{
"cells": [
{
"cell_type": "markdown",
"id": "47c34537",
"metadata": {},
"source": [
"Tristan Hoellinger
\n",
"Institut d'Astrophysique de Paris\n",
"tristan.hoellinger@iap.fr"
]
},
{
"cell_type": "markdown",
"id": "b31e6021",
"metadata": {},
"source": [
"# Exploring time step limiters for P3M: tuning $\\eta$\n",
"\n",
"## Set up the environment and parameters"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0f8c355d",
"metadata": {},
"outputs": [],
"source": [
"# pyright: reportWildcardImportFromLibrary=false\n",
"from wip3m import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2c415aeb",
"metadata": {},
"outputs": [],
"source": [
"workdir = ROOT_PATH + \"results/\"\n",
"output_path = OUTPUT_PATH\n",
"\n",
"# STANDARD PARAMETERS:\n",
"L = 32 # Box size in Mpc/h\n",
"N = 32 # Density grid size\n",
"Np = 32 # Number of dark matter particles per spatial dimension\n",
"Npm = 64 # PM grid size\n",
"n_Tiles = 8 # Make sure Npm/n_Tiles >= 6\n",
" \n",
"force = force_hard = True\n",
"run_id = \"notebook12\"\n",
"\n",
"TimeStepDistribution = 3 # 0: constant, 1: log, 2: exp, 3: custom\n",
"# nsteps = 0 # not used for TimeStepDistribution=3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "03aa3f4e",
"metadata": {},
"outputs": [],
"source": [
"# Automatic reloading of modules\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"from os.path import isfile\n",
"from pathlib import Path\n",
"import numpy as np\n",
"\n",
"from pysbmy.power import PowerSpectrum\n",
"from pysbmy.field import read_field\n",
"from pysbmy.timestepping import StandardTimeStepping, P3MTimeStepping\n",
"\n",
"from wip3m.tools import get_k_max, generate_sim_params, generate_white_noise_Field, run_simulation\n",
"from wip3m.params import params_CONCEPT_kmax_missing, cosmo_small_to_full_dict, z2a, BASELINE_SEEDPHASE\n",
"from wip3m.plot_utils import * # type: ignore"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "57436422",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"k_max = 5.442\n"
]
}
],
"source": [
"corner = 0.0\n",
"RedshiftLPT = 19.0\n",
"RedshiftFCs = 0.0\n",
"\n",
"ai = z2a(RedshiftLPT)\n",
"af = z2a(RedshiftFCs)\n",
"k_max = get_k_max(L, N) # k_max in h/Mpc\n",
"print(f\"k_max = {k_max}\")\n",
"# cosmo = params_planck_kmax_missing.copy()\n",
"cosmo = params_CONCEPT_kmax_missing.copy()\n",
"cosmo[\"k_max\"] = k_max\n",
"\n",
"wd = workdir + run_id + \"/\"\n",
"simdir = output_path + run_id + \"/\"\n",
"gravpotdir = simdir + \"gravpot/\"\n",
"momentadir = simdir + \"p_res/\"\n",
"logdir = simdir + \"logs/\"\n",
"if force_hard:\n",
" import shutil\n",
" if Path(simdir).exists():\n",
" shutil.rmtree(simdir)\n",
" if Path(wd).exists():\n",
" shutil.rmtree(wd)\n",
"Path(wd).mkdir(parents=True, exist_ok=True)\n",
"Path(gravpotdir).mkdir(parents=True, exist_ok=True)\n",
"Path(momentadir).mkdir(parents=True, exist_ok=True)\n",
"Path(logdir).mkdir(parents=True, exist_ok=True)\n",
"\n",
"input_white_noise_file = simdir + \"input_white_noise.h5\"\n",
"input_seed_phase_file = simdir + \"seed\"\n",
"ICs_path = simdir + \"initial_density.h5\"\n",
"simpath = simdir\n",
"\n",
"# Path to the input matter power spectrum (generated later)\n",
"input_power_file = simdir + \"input_power.h5\"\n",
"\n",
"# Paths to the time step logs\n",
"OutputTimestepsLog = simdir + \"timesteps_log.txt\"\n",
"\n",
"# Path to the output gravitational potential field\n",
"OutputGravitationalPotentialBase = gravpotdir + \"gp\"\n",
"\n",
"# Path to the output momenta field\n",
"OutputMomentaBase = momentadir + \"p\""
]
},
{
"cell_type": "markdown",
"id": "d3bc340d",
"metadata": {},
"source": [
