq/HZIzoaos3qO+5JVFE0BDQ8NR7/4PAAAAAAAAAAAAAADlqGx2AhjS1NSU2traUmNjY7E5YCx1d3ennp6etGzZsrRlS9w7sAAAAAAAAAAAAAAAMD6VRRNAtuB/yB133JGmT5+eSkFdXV2aM2dOuu2229LFF1881ocDAAAAAAAAAAAAAEDOVaYyMHPmzMPNAKXSAPBsTQoAAAAAAAAAAAAAADCumwDq6+uP+lyKSvnYAAAAAAAAAAAAAADIh+pUBhoaGo76XIoKhULauXPnWB8GAAAAAAAAAAAAAAA5VhZNANdff33q7Ows6SaALVu2jPUhAAAAAAAAAAAAAACQc2XRBJCZM2dOKmWlfnwAAAAAAAAAAAAAAJS+yrE+AAAAAAAAAAAAAAAA4ORoAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADlRMk0A73jHO9J73/velAerVq1KN95441gfBgAAAAAAAAAAAAAA40zJNAG0t7entra2lAfZsWYfAAAAAAAAAAAAAAAwLpsA8qa+vn6sDwEAAAAAAAAAAAAAgHFGE8Ap6O3tHetDAAAAAAAAAAAAAABgHCq5JoBdu3alUrZz586xPgQAAAAAAAAAAAAAAMapkmsC2LhxYyplHR0dY30IAAAAAAAAAAAAAACMU9WpxLz97W9PXV1dacGCBanUbNmyJa1evXqsDwMAAAAAAAAAAAAAgHGqolAoFFIJqKysTBUVFSk7nOxzqRr655oxY0basWPHWB8OOVR76bVhWdXVDSE5g4MHU5Sa6hlhWc+rvDIk5/uHvpiivO3sa8KyPtP9QEjO7n33pCiFwQNhWW8+6zfDsmZNjhmjk2sGUpS7n6oLy/r6oa+H5EyqmpWi9Oz8alhWodAfklMRuIFR7dTnhmUVCn0hOQMDe1OUD1/6irCs/9h2RkjO9oF9KcqiqXF9rN/ZEzfvPXjgyyE5gwefSaX2+MtUTpgZkjN4MK6G7n9gU1gW+XTm7/7PsKz6S6aF5Nx6zeIU5aHeJ8KyFjz4cEhO9dTpKUp906vCspZ0/EtIzt8/J+4NCQ4++mBY1r0XnR+WVVtVE5Lz0nMuTVEevXVtWNa7Z04OyflfC+PqqYtmXhiWNX1SzHlI4UBcbfbNR+LOSa9sfFFIznlrPpSiPPlHcc81dz9+X0jO/d2PhORkBgYHw7LufOKxsKy9fTHH9U/X/EaK8vi/fiIs62uXxMwLiy9+SYpy7nmXhGWRXx/Z+LGwrAumxVy7PmNK3PXmGUHPo5nHdj0ZkvOCiikpyvTGF4ZlnfmhNSE5SxfEXEvI/NFL3hSW9Tff+7ewrP6gl1n/7NW/naLc++i9YVlP7+0OyambGHPOnenetzOVmqm1MechmUk1E1Kpiaw/f2VOXP3yvad/GpKz59D+FOW+7sfDstrueCgsK02Juab+t1c/P0WpnxD3HDg36Lz7yr+Jub6U2fHhm8OyyK8FH3l/WNaKy+eF5Lz8oqYUpaY65jpjZt/t/xiSUzV1aopy3vXLw7K+3fndkJx5ZzamKFWVVWFZX++6KyzrNc97dUjOT574SYpyUUPc9d3Hd8bUClMCn0ef2bOj5F5/mDU17lxyf1/ceoA5Z84NydkdeE4zbXLctY4HnoipryN94Lv/FZbVeyjuWnh9bcz6pXe+IGZtZOYrD/+w5F43aHnuy1KU5zTG1TDlpuR2AhhqBChVpX58AAAAAAAAAAAAAACUr5JrAsiU8k4AAAAAAAAAAAAAAAAwVkquCaCU32VfcwIAAAAAAAAAAAAAAGOp5JoAFi9enOrq6lKp6e3tTV1dXcUPAAAAAAAAAAAAAAAY100At912W1q5cmXasGFDam1tTcuXL09XXXVVKjXZMd58881jfRgAAAAAAAAAAAAAAIxDlalEtLS0pM7OzrR58+Y0Y8aM1NzcnGbOnJne+973pu3bt6dS8Tu/8ztjfQgAAAAAAAAAAAAAAIxTJdMEMGTBggXpox/9aBocHEyrV69OX/7yl1NjY2O69tpr0+c+97mxPrw0Z86csT4EAAAAAAAAAAAAAADGqZJrAjjSsmXL0qZNm9L999+f5s+fn972trcVdwd4xzveke65556xPjwAAAAAAAAAAAAAABhVJd0EMCTbCaCtrS11d3en9vb21NnZWdwx4Iorrkgf//jH065du0b1eOrr61Nvb++o3icAAAAAAAAAAAAAAOSiCeBILS0t6ctf/nLq6elJra2tafXq1WnGjBlpyZIl6c477xyVYygUCsVGAAAAAAAAAAAAAAAAGE25awIYUldXl1asWJEeeOCB9KUvfam4MP/qq69O8+bNSx/60IdGdHeArAFhx44dI5YPAAAAAAAAAAAAAABl1QRwpObm5nTbbbcVF+e/+93vTv/yL/9S3B3g2muvTZ/73OfG+vAAAAAAAAAAAAAAACBEWTQBHLk7wLJly9KmTZvS/fffn2bPnp3e9ra3pZkzZ6b3vve9afv27WN9iAAAAAAAAAAAAAAAcMrKqgngSI2Njam9vT11d3cXP2eNAXPmzElXXHFF+vjHPz7WhwcAAAAAAAAAAAAAAMNWtk0AR2ppaUlf/vKXiw0BV111VXr3u9+dqqqq0jve8Y50zz33jPXhAQAAAAAAAAAAAADASRkXTQBD6uvrU1tbW7EZ4Etf+lLasWNHWrBgQZo3b1760Ic+lHbt2jXWhwgAAAAAAAAAAAAAAM9qXDUBHKm5uTnddtttqaenp7gzwEc+8pE0Y8aMtGTJknTnnXeO9eEBAAAAAAAAAAAAAMBxxm0TwJC6urq0bNmy9MADD6S77rqr2Ahw9dVXp5kzZ6b3vve9adu2bWN9iAAAAAAAAAAAAAAAUFT9s09kmpqa0kc/+tHix/r169NNN92U2tra0sKFC9OqVavSm970prE+RMrB4KGwqL4Dj4TkVE88N0XpH9wTlnVf4WshOVdPfmOKcs7UnrCsGT3nheTsre5KUfr37wzL+syT/xCWNX3qi0Nyrqt/TopSVVEIy9q/+56QnAOVtSlKodCfSk0hDYZlHdrfGZZVWTMzJGewL25++eZjM8Ky5tTtDcnZ0v1EilJdGTN/ZurT1LCsgQMxv2NFifbpFg7GjVGI8q43zA3LmlE7MSTnwn19Kcrlly0Oy/q73/wfITn/+Nh9Kcrn/zksKv3eZS8Iybnlybja+rfrYmqEzJ/fHVMvZu54w2+E5HTteTJF+drljWFZX/3S/SE5b7ww7k0hDv7FJ8Oy5v5mc0jOxPPi5s/9/QfDslZs/ERITvvrX5ii9O2Jq4HuCZpjvvfM0ynKq86Jq62/8uiBsKz/cdk5ITm/1fGPKcrvXXllWNaqD/9bSM63Xxd3nvXR1pVhWeTXbz4/5nkmc1/P9pCc2qqaFOVHT8XVetc2viQk547//r4U5b99dEVY1idesyAkZ/FzX5mibPjxV8Oyfrgz5npX5o+veHVIzlO74ub0eRMbwrJ2HtgdkjMwOJCiPLx7R1hWVWXMdbhZA3HX02sPxb18/+F77w3J+fc3Lk9R/u9dnw3LunxWXC0b5bwp08OyrlsUd53/wimTQ3L29ce9zl1VEXcd/Mq/+0xIzhteHDd/Quahzn1hWfOvuSSVmpmT4x4zew7EzC+T5sZcT8js6oy7JvvI7phrOVufjrtm+dYXvCYs64XnxI3P723bFJLTvT+mjs00zpoTljVjcn1IzqGBuNei7u+OWXuWmRB0Dr/nUNz8eUF9XM34RM+jITl7Dsadk04YjFu7NGNKTP35SNC/U6ZlTtw6r+899XAqNa+5dUNY1m/Mjzt/uGHegpK7FvecxqawrHJTmiuMSkBLS0u65ZZb0oIFC9KmTZuKX1dVVaUbb7wxbd26dawPDwAAAAAAAAAAAACAcUgTwDF27dqV/vIv/zLNmzcvLVq0KN19993F2wuFQvGjvb29uDPAm9/85rE+VAAAAAAAAAAAAAAAxpm4/QRz7vbbby8u8O/o6Ch+nS34H1JRUXH4/w/dfuR/BwAAAAAAAAAAAACA0TCumwC2bdtWXPi/du3a1Nvbe9Ti/hMt/M8sW7YsLV++PC1YsGAMjhgAAAAAAAAAAAAAgPFsXDYBfOxjHysu/t+yZctJvet/c3NzceH/9ddfPwZHCwAAAAAAAAAAAAAA46wJYOvWrYff9f9kFv7X19cfftf/OXPmjMERAwAAAAAAAAAAAADAOGoC2LVrV3HRf7b4v6ur66QW/7e0tBQX/l999dVjcMQAAAAAAAAAAAAAADDOmgDuuOOO4sL/9evXn9TC/8bGxuLC/+yd/+vq6sbgiAEAAAAAAAAAAAAAYBw1AWzbtq248D975//e3t6jFvmfaOF/Jlv0ny3+X7BgwRgcMQAAAAAAAAAAAAAAjLMmgNtvvz2tXr06bdmy5aTe9b+pqam48H/p0qVjcLQAAAAAAAAAAAAAADDOmgC2bt16+F3/T2bhf319/eF3/Z8zZ84YHDEAAAAAAAAAAAAAAIyjJoBdu3YVF/1ni/+7urpOavF/c3NzWrlyZbr66qvH4IgBAAAAAAAAAAAAAGCcNQHccccdxYX/69evP6mF/42NjcV3/M/e+b+urm7EGhIy06dPH5F8AAAAAAAAAAAAAADITRPAtm3bigv/s3f+7+3tPWqR/4kW/meyRf/Z4v8FCxaM+PHV19enysrK1N/fP+L3BQAAAAAAAAAAAAAAJdkEcPvttxcX/3d0dJzUu/43NTUVF/4vXbp01I91pHYZAAAAAAAAAAAAAACAkm8CuOKKK9KWLVt+4bv+Z+/CP/Su/3PmzBn143zwwQdH/T4BAAAAAAAAAAAAAKCkmgA2b95cXPSfLfY/0eL/5ubm4sL/66+/fgyPMqX169eP6f0DAAAAAAAAAAAAADB+lUwTwJChRoBMY2NjceF/9s7/dXV1qRSsXr16rA+BnCsMHAzLqqisCcnpP/BIijJh8rywrP7+3pCcRwYOpCh3PV4flvXkwDdCcibXXpSiDNacG5a1d8/WsKw9Bx8Iyfnk4/emKNMmXR6WVZEqQ3KmT3tJirJz59dSqamaeHZYVm3NWWFZBw8FzaGDfTE5KaV1T30iLKuisjYkZ7Bvd4ryQHpnWNZ9A19PpaaQBlMpqqieFBNU6I/JgZTSX93zRFjWY7+3MiSn/8C+FOXxf/9kWNb1bVeG5Cy78gMpyju/8qmwrJv6zwvJ+b9P70xRfv8NrWFZsx7rCsv68lvfH5Jz5Z9fl6K8oSfunG3y658fkvPcWRemKPP/z1+EZVVNmBySc2DHoynK1+/fFpb15Uf3huTU1cQ9Pyw8L258/vLzXhmS86ZtP0lR9p4Xd03hjwfi6ry/+dH2kJx3Pi/u97u0Ju6a0H+951dDcj5w150hOTDkmf79YVlnTTszJOeZvTtSlDkz4q593rl9U0jOnj++NkX5/u7HwrKec8bskJwv3teRoiw8L6bOy1z0eMzzTOY5M2Lqxg9v+lyK8uuXN4dl1U2cFpLTvS/uXGvg/3sdOcRgzHW4gUJpXs/r2hVTn1VUxS0peNHZc8OyBgoDITmTqieG5Pwsa0JY1vVzYh5/mUNBtfpDe7pTlAmB4+qTN8S8PvaiA//vzSohQs0ZE0quvj7QF1fz79gXNyc0vuN9ITk9P74rRdnbcEZY1ryamPpl2p6486P7n+4MyzprWty/1YLzXxCS88yeZ1KUvQf3hGVNrIl5vbVnX8x6qkxVRcx6lUz/YEx9tr8vbm3dk7ufCsuKOq7HAx/LD096PCzrjCkzQnIm1sTV1xfPvCAs68L6uDVHUee402tj1uNkDg7EPP4y337s/pCcD254MEXZ8ZKWsKxyU3JNAJnW1ta0atWqNH/+/FQqtm7dmpYuXZp6e+OeRAEAAAAAAAAAAAAAINdNAPX19amrq6u44L4UZIv+u7u7Dy/+P3KnAgAAAAAAAAAAAAAAGE1x+7kE6enpSZ2dncXP2WL7sf6oq6s76msAAAAAAAAAAAAAABgrJbcTQGtra7r11ltTqdmyZUtxd4K77757rA8FAAAAAAAAAAAAAIBxquR2Amhra0ulqKmpKW3evDnV19eP9aEAAAAAAAAAAAAAADBOlVwTwOzZs1Mpe8973jPWhwAAAAAAAAAAAAAAwDhVck0Apa61tXWsDwEAAAAAAAAAAAAAgHFKE8AwzZkzZ6wPAQAAAAAAAAAAAACAcaqkmgDq6+tTXvT29o71IQAAAAAAAAAAAAAAMM5UpxLR09OT8iJPxwoAAAAAAAAAAAAAQPkomSaAurq6lBd5OlYAAAAAAAAAAAAAAMpH5VgfAAAAAAAAAAAAAAAAcHI0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMiJikKhUBjrg4DxpPb5i8OyKqumhOQMHHgiRamdMjcsK6WqkJTzqhekKDsKD4dl7euLyaqsnJSiTK++KCzrmd13hGVdNu03QnIeKvw4RblhxsVhWbf3PhKS07PnmynKYP/eVGoqa+rCsqpqGsKyBg49FZJTPeHcFKVv//awrIrKmpIbU2fUvzYsq/dQ3LzQvz/oOaIisE+3oiouqrI6JKcw2J+i9P3k62FZ5FPbf/1tWNacaTHPDT/ufTpF+atvPx6Wdfeyt4bkfGP73SnKpqfjzkO27z0YkjO1Om4O/p8L/ltY1gsvnB+W9eMPvick5xUHJqco086NO6f54ZL/HpIzccZZKcp3Or8TljVrSsxcVf2lz6codz4v7jzyTTNirinsbTgjRdndHvdc0//rbwnJOf9AXD1VPXlaKkVbVv11SM45TTNSlMElMX+/zPlpQkjO5t0x1xMyr5ofd55Ffn3/J98Ky9rfH1Of3d8dN87PnzYrLGtqbVwtFGWgMBiWtefgvlRqDg30hWVVVcbV/a849wUhOZ/+yZ0pyt074s5L3zTn0pCcnQfjrg32BGZVB12HixxTVYHXBs+ZGnP+MDAYN79MnTC55P6tdh7Yk6I0TK4rybl43pmNITnv+/r6FOWa8+LOJefNvCAkZ/rEuPOjubNfGJZFfm176AdhWQODAyWVE236pOkhOYOBv19lZdxrbD9+8v6QnLOmxV3z6us/VHLnf5n5F8TMn1sfvidFmTEp7vn9QN+BkJzu/TtTlD2H9odlRdaNUSbV1IZlnT015rpCVeD8Emnm1JkhOU/tillDk5kVdEzR1xU+/YOYc/hrZsdcU4geV7VVMeuEnndezDWFTOXkqWFZ5cZOAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJ6rH+gBgvKmoqAnLGtj/WEhORc20FGVi1VlhWbv23BWSs63y0RRnMCypompKSE5t9cwUZd/g02FZVbVnhGXdt/dfYoIqa2NyUkqf74173BTSQEhO9YRzU5T+iifCsgb7dscEVcaVLf0HY+bPooG+kJhD/fenUlQYPBSSUzXhzBSl5+B9YVn9+x8Ky6oImmMqqmOeHzLVNbPCsgYH94fk9O9/JCQHMhMqq8Ky1j3YFZLz/5sWVwO9/aWXhGVVPxTz+7120jkpyhtftTgsqzJoLOzavzNFmbIvZt7M9Pw45twoM/uP/jQk51P3fzNFeec37w7LatvyhZCc33ioO0U580BMPZX5t8suCsk5/1PbU5Rf/8KNYVn9lRUhOZMPHUxRHnss7rH8K//6nyE5354Rd257x3POD8v643/YHJb1lrdeFpLTMCHu3+rGgzHn7plHJsSM0f9zb9y/+avmvzYsi/za3x83fz6xe0dIzryGuHlq+sS463mTaiamUvPk7rhru1MnTE7lbGAwbk4/VBPzmk/vwQMpSsvcy8OyDgVd+5xaW3qPmcyje3tL7vrEQKEQllUfVHPUTZyaokyqnhCWNW96zGsi7/ha0GtQKaU/eOErSu7xl5m0M2asf+2JuPOjP1zQGJY1ZULMNfX9fXFzMWQO9cddE9p7aF9IzozJ9anUHnuZA4diHn8Dhbg6L+6KQkpzZ84uvd+vKm7tUk113L/WUzufLLnfryqw1ovKijwnHRiMWwe1Y/+ukJxDg/0pyr7Aax0Nk+pCci6qj3utbe/BvWFZs4Je4/zu9q0pyjmB/1Z7Av+t3vWilpCc2398R4qy8NznhWXNCXreuuvBuNc3X3zpq8Oyyo2dAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJ6rH+gBgvBns3xmWVUiDMTl9cce0c+fXwrImTrssJOfgvs4UZfKUS8Oy9u35fkjO3gNPpCiVtTPCsqpqGlKpqaioCcvacfCesKymCb8ckvOj6n0pyqG996dSU1VdH5ZVqJwSljU4sDskp7JyQooyeKg7LKuialJQUFzv6WDfjrCsCVMvCctKqSokZUr1OSnKocGY8ZnZe+ChsCyIcu6UurCs8ybHPF6+f+6ZKcor570sLGvrwzG1y/yGOSlKbW3Qc0xKqefeb4TkfLdif4qy+IIFYVkbn4ir+Z/cFFPnLXtRS4py/6XNYVnPbLkjJGdwYtxjuXLS1LCst+7fE5LT/64XpSg/+vM/Dsu69ANrQnIqp8bNLzPe97thWe954HshOYXOuDnht17UGpZ1deMVYVlNf/8vITlvuTyuVph6wXPDsv7jW58OyZk5weV9Ys2YFPeYueW+74bkPK/u6RTlynPnhWX9x2MxNdX1z3tFilIVeO2ltirmOuqeQ/tK7pgy+wcOhGVtemhrSM6Lzp6bokydMDksa2BwICanEPN6VqaqoqrkHje7++LOJc+Z0lByYyFyftnffzAs61uP3xeS887LX5pK7TGTqZsYdy5ZURXzuFk4K+51jJlTZ4ZlHeiLmdcn1UwMyYEhuw7EvUZzz1NdITkvveDyFKVnX29Y1sSgx9/U2rjXgCPVVAfVsv0pTFXQc0P089+uA7tCcqbUxtXEkc8PVZUx/+41gedHk6onlPW55BlT4tZBnTXtzJJ7zESeK3/vwbticp56OEV56ZyFYVlTJ8Q9R3zqB/8VknNu4PjcG/i42fJIzOvK33s8bu3Ziy99dVhWubETAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADIieqxPgBg7J1R/9qwrB17vxGWNTCwNyhpMCgnpf7BfWFZk6e+ICTnYN8TKUpF5YSwrP4Dj4VlVVRPDskphI2plKonnBuWdWndoZCc7p3zUpS9NT8Iyxrs2x2S03/gkRSloipmTBUNxvz9UuWkwMdyTVjWhImzQ3KmVsU9ZroP3B2WVVURNxYmVNaH5AwU+lKUvXu2hmUVgsZ6hT5kArUseENY1su/sj4k54u7d6Qoj/fG1VMvmfuSkJzue+Pq/es3fDos6/t3xNTE++fGzOWZS865LyzrmnPqwrL+4MXXheT8yZ3/kKJ86oPfDMvq2nBLSM7eA3tSlHlr/iYs694/fFtITvUPN6co3/3lF4Vlze3bH5Kz/wdxv98Xdj0UljVn+syQnIPXLEpR7nkorl6cd+bFYVmPLl8akjP3l/8wRXnJmeeEZdVWVYXkXHPeRSE5MGRSTdy1ib99zbKQnP7ep1OULT3bw7Kuf94rQnIO9QddVypeT4i7Dv703p6QnIHCQIpSVREzd2Zqq+KundXWxGQ9vbc3Rdl5MK6WrZswNSRnUk3caw+R42rOjJhrlocG4q7n7e87mEpN5GNmZ+C5VtS4mn/B/BRl68Nx9fW6++POa/74FW8Jybnx0rhzkfuf6grLuiDosQzRqirj6pdfnf9LITnVg4UU5f4dD4Zl1U2cFpJTP6UhRdm1f2dY1oG+AyE5A4NxdVBkVqSaoLqjL7A+e2xn3JqcKROmhORMqpmYSvFccu6smGtV+4MeM9FzcVVlZcldf7nv8R+FZV1Qf15Izj/85GspysGB28OyPv35bWFZ72x9TkjOvd3PpCgXTHk8LOv5DTHXwi+fdUFIDj+fFTgAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICeqx/oAYNwpFFKpebr3P1MpKvTtjclJgynKwT0/jMtK5a2ypi4ubLA/JGba5AUpSnXFxLCsp/ZOCMm5rLYmRalOrWFZnYfuDMmprJyUovT1PRmWVSgEzTH9O+OOaSBuhjl4YFtIzoG+e1OUmilzw7ImVjWEZfUXDoTk7N6zKYWpqIjLghLU+NGbw7IWnBHzPDp3atzz1eSHvx+W9YYvfC4k5xtLfjtF+fCsWWFZ35od8zzzsZ8+lKLcfmFjWNaEcy4Ky6rqfiok58+uvCFFeex/xDyHZh6/7SMhOfu2PZ6iVN7247CsGe+6MSSnb/bzUpSezm+FZdUMxlwz2bMnrrb+tQlnhGU9XBeTVVUR974uf/v9b4RlNU69Oyzrv++LqWNf/PsLU5Q3z//lsKzC4EBITv++XSE5MGTPoZjrsZmZQeP86Y23pyiNDTPDsipmxdRnVRVVKcquA7vDsmqrYs6PBgpxz1mTauKuxx7q7wvLqqqM+RvWTZySouzvi7s2uOfQvpCcs6bFnf89tPPJkvv7zT/30hTle9vuCsuKqhujxkGmqjJuXnjRnCtCcvY/GXctYNV3vhaW9RvzZodlfWLL50Ny3rboTSnK5u1x5w/nTj0zJOexPTHXTGDIJWdfEpZV2NUdkrN35zMpyvk1Ma9xZyZOi7lm8lRonVDe76s7EPUad7acI+j8L1MTdC4yMfD84WsPxb3OfV1VfUhO4ZL5Kcqu/XHXlybWxLxGNn1S3Hqj7Tu2h2U90xfzWsaMyTHjIPL8PXPXIzFjffGFca+Vrr7qt8Ky/vmL7w/L2tkXc11h9tRpKcrBwLl4dsP5ITkXz4p7rZRnV94VCwAAAAAAAAAAAAAAlBFNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQExWFQqEw1gcB48nEy68LyyoMHgjKORiSU8zq2x2WVVEzLSRnsG9nSA5jp6KyNiRn6rSFKUpjekFY1uXTYp6K3/ncn6YoX3vmnLCsL26fWXKdi7WBYXce+M+QnIU1r0lRHkzbwrJeXHtRSM7AYEWK8njfQFjWoxUPh2XtOHhPSM7AoR0pSmV1zHNpZuDgUyE5VRPOTFEO3vcfYVnk096HfhKWteBfPx2S87nXvi5FOWdfXJ3+u/d9IyTnf93zSIoyq/nlYVmHnnwsJOeDE+KeY/7mNb8TlvXtru+GZf3zT+8OyfmTKWelKDNf/sthWU9+/u9DcmqvfmOKsvBT/xiWtf133hWS033PV1OU9z72w7CsG+Y+PyTnlh/dm6JcPiOunrrlozGPv4+//00pyl/dG1PDZv7+7NlhWWe8LGZeeGT936Uo/3jmlLCsNz8v5jmw8cy5KUr11LqwLPLrR52bwrIO9MVcu5535sUpysM9cbXshzZ3hOR8vnNvivK9ty4Jy+rZ1xuSs+fgvlSK9vfHjM/MpOqJITmHBvpSlCsbXxSWtffgnpCc6qdiztkydXNfGJa1a9t9ITkDB+LG+tZUeo+bHft3hWVdVH92WFZXT8y4ap3/SynKGTfdFJa1/rq46yYvv/jKkJzP3P2FFOUFZ8XVstMnxpy37ToQ9zr3gufG/f3Ir85tcefc7/vWv4fk/MMvxV2zfLw37vn9p093pVKz51BczXjNJf8tJOfJXU+mKHsPxp2LzJg8IyxroDBQcsc0MXClwo6DMXXVGVPPSFF23b8lLGtzRUwt+9S+uHVeb54f9/rDvY/GXHf+w2/ekaJ84VVx14prpsU8bq5Y97EU5bIZMevFMo/v7w/LuvdHMefK7108J0W58tx5YVkzJteH5EytjbumfsEFzwvLKjd2AgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnKgoFAqFsT4IGE8mXv7GsKxCoT8kZ7BvZ4pSGNgflgVDKiprQ3IumB73+Lti4sywrPoJh0JyKipSmLt6qsOyftj35ZCcgb5nUpTCwMGwrIqqSSE5NRPOTlFeVrs4LOsLf/NPITmFmrje01/73TeHZT1zqCos65G0IyRnV3oqRalNU8Kynuz9YkhO5YRZKcrB+/4jLIt8euprnwvLevnWrSE5H37JC1OUay95VVjWmTffHJLz56+ak6Lc090dlnX1uReE5EyrjXlez7zusmvCsnrv3xKW9a2Dz5Tc+PzpTX8clvX91780JGegMJiiNF98ZVjW89d+IiRn6fy485m1342rXd73yotCcvb296Uovz/nxWFZD1bGHNdDN34sRVm/9DlhWTdNjqvzFn3+ByE5/Y3TU5S7L4k7Z7v3ovNDcl557uUpyuTz5oZlkV/bHop57GVecdttITmXzapJUSZWxV082/TPP4kJao6rr6dNiLv2snBWzPXYd74grg6aMakuLKvwmU+FZfX+yhtCcg4F1i+bn+wKyzo4OBCS84OeuNehPvGG3w3LuvD33heS8/U/fXuKUlUZd73y2w/dE5Kzrz/mNYzMP3U+HJb13OkTQnJuf2BPivKfDz0RlvXOBTE1Y+ZPFsRcr2qYHDcXV1XEPW9FnsNHefGlrx7rQ6AE9O+Oe/470BezDqPr6bg64cGex8Ky/uaHPwrJec15cdcmzp0Sd03h5Rc1heRUVcbNnfVTGsKy0t5dYVG9KWYd1JO7n05RnlsX95z8zNc+H5Kz7bnPTVFeNGdRWNbWh2Pqz+29cTVV/cS418v3HDoQkvPQ7rjXx946Leb1sUzPWeeE5MzaHVdfD+zbHZa1665vh2W9sSpmTdVAYBl7SX3cOq///ZKYNUeVgee3z5sbN1eVGzsBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICcqB7rA4DxpqZ6ZljWgT33heRUVE9KUQoDYVGpIqpPqaombtKccG5Y1uDA3pigirh+rsG+nWFZFVUT47IqY8ZoT+HhFOW7B+IG++QD00JyZldNTVEeq+gMy+rftz0kp5AGUykqDB4KyTkY+PhLDYvDonY/f1ZITv+EuLKzv1ARlvWj9NOwrJ59d5XUnJeprq4Py5o8vSkkp39wX0gOZL5dG/d8/Ex3f0jOC895Xoqyr29/WNbEz/8gJOdFv3pNivKW+ri/36PTJofknFN/TooyOBj3+21b+09hWf911byQnDkzzktR6q64LCzr+ufH1EHVE2PGVObAobjHcsXOmNrz/Clx5w4/+r1fDst6z9fWheTc1HBRivLjtvawrPk3/3lIzvNvW52iLPzKZ8Oy7v7bb4Vl3fepmH+rP//GrSlK7ay4ee+3P3pHSM6ES+9OUbb9zz8LyyK/fvBE3Dnypxe/PCRn6oS45+RI12zqDcl5/QVx1wBuftWbw7K+/+gPQ3IGAmvinv1x184uvuZ1YVmP9x0IyZlaGzfWX3lhXH399N7ukJxFZ85OUb73YMw1uMzfLHtFSM7moMdMpn7ilLCsqqDXjw4NxD2WXzwr7lykuiLmOvHWF85NURretjwsa8nWL4ZlvXfT1pCcv37pS1OUc+vOCsvq3LG95OZiyHz1/m+EZb384itDcmqqa1Mpaj63ISTn/l27UpRzp0wPy7rn8R+F5FxYd3aKUllZFZY1PcW9dlsftJRxYErc2qyH98fUxJmeyy4PyZkUuE4oUm3Q+qwzp8S9xn1Bfdw6r8d2PhmSc8bkuN9v711x50dnzZsfkhPzr/Qzhz79mbCswkAhLOt93465FvCR356ToswMXJMTdT1nyoS481ueXWk+IwAAAAAAAAAAAAAAAMfRBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOVE91gcAnLqz6l4XklOZqlKUJ/Z2hGVVVteF5Az270xRBgZ2pZJTGAiLOnPaVWFZ+wrdYVkH+p8KyZlYUZ+inJvOCst66Zl7Q3K6egdTlF0Ht4dlFVLMcVXWxMwJmYrKCWFZAwdjxuf59denKF/Z9YmwrM/89i+F5FRXFlKU/9y1PiyrsnpaWNaECReG5Bw8sC1FmTnxxWFZuwYfDcmZWn1+SA5kLqw/OyzrmRWrQnJ+8PD3U5Szp8fVG3//8beF5FxQf26K8kRtb1jWQz0xc9T+/oMpSm3QMWXOfs1LwrJWDcacP/RNmJKiTH7568OyZv/PPw/J+cBvLkxRHtodd0466bGYc9LbHnwiRVnzf/4iLKswqSYk59ILe1KUdy1ZEJb1sa98KiSn45H9KUrz+ZPCsh59y9ywrLf/rw+F5PzFW+enKNXPjZsXLnvZD0Jy/vniy0JyYMh5//RfYVnnvy+mvt61P+567IG+A2FZs58Xcz3hpWecmaL85Xc+F5a181BfSM6b570gRXlq19NhWVUz4s5rrjy/KSTnke6HU5RdB3aHZR0a6A/JaZg0OUWZNaUhLOuJPTGvY1x5YVzN8eTumOvNmd4DMa89VFVUpCivOrcxLOvftv0kJKe9Iu76xF//9d+GZVUcinvN57yLYur+p/fF/VuVosj5BTLPOSNuzjvwWFdITlVt3HvFTq2Nu6YwvSbmtdu3Xxp3njxjctzagp8+/WBITvf+uOuMzz/v0rCsysq4NUeP7oipi2uqY64zZqoq4x43fQMx51rTJ05PUfr6D4VlvTCoLu4NqtMztdW1YVmvWv/ZkJztN65IUZ566pmwrGf2xGRdNGt2irLv194alnXH734sLGvx3/1WSM5zJsTNL8+ti1uHsTPFXAuYURP3WiLPzk4AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJAT1WN9ADDeHNj307CswUkHQnKmVl+Uorxq2m