"### Generate the parameter files"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "012c5e01",
"metadata": {},
"outputs": [],
"source": [
"common_params = {\n",
" \"Np\": Np,\n",
" \"N\": N,\n",
" \"L\": L,\n",
" \"corner0\": corner,\n",
" \"corner1\": corner,\n",
" \"corner2\": corner,\n",
" \"h\": cosmo[\"h\"],\n",
" \"Omega_m\": cosmo[\"Omega_m\"],\n",
" \"Omega_b\": cosmo[\"Omega_b\"],\n",
" \"n_s\": cosmo[\"n_s\"],\n",
" \"sigma8\": cosmo[\"sigma8\"],\n",
"}\n",
"\n",
"lpt_params = common_params.copy()\n",
"lpt_params[\"method\"] = \"lpt\"\n",
"lpt_params[\"InputPowerSpectrum\"] = input_power_file\n",
"lpt_params[\"ICsMode\"] = 1\n",
"lpt_params[\"InputWhiteNoise\"] = input_white_noise_file\n",
"\n",
"p3m_fit_coeffs = P3M_FIT_COEFFS_DEFAULT_2NP\n",
"\n",
"fac_dyn = DEFAULT_FAC_DYN_CUSTOM_COLA\n",
"fac_hubble = DEFAULT_FAC_H_CUSTOM_COLA\n",
"fac_bend = DEFAULT_FAC_BEND\n",
"sub_bend1 = DEFAULT_SUB_BEND1_COLA\n",
"sub_bend2 = DEFAULT_SUB_BEND2_COLA\n",
"fac_p3m_fit = DEFAULT_FAC_P3M_FIT\n",
"da_early = DEFAULT_DA_MAX_EARLY_CUSTOM\n",
"p3m_params = common_params.copy()\n",
"p3m_params[\"method\"] = \"p3m\"\n",
"p3m_params[\"EvolutionMode\"] = 7 # 7: COLA with P3M force evaluation\n",
"p3m_params[\"TimeStepDistribution\"] = 3\n",
"p3m_params[\"ai\"] = ai\n",
"p3m_params[\"af\"] = af\n",
"p3m_params[\"RedshiftLPT\"] = RedshiftLPT\n",
"p3m_params[\"RedshiftFCs\"] = RedshiftFCs\n",
"p3m_params[\"Npm\"] = Npm\n",
"p3m_params[\"n_Tiles\"] = n_Tiles\n",
"p3m_params[\"RunForceDiagnostic\"] = False\n",
"p3m_params[\"PrintOutputTimestepsLog\"] = True\n",
"p3m_params[\"OutputTimestepsLog\"] = OutputTimestepsLog\n",
"p3m_params[\"cosmo_dict\"] = cosmo\n",
"p3m_params[\"fac_dyn_custom\"] = fac_dyn\n",
"p3m_params[\"fac_H_custom\"] = fac_hubble\n",
"p3m_params[\"fac_bend\"] = fac_bend\n",
"p3m_params[\"sub_bend1\"] = sub_bend1\n",
"p3m_params[\"sub_bend2\"] = sub_bend2\n",
"p3m_params[\"fac_p3m_fit\"] = fac_p3m_fit\n",
"p3m_params[\"da_max_early_custom\"] = da_early\n",
"p3m_params[\"da_max_late_custom\"] = DEFAULT_DA_MAX_LATE_CUSTOM # da_late\n",
"p3m_params[\"p3m_fit_coeffs\"] = p3m_fit_coeffs\n",
"p3m_params[\"use_p3m_fit\"] = True\n",
"p3m_params[\"WriteGravPot\"] = True\n",
"p3m_params[\"OutputGravitationalPotentialBase\"] = OutputGravitationalPotentialBase\n",
"p3m_params[\"WriteReferenceFrame\"] = True\n",
"p3m_params[\"OutputMomentaBase\"] = OutputMomentaBase\n",
"file_ext = None"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a162fa70",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[15:14:41|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[15:14:41|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_lpt.sbmy'...\n",
"[15:14:41|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_lpt.sbmy' done.\n",
"[15:14:41|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_lpt.sbmy\n",
"[15:14:41|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Time-stepping distribution file: /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5\n",
"[15:14:41|\u001b[38;5;113mSTATUS \u001b[00m]|Write custom timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5'...\n",
"[15:14:41|\u001b[38;5;113mSTATUS \u001b[00m]|Write custom timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5' done.\n",
"[15:14:41|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m TS.ai = 0.050000, TS.af = 1.000000, TS.nsteps = 74\n",
"[15:14:41|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5'...\n",
"[15:14:41|\u001b[38;5;113mSTATUS \u001b[00m]|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5' done.\n",