+EZW0b7AnJ2V7YmKIUCn1hWVVV00vumC6pmBOWdV3j1LCsy6bH/Fs9sDfumKbXPB6W9ZkHzgnJ+eGhPSnKwT0/TKVmsG9nKmeP7v6PuLDCQFjUwcGYntHPb5uZotTWxjxmMv0Du+KyBmMeg4W+3SlKZWDP7/5DD4XkXDTxBSE5kLn8vMvDsh56ZltIzpu//OUU5YmH/y0sa8s7fz0k54PfiTumv37tjWFZ33/ygZCc+7rjarxfH5wSlvWqB2Pm4Mxdb1kWkvOBr38mRfmjl/xKWNbcl50ZkvOq73emKK/81tNhWRcvPi8k59OvWZKinP3WmGPKPPqFvw/J+f1DcTXeb77wmrCsb2zbEpKz6kXPT1Ge3B03PjseijuPfPeOrpCcfZPrUpQf/eH7w7Juml4VklP/xuUhOTBk7u+/Iyzrmds/GZKz+QWXpCi/dGlzWNa7L39OSM5je+Oud73q3MawrEX9NSE5NbUNKcrj084Iy7q65QNhWZf+3qKQnHe/8IUpynnTzwrLapgUc21+1pS4sTB1Qty51rXnxfy710yZkUrRQGEwJOeOH34vRamfMDks68IpMVmvbVyQovzBiy8My7r7kXvDsibVTAjJedHsK1KUr/76/wjLeunfrw7Jufvh76coMZUCeXfmpPqwrK27ngjJ2dO7L0XZeXBvWNarZs8PyTlrWsy1wUxtdW1Y1mM7nwzJWXRm3OxysDtmTGWeTnFrVs6smhSS8+3Hf5yi7Ngfd63xRRfEvK511pS4194jPbNpQ0hO7axzU5SBM88Py/r8L8VcK36i59EU5cyXvD4sq/DNz4fkDLwk7u9XOOuCsKyP/XbcdZOFd309JOeS1745RfnW4/eFZb1k1sUhOYPpYEgOP5+dAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgBCLF68OM2YMWNM7rurqyutXLmyeAxz585NFRUVxY/seLLb1qxZk3p7e8fk2AAAAAAAAAAAAAAAIlWHpjHubNmyJS1durT4OZMttq+vrx+V+16/fn1avXr14fvONDc3p6ampsPHsmnTptTR0VFsEmhra0srVqwYlWMDAAAAAAAAAAAAABgJmgA4rXffzxbij8V9L1++vLi4P5Mt+s8W+GcNACeSNQlkx5p9dHZ2pvb29lE+YgAAAAAAAAAAAACAGJoAOOmF99li+rvuuqu4+P7Id98fTVnTQWtr6+Gv161bl1paWn7uz2RNAhs2bCg2AaxZsyYtXrz4F/4MAAAAAAAAAAAAAEAp0gTAs5oxY0bq7e094X8bWkQ/mjsBrF27trgDQKa+vj5t3LixuMD/F8maFrIGgKHGhWwnAE0AAAAAAAAAAAAAAEAeaQLgWQ01AGQL7hsbG9OiRYuK76Lf3NxcvC17V/3RagI4sgFgaAeAk2kAyGTHfGxTAAAAAAAAAAAAAABAHmkC4FkVCoVUCrJ38D+yAWDFihXFRoST8WwL/rMGh6yRAQAAAAAAAAAAAAAgTzQBUPJaW1sP//9sR4K2traT/tmGhoYT3l6qDQADz2w/7raqWReNybEAPJvB7seOu62y4dwxORaAE3n/+99/UrdR/v78g6uPu+1P3rtqTI4F4ER2/WDTcbdNv2zRmBwLwLNRXzNk9V9/9LjbVv3+74zJsQCcyIc+9H+Pu+1d7/q9MTkWgGejvibzgTV/edxtf7zij8bkWACezQfabj7utj9e+e4xORaAZ/P+cV5fawKgpGU7AHR1dR3+ejgNAJmmpqbU0tKS1q9ff8oZo6nQ/fDxN2oCAEpMoefx42/UBACUkD/7sz8b1yd5/D8fuOn42l8TAFBKdt+35bjbNAEApUZ9zZCb/mbtcbdpAgBKyYf/6m+Pu00TAFBq1Ndk/uLmDx93myYAoNT87xM1LGkCAErMn43z+loTACVry5Ytae3atUe9e3+2oH+41q1blzo6OorNBIsWLSo2BgAAAAAAAAAAAAAA5JEmAErW6tWrj/r6hhtuOOWs5ubmgCMCAAAAAAAAAAAAABhblWN8/3BCvb29af369Ufd1traOmbHAwAAAAAAAAAAAABQCioKhUJhrA+CfFqzZk1auXLlUbf19PSk+vr6087OcrP8I42HoVpRUXHcbePh9wbyxVwFlDrzFEOMBaDUmaeAPDBXMcRYAEqdeQrIA3MVGeMAyANzFZAHFeN8rrITACXp2F0AmpqaxuxYAAAAAAAAAAAAAABKhSYASk5vb2/q6uo66rZFixaN2fEAAAAAAAAAAAAAAJSK6rE+ADhWR0fHcbfNnTv3Wb8/axgYahpobGwsfgAAAAAAAAAAAAAAlCNNAJScDRs2HHfbsQv7s0X/bW1tae3atSfMaGlpSUuWLCl+BgAAAAAAAAAAAAAoF5VjfQBwMjsB1NfXH/7/2cL/bGeATZs2pXXr1qXOzs5UKBSKn7Ovs4X/69evT62trWnhwoVpy5Yto/wbAAAAAAAAAAAAAACMDE0AlJzsXf6P1dDQcLgBYPny5am9vT1t3ry5uOB/aJeA7HP2ddYIkP23rHEgawDIGgHWrFkz6r8HAAAAAAAAAAAAAEA0TQDkRragP2sA2LBhQ1q2bNnP/d6mpqa0cePGw1+vXLmy+LMAAAAAAAAAAAAAAHmmCYCS0tvb+6z/rbW1Na1YsSI1NzefVFbWCJDtGDAk20WgFHYEeP/7358qKipO+HEiR/737GcBAIBfXFv/ovpabQ0AAEdTXwMAQBxrQwAAGGmaACgp3d3dJ7z91ltvLf63tra2YeVlOwY0NjYetSNAtqMAAAAAAAAAAAAAAEAeVY/1AcCRurq6Tnh79i7+q1atOqXMlpaWo3YAWLp0adq8efMpHyPAePenf/qnY30IAD+XeQqAvPCcBeSBuQqAvPCcBeSBuQqAvPCcBeTBn47zuUoTALnQ29tbfFf/U7FkyZKjmgCynQA6OjpSc3Nz4BECjB+2nwRKnXkKgLzwnAXkgbkKgLzwnAXkgbkKgLzwnAXkwfvH+VxVOdYHAEdqaGg44e2NjY2pvr7+lDKbmpqOu62tre2UsgAAAAAAAAAAAAAAxlJFoVAojOkRkFvZu+uvXLnyqNt6enpOebH+0Lv0L1y48LjbW1pa0rp16045d8aMGcXdBI5k6AMAAAAAAAAAAAAAeWMnAErKszUQZDsBRO8w0NHRcVqZAAAAAAAAAAAAAACjTRMAJeVEi/Uzc+fODW8u2LBhw2llAgAAAAAAAAAAAACMNk0A5GIngGdrDjgdvb294ZkAAAAAAAAAAAAAACNJEwAlp7GxMTzzRE0E3d3d4fcDAAAAAAAAAAAAADCSNAEwLpoATsROAAAAAAAAAAAAAABA3mgCoOQ0NTWNyrv219fXh2cCAAAAAAAAAAAAAIwkTQCUnMWLF4e/a/+JmghGa8cBAAAAAAAAAAAAAIAomgAoOYsWLTruts7OztPKPFETwdy5c08rEwAAAAAAAAAAAABgtGkCoOTU19enpqamo27r6uoKv5/m5ubwTAAAAAAAAAAAAACAkaQJgJK0ZMmSo77etGnTaeUd20TQ2NhY/AAAAAAAAAAAAAAAyBNNAJSkZcuWHfV1b29v8eNUnGgXgeXLl5/ysQEAAAAAAAAAAAAAjBVNAJSk+vr64xoBOjo6Tinr2J/LslesWHFaxwcAAAAAAAAAAAAAMBY0ARCqu7s7LKutra24YH9Ie3v7KeUc+3OrVq067WMDAAAAAAAAAAAAABgLmgA4ZTt27BjR/KwBIGsEOPId/Ye7G8D69evTli1bDn/d3NxsFwAAAAAAAAAAAAAAILc0AXDKjlxc//NuOx3Lli0rLtwf0tramnp7e0/qZ7PvW7p06VFNBevWrQs9PgAAAAAAAAAAAACA0aQJgGHLFvovX778hO/Kny26X7t2berq6gq7vw0bNhxuBMgW9i9cuPAX5mf/Pfu+oYaBxsbGtHnz5mIjAAAAAAAAAAAAAABAXlUUCoXCWB8EpWnlypXFBf1DTvYd+I915ML7jRs3pqamplPKyXYBWL9+/eGv29raijsFHJmfHePq1avTmjVrDt+WNRBkOwBoAAAAAAAAAAAAAAAA8k4TAD+3CSBbTB+xeH6ogSB7N/5TbQLIZE0A2XEduRNA9i7/2TFmtx3ZqJDd3t7efngXAQAAAAAAAAAAAACAvKsc6wOgdGXvtJ/1iPT09Jz2R5aTfZxOA0CmpaUldXZ2pg0bNhR3AcgW+nd3d6ctW7YU/3uWv2LFimKzQfZ9eWkAWLx4cZoxY8aY3HfWPJE1VmTHMHfu3FRRUVH8yI4nuy1rBDnVXSCA/Ovo6CjuxLJw4cLivJDND9lcYX4AoqmHiGIsAaVMfQ2MBvUQkYwnoJSpr4HRoB4ikvEElDL1NTAa1EOx7AQAYyhrXli6dOnhJoasYSJi54WT3VVh9erVh+87kzVNDN1/Nplt2rTp8KSWNYVkDRbA+JAVNdluKlnxk80L2fxwxRVXFP9/1mSVnfwNzR/Zf8u+N2vMAhgu9RBRjCWglKmvgdGgHiKS8QSUMvU1MBrUQ0QynoBSpr4GRoN6aIRkTQDA6Ors7Cy0tLRkDThHffT09IzKfTc3Nx++z6ampsKGDRue9fs3b958+PuXLVs24scHjK1sjmhsbDw8R6xYseJZ56Zs7jjye9va2kb9eIH8Ug8RxVgCSpn6GhgN6iEiGU9AKVNfA6NBPUQk4wkoZeprYDSoh0aWJgAYBdlksm7dumKxlE0kx05oozWxZcdw5P1lX5+s7NiH+zNAvmSFTH19/bDniCOLpbwUQMDoUw8RxVgC8kJ9DYwU9RCRjCcgL9TXwEhRDxHJeALyQn0NjBT10OjSBAAj5MhC6diPrLNptLub2tvbD99PdmxZMXcyss6nIyfjrJgDyk82/xw5b2VzxnDo+AZORD1EFGMJyBv1NRBNPUQk4wnIG/U1EE09RCTjCcgb9TUQTT00diqy/0lAuIqKiuLn+vr61NjYmBYtWpQWL16cmpubi7etWbMmrVy58qif6enpKf63aGvXrk3Lly8//PWGDRuKxzGc3+NIpg0oP9n81NHRUfz/TU1NafPmzcP6+exns4whnZ2dxbkPGN/UQ0QxloC8UV8D0dRDRDKegLxRXwPR1ENEMp6AvFFfA9HUQ2OnegzvG8paqTz4t2zZctSktmLFipOe1IYKvmP19vaOyAQMjI3ssX7k433VqlXDzsjmlezkMJtzMq2trcM+UQTKj3qIKMYSkCfqa2AkqIeIZDwBeaK+BkaCeohIxhOQJ+prYCSoh8ZO5RjeNzAKskJrSNZl1dbWdtI/29DQcMLbS3lSA4bvyE7L7PHd0tJySjlLliw5qqgaOuEDGGvqIaIYS8DJUF8D5Uw9RCTjCTgZ6mugnKmHiGQ8ASdDfQ2Us9ZxWA9pAoAylnU1dXV1Hf56OJNaJuvaPLbYG24GUNqOPRk72e7HEzl2vmhvbz+tYwOIoB4iirEEnAz1NVDO1ENEMp6Ak6G+BsqZeohIxhNwMtTXQDlbPk7roeqxPgBgZGRF29q1a0+7e3PdunXFrU6yCXLRokXFyQ4oH8eeiF1xxRWnnJV1UB4pm4Oc6AFjST1EFGMJOFnqa6BcqYeIZDwBJ0t9DZQr9RCRjCfgZKmvgXK1ZRzXQ5oAoEytXr36qK9vuOGGU846nc5PoLTddtttR319usVLdqJ3ZFfl+vXrT3n7OIDTpR4iirEEnCz1NVCu1ENEMp6Ak6W+BsqVeohIxhNwstTXQLlaPY7rocqxPgAgXm9vb7GwOlJra+uYHQ9QmrKTsWy++Hnd2sN17Enihg0bTisP4FSph4hiLAEnS30NlCv1EJGMJ+Bkqa+BcqUeIpLxBJws9TVQrnrHeT2kCQDGQWdTHjuUgJGXbV90rNM9yWtoaPiF9wEwGtRDRDGWgJOlvgbKlXqISMYTcLLU10C5Ug8RyXgCTpb6GihXq8d5PaQJAMrQsZ1Np7t9E1CeRqILu76+/qivj9z6DWA0qYeIYiwBJ0t9DZQr9RCRjCfgZKmvgXKlHiKS8QScLPU1UK7Wj/N6SBMAlOH2JscWVYsWLRqz4wFK17FzxbEnaKdi5syZx922ZcuW084FGA71EFGMJWA41NdAOVIPEcl4AoZDfQ2UI/UQkYwnYDjU10A56lUPpeqxPgAg1om2Vpo7d+6zfn82CQ5NhNk2T6e71ROQH8cWQcdu1XYqTnSimN3PeOuyBMaWeogoxhIwHOproByph4hkPAHDob4GypF6iEjGEzAc6mugHHWohzQBwHjYvunYySqbyNra2tLatWtPmNHS0pKWLFlS/AyUdzfkaLDlGzDa1ENEMZaA4VBfA+VIPUQk4wkYDvU1UI7UQ0QynoDhUF8D5WiDeihVjvUBACPf3XRk52U2mWXdTps2bUrr1q1LnZ2dqVAoFD9nX2eT2fr161Nra2tauHChbZpgHJ3gRWz3dqJu8R07dpx2LsBwqIeIYiwBJ0t9DZQr9RCRjCfgZKmvgXKlHiKS8QScLPU1UK461EOaAKDcnKijcqjoyia15cuXp/b29rR58+biJDbU+ZR9zr7OJrfsv2WTYTapZZPbmjVrRv33AEZWd3f3qN2XTm9gtKmHiGIsASdLfQ2UK/UQkYwn4GSpr4FypR4ikvEEnCz1NVCuutRDmgBgvMgmqWxSy7ZAWbZs2c/93qamprRx48bDX69cubL4s0D5GK2t3gBKiXqIKMYScCz1NTDeqIeIZDwBx1JfA+ONeohIxhNwLPU1MN5sGUf1kCYAGCdFW7ZlyYoVK1Jzc/NJZWWTW9YFNSTrjMpblxNQGp3eTiiB0aQeIoqxBAyH+hooR+ohIhlPwHCor4FypB4ikvEEDIf6GihH6qGf0QQA46Bou/XWW4v/ra2tbVh5WRfU0BYoQ11OWZcUwLPJtkcCGEvqIaIYS0ApUF8DY0k9RCTjCSgF6mtgLKmHiGQ8AaVAfQ2MJfXQz2gCgDLS1dV1wtuzzqRVq1adUmZLS8tRXy9duvSUcgAARoN6iCjGEgAw3qmHiGQ8AQDjnXqISMYTADDeqYd+RhMAjJOtT7JOpVOxZMmSo77Oups6OjqCjgwoN7Z2A0qVeogoxhIwmtTXQClSDxHJeAJGk/oaKEXqISIZT8BoUl8Dpah3nNVDmgCgjDQ0NJzw9mybklPdgqmpqem424a7VQqQn/kCIO/UQ0QxloDhUF8D5Ug9RCTjCRgO9TVQjtRDRDKegOFQXwPlSD30M5oAYBw40eQ0HMdOiqXe3QQAcCz1EFGMJQBgvFMPEcl4AgDGO/UQkYwnAGC8axpn9ZAmACgjz9bBlHU3RXdNlfrkBpTOVm2n2l0JcCrUQ0QxloDTpb4G8k49RCTjCThd6msg79RDRDKegNOlvgbyTj30M5oAYBxscTJ37tzwCXPDhg2nlQmMrZE68eru7g4vrgCGQz1EFGMJGA71NVCO1ENEMp6A4VBfA+VIPUQk4wkYDvU1UI7UQz+jCYBxI+vGqaioOO2PPBZtzzbhlWJHKDA6RvPEa+bMmaN2XwDqodGhto41nscSlAv1NVCO1EOjR30da7yPJygH6mugHKmHRo/6OtZ4H09QDtTXQDlSD/2MJgAoMyNRuJ1oYjxRNyeQ72Io4nF9oqLHdm/AaFMPEcVYAoZDfQ2UI/UQkYwnYDjU10A5Ug8RyXgChkN9DZSjRvWQJgAoN6PVvVnK3U3AqRUtEY/rHTt2HHfbokWLTjsXYDjUQ0QxloDhUF8D5Ug9RCTjCRgO9TVQjtRDRDKegOFQXwPlqFE9lKrH+gBgNB/wy5YtS+WuqampuL3dSHci6dyE8pgvurq6RrzoGc2t5QAy6qGRp7aONZ7HEpQT9TVQjtRDo0N9HWu8jycoF+proByph0aH+jrWeB9PUC7U10A5alIPaQJg/MiKjPb29lTuFi9enNasWRPaiXSiiVHRBvl3xRVXpPXr1x83X5xO4XLsfJHNFaVcCAHlST008tTWp85YgvKlvgbKkXpodKivT53xBOVLfQ2UI/XQ6FBfnzrjCcqX+hooR4vVQ6lyrA8AiHWibZU6OztPK/NEE+PcuXNPKxMYe83Nzcfddrqd38f+fCkXQUD5Ug8RxVgChkN9DZQj9RCRjCdgONTXQDlSDxHJeAKGQ30NlKNF6iFNAFBuso7KbJuTI0Vv5/RsxSGQL8fOFZlNmzadVuax801ra+tp5QGcCvUQUYwlYDjU10A5Ug8RyXgChkN9DZQj9RCRjCdgONTXQDmqVw9pAoBytGTJkhEt2rLOTd2bUB5aWlrCuiGzTshjuyFvuOGGU84DOB3qIaIYS8BwqK+BcqQeIpLxBAyH+hooR+ohIhlPwHCor4FytGSc10OaAKAMLVu27BcWXifrRJ1Ry5cvP+VjA0rLqlWrjvq6o6PjlLOO/dnsBDLruAQYC+ohohhLwHCor4FypB4ikvEEDIf6GihH6iEiGU/AcKivgXK0bJzXQ5oAoAxlRdWxk9upFm7H/lyWvWLFitM6PqB0ZFsiHbkt0pYtW045a8OGDbkqgoDyph4iirEEDIf6GihH6iEiGU/AcKivgXKkHiKS8QQMh/oaKEf147we0gQAJaS7uzssq62t7agOy/b29lPKOfbnju0KBfLv2Mf12rVrTynnyJ/LThybm5tP+9iA8Uc9RBRjCRgr6mugVKiHiGQ8AWNFfQ2UCvUQkYwnYKyor4FSoR6KoQkAxsiOHTtGND+b1LLJ7cgupeF2OK1fv/6ors+sYCv1ziZg+LJt2Y7s9j5y7jhZa9asOerrdevWhRwbUN7UQ0QxloBSor4GxoJ6iEjGE1BK1NfAWFAPEcl4AkqJ+hoYC+qhkaMJAMbIibZUOp1tlk4k2+bkyE7L1tbW1Nvbe1I/m33f0qVLj5ooFW1QvrLH91BHZFdX13Enbb9ovli5cuXhr7OiqrGxcUSOEygv6iGiGEtAqVFfA6NNPUQk4wkoNeprYLSph4hkPAGlRn0NjDb10MjRBACjLJu8li9ffsJOo2wiybZLygqsKBs2bDg8uWWT1cKFC39hfvbfs+8bmgSzYm3z5s1HbZkClJfscb5x48bDX2cnbVmH4y+SzRNXX331USd4eeiCBMaWeogoxhJQqtTXwGhRDxHJeAJKlfoaGC3qISIZT0CpUl8Do0U9NAoKwIhYsWJFob6+/vBH9nA7lY8jMzZv3nzKx9PS0nJUbltbW6Gnp+eo78m+zo77yO9rbm4+7vuA8pXNM42NjUfNFRHfC4xP6iGiGEtAXqmvgSjqISIZT0Beqa+BKOohIhlPQF6pr4Eo6qGxU5H9z2g0G8B4k3VJZtslRXQEDXUZZR1GTU1Np5yTdW1mx3Vkd1PWuZQdY3bbkdufZLe3t7cftUUKMH5kc0XWbZnNC9kcccMNNxS7HjOdnZ3FDs2hbZlaWlps8QackHqIKMYSkHfqa+B0qYeIZDwBeae+Bk6XeohIxhOQd+pr4HSph8aOJgAYh7LibN26dcXP3d3dh4u4bDLLJrIlS5ac1gQKlI+sILr11luLxc9QAWS+AMqBeogoxhIwHOproByph4hkPAHDob4GypF6iEjGEzAc6mugHHWUeT2kCQAAAAAAAAAAAAAAAHKicqwPAAAAAAAAAAAAAAAAODmaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAP//9u6mt421/w87qeN0U7TwA+4/ii4CHGvRTdAHyV6kQLux9Q5ke9VFUFhG0XaThQ2/AsNeFUGLxD5omybdWPK2K9mbtDtbTpsHFF3IZ1n0TiyfJk3yT3Ifq/jRuqiZ4ZAi54GcIT8fQLZIDmeuIYfk9xKv31wAAAAAAAAA0BOKAAAAAAAAAAAAAAAAoCcUAQAAAAAAAAAAAAAAQE8oAgAAAAAAAAAAAAAAgJ5QBAAAAAAAAAAAAAAAAD2hCAAAAAAAAAAAAAAAAHpCEQAAAAAAAAAAAAAAAPSEIgAAAAAAAAAAAAAAAOgJRQAAAAAAAAAAAAAAANATigAAAAAAAAAAAAAAAKAnFAEAAAAAAAAAAAAAAEBPKAIAAAAAAAAAAAAAAICeUAQAAGykz58/D7a3twevXr1adVMAAKD35GsAAGiGbA0AAM2Rr4F1Njw/Pz9fdSMAAJZtb29v8P79+8HOzs7g5ORk1c0BAIBek68BAKAZsjUAADRHvgbWmZkAAICN89tvv406eeH+/furbg4AAPSafA0AAM2QrQEAoDnyNbDuFAEAABvn8PBw/PuTJ09W2hYAAOg7+RoAAJohWwMAQHPka2DdXVt1AwAAlu3169ej/2O6t9u3b9eqGD87Oxucnp6OLsfvX758Gf0e/0cl+fHxccOtBwCAbpGvAQCgGbI1AAA0R74G1p0iAAA6LQLzjRs35l4+gvvJyclg2d69ezd48ODB3MsfHByMOxssV3TAPn/+PPr90aNHldczz3F5/fr1yusHAGiDfE3T5GsAYFPJ1jRNtgYANpl8TdPka2ATbK26AQDQZFiOAB+drmV79uzZQsvrAKxOtoMdHe6qnj59Otjf3x9VdE+rGL97927l9QMAtEW+pknyNQCwyWRrmiRbAwCbTr6mSfI1sAmG5+fn56tuBAAsWq0bHavo0EWHKSrCs5Y9zVZ0Lnd3d0fbjSnAsqJ9v/zyy+g2nbtu2N7ebmU6tjdv3gyePHmSuy6mgqs6pRwAwLLI19QhXwMAXJKtqUO2BgDIk6+pQ74GNoGZAADonQjOR0dHo45T/B4Vt1nR2Yogv8zq4WhDWUfu+fPnU29j+aJTno6NYqesaen4BADoOvmaquRrAIA82ZqqZGsAgEnyNVXJ18CmUAQAQG/dvHlz3JmaNa1X28qqfJOdnZ2ltYOrZY+L4h8I6jo5OcldjmpyAIA+ka9ZlHwNAFBOtmZRsjUAwHTyNYuSr4FNoQgAgN5KFdTRmSpW1UbnaxliO9EOob4fDg8PW+nkheJ0f3t7e41vAwCgTfI1i5KvAQDKydYsSrYGAJhOvmZR8jWwKRQBALAWitXWv/3220Twbqt6+ODgoPXtUF8cD3FctDHdW6y3OM2gzj8A0GfyNVeRrwEA5iNbcxXZGgBgfvI1V5GvgU2iCACAtVDW2Wp72rcI9p8/f26800A70vHQRnV+8Y8KsY3iGQgAAPpEvuYq8jUAwHxka64iWwMAzE++5iryNbBJFAEAsBbKwvu7d+/G1b1tdRximwJ9P8TxEB4+fNj4uo+Pj3OXVXoDAH0nX3MV+RoAYD6yNVeRrQEA5idfcxX5GtgkigAAWBtlVddv3rxpbXuxbpXe/erkhTaes2K196NHjxrfBgDAssnXTCNfAwAsRrZmGtkaAGBx8jXTyNfAplEEAMDa2N/fH1V9L2Pat9RxiG3Sfek4iMr8nZ2dRtcdZxSI6f+yVHsDAOtAvmYa+RoAYDGyNdPI1gAAi5OvmUa+BjaNIgAA1srBwUHucgTwz58/t9JxaGPqMJoXHbFUjd1Gx7xY6R2dyeIfHAAA+kq+pki+BgCoRramSLYGAKhOvqZIvgY2kSIAANZK2XReTVd8p46D6d76ITvtXxvP2fHxce6ySm8AYJ3I1xTJ1wAA1cjWFMnWAADVydcUydfAJlIEAMBaKZvSKxv0mxDri200PXUY7Xj79u3o/3i+4vhou9p7b2+v8W0AAKyKfE2RfA0AUI1sTZFsDQBQnXxNkXwNbCJFAACsnbKK3nfv3jW2/qgeV+ndD9kp/9p4zqLyP7aRpdobAFg38jWJfA0AUI9sTSJbAwDUJ1+TyNfAprq26gYAQNMODg4mQv2LFy8G+/v7jVT2RrB/+PDhoA3RIT07Oxt1IL5+/TraVvyerovL3759G1y/fn3iflHVHJ2atGxUNsdPVB/HvrdR6VzW/mhHtDO1Pdoa275z587oeVlmlXx2ur82nrNipXfsZ/G5ieck2vHp06eJx+TRo0eDp0+fNt4uAIAmydfydSJfAwDUI1vL1olsDQBQn3wtXyfyNbCpFAEAsLadvexUbxG2I2TX7exEYI9OUzHMNyHa9+DBg4XuE/v47NmzcccuKo2jbXE5OhbREYmfWCZui/Y33eGLbcX6s493dObiObh169bg9PR0tG9xe/xEO16+fLmUDl+q8k+PS9OOj49zl7N/TIjHPTq2se+xr9GG7e3t8f2ibakTeHR0ZApBAKDT5Gv5OsjXAAD1ydaydZCtAQCaIV/L10G+BjbWOQD01M7OzuinzMnJyXl8zGV/nj59Wmt73759G63n+Pi49Pb9/f2JbU5bdtr679+/P9qn27dvT6wr/cRy8RPLxeXY7unp6dTHIS3X1OOQ9fr16/Pr16+P1x1tibZNE49Htt1tyh4DR0dHrWyj+Dyl5zse47gc+zrtuYlls/eN9gIArJJ8LV/PIl8DAMxPtpatZ5GtAQAWI1/L17PI18AmUwQAwFp29MpCeHRI6nZqYp3T1O3oFWU7c8UOQbQj9mfe9Rfb1kQnK3Vm0k88PvOKZeM+0bFty8HBwbhtbUgd/2InPPZp3s5lWjZ1CgEAVkm+lq9nka8BAOYnW8vWs8jWAACLka/l61nka2CTba16JgIAaEtMt1Wcmiym4aoqpuYqrrNNMUVZTI1WFNPCxTRiJycno2nE5lGcUiymG9vb26vctngcXr16lXtsYoq3ecWycZ94PrJTxTXp8PBwYhq2JhWPpXh8Y+q7uD6mdJtnu9kp/mL6tzrHJwBA2+TrS/J18+RrAGCTyNaXZOvmydYAwKaRry/J182Tr4EuUwQAwNoq63hE56KK6FhFEF+kM9OE27dvl7YlOhJlt83y4cOHUecxiU5FtrM2r+gkZjtn0dlc5HGJ9u/u7o47zWWd2bpi36JjH9rqnMdzkBXHRzwucf28HfCbN29OrAMAoKvk6zz5ulnyNQCwSWTrPNm6WbI1ALBp5Os8+bpZ8jXQZYoAAFhb0akpBu7opKQOwCKiMxLrynaUlqHYEQjRqZq3I5EVbX/+/HnuuqhOXqRzEZ20bIVylc5zdPKy24x1xk+TUpvKjoGmlFVmp+NkXsXj6fT0tJG2AQC0Qb7Ok6+bJV8DAJtEts6TrZslWwMAm0a+zpOvmyVfA12mCACAtRYdmaIqU4zF9GHLnO5tlmJHaxFPnz6d6FyUPUbTFJeNTs0iVefRoSvraDfd0YsOfXj48OGgDbEPxTbHlG/x+C66njYfBwCApsnXefJ1M+RrAGATydZ5snUzZGsAYFPJ13nydTPka6DrFAEAsNbKKrQXrU5OnYb9/f1BF5RVgC+iOD1bVC3PU/EdnZD0WFTpJM5q+6LT182S7ci31Tkvq/T+5ZdfFl5PsWO37LMJAAAsSr6eJF/XJ18DAJtItp4kW9cnWwMAm0q+niRf1ydfA12nCACAtVfs2ES4XmSas+gYFtfRZ48ePZq47sWLF1feL6YzK7pz585C246OTLEiOh7bJjt6R0dHo/9jnVGB3Ybj4+Pc5fgjQJVtffz4MXf57t27tdsGANA2+TpPvq5PvgYANpVsnSdb1ydbAwCbTL7Ok6/rk6+BrlMEAMDaK6v4nbfiO6bkisrerkz31oTokBSriotV3NOmvcuKjlSV6uToMJ6cnIyeg+gwLVp9P8/z1XZ1frHau6zzXGU9bXVMAQCaJF/nydf1ydcAwKaSrfNk6/pkawBgk8nXefJ1ffI10HWKAABYe2VVv9lpwWaJKui4b5PVyF1QVqU9qwI+KuSjE9VUpyTuG1XeMSVfk5Yx3Vs8DsWp2qrsR9ljumj1PADAKsjXk+Tr6uRrAGCTydaTZOvqZGsAYNPJ15Pk6+rka6APFAEAsBHKQv88nb1YZp0qvWd10oqVx1fd1sXO79u3b0f/t9k5L6vQrlL13tR6AABWQb7Ok6+rk68BgE0nW+fJ1tXJ1gAA8nWRfF2dfA30gSIAADZCVBYXXTXVWATxqMYtu2/f3bp1a+K6r1+/Tl3+9PR0rnWsUlRPp4r1NjvnMU1dVtWK9abWAwCwCvJ1nnxdnXwNAGw62TpPtq5OtgYAkK+L5Ovq5GugDxQBALAxih226BQUp+4qdgTXsZMXyqqKZz0WxanJpq1jlbId94cPH7a2nWKV9t27dxtZz97eXq12AQAsm3x9Sb6uTr4GAJCts2Tr6mRrAIAf5OtL8nV18jXQB4oAANgYZRXA0yq+o2Pz7t27tZzuLdy8eXOuzlxydnY26Lo0hV9UTbfVCY3HqNghrlKlHX9kKD7eqr0BgL6Rry/J19XI1wAAP8jWl2TramRrAIBL8vUl+boa+RroC0UAAGyMnZ2dwe3bt0s7B0WHh4ejZeM+66is4zarc1TWMeySbMepzc55sUI7jpEqncq3b9/mLu/v79duGwDAssnXl+TrauRrAIAfZOtLsnU1sjUAwCX5+pJ8XY18DfSFIgAANkqxE5Cquotevny5tpXe0yq7i53grLLOzKzq8GXLVu232Wk6Pj5upEK7eMw9evSoVrsAAFZFvv5Bvq5GvgYAuCRb/yBbVyNbAwDkydc/yNfVyNdAXygCAGCjHBwcXDntW1QOx7ReZcuui69fv05cd+vWranLb29vT1x3eno66Iqozl9G1fSnT59yl/f29hZeRzq+slR7AwB9JV//IF9XI18DAFySrX+QrauRrQEA8uTrH+TrauRroC8UAQCwUaJquRiqYxqvbOVydPximSpTefVFdDaKZlUul91W7KysSlROL2O6t9hG8XGrMiWg6d4AgHUiX/8gXy9OvgYAyJOtf5CtFydbAwBMkq9/kK8XJ18DfaIIAGsojpMAAE/vSURBVICNU9YZePPmTe73dZ7uLXVus6JTO6vTEtPBFTu+xcrnVUkdp2hf1SnY5lHc39jerGnypskea1dN9xZV9sXlAQC6Rr6Wr6uQrwEAJsnWsnUVsjUAQDn5Wr6uQr4G+kQRAAAbJzoDxU5LmvYtKofb7jB0sdL74cOHV96vuExUPzdR8R3rice97n3n2Yc6jo+Pc5erHCPx2GfPLDCr2jtNDVelMwkAsEzytXxdhXwNADBJtpatq5CtAQDKydfydRXyNdAnigAA2EgHBwe5yxGoI1i/ePFi4rZ1kzq1Wc+ePbvyfmXLVO2gZcVjPs/2yxweHo5/b7tCv1ghv7e3V/uxn3WspWXX+Y8OAMD6kK/z5OurydcAAOVk6zzZ+mqyNQDAdPJ1nnx9Nfka6BNFAAD0WrFydl5lnYLHjx+POntdn+6tboV1cQqx6GzMU1EcyxQrk8s6jVXaU7Uzk7YfbZs1ZV0Tx1mxSr5Km7Md0/DgwYOZy06rBAcAaIt8vTj5enHyNQCwCWTrxcnWi5OtAYBNIV8vTr5enHwN9I0iAAB6Kzo8Z2dnle4bHYNiUI8gH52Frk+x9fbt28r3LVZVx/R2L1++nPv+xWXjOahT8R33jU5UlWrvbOer7c75p0+fJh63RY+TaG/xDxPTOotRWR7LPn/+vEJrAQCqka8XJ19XI18DAOtOtl6cbF2NbA0AbAL5enHydTXyNdA3igAA6KUI+Ck4F6tw51XWOagTrKtWnlfpHFWp+I77vHr1Knfd0dHRqNMyr+jcxH2KVfJV9z3uGxXNVTrX2ar1tquij4+Pc5fv3Lmz8DqKf5SYVZ0eHd+4vc0KdgCALPlavpavAQCaIVvL1rI1AEBz5Gv5Wr4GmE4RAAC9FB2Est8XUdY5qNNhKOt8Ve2EXmVvb2+h5aMjVrxPVG5XmbYsHqOnT5/m1l3lOYj2xH1/+eWXQZ3p3pZRoR/V13Ue/1Bs47Q2R0c+jpuqjwsAQBXytXwtXwMANEO2lq1lawCA5sjX8rV8DTCdIgAAeiNVK9+4cSPXgYrf47q4bdEq6IODg9LfF21XVOeWbfvFixfjac2aEtXWUTm8u7s713pjmXv37uXaF52kbGdtUdFJzN4/9vHBgwdz3z86StF5iirqRarNk9iXtD9tT/dW1mGv0kEudu7KOnqp0xzHokpvAKBt8vUP8rV8DQBQl2z9g2wtWwMANEG+/kG+lq8BrnQOAB327du38/i4qvIT973KycnJePn4fR7Xr18f/VRpU7rv06dPK+9/tPP09PT89u3bo3UdHR1Nvf/x8XGurXGfuK4pse1F1v/69etxu+u0Ix6/RZ7nOqKdxeegzuOV1rG/v5+7LT2nOzs7DbQaAKCcfC1fl5GvAQAWJ1vL1mVkawCAauRr+bqMfA0w27WrywQAYPUWrQiet7o6KmrTNG+LVNfG+qtUKaf71q3+jkrhk5OTUWVwVFnH5diP7e3t0e2np6ejCuxUER1tff78ea0K7zKxzah8jmr3N2/ejLYXldyxvYcPH47a8/Xr11G19KdPn0b7HctH26s+fiG2FWJdddZTRZ1pAeO+Uckd7Y/nJ85QEM9dVL3HdbE/8TsAQNvk6zz5Wr4GAKhKts6TrWVrAIA65Os8+Vq+BphlGJUAM5cAAFYmOkYxnV1WdJKyndJYJqaWi85UmgotOj/Rgbhz586oI1h1irJFRefl7du343ZE26Id8RNtjunZyqY6W0RMFRedyTT9XZ2O16JT1DXVEYvHKabdi85viOcpHptl7AsAwCaTryfJ1wAAVCFbT5KtAQCoSr6eJF8DXE0RAAD0vKO3aaJDlKq9xRgAABYhX0+SrwEAqEK2niRbAwBQlXw9Sb4GuNrWHMsAAHRG6uSpjAYAgPrkawAAaIZsDQAAzZGvAa6mCAAA6I2YKi1b9Q0AAFQnXwMAQDNkawAAaI58DTAfRQAAQG+8fv169P/169cH9+/fX3VzAACg1+RrAABohmwNAADNka8B5qMIAADohd9++23w/v370e8PHz5cdXMAAKDX5GsAAGiGbA0AAM2RrwHmpwgAAOiFw8PD8e+mewMAgHrkawAAaIZsDQAAzZGvAeanCAAA6NV0b7dv3x7s7OysujkAANBr8jUAADRDtgYAgObI1wDzUwQAAB12dnY213Xr7suXL4PPnz+PflfpDQBAVfL1D/I1AAB1ydY/yNYAADRBvv5BvgZYjCIAAOiw3377ba7r1t27d+/Gv+/v76+0LQAA9Jd8/YN8DQBAXbL1D7I1AABNkK9/kK8BFqMIAAA6XOH8+PHjieufPXs2rnzetOneYqq3mPINAAAWJV9fkq8BAKhDtr4kWwMAUJd8fUm+BljMtQWXBwBa7Njt7u5eWdGdXe769euj/z98+DDqBK2j6NTGPgfTvQEAMC/5upx8DQDAomTrcrI1AABVyNfl5GuAxSkCAIAOiQ5edN5SB27e+5ydnQ3W1du3b8e/P3z4cKVtAQCgX+TrSfI1AABVyNaTZGsAAKqSryfJ1wCLG56fn59XuB8AwFLcuHFj1Jm9f//+4Pj4eNXNAQCAXpOvAQCgGbI1AAA0R74GWNxWhfsAACzF+/fvx9Pfme4NAADqka8BAKAZsjUAADRHvgaoRhEAANB5MQXe/v7+qpsBAABrQb4GAIBmyNYAANAc+RpgMcPz8/PzBe8DALDUiu87d+6MOnsAAEA98jUAADRDtgYAgObI1wCLUwQAAAAAAAAAAAAAAAA9sbXqBgAAAAAAAAAAAAAAAPNRBAAAAAAAAAAAAAAAAD2hCAAAAAAAAAAAAAAAAHpCEQAAAAAAAAAAAAAAAPSEIgAAAAAAAAAAAAAAAOgJRQAAAAAAAAAAAAAAANATigAAAAAAAAAAAAAAAKAnFAEAAAAAAAAAAAAAAEBPKAIAAAAAAAAAAAAAAICeUAQAAAAAAAAAAAAAAAA9oQgAAAAAAAAAAAAAAAB6QhEAAAAAAAAAAAAAAAD0hCIAAAAAAAAAAAAAAADoiWurbgBsgu/fvw++fv266mYAAGykW7duDba21D+vC9kaAGC15Ov1Il8DAKyWfL1e5GsAgNW6tWH5WhEALEF08v7sz/5s1c0AANhIf/zjHwd/+MMfVt0MGiJbAwCslny9XuRrAIDVkq/Xi3wNALBaf9ywfL055Q4AAAAAAAAAAAAAANBzigAAAAAAAAAAAAAAAKAnFAEAAAAAAAAAAAAAAEBPXFt1A2BT/fQX/9Jg8NO1Qi3Oj9+Hw4vrhsOJ2wbptszvw9LbhtNvG/yU305uXRfbHP5YJruOtPzw4v7p1tw6M/szHE5etzVeV9lt+evK1pWWya3r4v/y29L9Ltf10/lw4rr0e/H/H78PC/9f+uniuvRU5Z/Ni+UzT2O6PS0/HJxf3lZYx3A4/bbcNsfrn1w+rT9/v4vrStowbldm22n1WxfXZQ/L8fpL7le2H2llZbeNtzMo205xv7I7lG9f9vbL52VyH2fuf3b1ab8LbSjd/xn3m38fJ+9XbOus5+Cqdk2sq6TNpcdL4XLZfuQey8Kxlz/W07bPF9zHsvtdfV3+OMtfV35sTK6zbPn0mhsOv+fuV7ad8sdtcv3j6y7Wmdt2ybqGg+9Tn8fBVtl2LpYvWddgvO2L2y7un3sscutKOzR9XeN1ZO83PsDKli+0Jbf+/OXcjg/L7lfcXu5FmL9cdt2s2zLXXXyklH2cZy6XfRBc3D//4p1cPi1X+kEznP+2kvXnbkv7U/LGcXnd5ZWX+z3xYTRe7rzktrTNiftnls+3K62r8Djk9ju/vbN//C8H/8l/+L9kHgw2wY1/5y8Ptq79G6Pfh7nXXMpqk6+T8XJlx/H4uN+aa/nL9U9/TQxn3JbfdqEvUNqustf91tTX3MT9yl6jJa/Hsu2UvicUXoflr+PCe0Nmvfn3wln7eHFTel5Lns/8w5Vf7qfMjenh+mk4eVu67trFdenyj+Uubsvs47Xxun5cdy2zfFpunvtlrxvfL3vbeP0X+7o167atqbdl9zf1Z37KPJjXLu6bHr+fcuvammhX2lZaR1ome91Wul/ucU7XXfTZsve7WOe1bL9s3K6fJtqV1pHatXVxObedTB+3uM3sutJ9S9tVsu20/OXjULadyfudXzz2599/z/2f/f179rrf88udf/9TZvnvuWUGudvS8pf58vz3i9vTbb9nbjv/U+n2Ri6WK29zWmd2O6k9hf9zbb5YvmRfB+eT6xrvR1oms47ztHx2fyYem+xt5xOPzfi+Jbddrivddpk9x9edZ69Lj9es5dN2L2/7Pl4+v+yPZuVvy/6eHsKy29J20rqzD0V2+XTd+Lbzku0U/p923eU2S5afdVvaduHyj99/vG4yu3G5josNlm7n4v/MQzm+Lrv/v6d1lC6fvy1dHi130dq0qtxt6X6D6deVr+t7btnsdfl1XSxXctv3i9su13W5s+Plz6ff7/fBj4PqT+d/Gvz9f/b3Lh8MNjdfl+bfi8tlmXVGvp61/HjdTeTrzGdv3XxdlnEn+r8N5Ovsumrn69zfBArbLsnSs/J1yobZ5VK2yz7MdfN1ysNl+TqfZ+fI5Zl1FfN17n4183VuX2vm6+x2ivk6u866+Tq7nbr5Oi2bb1fazvQMnl/H5PLFfJ3fTr18Pc6GJfk6n5uvztfjbF2Sr1O2biJfZ9tcN1/n9z+fr/N9g5r5OnO/uvk6165Cvs7m5br5OpeNa+br0oxbkkHnydfZXF68rTQbV8zX+SxdL1/ncmxh+Wz+rZuv83m5Xr4uzcvjdV7eVjdf/6vv/2rwD//5P7h88NgIN/7dvzzY2mooX+fyb818nct402+bK1+X5vLB5P1q5uvSvyVXzddlt21dvc7yfZyer7PPT918nc3SxXydMnIT+br0fhXzdfltW1Nvm5WvU7Yuy9f5v0vXy9fZ2+rm62yOLebr3HZq5uv836Xr5euUrcuyajaz1s3X+fxbM1/n8uL0v6XPk6/zbc7n69z9aubr8semWr7Or2tWXq6Xr7P5t26+zuXsQr7O/Z25Zr6edb/S5Wfdlm3XxDKXr5t58nVuOxN5eXL/q+brlIdH1xXasmi+zq8rn6/T5SbydVo2u5x8PZsiAFiVn64Nhj/9hcLoxItO2mVvoEYRwFbFIoCtBYsA0m3zFgH8NEcRwOTA/dlFANNv2yotAki3Zbedv+6nmUUAk52OrYpFANkBxfMVAcw3mP2yH3peqQhgq6UigGJfeP5ig8Jtuf1pvgig7PG6bMOM/S+5X35dzRQBzGrDVe0qDnAvPTYqFgHkH+d6RQBlA+qbKAIoDsAvbfOsIoDSgf6LFgF8v7IIIK1z7iKAknUtWgRwWYBQUgRQuO2q7cxVBFC6fMUigNL7FbaXWz61K3Pb5cGav1x2W+a68gH4xXWVfRBc3D//4p26fCNFAFtX3zZrcG9+YPHgyj+6lt5vvO3JfV10cMO0IgA209bWXxhs/TSjCKDsi5UZX55c3rY13/KzBhttVSwCmDl4ao77lb0OFywCmPU6nlkEsNVAEUBpwB5ePUgp99Dnr5tVBJC+MPmxXP66/BcrF//PGLhf9mXIPPfLbrNs4H7xtuz+TA5EuqoIIP8lS9kgpZ9mDlKa/MKj7IuYywFC+S8r8teVfOExbl/JFxczBymVfbFSct14+emD+ovL5K5bcPniMvlBSvlB9/lBStO/1Mh+GXJ5XUmBQMlgo8kigMnBRuWDlIptKBukNL1wITdwv1iAUDZIqXRd+S9Rsuso/8JnxiCl0i9b8n+Bz38ZUhykNP2Llfz6y24rfBky7yClwm3Z378X1pnd3csvSs6n3nbllxpzfHky67pFiwBKvyiZUQQw/rJhxnbKBillvpuZqwig7IuVyy868pfzt02/Lv9lSP5Lk9y65ioCyKxrgSKAsi9Wxn83yzymbHi+npGlryoCKObrxQcpVczXJfermq9LByItWAQwT74uHaRUNV+XPpaFy3Pm6+wgpa05BilVzdf1snTxftPzctltVfN12W1V83VZXr68f1mWrpavc3m2Zr7O3zZ9UP88+XrW8rlBSjXzdekgpYuMnM/NV+fr8kFK8+XyRfJ1WZur5uu5BynVzNfZddXN13MPUqqZr/ODlOrl65mD+utk6QUGKZUtN28RQN18Pe8gpbr5umyQUtV8XT5IaTJL183X2QFPbI4oAGgqX+dvq5mvZ/29fM5cPrsIYPr9qubrsrxcOV/PvO2yCXXzda4IoGa+zg30L+TrWVm67LrF/8ZdLV+XD/TfuvK23HWlf3surmu+vDxPvi4rAqiar2dm6bLtVMzX+b9/18vX+SKA6X8vrpuvZ91v4Xxduq6yIoCr83W+zfl8XVY8UDVfX1kEsEC+Ls/S+bzdRL6+sghggXxd/rfnyQxaN18v/Hfs86p/47583cyTr8v/xl1yW818nc/L9fL1rCKAXP6tma/LsrR8PVv263QAAAAAAAAAAAAAAKDDFAEAAAAAAAAAAAAAAEBPKAIAAAAAAAAAAAAAAICeUAQAAAAAAAAAAAAAAAA9oQgAAAAAAAAAAAAAAAB6QhEAAAAAAAAAAAAAAAD0hCIAAAAAAAAAAAAAAADoCUUAAAAAAAAAAAAAAADQE4oAAAAAAAAAAAAAAACgJxQBAAAAAAAAAAAAAABATygCAAAAAAAAAAAAAACAnri26gbApvr97P8eXPvDX1x1MwBW6m9+/juj/4cXl4eD88Ff2f1PV9omAAC675f/7m+Of98a/jjHxX/xX//nK2wRwGwf/7+/P/r/fHB+8f9gsPNv/qUVtwqATfQ//PW/Pf59ePGX2YP/6q+ssEXAJvk7/+R/H/9+/iMaD/7jf+s/WF2DgJX7J3//0yD7hfH5cDj4t//9uyttE6zKX/tv/sbE373/6l/9L1fYIliN/+n//Ls/fjm/zI3/2b/3H620TdBVigBgVf7f/2cwUAQAbLi/9Xf/14nrFAEAAHCV//6v/62J6xQBAF128s//wcR1igAAWIX/8W/8zxPXKQIAluV/+6d/b+I6RQCw2f7pPzyZuE4RAJvqv/1rbyauUwTAJvrb/9f/MXGdIgAo96NkDAAAAAAAAAAAAAAA6DxFAAAAAAAAAAAAAAAA0BOKAAAAAAAAAAAAAAAAoCcUAQAAAAAAAAAAAAAAQE8oAgAAAAAAAAAAAAAAgJ5QBAAAAAAAAAAAAAAAAD2hCAAAAAAAAAAAAAAAAHpCEQAAAAAAAAAAAAAAAPSEIgAAAAAAAAAAAAAAAOgJRQAAAAAAAAAAAAAAANAT11bdANhk57//60ItzsXvw/T/cPptud/LbhtOv23w04x1XdxveLFM6Tqyt/1Y/vziumFmf4bDyevSuspvy193XrKutJ3s7ZfLT972/eK6rcy6zs+HE9el39P/33O3DQv/X/p+cV16uPN7erF85mkcP8rpYR6cX95WWMdwOP223DbH659cPq0/f7+L60raMG5XZtvjI+niuuxhOV5/yf3K9iOtrOy2yyO2bDvF/cruUL592