"[15:14:42|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Generating parameter file...\n",
"[15:14:42|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_p3m.sbmy'...\n",
"[15:14:42|\u001b[38;5;113mSTATUS \u001b[00m]|Writing parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_p3m.sbmy' done.\n",
"[15:14:42|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.tools)\u001b[00m Parameter file written to /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_p3m.sbmy\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAb0AAACMCAYAAADof3f4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAATWlJREFUeJztXQd4HMXZfvfupDtJd6ferGa527jjgo2NDQZjegtgWuiEHscJYCC0EGJCQkkC+SEEAhgXmsEFd+OCO+69ybJsFUuyer+2//PN7O7tFUmWu33zPs89tzuzMzvz7ux88818860ky7IMAQEBAQGBEIDhTBdAQEBAQEDgdEEIPQEBAQGBkIEQegICAgICIQMh9AQEBAQEQgZC6AkICAgIhAyE0BMQEBAQCBkIoScgICAgEDIQQk9AQEBAIGRgwjkMj8eDwsJC2Gw2SJJ0posjICAgIHCGQH5Wampq0K5dOxgMhvNT6JHAy8jIONPFEBAQEBA4S3D48GGkp6efn0KPNDy1kna7/bjz6dqtK343+v9gMBh5gCQDchDNUR/e2nEr/4YoN7vcU2dsMe5Ej7MediPvY+NJPScczzUqTvTa4wk/VXHnYlpRpnO3TOdbffKUOEKkPQx3/2kojhfV1dVMCVLlwnkp9NQpTRJ4JyL0SBWOCI86vULP7GGXe5yGFuNO9Dg+1oQSs+uknhOO5xoVJ3rt8YSfqrhzMa0o07lbpvOtPiVKHCHCHHZC/biK1pa6hCGLgICAgEDIQAg9AQEBAYGQgRB6AgICAgIhAyH0BAQEBARCBkLoCQgICAiEDITQExAQEBAIGQihJyAgICAQMhBCT0BAQEAgZCCEnoCAgIBAyEAIPQEBAQGBkIEQegICAgICIQMh9AQEBAQEQgZC6AkICAgIhAyE0BMQEBAQCBkIoScgICAgEDIQQk9AQEBAIGQghJ6AgICAQMigzUJv5MiRGDduXNC4++67DzfeeOMx5XPw4EH2hdvNmzfjjMLjBlxNvmGyHPxafXhrx638G9xO9mst7oSOPU7A5eD/J+uc+PK4234NhSl8n9C1xxN+quLOxbSiTOdumc63+njc3j6Q4HYE5n22a3r/+Mc/8Nlnn+Gcwc6ZwJsZkOrLfYIlBBd6+vDWjlv7NzfVsF9rcSd03FiDEV/czv5P1vnQKb/G0Cn3tvmai75+GB3Wfcb+j/fa4wlPOLia/U52HOFcSyvKdO6W6XyrT8LB1ezdV/sqglRfBvytE++XTyFMJzOz6OhonDMgYr++B+c9ZM9JPQ9rqm31HsGuMdeVIWPb9wHhbbn2eMIvWPxmYHlPQtzhXjcd9z3PVFpRpnO3TOdbfZpFQznvl2+bBPS4Hmelpvfjjz8yYTd58uSA6U2Px4O33noLnTp1gtlsRmZmJt54442g+bjdbjzwwAPo1q0bDh06hFMKUqHnPKOdRpgAk9R4en9o4r/W4k7wWGIjm5N7frzXEE702uMJPxVxGdt+OOfSijKdu2U63+oTECc10ugZGuZNOGVTnZIsN7eA1fyaXt++ffHee+9hypQpePTRR9n/tddey4ReZWUlfviBk/Hcc8/h448/xrvvvothw4ahqKgIu3fvxkMPPcTW9LKzs7Fp0yZ0794dd9xxBwubP38+EhMTg967qamJ/VRUV1cjIyMDVVVVsNvtx16J3J+Bz69tS7UFBAQEBE4hvix5H3cnPekNuHc2kD38mNOTPCAFrDV5cNzTmx988AFefPFFzJo1CyNGjAiIr6mpYWt877//Pu69914W1rFjRyb89KitrcU111zDhNmSJUtanCKdOHEiXnvtteMtsu6mxT6nHzqvxVT3SDQhHGa4YIIbYXDBLDlhhhMm2YUGyQwZEpKkCnZFE8IQgxqWhsLjpWrUyRZYpUbU0j8aUIsI2KQGNMlhsLC8HGhEONJQisNIQm/pADbLnZAtHWFpy2HDlYZfMNt9EdKko+hsKMByT29catiMIjkOe+UM3GJcjq2ejtgnp+FW4zLky4lY6bkAlxs2Ilsqwoeu69DeUIynTd/jbeetKEU07jfOQ4xUizeddyBRqsILYVOwwdMZk12j0NNwEA+Y5mGjpxO+dF2unR+V7XjdeQ8SpCq8FPYl4+n/XNchT07G7cYl6GfIQb1sxnPOhxEr1eIV0+cwSjIOeZLwjutXyJRKMD7sW94W5Ag873yI5fWyaRIMEh9nfeC6gZV/rPEn9DEc4I9GtuA55yNIlCrxkmkSy5NQLMew8mRIJXgu7Cuf5zfe8Sjj/bem7xAvedcIlrp7Y6b7Ygw1bsevjD/7pPnKNRLr5S642rAWlxq3+MStdnfHNPdluMiwE3eYlgQ0nycdT7G6/M70HaKlOp+4r10jsE7uhmtYvr5GWqWyHS8770eWVIwJYdMC8n3PdTOK5VjcZVzMnoMemz0d8YnrKvQ37MP9pvkBaSc4H0I4XHjMNBOpku8a9Rz3ICxy98dlxk241rjWJ65RDsPTzieRIZXiOdNUhEu+o+v/uq7CPjkdNxt/xmDDbp+4HE8qe9Y9DIfwhGlGQJled97N2vsDxrnoaCjyifvZ3RPfuS/BUMMO3GZa5hNHw/AnnU+xthqMY3p2v8hdcY1hTcCzK5Gj8YrzPrSXjgS0E8K7zltQgpigHG/ydMSnrqtwoWEv7jMtCEhLbZ36g8dNM5AiVfjE/egejMXufhhl3IRr2szx1ex9pnd7kGGPT9x+Tzu867qlRY6pLyKOOxiO+MQtd/fCdPdwXGzYjltNy1vg+FtES/U+8dNcI7FB7sI4Hmnc6hNXIsfgFee9zXL8jvMWlDKOF6GnIc8njvqZ/7nGaBwXeWIxxPEBi/tn2PoW++mTheMSet9++y1KSkqwcuVKDBw4MOg1u3btYoJs1KhRLeZFGl56ejp++uknREREtHjt888/j/Hjxwdoem2GNdnn9L3CC9CY3C7wOtn/WAZkrqBHohH1sLDjKDSgDhFIRAVKEcuEGwlDf6SgDEcQj0sMW7Dc04dNLn/rGYF+0j5UwIqDcio6SQX4zjMCXaXDqMU2fOMeiQRUYYenA5bLvTBA2oPF7gFYLXfDYMMurHNfgG88I5CCCoQZXJjuuQRdPEeY0JvhGolDUiyuN6yCA2H43jMcqShjQm+jsx+my5egElY8gHlY6xiK6bgEFbCx8z2OnpghX8zurQq9b5puwAFjJC4xbEU/5OCXhsswyzCU1fcpLENiWC4W1t2KH8IuRmcpH792/oKEsDwsrLkLs8OHwIp6vBr2Bctrd/1IfCXfgENGC0YaNqMPuNCbVvECfozs5HNtpSsFk6r/gNmR7ZApFeM58Bet3m3HrIrnMN2azc7Hmb5DtSsRdlMpfq66H5ujqjDdM5wNXlSh5/BYMKv8Jay0F2Kmh8pZgEvBO06XHIYZZa/gaMwazPBczMLuwBIcdWYiIewQ1lSPRXfbTMz2DGFxz5q8L/wRR2esrL6P5TtDy3czu1+4oRELKn6LuOi5mOsZjHSpBBPgFXp76odje/0YzLdJ2CW3x2jDBi3OIxvwQ9mraIxZilmeoaiDBffDK/TW1dyGvKY++M6aQcMzPGKarcVVulKxuPJJbIvew9oFdXAk9Grd8bAay7Cs8iFk2GdjgWcga89/NPHnTDjY2B8bam/BUnstVnh6YaBhNwbDK/Rmlb2AsJgF+NEzhA1c9B3yltprsL9xKGZZY1CCWDZIUtHgsWFO+QQUxvyCHzzDECa5cBuWocyZgfiww1hTfQfjmPIlPGfy8nTE0QUrq+/FCnsR44LeEXp2To8ZYYYmxnFs9DzGMRscKe2Et7dLsKP+Ssy3GbFbzsRow3ofjr8vew2NMUtYvvRe34cFKGzqhnbm3dhYez36RM1iAoQ4/o1plpa2wpWKn3QcJ0mVTOjVuuNgNZYzjtPtPzKOqZ8IxvFP9jqs8vRk7/MgeIXerLIXNY4L5ISgHM+wxuIoYnC7camXY7cNcyomoCBmPeM4XHLiVizXOF5dfSe622ZoHE8wTdXSFjm6YBXj+Ahr512lfIzEVjg94QgzOLCgYhxilHasfxc5xyOwo34043iPnIkxhl+0OLdsZO24QWnHDTAzjvMc3bRrYk0FaKmfPqNrev369WNTkJ9++imamx1tTYCpuPrqq7F161asXs2tgVoCrQuS2qr/HReyhgLWFO20d8qxyX69laYcJJw0PoK7GVpdMPJ42Tc+HE44Zd8yWNDEGgY7lkiI8rQRUhOcyn0i0ASHcmyVSPByIRxnKOP3U0aUUVIj07bU61iZjdyAxAZ+HmYqZf928BGfKYxrC3bdKNto4mEx4GljLbwTjEUNE3iE5Mj1WhgJPEKmlY8ySRtW0S1yKTwmfk5ak4peMVPYP3XQKmJMR9A9+ht2nIRKLTzSWI2hce8qHDrYPUngEYZH/w9Fcjw7TpU4H+w6QyNuSXgRhXICOyeNWoVJcuKWhD8iX4lLl3heJPAIF9mn4bDMp97jUYVIyaGlTQnfx/JV46nTVe9HGB37DyYceL50T+/qRtfIn3Fz/IvIl5N80hIMkgc3J7zcbNpBtq8xLP5t1hmb4EIKvFpejKmIlcm/PiTwCCNi/ovD2j1L2RYiFe0tG/3qw9OquC7+L1p50w2+Zepj/RHXxL/KBJ5/2ghDjVImtT48jjpjzvFU7Z4JqESE5DVpTwnfGzQtCTyVY9/yesvULXK5wnFCQJmI41sSXtK4UPMlgUfob52JYsTqOPZqebEax75lIoHn5TixRY7903o5fsObthmOSeD5t5kII+f4sE+b8XI8xD5Fq2siKmGRXFraVI1j3zZDAo9z/J5Pm/HleJnCcWB9jJJb4dg3LjGc9xuEC618WYzBnsb76bNF6NE0JU1FzpgxA0899VTQazp37swE3+LFi1vM67HHHsObb76J66+/HsuW+U5znDIYjMDVf9NOTSDrQzngJ8EDA9wwMjFGxzI7poZP50a42DSoER4muChMPad0FEZ5kCakpqd/ScnHqFwfrjQ6upbuS2EWOFgJ6HoLnCw1IQIOTaiS0FMFKY3UaZqDro8C7wQciiJPU60kQCl/OiY0KJqoTZnWULVWVcjVKkLSDq/QoylYgjrdVC1HsX+aOlVRpYTpBVy5bONh8IbxcD5oSYRXwB2Vo7WX0X9KhZDsN61UjDglvBK6/oShUBF6ekHgH9dOJ/RUNNcJ8TilY7Rx3tuWVolL4h2KHtWIQg0iAwRxQNrsrn5DLm8cTWuaJM/xlSnOGhDnliVtcNBi2rTMgDjSTAik3aiDpOBlaqGu9uY4Tmg9bXKgXUAVolCrcNxifVp47u0sLm3Kva1p0+Ob4zi+9TKlZzYbR7Mi0br39NjKlNgKx8eQNpnXSw+aOaJZr+bbse/Agr+yap+rw5g3eT99thmy7Nmzh53ffvvt7NzfkIXW32hdj+IuvvhilJaWYseOHXjwwQd9DFnU/F566SXMnTs3YN3vRBcuW9y28MOjgCOwwZxKEOPUQQf7J9CxR5bY2heFMeHnd0zxBPWYkhqVa5wwausGDplGp27tOhKEtL6ovnBO3blLNjAhqj9vhFnTDinvuohUWJrKYZK5YHXKRiYw9esujZZkNHmMiHYUesNsWajvegviNv0LUDakUtpySybiPWUwOau1e9TaOqCh601I2vah9mwovNLWGc6u1yNp+38AZX8PhVfbOqGq803I3Ps5UFfic8/iYX9GTDgQPe9xLQ2h2toRhUNeRXsbYPnRN67W2gEFQ15DQgQQv/j3Pnm6bBkoGv4XNGRdii5lS4DvHuSbahVUWDsjf/DL6BwNWOY+DTR4hXSTLRMFF78BU+fLkVm8CPjmXm27B9Wj1NoNhYNfRF/q02f4lqnOmo2CoX9CTM/RSDrwPW+3Cug5HrH2QNWQCehBY4DpjwAu/swIVdaOyL/oVWRaAduCcQDth1LgsGWiaNgbcHe4DB1KfwK+vR/wuLQyldu64PCgl9ArDjDOfhJorPLhN3/onxHZ/Qq0y58PfMvX7gnU1kqs3XD0ohfQk/p0v/esxtoB+UNeQ3IEELd4PFBXGsBxY9al6HwmODYDSUueAWq9a2RuWzqODJ+IqvSR6FG5FJj+MOBq9OH48OBXkWVrO8dlti7Ib4njIX9GZI9j4Pj7RwFnIMcpEUDs8XIcA1jmtJ3josEvok9rHC/0rStDRBxw3T+Oa7vCKTdkIXTt2pWtxZHgMxoDpTIJMZPJhJdffhmFhYVITU1l1p7BQF5eaIsDTXfOmzcPQ4eeGtXWB0Rst2uAPfOAr+48sbzCIgFnPc0bArKfqa1kAmRlCsFsh9RUDaQPgpS/Dmh/CaSDy4GoBEj0wI/uBQY+AsMv/+FJRzwHaflfgbiOkDpfAWnth0C7/jBkjwBWvgsk9YDhoieAmU+wMkhjpyJ8zu+Bsv3AqFcQntwLmPIrwN4Ohpv+A8vu2QDl0eUqGIc8AeO6/wC7ZgJ97oSp750w7ZgOrP+U8WIa/Bis1GCn3QHEZEK64d+w0pTDJ1cABRuAIU8irMsYRCdfALzF19Vw57ewdLoMFnrp/96Zh93zAyzZl8BCI7ec6UDFQWDEBIS1H4Zkym/jF8DscUBKL0hXToQtayhsdK3jMLDta6DnrZAuvBexdC2Fy0eBjZ8D3a+HNOgRRGcNRTSF7x8KfHkTYEsFbv4YlqyhyFJHi4cX8vt0vx4Y9AjsWUNhV+Ny5wObvgR63AgMfIjVsasaZ4sEJt/C+MNN/4Epaygy1Ljk64GFaUBFLnDJs0D2JayMsWp8zUFg4UtA+kD2LMxZQ9FBjbNf4d3feO0/IMV3RFLWUCSp8XvnAZsnAz1uAAY+jKisoeiixiV15/+WGOCat2G0JiMtayjS1PiV/wAK1gMXPQZ0vcbLD0Mt8MNjQGI34Oq/I1zPUcJ1gMkCOGqBK/4MqV1fxGcNRbwaX7geWPUPoOMoYNjvGL+d1DhpgPJvBG76EAZbKlKyhiJFjSd+980H+t0D9L6dPePuapzVDEy5DbCns7SBHLdT2sxzQPvhfhznAgtfZu8TRr3cPMfX/QNSnD/Hc4HNU7Tn7sNxchrw38sASzRw+2QYFX7TKK7d9cCKd4HCjcBFjwNdr/blWK7hnX1idzaj1CzHo9+AlNoHCVlDkaBx/Auw6p/BOcaF/M9gAm78vyAcTwL2LQD6/RrofZsvx1HhwNTbgeh04MYgHC9IASoPsfcS7Yf5clx1AFj0CpAxGLjsJV+ObaN0HP8TUlwHX473zAG2TAUuuAkY8KAfx+2A/47y9pnDfsfyP1Ua3nELvaVLvQumBNpuUFwc3MrGYDAwC0/6+aN9+/YB64FkpKI3VDktIII7jjzxfMKjuNDTQ32YJjPgVISeUTFwieTTckjoBJDQi4gHrElc6CV2UcoWBiQogiM6DYhWjHbiOwGxWfw4NhtIuYAfR8TyukjKrHXGIO8IjToUMv/dqiw8pw/g5yve4efZl/BzenFY2ouU6/laGmKyvObDDcrUIw0YSBDRy8LqZgY6X85VVfUa6pg7XurlpE6Z8uh9GxDfkR+ro+KUPr4myqqGRXnqw1Wrrk6jgocndAk0da5WtM7OVwTGVeXz/y5jgqRT4mjw4B9H+4jUtP1/DcT4GVWpcVkXN3/PcCtw4b2cM594vv5Cg5OAtCrf1A56/co3Tp+29+1Au37B76s+fz2orVBnTBj0EBAWETzfjpc1XybigJ5tc2UiAdMcFynHwDF12sHStg/CcaVyz3Ab0D8Ix2p816ubf+7B2lIAx32Pj+OBxLEleL7+bVvPcXQzHKv1ueDG5uuT0jswzu0CqhQjEmqLNMA71nas3tNs588noB3nN8+x9g5EAaQIJF1wygXeSffIcq7itbn7MbPpI7hkvr5Ha2+0bkdWT2aZJgBdcErhbBqJ1q+MkFEPM1uvIPFCotvmdqPWZWBrcWS5GUaTjBJgkZvQ5IpElLsGdVIEwlxAgqcMpbmd0c9pwoadfTDMeQWWlw2HuULGFS4P5qyOw0jXKOQaslCwzIgnPNn4d8EYSBVxeE2244WcIQgviMIbchTeLBiKmtml+IMnBT83jcSqSRtwY3U2+sql+OP8JiRILpD/g6/r+2Hp5A0YUxMDmjh4a386DuVvxEOVkaBXduJ2O4p2bcLDdUb0AjCpIBlrp2zEDZENuAJAniEdEydtQGZ8JF5o5AJt0l4j1q/ehOszGsFsdCPj8PcFe1FU1Yj7O1SjJwuLx4fLcrCvuBa390vCIOWF/+VoGL5cuAl9M2JwvyoIrYl4b9FeFFc34a7BmehZq0zHWJPw6swdbJD00PAOyFCnaawp+Hj5ARwqr8ctF6ajryok7e1wuLwe7y3ah05JVjw2siNQq8alYVXOUfy4tQiDsuNwQ980b1x0OnJKa/Hfn3PRo50d91yU5Y2L4Wsqb87dDZNBwt0XZSHFQDzIfORtb4dle0uxZHcJLu6UgCt6JHuFdmwW3B4Zz0/firSYSPxmRAdYasiEX+KDCUnC178cxr6SGozpmYoLs2IBte6xWSiobMD7P+1ndXlwWLZXuCsDn/d/2od6hxu3DshAdozJO+CIycKGvHLM2FzI8vSpa0x79vfyjO2IiQzHAxe3RwyViQZMUYlM4BFHGw9V4LJuSaxO2vRYbBaq6p34y5xdrD08PrIjpBplKpDqA+DTFbkormnEDX3SGJfafWOzsOdIDb5YfRC90qIxdlCmT1wAx+oaLg0AbalYuqcES/eUejnW6pMFl9uD56dvQ3qsH8eUryThq18OYX9JrZdjXX3yK+rxwZIcdE6y4gHGsTdfwr8W70ODU+E42uidlovNwvqD5Zi5pRAD2sfh+j7tfJ474aUftiM2KhwPXpyNaBp8MY6TmMCbvbUQmw5VejlWn3tMEI7V6VYl309W5KKkphE39k1D9xSb7r7tsauoGpPX5jGObx+YGVCfiXN3IdxowF2Ds5hVORNWhnD2Ti3ZU4Jle0oxrFMCLvdrx81yHOPL8VW9UtE/M9bnvvRO/ntpDrokW3H/xZxj2rJwVfVbkGQ3VrslxbLg1EIIPTL7zqtGmWJs0dKWBRJiB5Qws0lCE0lJep4WIyob3YgKN6DOoTMkkIFoixFVjW7tn2xVOsabkVPWhKie/bBoezkS+j6Dnzbzjr/jxcOxaOURpA54HusP1WBXQQPuvONbLJi2B+5q4MWnVmHhv/i+mT+PX4+f/rMdJUedePzhhdi8pgDzth1B38tfQXqmBYs+3Y0kmw14Jgfb5uRizoYj6DTyTuDup7Hi013YurcIN901EWj/Npb9dzd2FxfiV/f+EUh/FRtmHcLsrUXofdVQ4NlcFOZWYt6kXazjfWHcdqCxEr/MLsLMrYXo1a4bMOEwG8Eu/l8Oe+Gu7zMQeD4faKrF8q/ysCqnDMM7JwAvFgP1R7F7p4t1xtRZ33/3X4ARz7KXZsF/tmNnUTVGX5AMPPoz1wwtdkyftBzVjS7WEeLBRSwP0pIWLNmMXw5WYHCHOPS9+LfAgAeYA+yc/Fp8tzEf3VJsXOj9ZjnPy2zFxp/zMXntITS5PFwQPLZKibNh165yTF13CAOyYrnQo3INeYI5JSehO2n1QdQ53LipfxqQmAL8sYS/2AYjVueU4bNVfO8X65Bv/Qy49j0WV1zdiK/X57PO/MnLOnHNmtIqmvj8HUeweHcJ2idE8Q758dVcAzbbsC+nipWJ6sKE3qCHgb53AU6+bvfV+sM4XN6AS7slITshCnjxCECdUUQsNubl4ovVeaiod/K6XvN3Ng1IjbPB4WZxBOqQQdPUVCZF8yYB882GfMREhPEO+d5ZvLwmC/JK6th9E21mPHFpJ6DnzXw0r6zfzNhSiC2HK9EvI5YLvT/s40ImMh7bNx9h/F/cKZ4LvUufB4Y+xdaUiGMSiNQubmYcp/pyfMCP49s+50LeYMSR6kZW3jCjhKeI4w4j/Dguxk+7S5CdYFU4XqO1r337vRw/0AzH+RUNTDhlJ8TxdkxCyBKDjYcOMB4r651c6F3zNpvOJo7rHS5MWqNwTPmm9PTjuBTfbshHbKTC8X2zNY4PFnOOk+0qx7ew6WqV45mbC7Alv4oJl+6pxPF+L8ebivDlmkPsnWNC79IXgKFPezlelceE+M3904GENF4fSmswaO2Y5CATerd9oXFMA1rimAQm45hmcXQcz9t+BEv2lKJDopULvSfW6jiuZBz3SLVzoTf4ETRm3IzKf/J9jZ7Ol+B0QAg95i6tTbY8CkiNV9IZSN9za8YlLIgZowBGJc5kIrXdrRlwsPvS3D6bFeTTSEaDBKeRW5dZIqLQ5OGL0qaoGLjVIkZ5Lf8iYpPR4NzGjiOj41Hv4aPEqKgo1Jm4ELeaTSxNnYdPJdgiLUxzqnHs5OdWsm6IQ00TP7dbowBbDKqa+IsaHRnONLgqxXCFOkCER7JfRQOf2oiNMrNGTb/yOp5PHIWZbexXXrdPCQvn0znR6Sir28vCEmg9hzhSpntLa/l9Elm4EbAlo9HpZgKPkGS38OtpKpj2FVVxY4IUCiewe1I4nwpKjVbC6Q22cquzgkqepl1MREAcdWyE9Fjd1B5Nv4RHobLOwQQeIU1NS2W0pypp6wPTRnCr0/zCcu2e9Jz5gw1n9fO9b6S3TMqzDl4m/gxo5F2k1EeLJ35oOry5MtGzIh5KeOdpM5tgJ198BCNpVCm+943T8aQ8p/yKqsB86dkq03UF/velMvnXNUapK3tu3LKxos7BBJ7P8/HhuKF5jgvKtGdjCMqxX5l8nrsaFxmcY6WdafFUH2UaMGiZVI6LFY4tJkTTuxPAsd99g3IcGZTjgPsG41hfJoXj8tomJvA4x8r7YTQFaceRgRznKxzHNsex331be7f0U+jhx7bN7UQhvqfHrKCOUej5z1erwcq/fo1SbRBc6NEeMNXaEnC4PD7C1qDE0eiJtA+C2WTUGqb+tuo9KJ9wo4Q6BxcGUeFG77HZ5HNMqGni51aLct7o1F5GQnUDP7er54qQUV9UGsUSYiKVF1cXFhsVppWtos43jHC0lluFxVu9G/aPKsItQRdGU4BlSniSje9RJJRU8zCzyaCVT72fGpesCj0FRZX8BUtVO04daLqQkB4kLugLr8XxdKTdWMIC1x4OB3up1bhynm+GKkB0oHoEFU5avs2XqbimCS6PzLSbJJul2TJlBEmrxlEHpt8/diz3VcsbLF/SINVnHvy+zXOh5pvUDMf5Go/NP59g5SWOSRtuLW2wMpHAo7ZJ76e+XWr1Oc4y8bTN37elNlHX5EJZnaPVtprewnNPtptZP9Nc2ozYtpWJt+Pm21trXJwuCKHHPhIQuLcpKHQOUGX9d6AcvCG4aUFYgUnm8UYHH62Zmvg6S5jkhrOBm+e7C7knEClvJfs3y41oPMA36VsOzEdjg2J+vOb/eF6SDOeiiew4wijD8eMEpk2y85/+iPoKvtYTufl/qF3LPT9EOcuA2eNRW8Hn1q27vwXmPqcJOdvy1+Ce85wmFG3LXgXmPIuqOj6ytR/4kaWvPMI3kUbTZusfHgeWvYVy5aWLKVoFzHwKdVtnweHmXMbvnw7MeBKevQtQUa8IvbINwPePARs+x9Eah1fTI1Pr2eNRVlrE6kMCPb7xEPDtA8DSv7K1IVWwSWSV+s19wNI32f3V+zGhR6b6s34L1BzRRubtSNPLXw98dTe3aiQDOUXoMU3iwDJg2l3Amg8DR6PORuCLG4GZT7PpTa2zVl/45X8Hvrmf5+Gj3UQCJbuAybcCP/05uHZD5Zz+G6B0D5t69NEgyZp46p3AL58ElokGPV/+CpjxBJtSUjvcNFWDXPcx8PW9wO45gZ0UrSdNuhmYO4HH+XfWC14CvnuIWebqtRvWgeWtBqaM1ThUO2ut8yMe6NlWFWj3ZNoNDZK2fMX53/q1X5ki+TYGlWO3M1AwLf8bzzt3eSAXxTt9OA4YWGgc72VthQaRJNuZdrNnLueYLJX9BTzj+BaF40rtnpp2s/YjzjHl4V8mMgjRcRzQZhb8UeF4I+OYpmS1++atUjj+p19ahQvigd69qgJt4EaDQDYw3TJN4fgbv/pEsCUGL8euwAHLsr/xd418Eut4ZGUq3qFw/IbfwE5JO/MpjeMyHcepxDG1QXq3VI71z0flmKxCVdA7cxoghB7b53Ss05s6jyz6z+koe6L0GqNR+XCi0VHtI/zCPY1wKJac7nK+NmEo2c7+ze46NJXs58cFq9Ho5PeQaJsB88biQqPyKQ/amN6wfrJ2v8hN/0VdPReSUbnzUHeAz5NbSeit/wS19byM1oML0bTmv3Ao86W2nVNQu5a7+2Ln2z4D1n2EKlXTK1jO0ldW8jn7GNrMTqb0O35ApSLMYss3s+0A5Xk72LklzICIw8uZJWhVwR42SibEVW4HtkwBDq7wanqRRm7SvP4TlCqCkKZGjRUHgO3fMZNnrzZnBspygB3fsw5H7TDio8IRTpuyt30DbODfc1Q77NToCKBkJ7BrFnupaTRaoOvEULwdIH4Pr/Eb8UdyS7oDS4Bt3zKr2wAt8MBSgLZ41BaztRsf7aZ0DzcfVzrrAO1m12xg6zQmTAO0m6LNwJ4f+b+/cKJvP+5fyLcAhEUGjp4PrgB2/sBM/AO0m/IDQM5iXq5g000UThw2VmnaDdcgzZwnMvE/vE5JqysTDfZ2zuDPVjIElom25hD/pbsDtZtKhWMqszEsUJPIUTiuKQ7Ubo6qHPPOOuC+dE/i2N3k1W5sFq7dFKocbwnUbmgNav8iYNNkNv3mI0AINEhlHOcFajflOZxjekbByrQ3kONwk4FP55OAYRyvDXw+NMime9K7ZzAGapf0XKi+xAkbgOnuS1afjOMZbBozYMBCcfSu1RajtsnFBmEsnp4PPTPi+KDKsR8Xajt2O7Qy0VID45jaL71bRVsDuaD1w/2LINF2KX9L0FMMIfTaMr3p53zM/5h8raggbysEsgTl53wkT06B6eM/BPLJ4vPxWMUhNTuWHWhUXJOp+VoMTs1zSqTBqbkdCzd4mBZY5+FTipFSE+oMfE2BLEwJtW7FO4urTPP8wc7RgGpjnGaco25MZ0Y3JPRc3MCmys2ndWKMXJg4LPGadhLr4lpkuZF7loijdUBlob7MEK+N+sMbFSvNqESv0DMpm6glA0pdFm36ULNQtCYzIxACm75j1mKUYaoWzrQ8up4GIrRNJCoRhVXK9CZpeqo5tr0dm5JVp41ZnPqiRWcETjNWKs5yFeu/ACGhxsdkap2Mtj6miwuq3ZAhjhIfkG+Ff1pdfKXiJJn2IprMgZ2QtnUgM1C7aTZfRbvR0pI1Y4Pv+lhlC2WqLuBbc2g7jjU5sEy6+wZoNy3l61efAO0moD5+2o26FSY6IwhPLXCh3lPjuPnnE6Dd6MobUCYfjjO9wlTlmPYiKvwHlIlx7OHbgqKSWmyLTqal64R4s2WK9KtPltaOiV+7JSxIWt19yaCGvn/H4jOOoR3r361DQfxrBl8+OtkQQk/xItDmNEGOycmYCnJDxv89PkKQbX/QhB6/XvVqxB1Vc8FFXlRUX57qP/khpC828GMSilxARhn4vRoUwRZFzrCNVh+hV+cyaC6LVBdjUWESE5Y14Xyh2W7mQrjRZNfWHaMdXPhUu/m9VG/slWHckITeVXsTv6ZS4i7E4midTulwKqRYTRvT9uhFxWsj9gSD4posMgFH61yBQs+WrBm3JJGmp5rG25I1DZAJL00YpkCWDChWNT2aLqQOgxU+XROGNK3KtCp1X1R0BisTadesAyMN0e+FVzsETbtRhSkJLnWdMC6Sr4/5p630027YA49mBgI++TIivcKH1sd8tJuWytSMkNC0G/8OTC0TdUL0vNg+U4nx5C1vYL5MW9bSRvruHzMYdPkGpiWB56Pd6Orqw1OswrH67HQDi2Bl0qdlPKnP1dI6x6Slq1P1TLvxE4g+WpM/x0qcpt209Hyo/bNZIYVjzVCoGY7164z6fZAGgy9P/hxXNbJlAloDZ+9SS23R5QBqCnVtxm9GoqX6qHG0F9cS3WKZ6vQapH5Aqe0JJLdUp