dsvn5fJfZy5/9nVp/0utKF0/2fcb/59nLxfsa2znoOr2jWxrpI2lx4vhctl+5F7LAvHXv5YT9vOHBsZv/2LfzZlHyfvN891+eMsf135sTG5zrLl02tuOPyeu1/Zdsoft8n1j6+7WGdu2yXrGg6+T30eB1tl27lYvmRdg/G2L267uH/uscitK+3Q9HWN15G93/gAK1u+0Jbc+vOXczs+LLtfcXu5F2H+ctl1s27LXHfxkVL6cX55ueyD4OL++Rfv5PJpudIPmuH8t5WsP3db2p+SN47L6y6vvNzviQ+j8XLnJbelbU7cP7N8vl1pXYXHIbff+e2d/eN/mXkg2BTfv//rweD3i1w2PsAuD7bh98nXybB4jOZeq+m435pr+WExYJS8JoYzbstvu9AXKG1X2et+a+prbuJ+Za/Rktdj2XZK3xMKr8Py13HhvSGz3vx74ax9vLjpYvl8d6Y0kF2sP9+W3HVl70cT75fZ/U/LTK7r+8V16XDLXvf7xTK/Z+6XrvtT5rprF9ddu7jup+xtF7+n/7e2Zt22NfW20Xov7vvTxQPwU+bBvHZx363Uhty6tibalbaV1pGWyV63le6XaXO67aetiz5b9n4X67yW7ZeN25Xtj+Z9O/t2sexPk9vJ3K+4zew+pvuWtutiHWXLXz4OZduZvN956kt//z33f/b379nrfs8vd/79T5nlv+eWGeRuS8tf5svz3y9uT7f9nrnt/E+l2xu5WK68zWmd2e2k9hT+z7X5YvmSfR2cT65rvB9pmcw6ztPy2f2ZeGyyt51PPDbj+5bcdrmudNtl9hxfd569Lj1es5ZP27287ft4+fyyP5qVvy37e3oIy25L20nrzj4U2eXTdePbzku2U/h/2nWX2yxZftZtaduFyz9+v3ifzbRrvI6LDZZu5+L/zEM5vi67/7+ndZQun78tXR4td9HatKrcbel+U/q//+L7n09Z1/fc/bPXZdf1+8UO/F5y2/eL2y7Xdbmz4+XPp9/v98GPg+pPF+8LbJbSfJ0JRcV8Pc5ic+brWcuPs3UT+Trz2Vs3X5dl3In+bwP5Oruu2vk69zeBwrZLsvTMfF2Sf4t99ibydXZdxXydLs+br1O2LsvX2WxcN1/nMm7NfJ3dTjFfZ9fZRL4u+nb2W2b5nwrtmp6v07L5dm1N3m+OfJ1dvpiv89upl6/H2bAkX+dz89X5epytS/J1ytZN5Otsm+vm6/z+5/N1vm9QM19n7lc3X+faVcjX2bxcN1/nsnHNfF2acUsy6Dz5OpvLi7eVZuOK+Tqfpevl61yOLVm+6J///ueV8nU+L6fMXi1fl+bl8Tovb5OvqeL79381/r12vs7l35r5OnPbRL4uvd+MfF2ayweT9yvLuCV+//N/Ubr+0r8lV83XZbeVDMyom69zz0/NfJ3N0sXrsverm6/T5SbydfltW1Nvm5WvU7Yuy9f5v0vXy9fZ2+bJ19ntFLNqNscW83VuOzP+7v3161nufmXtyv9dul6+Ttm6LKtmM2vdfJ3PvzXzdS4vTv9b+jz5Ot/mfL7O3a9mvi5/bKrl6/y6ZuXlevk6m3/r5utczi7k62wGzfrtX/75wvl6Vi4vXX7Wbdk2Tyxz+bqZJ1/ntlPIy9nb5snX2fxb/Pt1ysOj6wptWTRf59eVz9fpchP5Oi2bXU6+nm14nv12CmjFP/pH/2jwZ3/2Z6tuBgDARvrjH/84+MMf/rDqZtAQ2RoAYLXk6/UiXwMArJZ8vV7kawCA1frjhuXr6ad8AAAAAAAAAAAAAAAAOkURAAAAAAAAAAAAAAAA9IQiAAAAAAAAAAAAAAAA6Inh+fn5+aobAevu+/fvg69fv666GQAAG+nWrVuDrS31z+tCtgYAWC35er3I1wAAqyVfrxf5GgBgtW5tWL5WBAAAAAAAAAAAAAAAAD2xOeUOAAAAAAAAAAAAAADQc4oAAAAAAAAAAAAAAACgJxQBAAAAAAAAAAAAAABATygCAAAAAAAAAAAAAACAnlAEAAAAAAAAAAAAAAAAPaEIAAAAAAAAAAAAAAAAekIRAAAAAAAAAAAAAAAA9IQiAAAAAAAAAAAAAAAA6AlFAAAAAAAAAAAAAAAA0BOKAAAAAAAAAAAAAAAAoCcUAQAAAAAAAAAAAAAAQE8oAgAAAAAAAAAAAAAAgJ5QBAAAAAAAAAAAAAAAAD2hCAAAAAAAAAAAAAAAAHpCEQAAAAAAAAAAAAAAAPSEIgAAAAAAAAAAAAAAAOgJRQAAAAAAAAAAAAAAANATigAAAAAAAAAAAAAAAKAnFAFAC96/fz948ODBYHd3d3Djxo3BcDgcbG9vD/b29gavXr0a/Pbbb6tuIgAAAGtgnfqfXdgXbYD2rdMx3oV96UIbysT2oz0ArF5XPysAAKr68uXLKNc8e/Zs9HsVkYEiC0VGevLkSeNthKvI6Wwa793QjuH5+fl5S+uGjRMfMq9fvx59UF2/fn1w//79wd27d0e/n56ejgLc58+fR8vGbbHs7du3V91sgKWKTuunT58G3759W3VTAAB6a536n13YF22A9q3TMd6FfelCG8rENh8/fjzedvT9o00ALF9XPyuA9RfvL0dHR6PvguI9KAZrxXvPzZs3Bzs7O6PvieJ9x3sOUOd9Jt5Lkng/ifeVGBR6586d0eViXzTejyL7fPz4MZeDwsnJyej9CZZBTmdTee+GlkQRAFDP6enp+e3bt6OgZvTz9OnT82/fvpUue3x8nFv25cuXS28vwCqcnJyc7+zsjN//pr1PAgCwGf3PLuyLNkD71ukY78K+dKEN09q1v78/3pa+P8DqdPWzAlh/R0dH59evX5/IhNN+7t+/P3ofAlhUvHfM+15z1U+8d8EyyOlsOu/d0A5FANDAoNbsHzPm/ZCJP2qk+xwcHLTeToBVMRAAAKAZ69T/7MK+aAO0b52O8S7sSxfakO3rx/bjC+tswb++P8BqdemzAtgsxfeReD8q5scYwJgd0Jh+4jskuRFY9kDSyEwKkVgWOR28d0NbhvFPW7MMwLqLqQt//vnn0f8hpmA6ODiY+/7b29ujaWvCy5cvB0+fPm2trQDLMms6rqxv375NTOUFAMD69z+7sC/aAO1bp2O8C/vShTbcuHFjvP2i/f390f/v3r3LXa/vD7A8XfisADZPvOfcu3dv9F3Q/fv3R+89t2/fnnmfZ8+eDV69epW7Lu5zfHx85X0BQnwHvbe3V/n+0Yf95Zdf9FdZCjkdfvDeDe1QBAA1xAdTfECFnZ2dwcnJSa0Pt9PTU3/YAHrJQAAAgHatU/+zC/uiDdC+dTrGu7AvXWjDcDgc/R99+bjvnTt3RuuMwV5xXQzkigFdWfr+AMvThc8KYPPs7u6OCgBiMGMMapzXmzdvBk+ePMldF7nx119/lR+B1gaSRv81BlFHVoJlkdPhB+/d0I6tltYLG/HBlEJaeP78eaUPqewH1IMHDxprH8AypQKA+MNsvK/FH3uPjo5GX/bH/3fv3l11EwEAemud+p9d2BdtgPat0zHehX3pQhtCnE8ofqKvH19YxyCvKPw3SAtg9bryWQFsligAzc4AsIj4Hql4JuP4rimKCgDmFe8jMYtI/J8K1JNUwB791niPir5sLGsQKcskp8Mk793QLEUAUFH2rFbxAZTOdL2oR48ejX+PP5LED0DfGAgAANCedep/dmFftAHat07HeBf2pQttAKDbfFYAy/bly5fRTFAxSCsGZlURZ3Qtnsk4rRdgHrdu3RqfITrei+K76uz31nHG9DhhXRQe+d6aVZDTYZL3bmiWIgCooBio4oOpqmLAW/QsCQAAAKyvdep/dmFftAHat07HeBf2pQttAKDbfFYAqxCDtoqDG6sou/+LFy/GM1ADQF/J6QAsgyIAqKAYpu7evVt5XcWzG7x586byugAAAFgv69T/7MK+aAO0b52O8S7sSxfaAEC3+awAViG9P8QZWusou38UABweHtZaLwCsmpwOwDIoAoAKin902NnZqbW+Ylh79+5drfUBAACwHtap/9mFfdEGaN86HeNd2JcutAGAbvNZASzb+/fvx2c0zp7huKqy962jo6Pa6wWAVZLTAVgGRQCwoC9fvkxMP1gMWosqBr3j4+Na6wMAAKD/1qn/2YV90QZo3zod413Yly60AYBu81kBrEJ6X4higN3d3cFwOKx1RuIoJphWaAAAfSSnA7AsigBgQWV/cKgb1G7evHnlNgAAANgs69T/7MK+aAO0b52O8S7sSxfaAEC3+awAVjWwsejJkyel189je3u7gVYBQHfI6QAsiyIAWFAblZTXr1/PXa76BxIAAADWxzr1P7uwL9oA7VunY7wL+9KFNgDQbT4rgFUontm47mDE4qDGxPsPAH0lpwOwLIoAYEHFEFUMWVXcunVr4rrPnz/XXi8AAAD9tU79zy7sizZA+9bpGO/CvnShDQB0m88KYBWmvddMG8wPAJtGTgdgWRQBQM2g1sQfM8rCnopNAACAzbZO/c8u7Is2QPvW6Rjvwr50oQ0AdJvPCmAVnjx5Uvrecf/+/UrrOzs7K71eUQEAfSWnA7AsigCgoekNmyaoAQAAbLZ16n92YV+0Adq3Tsd4F/alC20AoNt8VgCrEIP9j46OBrdv3x5f/vDhQ+WzHJ+enpZe38RZk4HNy0avXr0a7O3tDba3twfD4XBw48aNwe7u7uDBgweD9+/fr7qJbAg5HebnvRvqUQQANUNaE398KKv4/Pr1a+31AgAA0E/r1P/swr5oA7RvnY7xLuxLF9oAQLf5rABWaX9/fzR4//z8fHB8fDzY2dmpvK7Pnz9PXFd1VgFgM8VA6BgoGoNGnz17NspEMWtJFCy9fPlycOfOncG7d+9GA0xjmTdv3qy6yawxOR3m470bmnGtofXARpg2FWEbVGsCAABsrnXqf3ZhX7QB2rdOx3gX9qULbQCg23xWAOui7OyuMdgLYB4xQDQGkcbg0Rg4GkVKZWKAaSwXhUdpkGn8mHWEpsnpcDXv3dAcMwFAB6drAgAAYLOtU/+zC/uiDdC+dTrGu7AvXWgDAN3mswJYB9PO6Pr06dOltwXon9evX48Ghx4cHAy+ffs2dRBpuH379uDk5GQ8c0kUIN27d0+monGOKZjNezc0SxEAdLRa04cVAADA5lqn/mcX9kUboH3rdIx3YV+60AYAus1nBbAOXr58OXGdAgBgkbOgxyDSGFA6rziDdBJnlo7BpNAkOR1m894NzVIEAB1gihoAAACWYZ36n13YF22A9q3TMd6FfelCGwDoNp8VwLLEAK4YBFY822tZYQBAmfv37y80iLTsfSbei549e9ZC66BZcjrrwns3NEsRAAAAAAAAAAAAS/P48eOZZ3kFuGoA6fHxcaX7xxmos169ejVRlARAs7x3QzsUAUAHmJ4JAACAZVin/mcX9kUboH3rdIx3YV+60AYAus1nBbAMb968GZ3BtVgAsLOzs7I2Af1SHAy66BnVi+83zihN18nprAPv3dA8RQCwgJs3b666CQAAAGyAdep/dmFftAHat07HeBf2pQttAKDbfFYAfR7E+OTJk9x1L1++HOzv76+sTcDmuXPnTu7yu3fvDLKmEXI6tMd7N0xSBAAAAAAAAAAAQOsePHgwUQDw9OnTlbUH2Ey7u7sT1x0eHq6kLQDMx3s3TFIEADW1VU0WU9gAAADAOvY/u7Av2gDtW6djvAv70oU2ANBtPiuArnv27Nng/fv348sKAKB9nz9/Hmxvbw+Gw2Hnfm7cuDExM8gqz9Z+fHy8kraw/uR0aIb3bpikCAA6EJ7Ozs4mrrt9+3Yr2wIAAKD71qn/2YV90QZo3zod413Yly60AYBu81kB9M2bN28Gr169Gl9WAADL8enTp8GXL18GXR0YHe8NXclS2SIlqEpOh/Z474ZJ10quA6ZYZni6devW0rYFAABAt6xT/7ML+6IN0L51Osa7sC9daAMA3eazAujbmcizZ/t+/fr14ODgYKVtgk3x8OHDwenp6WjAfdkg4lWf0Xlvb29l217W2drZLHI6tMd7N0xSBAAVKsqyHx5NdJLKPoxM2QQAALDZ1qn/2YV90QZo3zod413Yly60AYBu81kB9EGcgfzevXvjy0dHR4P9/f2Vtgk2SXyOx8wbzP+e5ezq1CWnw3J572aTba26AdD3irImqsm+fv06cd2dO3dqrxcAAID+Wqf+Zxf2RRugfet0jHdhX7rQBgC6zWcF0HXxvrS7uzt+fzo+PlYAAFT26tWrwY0bNwbD4XDw4MGDWtln2uBpZ5SmCXI6XPLeDe1SBAAL2tnZaXydZR9EqtMAAAA22zr1P7uwL9oA7VunY7wL+9KFNgDQbT4rgL4UAMSArZOTk8H9+/dX3Sygp969ezd49uzZOKvE5RhMWtW0AaNyD02Q0+EH793QPkUAsKC7d+82Xk1WnPYpPphM2QQAALDZ1qn/2YV90QZo3zod413Yly60AYBu81kBdNm9e/cGX758GRcAtDEgEtgcb9++nbju/fv3jW9H7qEJcjr84L0b2qcIABZUdnaC+ONFHcX7q04DAABgnfqfXdgXbYD2rdMx3oV96UIbAOg2nxVAV+3t7Q0+f/48eg/59ddfvZcAtdUdQD1PZjKIlKbI6fCD925onyIAWFDZGQo+ffrU6AdUnWlvAAAAWA/r1P/swr5oA7RvnY7xLuxLF9oAQLf5rAC6KN434gyvMTgxZgBYdGDWu3fvBsPhsPZgSWC9lA14Pjg4aOys6uHhw4eV1wdZcjr84L0b2qcIACrY39/PXT49Pa1V8VasevPhBAAAwLr1P7uwL9oA7VunY7wL+9KFNgDQbT4rgC558uTJaBB/DH6sUgAQPn78OPrfGY6BrO3t7dH/8f4SP0+fPh28fv268vriPapsFhNoipwO3rthGRQBQAXPnz/PXY4zGVRVvG+EQNPUAAAAsG79zy7sizZA+9bpGO/CvnShDQB0m88KoCtevXo1ePPmzWiA14cPHyq/f3z+/FkBADDh/v3742KjGAT68uXLWusr5p54zyoO2oY65HTw3g3LoAgAKkjVadk/RFR1fHycuxwfegAAANDF/mecbSjO6Bc/xTMP9WFftAHa17Vj3PtW/TYA0G0+K4AuiMH/z549qzUDQPLp06fc+xpAiPeFKBCqcwbp5MuXL6OfrLoDU6FITgfv3bAMigCgoYrN+MNGFdn7xQdfqoADAACALvU/40uKn3/+efDgwYPRT/y+6BcXXdgXbYD2deUY977VXBuqOjs7a30bAPT7swLovzgjawxGjPeMKACoIwZ2RfGumQCAMjHYM/r1UehfRxQtZcV7zsHBQc3WwSQ5Hbx3Q9sUAUBFMZVMtmKzSmVZTImYdXR01EjbAPrAQAAAgH71P+/du5c7i3b8Htf1bV+0AdrXlWPc+1ZzbZjH169fG18nAOv1WQGsnxjQtbe3N3ofKp6luIr0/nX37t0GWgesa+aJQv+qZ1UvG4jaxPsXlJHTwXs3tE0RANQQwSpNZRhnJSgGr1niS8dshVoEPWc0ANaVgQAAAP3uf6Yz8ZWtuzj9atf3RRtgOVZ9jHvfar4NVyn7Eq/OVPcArN9nBbBe4r0mFdnG+0gUA1T52d3dHWxvbw+Gw+H4TMfeg4Bp0gDoeO9YtM9ZdnKAWJ/3HNokp4P3bmjVOVDLycnJebyU0s/R0dGV9/n27dv5zs7O+D4vX75cSlsBVuX+/fu598p53y8BAOhG/zPWU8xz6Sdu69O+aAMsj/etzXjPiHYdHByUPtbXr18/f/369fnp6Wnj2wWgP58VwPqJ947IetMyd90fgFmOj48Xzi6Rk4rvW7EeWAY5Hbx3Q1v0nqAB8YFz+/btuT6oFlkWoO8MBAAAWJ/+5/7+/kSmi+v63JfWBmif9631ec94+vTpqC+ffqoO6MquI9oIQLO68HkFrLcYlJh972j6J9YNsMjA0Pg/ckxZ0X8sV/z7QLzP+I6aZZPTwXs3tGEY/7Q71wBsjpiCKaYojGloYiqnhw8fjqaxCaenp4P379+Pp7TZ3983TROwdu9/SbwPVpGmwQsfPnwY7OzsNNI+AIB1s6r+55MnTwaHh4ej3w8ODkbrXYe+tDZA+7xv9f89I7YZU9Zn++5Vpb8bnJyc6PsDtKQLn1fAenrw4MHg3bt3ra3//v37g+Pj49bWD6yX1FdNIvfcvHlz9PuXL19yy8ZtkXni7wOwKnI6eO+GJikCgBbEHz3evn07+lCKnxTcIpTFHy0ePXrkyy1grRgIAACwGuvU/+zCvmgDtG+djvEu7EsX2gBAt/msAJq2t7c3GqDYlqdPnzZSvAtsjsg3cQKAo6OjUd45OzsbXRd5J3KPzEMXyelsOu/d0AxFAAAAAAAAAAAAAAAA0BNbq24AAAAAAAAAAAAAAAAwH0UAAAAAAAAAAAAAAADQE4oAAAAAAAAAAAAAAACgJxQBAAAAAAAAAAAAAABATygCAAAAAAAAAAAAAACAnlAEAAAAAAAAAAAAAAAAPaEIAAAAAAAAAAAAAAAAekIRAAAAAAAAAAAAAAAA9IQiAAAAAAAAAAAAAAAA6AlFAAAAAAAAAAAAAAAA0BOKAAAAAAAAAAAAAAAAoCcUAQAAAAAAAAAAAAAAQE8oAgAAAAAAAAAAAAAAgJ5QBAAAAAAAAAAAAAAAAD2hCAAAAAAAAAAAAAAAAHpCEQAAAAAAAAAAAAAAAPSEIgAAAAAAAAAAAAAAAOgJRQAAAAAAAAAAAAAAANATigAAAAAAAAAAAAAAAKAnFAEAAAAAAAAAAAAAAEBPKAIAAAAAAAAAAAAAAICeUAQAAAAAAAAAAAAAAAA9oQgAAAAAAAAAAAAAAAB6QhEAAAAAAAAAAAAAAAD0hCIAAAAAAAAAAAAAAADoCUUAAAAAAAAAAAAAAADQE4oAAAAAAAAAAAAAAACgJxQBAAAAAAAAAAAAAABATygCAIAN8uXLl8Hu7u7g1atXq24Ka+rz58+D7e3twfv371fdFAAAAAAAAAAAgLWkCAAANmhwdhQA/Pbbb4ODg4NVN4c1tbOzM7h9+/Zgb29v8ObNm1U3BwAAAAAAAAAAYO0Mz8/Pz1fdCABgOQUA169fH/z666+j/6FNcbzFcffy5cvB06dPV90cAAAAAAAAAACAtaEIAAA2pAAgnJycjM7UDkUxQ8Th4eHg6Oho8OnTp9HlEAUjcWb/+Ll79+7g/v37cx1Dcf847r58+TJ4/fq12ScAAAAAAAAAAAAaoggAoMMDt2PwbPx8/fp1NKD27OxsdDn9HmfYNrCWWeJ4iYHYccwcHx+PBnBD0bt37waPHz8eD/yfx/7+/uCXX36ZOauE4w8AAAAAAAAAAKB5igAAOioGzkYhwCzOrs1Vtre3RwOx4ziJ4wWK3r9/P9jb2xsN6n/+/PnoLP8xaD+Om7dv3w5evXpV6z0oCgwePHgwKhaImShiRgEAAAAAAAAAAACq26pxXwBaFGfMjkG5MSB31pm2YZonT56MBnLHoOsmCwBi0HisOwpVbty4MRgOh6P/o+AgBnu/efNmtF36IZ6zGMh/dHQ0er8J8Z4Tv8dsI9++fRs8ffq09L7zDOiP97H4icKC2BYAAAAAAAAAAAD1mAkAoCeePXs2cUZuMwFw1dndw/Hx8aiopK44o/vjx49Hg7nnEduM47aJbdOOdJb+GOh/VbFRPO/xfB4eHo5+j8KAKBKYRyz/888/L3w/AAAAAAAAAAAAJpkJAKAnDJplEXGm/hBnYG9iEH4UFMRg8RjEHYUnJycng6gjTD+np6ejYzR7ZvhUiJDuR/ekGRvmmW0klonCoygYiOd8kfekuG9aPoqZPn/+XKPVAAAAAAAAAAAAm00RAECPZAdYwzQxyDoN7q5bPBKD93d3d0cD+qOYIAb7x0DwnZ2diWMzzvAet8f/xbPNxzpSm+iOeL7CMgblR/FIKjaIGSUAAAAAAAAAAACoRhEAQI/Mc7ZuNlsMtH/27Nl4FoC6hSP37t0bDRCPAdzHx8dzrS8KD6JQoNiuKAQwI0A3vX37dinbSUUpcUxFcQgAAAAAAAAAAACLUwQAAGskFQA0MQtArCsGa8cMAMVB/VeJooHijABpVoG+iXYv40z5q7C9vT2ePWIZBRpmAwAAAAAAAAAAAKhPEQAArIkYxJ3Orh4D9+vMAhBn7o+B4bGOmAGgiihCKLYhrbdPYjaEKF54//79YN3s7OyMf3/x4sVSthmFAOl4ffPmzVK2CQAAAAAAAAAAsE4UAQDAmsgO4n7y5EmtdaVZBLIzC1RRdv9o5zLOOt+UKFwI6zgbQBSLJFGckfa1Tdljs+5sFQAAAAAAAAAAAJtIEQAArInsWdX39/cbWVc6a3tVZfePAoDDw8NBX/SpYKFuIUDd4pF5xOwQaQaCKDpYxxkWAAAAAAAAAAAA2qQIAADWQAzaT4PV6w7cT4OyY3B4E2e/TwO+s46Ojmqvl2ZkB/7Hc58tJlnGNs0GAAAAAAAAAAAAsBhFAACwBl6/fj3+fW9vr9a6jo+PxwPCd3d3B8PhsNbA8OyZ5hNnf++OmDXi+vXruQH6cYb+NmWPiTgW1n22BQAAAAAAAAAAgCYpAgCAnosB1Nkz9pcNul9E2QDwOgPDt7e3a7WH9hVnj6hbSHKV27dvj36Sw8PDVrcHANCEKF6MnHTjxo3RT/z+7t27K+8XBbXpflFgG/n4wYMHCmMBANho8jUAADRDtgbYXIoAAKDnsgOod3Z2cmd1r2LaWdmrdvRu3rxZen3bZ5tnfs+fP594bqLwo03ZYpWjo6NWtwUAUFd8YZIKJV++fDkqoox8HF+ITCugjNvjS5PIVZHRI3PFDF6Rg9L64v5mRQIAYNPI1wAA0AzZGmCzXVt1AwCgjjgDfnRQTk9PB2dnZ4O7d+8Onj59Otgkx8fHjc0CEKYVEUwbzE//xXMefwyISv8kft/d3Z2YJaAp8YeDtL1Pnz61sg0AgCZEgWR84RG5KL4IyXr16tWoPxJflmRvi8uRdeI+8cVLMWOnL1HiC5Xo05ycnNQu5gUAgD6QrwEAoBmyNQBmAgBgJAJ8BPkY9Jud6isC/rNnz0bhvi2x7thGdtvxf1yO68vOGB+dlbg9fqLDEgUAIa1nk2SncYsiiLrKzgAfnbqqBQbpuSlSVNAt0cEvOxbamrEhZq1I4gwCZoYAALoqMtHt27cnvkTJnkUpvjRJeSb6VXE5inXjPmVfkOzv74+Ll9MXNQAAsAnkawAAaIZsDYAiAIANFgNvo1MQg+4juMdg/BjoHYOBj46OxoPBo0I4BtZHUUAMvm9KbC86H7Hu2Ea0J1UbP3z4cHQ5rk/FCKljEu2Ky9GZiarjmAUg2psGlcd6swPj11mxOCM7sLqqOAbi8YzHN13+8OFD5erueH7KqBbvjnhtvXjxovS2tjr1cXxlj4Em31sAAJrMSZFTotj4qqLW+NIknSEp+ilXFdFmi29jG/IQAADrTr4GAIBmyNYAhGseBoDNFNW9KbinyuCyoB8VvjEYPzoOcZ8YfJ8GidcZxJ3dfoj1RUXxtOWiUxHFADHIPQa+R2Vysb3ZjsemnFW82NlKA/friuei7PmoomwWiaqzCtCs9EeB9BzF81I8puK2NB1g0+7cuTPeXrym29gGAEAd6QxKUaR8lShgTrlmnuLcyO7xk/ouUQwtJwMAsM7kawAAaIZsDUAwEwDABopB9WkAfgz0jjO1zwrsMdg/OhDRIQgxaPfnn3+uPNC+WAAQ65024DwGBWenLosBydMKFrLrbGoAe9dlz7LfxCwAbSirCs9OP8fyxWs3noP4iddUvM7iWIrXYpraL6vs7AFNyBatlBWLAACsWpwZKfoWZQXQZf2hyFKLfBmSzUORm6MAGwAA1pV8DQAAzZCtAQiKAAA2TEzxFYPw06DxOAP/vKJDkAoBIuDv7u4uPHA3ls8O1o/Bx1d1NGKZ7AD3GJBc1sGITksMZD4/P2/sjPhd9+nTp/HvXdzndKwVlQ00Z3l/DIhZNaKjHn8QiOn+orAmHT/Pnz+fuE+83tLZAZoU7di02TsAgP6IfJKKJ8t8/PgxdznyVJwRaRHFDG9aZQAA1pV8DQAAzZCtAUgUAQBskBjEGwOAkw8fPiy8jhiwnwZwx8DgKCpYpOL38ePHlc4wni0ciO0V19PlgfBtyg6c7uK+l3UkFQCsTrze4jUborDm119/nZhBIgoDovCm6O3bt423p3jMKgQAALokfakxbTrlYkF0ts9SVfHLGQAAWBfyNQAANEO2BiBRBACwISLkZwfcx0DssmnB5pE9U3gM2p02IL+sI5LtbMT25x24XpwtIIoZNn3AcBRDZAswsmdV74J4rovPUZUKc5oRr/90Nv94HmIGgGnvAWXFOWXPZ12KAACALotZ0CKvTMtMxTMfxdTLizo7O6uUh6I/FGd5ij7AcDgc3LhxY3Q5ZuIyLTMAAF0kXwMAQDNkawASRQAAGyKd/btsIP+iimcKjxA/z9RfR0dHucuLnLm+bNnsrAabqNjJunnz5qBLyopDiscAyxEd6lQAkP4ocNXrrThDQBtT/CkCAAC6LLLJtC9HimdSWqTAubiNrKu+BIk8Fl+aRP8u8lrkum/fvo0KPONynNEpbo/8BwAAXSJfAwBAM2RrABJFAAAboHjW/DirftVZAKYVFZSdObzo06dPucuLdjSKg5I3fbqxYuV1lY5bW6LjVuxcRgFA2cBy2hWd7ez0fq9fv57rWCkrFDo9PW20bcX3oabXDwBQR3w5MW0Wq2Jx5J07dypto+wLmVkZO86YlHJTtC2d7SnNuBVfqsTvkf+amOIZAACaIl8DAEAzZGsAEkUAABvgxYsXuctNDMSOQoJiB+Cqs4Q3fZbvTT9reFenSot2FTtt0amrMsUc9WULdqJTnZ3FY5HX+DJec109pgEAioozK6UvOBZRlq2mze6VLeyM4tppRZ3xpUpqW3zx4qxKAAD0gXwNAADNkK0BNosiAIA1F+G8WKFbJeSXKYb3CPSsTt3ZHZpSnCUiCgCePn26svZssuhsZwfWTzsbQJmyaQHbLgIozm4BANBVxQLosgLKqxT7aWF7e3tmxo6C7qu2lS38LOZBAADoIvkaAACaIVsDbBZFAABrruzs/NMqdBdVHCB81UwAVacZm3f7m6aLA6afPXuWOw4UAKxODNjPVs/H62XR2RiKs4a00QnvSvEKAECdL0CqzLZWPCPTtD7Oq1evxjls3mmSs8tFRgcAgK6SrwEAoBmyNcDmUQQAsObmDedNDN6NQcezzhRe3G5ZB2SW4rrv3r072GTFAdlNFXdUFQPOo5O3ygKAOEaiAn04HDb2k+2ANrXOGzduzN0Jrqp41v8q2yseU20P2FfpDwBsypmUwqdPnyauK1vX69evF95W9osd0yoDANBl8jUAADRDtgbYPIoAANZc2aD8pgbylg06n1UEUByEPGvZeQYIL3pWc9oTBR3Z5zc6e6uYASDasehxtQpxLF81c0bd9Rc7zGlavUUU3yvaKDRZdfEKAEDdQuu9vb1Kea1YFB1F08X8Vcy3ixR0Z5d99+7dwm0EAIBlkK8BAKAZsjXA5rm26gYA0K5lD4iedSbvqOiNMJ9tUwyEnqciuDhgOgoAmprRYF2cnZ21fqb2MvF83rt3b3z56OhoZQUasd3YfpPHfZqCLo7TKp3kMvE8Va26n8fh4WHucmyriWOjjeMrjts21w8A0LRi36TKdMplBaFlGTq73KJZKdv3ii9/FFEDANBF8jUAADRDtgbYPIoAANbcrEH5bcgO6C0TA7R3d3dzZ4yfZzD0y5cvZ15uQnQyYpB3dDCaWH9ULMf+xXrjJzo+d+7cGTx48GDw8OHD2gOeuzBgOo6veD7TcRYdtDYHt8+j6Q5iKgKIY2MVsxusqsK/7P3j7t27gzaZFQAA6LriGZBClfz79u3biesePXo0cd3Hjx8rZ6Vsf6HNWagAAKAq+RoAAJohWwNspq1VNwCAzRKVxtmB1DFQvqwzkhXLZIN/DHBuehaAN2/eDLa3t8cD9uuItt64cWM02D/2N9r77du3wcnJyejykydPRrfHNusodqSWXfCRLQCITlrs36oLACjvKFd9XopFPVXOFHCV7HHbhcIWAIC2z6Q0bT1l68r2lRbtA2X7C8ueIQ4AAOYhXwMAQDNka4DNpAgAYM2Vhe2mBouXnfV/nnBfPCv5vXv3plb3xkD5GEyfNHWm+ehIRHFBDMgfDoej/5sQ7U37d3p6OppRIB6TGNwc/8flKAiI32ObTW13FeJ5SzMcpAIHVi9e38XXeNXnpligEzNZAABssuKMS1X6JtH3Kea1aTOR1fkCpFhgueyiYQAAuIp8DQAAzZCtATaTIgCANVd2Zu2ywftVlAXxeab5ioHvBwcHo05IDE6O9cTA+Tir/LNnz0YD6eP/ODN/GiQfHZQYVF+3ACDWGYP+4/8oLjg8PBzNTNDEzALRIUrtPTo6mrrOeE5SByz2teqMAMX1N/W8ziOerxggHm349ddfG5+ZgeqKne06z012XamYpUnF95Bbt241un4AgKZ9+vRpZoHzPF6/fp27HDlrnn5O3Sy2zP4CAADMQ74GAIBmyNYAm0kRAMCaKwvkbc4EcNUZx2OgfAwsjkH+0bY4g3z8RFFAtOvVq1ejgfQxMD46CjFAP26PQfNNDDSP7UbHJdYXZ+SPn6hcbmJwc5qxIB6DqzpCsS+xzyH2t8pzUnw8ljVNWuxnPI+x/XhuFn3sYgaGKMQwrVs7iq/LpmYBaGPWimJbFZMAAF0W+aiY2xedKSnuH3k4KwqIl8HZlAAA6BL5GgAAmiFbA2yua6tuAADtiureGFhfrACuOjA4qziIe54K4FQ5nB3sG20pVhS3JQ28b1o8xqljMu9g6VTskC1OWERx8H3MlNC2aHN0/OI5+/DhQ6XiiY8fP47+N+B7OeaZnaNMFHpk7e/vD7o8awEAwLLPpBRZeNE8HLk/K4qep/XNmv7iw9mUAADoEvkaAACaIVsDbC4zAQCsubKB+XH29iYG7xaDfToT/lUVyE2cdb9rsgP45ymGCNkOUyoGWFR20HTb1dFR6BDtrFMAkI4Bg72XN+i/6vP09u3b8e/xnLfxnBWP2SaKkwAA2hKziRWzzCIZPPpQ2dwf+SpmJVvWFx/OpgQAQJfI1wAA0AzZGmBzKQIA2ABRoTvrDN9VB3IXBxrPc5b96Aws2uHoungssmc0X2SwdHbZ4tRqi96/eFb1JkWHLyq/Y5B2FJHUKeRoaiYKyjUxWD+OpexrfFYHv+52EoUhAEDXlfWjDg8P575/dsawyNNXFWevU58JAACK5GsAAGiGbA2wuRQBAGyA58+fzxzgW/fM92XbuOos5Yt0OPrUoVp0cHx24HOxOnse2cH0xSnemty/6PTFDAd1Z5FIM0gY8N2eOAbrFodkX99xjM07u8WiPn78OP7dMQEAdFnZTGiRu4r9omkiT6d+Q/oS5aq+Q9MzqK3jjGwAAPSTfA0AAM2QrQE2myIAgA0Qgbl4Ju95A3+Z6EBkB77H4N3ibAPTpIG+cVb5dakOzg5kTkUOVTozVWZo2NvbG//exgwLUSwS29jf369UpFCUjsO7d+820DqmiecrqVLwk53q75dffhm0Jds2s0MAAF1WzOqR4yMnRZ65akavV69ejfNV9Ic+fPiwkgLIRfsqAADQFvkaAACaIVsDbLZrq24AANUtMuA7BunHYPUU8iPIR0VvlYG3jx8/zl1eZHB4bC86IdH23d3d0aDwOMt4nyt7swOZF+0QZTszVc7YXjxDe8wG0NRZ26M99+7dG/0ez1e24GARZ2dno/tn989Z39sVM3NEhz1b+T/vayxboBPvG20Ozs8eE1WPLwCAZSj2eR4+fDgqvIyfBw8ejM6OVMxNkanitvQlTCwbX77Mm8uKX3zULfjtc58LAID1Il8DAEAzZGuAzaYIAKBHioPEv379utD9j46ORgPv06D1GOD966+/LhSoY2Bxtlo41rnIgO7i4OToWFwl2hediPg/thVnkY9OSlOD3euqMng/KT72iwzWTuKxSM9p/N/E45KKNFJnrcosBbM463u74hiKAfzptRYD++eZ/SOOn3SfeI6KM4g0qThDQVdezwAAZYp5OBUwRn8ofo/sHF+UpOvji5XDw8NRno4+TOSq7GxNy/jio/jFi7MpAQDQFfI1AAA0Q7YG2Gxbq24AAPMF4OzZuacNyJ9HBPo02DbWF4UA81blxvaiHdmK4iqdgUUHFqezyKfpyqIN0UG5ceNG6eOySnU7O3HW/EVlB0/HbA9NFwA0zSwAyxGvs1RsETN/XFXIkd4PslP9tSnbHgUAAECXpZmVsrL5JfpF8YVK6rfFjGsxQ1eccSluOz09XbjfVNa/WLSvUFze2ZQAAOgC+RoAAJohWwOgCACgo9Ig9+FwOPo/nZ27KM6kH8uk5WKw71UizMdZwkMMrP/5559n3i+WifakAoAYIJwtJlhUbDttv47oqMTjMu9+90GVgfepYjssWhRS5vHjx7VmN7iKIoDliYH8qRAgjpNpx0e8xlPhRywfr++2O9rZaQnnmREEAGBVisWUkWeLWSm+KIl88+3bt8H5+fkoT8VMTHWLHe/cuVO5r5DN9DI4AABdIV8DAEAzZGsArq26AQBMr3yNoLzIQNxYft5wHWcJjyrfGNgfA4Pj9/iJDkCE7Fu3bo2qfqPTkAJ4Oov/wcFB5f2KdcU60qD92FZZRyTtT/Z+swamR9tj+SaKCxbR9Nnyq84EEI9faksM6E4Dv6toe2aFOm1jMXFcRCc+XudRMBOD7ePxj2Nme3t79FxHhz/9cSBeP4vO1FGVmQAAgL7IFi8uO7tEIWfKTYv2FbK5XgYHAKAr5GsAAGiGbA2AIgCAjoqBu22Lwfdp6q/Dw8PR7zGAPIJ6XJcG58fA4EePHtUO3zHwPwbrh1hXbG/Rqt4oBIg2RmemePb/GOicihiWpcqg/TYG4EdhRpot4u3bt7Weq2JHkf6Lgf3Pnz8fvWbSaye9xuMnFfcsa5q9bAFAHKuq+wGAPp1NKTsTV9uyX9rUOZvSMtsMAACzyNcAANAM2RqArVU3AIDVi4G/MQA4BgfH2f/TNGDxexQjxADhugUAMUA/FQBEZyDWW2Xgb9wnBvrH9GTRxvg9K850vkxtnzV/XumxDTGzAxSlgp7sVH/xGo/Lcf2yCgBCFAAlUZwAANBV8WVEMfMv82xKxYLJKIieR7HNDx8+bLxtAACwKPkaAACaIVsDEBQBANC6CPvpLPUx0LjJM83HYOIoYMhuK1s13LamB05XXV90rlKhRpotAboqzeIRx3uxkAcAoMtnUkqzpa2q4LfYnmmyy0XeWnabAQCgjHwNAADNkK0BCIoAAGjd48ePWz3rd8wKkNXnM+HfvHmz8n2zj23xMaG61OnU+WxG9vVpFgAAoOuKBczLPJNSkp21ad6c//bt2/HvMbMbAAB0gXwNAADNkK0BCIoAAGhVTOWVPSt9W2f9TmfBD6enp4NVDdovTl22qDoDzbNV0ulM69QX08/F47qKTvM6evHixfj37CweAABdVDx70d7e3kra8eHDh/GsX1dl/WhzKryML1GyUzIDAMAqydcAANAM2RqAoAgAgFadnZ01dqb7We7cuTN1m22qe3b4YtFA3cfnl19+Gf+uEKAZUbH+7ds3HdAGREFQKgqKAgCzKwAAXRZfWhTz+qoKQ6PoOZ0VKaZYzhZaF9v84MGDcd6KMzEBAEAXyNcAANAM2RqARBEAAK0qDmqPYN+G7Hrv3r07WKbsQOZFCxCKy9cdFB2zAaTB6s+ePau1LmhaOibjODe1HwDQtzMpRc5eZRFjfCkSUzxHG3Z3d3NfqER/6NWrV4Pt7e3Rlz9RyDrv9MsAALAM8jUAADRDtgYgUQQAQKsi5Eflb/L27dvGtxEdhWwnZ9kVztlZCIrV1osULzR1pvmjo6NxW6IzBV0Qnfz0Oo0ZK8wCAAB0PbsUi2qjgLetouZ5RV8nZqmKL0miLffu3RsMh8PRFyvR14pCy7g9zqQEAABdIV8DAEAzZGsAsobn5+fnuWsAoGEx8Hdvb298+fT0tLEB7yGmDHv37t24YxEVxouKjkeqRI6z6aeB9POIgfbZM5xHx2VeUe2cOmOLbneWqKx+8+bNwu2BtqTXWNXXKABA26LP8unTp7kLe9PsRr60AACASfI1AAA0Q7YGYBozAQDQuhj0G9N/ZQcDN1WFHIPvUwFAFBY0NYh+EdmZB+rMBJAtlKgrqqvj8Yj2REEArFIUpKQiG1P7AQBdlb5EiS9I4ifydJpGOf1kLZr9AQBgk8jXAADQDNkagGnMBADA0mTPmJ8GA1etPI7B8zG4PWYZCDs7O6MCgKozDNSZCaB4Rv+Tk5NRe64SHa8bN26ML8cZ+4udszpif2K/Qpx5PVusAMsSr4t4fdR9zQMAAAAAAAAAAPCDmQAAWJqYDSA7QD4G8cfg4DhL+LyVyDHo/8GDB6P7pQKAtN6qBQBNyJ5tP7XrKtnlovCgyQKAEI9zOut6PGaqvVmFOPZCDP5XAAAAAAAAAAAAAFCfmQAAWIkYAP/y5cvcQPgYxB9nq48B/mlAfAxc//r16+is9mmKs7RsDLyPQcVNDJ7Pnsm/ykwAIc7qH+2Ltp2ens41OPrdu3ej32P5tooYYvaFmIUhigKiWAKWJV6jUeQTr+uYjQIAAAAAAAAAAID6FAEAsHIxEP7jx4+jgf4xEP/s7Gw82D8G+N+8eXP0/507dwa7u7ujAcVNDpiPbcUA/mTeQfxF0f5oX4gz8M8663kUP+zt7Y1+j2KImM1gGYOxqxY4wKKi8CQKUBSfAAAAAAAAAAAANEsRAAAbJQbfR6FBKjKIwf7puqwYuBzFBrdu3RpdTkUIcf08A59DDHwuWz62FcUC0YYoFIiCgWVIhQBRcBCFB9BmYU/MdKEAAAAAAAAAAAAAoHmKAADYKGkgfAzqX0QM2J/3jP1RVBADoNMg/9hmDIaOwf8xODoVCVw1W0AbUpHCKrbNZojjfHt726wTAAAAAAAAAAAALVEEAAAtiWKDGAT96dOnUUFAFB7cvn178OjRo9EA/EULEZqSZj2ItkDT4liPYz5m0gAAAAAAAAAAAKB5igAAAAAAAAAAAAAAAKAntlbdAAAAAAAAAAAAAAAAYD6KAAAAAAAAAAAAAAAAoCcUAQAAAAAAAAAAAAAAQE8oAgAAAAAAAAAAAAAAgJ5QBAAAAAAAAAAAAAAAAD2hCAAAAAAAAAAAAAAAAHpCEQAAAAAAAAAAAAAAAPSEIgAAAAAAAAAAAAAAAOgJRQAAAAAAAAAAAAAAANATigAAAAAAAAAAAAAAAKAnFAEAAAAAAAAAAAAAAEBPKAIAAAAAAAAAAAAAAICeUAQAAAAAAAAAAAAAAAA9oQgAAAAAAAAAAAAAAAB6QhEAAAAAAAAAAAAAAAD0hCIAAAAAAAAAAAAAAADoCUUAAAAAAAAAAAAAAADQE4oAAAAAAAAAAAAAAACgJxQBAAAAAAAAAAAAAABATygCAAAAAAAAAAAAAACAnlAEAAAAAAAAAAAAAAAAPaEIAAAAAAAAAAAAAAAAekIRAAAAAAAAAAAAAAAA9IQiAAAAAAAAAAAAAAAA6AlFAAAAAAAAAAAAAAAA0BOKAAAAAAAAAAAAAAAAoCcUAQAAAAAAAAAAAAAAQE8oAgAAAAAAAAAAAAAAgJ5QBAAAAAAAAAAAAAAAAIN++P8BPJvgf4OFcX0AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fields = [\"p3m\", \"p1\", \"p2\", \"p3\"]\n",
"figname = \"_\".join(fields)\n",
"slices_dict = {\n",
" \"p3m\": DELTA_P3M,\n",
" \"p1\": DELTA_P1,\n",
" \"p2\": DELTA_P2,\n",
" \"p3\": DELTA_P3,\n",
"}\n",
"titles_dict = {\n",
" \"p3m\": f\"P3M $n_\\\\mathrm{{steps}}={nsteps}$\",\n",
" \"p1\": rf\"$p_{component}$, step {steps[0]}\",\n",
" \"p2\": rf\"$p_{component}$, step {steps[1]}\",\n",
" \"p3\": rf\"$p_{component}$, step {steps[2]}\",\n",
"}\n",
"\n",
"npanels = len(fields)\n",
"fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)\n",
"\n",
"ims = []\n",
"for i, key in enumerate(fields):\n",
" ax = axs[i]\n",
" data = slices_dict[key]\n",
" title = titles_dict[key]\n",
"\n",
" if key.startswith(\"diff\"):\n",
" im = ax.imshow(data, cmap=cm.balance)\n",
" elif key.startswith(\"p3m\"):\n",
" im = ax.imshow(np.log10(2 + data), cmap=cmap)\n",
" else:\n",
" im = ax.imshow(data, cmap=cm.curl)\n",
"\n",
" ims.append((im, key))\n",
" ax.set_title(title, fontsize=fs_titles)\n",
" for spine in ax.spines.values():\n",
" spine.set_visible(False)\n",
"\n",
"axs[0].set_yticks([0, N // 2, N])\n",
"axs[0].set_yticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
"axs[0].set_ylabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for i, ax in enumerate(axs):\n",
" ax.set_xticks([0, N // 2, N])\n",
" ax.set_xticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
" ax.set_xlabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for ax, (im, key) in zip(axs, ims):\n",
" divider = make_axes_locatable(ax)\n",
" cax = divider.append_axes(\"bottom\", size=\"5%\", pad=0.6)\n",
" cb = fig.colorbar(im, cax=cax, orientation=\"horizontal\")\n",
" if key.startswith(\"p3m\"):\n",
" cb.set_label(r\"$\\log_{10}(2 + \\delta)$\", fontsize=fs)\n",
" elif key.startswith(\"diff\"):\n",
" cb.set_label(r\"$\\Delta\\phi$\", fontsize=fs)\n",
" else:\n",
" cb.set_label(rf\"$p_{component}$\", fontsize=fs)\n",
" cb.ax.tick_params(labelsize=fs)\n",
" cax.xaxis.set_ticks_position(\"bottom\")\n",
" cax.xaxis.set_label_position(\"bottom\")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.png\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
" transparent=True,\n",
")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.pdf\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f225b2f9",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "85b01324",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "dadb9198",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "p3m",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}