0ccCetNAIufGgTnX7KY8FM/e8MheZ1Mk5swGJgQk2nPkOJGyGAyQ3Y1QjJbIdPoUpJgMITB7XHCGJ0Od1U+jIld4S7dA2NCZziP5iA8zAxHZCLCK3Ph7nsPm957cYAZzvVfsE+XOC9/HdKi5Rjby4Ym2QDL7p3IuakQjo3TEFG8E/vvMsGxfAoiCwuRc4+Mxr3LQB8KWDdqLxpTLoR5aj66xf+C30x4G55P3ydHm1hzG9CQ1AfmfxXAZAD2/3kM6nJWAVOBHlG12P/MVag7vAX4jFuO5rxwNTN2sb77G1bP92/Mwl9t7WEkjxy7SQBFYN8bV6GqwQnDFO7HdGRHO3ZfMZp11PiYC72B2QnY/Xp/Nm2CGXxtkjSxTS9dgfJ6B+IKlU/+WJNwS/80jOmZwqw1sUzZRG9NxrOXdsVvLunAByc/qUIvFbcPzMBVPVPR5HID+cqnYGypTOhsfPkK9vKzNTK147Sn4YJ20dj66miUK1ORWucYk8EE4bZXR7N01Cn7v/Af3nMhi2PGPz7aTQpGdpFYnaoVAyH/tAt/N4KtJbJ1xNxffOLIlP2Gvu2YQYpv2ixEhBux47UrWYfCtBu/fCfe3AvjrujCOjiu3Xg1yN4RMdjy8miU1SnfoPRL+81vhjCNIJ6ET+kWH+2GnsXIron8WfqlJX43/PEK1kGyDuywTiOmLyNc2Q33D81mAyJ/DZIEB/FfUt0YVIP8yIfjfIVjM2sHI7u2zPGi8TqOlel9VZg+PLwDbuqXFoTjTESGmzSOuXbjW5+/3tIL40d3gYVxrNduMtHHYvfl2E+7+ebRoaxMCSR8Sjd7O3qTGb+6MJ1tM2mO440vcY5ZG87zamOECWO64f6L28Oo+i/UpSWBxDluUgZgan343syPfz2Acczqyjj2cC8x1iRc2hW+HPvVZ/Hv9Ryv8eHpkeEdcHO/NO9yke65k0GdyrGN7qvkm5UYgxy8xaaZjeH8U2SnGkLokRZmNMBodB/D9gRlHc9A/8r1pBwxQxi3Es69rhjpZTVw7+Lav9EII00fmqJg8dSzcAOFs2uUODYFqoSFWRBB+18kyjISEW5u/mwyR8KkHBstkYjy8GODOQqRMrlCk5mJPRt5urgBjcFsRRSL8zANg7ZQRJO7JILFDpPRoDuPZkYRMWYD4ORhUkQM3/7gUF74iFiEGQ3cEKVeDYtj2hPToNSwSF2Yuhk4MoHdj01XNihhUYnsBaV7sPvopjcpnDZQM2iaXgoLZ4YSpB2rmp5idk11z4rnzq/105vsz6JM3ei9QiiePuiFZC9lkBee6qtpCsW+2g21ENqATD8GPw2G6k97l3zilM6COn+2FYPgp90waswmdEm2Bc2XeNS2T5Qc8NFuWPEiwxSO9PflnR8Jdo0jP+FD3LJnq8LvviSMOyX5lylTq0+KulWENlvrtJsA/v3yDcpxTCscx7bAsa5MXo6dOo6zWuA4M5Dj4hyv9yNlW0JQjpV8iWPae9kmjmOPjWM2G8E4LuF+QElTsgfjuIV2fESXryQdXzsOxrFeg4xtnmMpNhPG0h28z2rGOv5kQ0xvnjDUB6UzbFG2KWjquvqvutgh7cCljAxVP5169zuKFsn246hObelY2SjL/HyqznubOyb3VgQa/av711THr+QyiMVVe+MIqpcJ6jT15/ow1dsHvfQqVFdnqms1snpUXS3p9hV6pzd1HvA17yp+HttVTw7+4apw030aysfNmC3IdxHVOH8XVmxtzbvuEwC/l9o3zlcb8IHfyDsA2tpNkDg/7SYwrW8HFjwuSJn0ZW5rffTrY/6u1lq7r34ai9zxnaz6tMaxn3bjgypf7ea46hPsnj7xWW3LV69BBm2LLTwfNV9q+7Rn7mTVx+NppR23kK9eg9S/78Hqo3naF9Obpw3Pz9iLJU0fMIMW/gkgeN2QwcmMT2hdjdyL0RqZ3dCAox47++ZdrKsBde4w2Jz8i+mk4UW53DB5muCusMPuKEZVaRqSnX1RXNoBaY4eKJCzYHHXIkEuR9H+vrjIVYxVO7uhr+tq5CMZlZtScJu7Bybv7Y9EZzJGu8swZYUFfWsGob07ATMW1mBITR909JgxaVE9eld2xK9kG/64Ng52YxNzO/av8oHImbYJd9clIFOuwqvzaxFnagIZd6+Qe+OrqZswQHaDfLYvaOiO2VM3YVh4A25TviD9yZSNuCDGhceIoHArnvp6OyLDjHi+oY59wWtpVTK+n7YJg7NicKciPD/b5sDW0s24qasFzMuewYQvN1dg46Fc5qlipDL1trEqEp+t2ITe6dF4SKfpvTVvN9vecN/QbHTVuRobN20T077GX9EFsXVK52tLYa7JXB4PHhneEZlqp2xvh8W7ivHjtiJc0jkRN/aI9nqPt6fh30v3s3UJmhrtHVnOhQsNQizR+HzVQewtrmGeS8hFmSa4YzKxr7gGHyzZz6ZHH76kg+KhwqR1Bq/P3snWqmjKKSuiiccp2g15NiGXXsM6J3CvKGzwIWlrN09P28zWJcnDhY00I1ME31xuMGDaukPM68a1vVO5xw5dmWiKitxUdUiMwrjLu/BOk6belTK9u3Avs7C9Y3AmuiVFeQdNMZnYkFfB3FQNyIrDnYMzgcZq3ukoaSd8t5WNzMnVVBKt69IgiupkiWaus1bsO4pR3ZO5VxRdmWjt5tnvtrJpz2ev7AYjPRfiWMmX3MblldcxTyDMY4c6SIvJZNz/e8l+9EyLZu7myOtPMI4fuDgbmRGNfJM3DQrtwTiu9uH4qamb2JTc06M6w0qDL8ZxOtMuyEvI1vwqXNc7FUMZx94y0VQeuUXrmGjFby/vzGcwdBy/s3AvquoduHNwFromRngHqYzjcuZ5ZmD7ONxBnmeafDl+7tutbN/soyM6IpHWxcOiuNCy2DFrSyFW7tdxrA5eYzLZssOE6dvY2tmzV3aFoRmOb+mfjn5+HO85UsPcAl7Qzs45pnZMxl9K2j/N2gkZnOMMcwMfqJAlenQ6c082JyjHWWzP8dPTOMe/HdUZUSrHNEiSJExZewjbCgI5LglLx7WHn2L3WC7ckJ0+LNpzFKWyTnNR4WfgQm7ImKW/fibUBUSbDahq0m9hANJsJhTUuNAtcQB2lzahb2o/bC5qRM/kvthe3IiIMAkZMWHYe9SB+Aufw+wNFXB2eRw7ihuQf8SJoVf9Gz/OLUSaPR0dR16F2QuPwNX1ATQlh2HW8lJE9HkcxtQwzJ5XhMYuV+PyG+7BnI/3w26x4M3f7cTPk/dj3eZCjLr5Q0TZ3ZjzWS7bCP7n3+/B3jVFmLW4EHKvrrh3/G7s/LkIM38uhHVgF9z2+73I3VqK2bPyUNUpHo89m4umuirMept7WnnhhX/RShJ2ri3HjBUHmVutO58vYJrAqlmlWLCzGP0zL8BwckHWUIHVc7ifS/IBOPK5g0zb27vLiZlbDrKX96H7XgeG/57lPe+DLThwtI6/UE+uZx1MozEKP2zmX97+w5VdgXHbuNZhicb3m5ayNcV7LmoP3PA+MIbvYdy4tADTNxawadIb+6UBfyTXZ2XMuwa5oiL3WJd0SUTv9A48jk0hS8wN2PK9peiTHsOFHrlQos7GZMGeHSX4YXMhs1BjQm/ok8DgR7VObvrGfLZQf9uADCA+Dnj+MNeUTWZsPFTJXDfRNBmr2/X/ZF84II2ejFSog6OZnd+P7gJkDAReLNK0cPLnOXf7EeavkAm9B+bxfaEGEw7kVTOfjx0SFKHX906g91jt8zIknHJK6zD6ghSytACezeFlMtuxfVse44iEFBN6l7/CXVW5HcyI6ev1h5kxBK2lMsfgzKUcLxO5qZr2C3dBxjrksZO5dk/GMWUN7HnT+uPzV3UHulzJ3aIpgnHhzmKsO1iOQdnxXOg9td7L8XbOMa37sA6ZXJMNfkzjmNzKkfXt2EH+HIdjY14Fd0FmUjn+F3D120xrJkMocqlHS4jPUBvy53hPKebtOIKuyVbeIT84X+M496DCcWIUF3r97gL63OHD8YHSOlzJOLYBzx7QON629SDjuL7JzYXe5a8Cl77o5XjDYabkkNBjjudfKPByfIBznKRyfMcUL8dHOcfkumzCVd2ArmN8OF6w8wh3zZcdz4Xe0xs5x2ER2L31CL7fVMAGfozji5/mX4rQcUzv1FhyXRYXD0w4xOtjDNM4Dlc5pnfumncYx0cDOB7k145L2LtHbt44xwsYxw0VDpR4+D5lTzvlKxKnGGJ68yR4ZCFrQRWqZx6JRqHsq0J8ukFSXAeZlP8wo5F9647dP5xPN1oirWjy8LzkSD4taDGHoTGMC+SIyCg0GPk0Y2SUFXUmJTwiAnXmFK8Hlug0r7WmPRa1Fh7H1qpsKaiR+NSnLcLM1sCqPcoHZMlFmS2ZfWyTnysuyCypWvWZ2zJ7KiqdPP9YuobcG8VmaRZwmgsyMulWLC+ZCzIaNUanoayBT9+y9QzKlKZKI2JRWqO4IKNFf5rutSaiRPlwBe39Y95YmAuyRDTKRvZyBrogs2luubR1JZ1LL3VjurZG4+P2STGp1nvHoLrp9jb5eN0g101ma+DeJr8pYe+eNl0ctYvwyMC9TWqZtLRBPFyQeyxTOPLV/Vb6MhE/Zlvz3jEoX0ny7vPSx1GbDY8KtP7zK1NQLy+Ke6ygnmeoTMr6l3djdBCOg3l5UTimAZLqAcjHo0dLZSKOwyI0HmgNjNazAusTxKOKynGwMuk4DrAK1XMczMuLwjEZEFG3Q+1a80qkL5O6QTwukGOfvaRBOA7aVoljgzHQtZyOYzJeUd8pHzdiyvpwUM8zCseHW+M4mOcZxnHYuemGjL6nR9/Daw70wVhatN28WbFeok9+rVyJXr16ISwsDDfeeCPOFGi6RHX9dbw+OtVN5Hq5WK/sBVM78lpls3dlg8P7gU5FSOwo5Gtn9FLTyJtA02lq3iv286k+8rq+v5SP5kiY7D5SreVdpeRLAnzlvqPaPriDZXXMnyGB9khRnJqOOhIacdKXBfj9+Qh0ewGPb3S4GT+qpWNEmBFrc8vZNTRNwvNwsWvopwoUcgGmhqkvGX05QQ3bls/rS7yrG9epDqpXmINH67RrF+/mBi2kOaj0U/jcbdyghVxDRSlbLdS43UrZ6pp4+dVwGtGrz0MTiAqIG/WlLlXKqs+Tpqr05/pjGnUTqBxR4b6TJxS/s5DzSVZ6/mnpqwwEMjrQx6nxuUe5RkEaoX/aNQf4lG6YQQqII8e/xC+1R01w6eJpOo/gdHOe9XHk/FrdZuLf5Cl+v9I2qYP0T/vzPj6FHRlmCozbW6rzlOPbwTGOD1a0yjFp79QOm+eYt0d93E+7OMdkERqMY3pHGMe1gRyvzuHPnTbp+8fNbZXjyhY45u06PsocnOMS/k5WB+WY9wfEg38czVSo+1c1v7N6jvOa55imLlWe/F3AUfyuIv7cSXNtth1HBOc4T+GYPDHp412aU2Hg85UHta1SpxJt/nJ6a19TDwa3282+mp6QkMA+KksYPHgwunTpgokTJ8JqtbK09MV1vWA81V9On7e9iM2Nc88irVsOSbRdIcg4IRwOOJRN5Ua4yL00YlCNStiRjHIUIw5pKEEBkpCOYrZuZ0ctXDCxzeZ9pX3YLHfGhdIebJI7s1XFKw1rMd8zGGkoRYZUijVyDwyWdrLN61vkThhp2IRG2czCB0h7kC0V4RvPSMSgBk+YZuAt11i2H/Bx4w84KKdgjucixKIaT5u+x39dV6MAiegt5eAm40q857oZVbBigLQb1xjX4v9c16FEKfNvLT9igWcQFjnom30y/mr6GLWIwF9cd7B6ZqAYv7PMwm6pA/7TcBnjYJC0C2PNK7Fe6okpDRexsM44jKctc7BLysa/G0Zr3L0f+V+0S4jGc+XXYV8tf0m7IQ/jLLOwT8rC2w3XaddeacvFOOsiLKzOxDt1V2rhnexuTI37GI0RyRhbcBsKqr0u4h61LseNtt2YVDMAk2v7a+EpdjMmdVqCzp6DWJd4C55cY0eJIhAJd1vXY1z8WhS3G4WHdvbVOmtCut2EWbaJaIhshzuL78bBau8rRB3N552WoYtjNzYk3YQn1yf5pL3IdhT/jv4CNTHdMPbwzT5xlPbr1CnIsDRiZdoDGP+zzAYLKm627sALcT/haPIw3L93SEDaWdF/gzM8Bg+W3Iqd1RafuE+6b0SP2rXYEnclHt3SwSdtD3sjJtveR701E78qugdFuntS2imZM5FtKMHalDvw29WROKKLH207iIkxM1AR3x/35F4RUKbvE2ibioQnS2/E+uoYH/4/6pODPuXzsCP6Ejy0o7dP2gy7ETOtE9EQlRaU4y86LkVn554WOa6O6Y47Dt8UUKZvUicj3dKElekPYvxyjw/Ht1i34/m4Jc1yPNv+Fhzm2GY43oAeteuwOX4MHtuc7ZP2AnsDvrR9cAwc34nfro4IznHChbjnwOXNcGzAE6U3YIMfx//psx+9y+dje/RIPLyjp0/aTLsRM1rkeAk6u/ZhfeJNeGp9ok/aIbZSfBA9qQWOv0S6xYGV6Q9h/HK3D8e/sm7HhLil2GK+EA/uG+ItL46iRErAw8Oz8fzVPdBWHKs8OOXTmw6Hg31VPSUlRRN4hJycHFx22WVIT09HTIz3QZ0ukMB79MuN2pTJsUDbs+cHMnTxP46W+MgmQeIj6lSJjxjTJD4SjpdqtA3r3SS+V6yvtF8xowGGG/jXEzKlEnQzcAuqAYa9yJL4CHGYYQe6GHi6/oa9GG7k1ydKlXjYNEcr6VjjUvQxcDPrBKka95vmw6ZsMO8lHcD9pnkIB+egn2E/iyePLvzepbgNC5HmOqzV/3bTUjxomqttmM8wlOJm/ISBzo0aB30N+1hYV4fXl14XQz6uwzIMcm3SMefBGPdS9C/5XnPhRehoKMIYrMIgt/5aIL7+ALpXLEF3B6+rCkNNERKPLIftwBwfgcfyatyJbhVLEd2gWKEpoJewbPti5iZp8uL1PgKPPafGfUgoXol1v6z1eaH5/QoQW7YJcYcW4GC178iUpgaLti5hXwn/aunGgLTWujzEHV2P6r0rAuIorTH3J1amv8/Z7tNREJIbcpBQsho7Nq8OSFtXVc7iUvPnIk/Xean57tmwlLnGmrtyfUBac81hxJZthHxwhU9nrKat27OUuYP7z8ItPp0xIbY+F/Gla3F4x6qAfIur6hGbvxQpBQtwRHExp8VVN+GX1UuAnJ+wat0vAWmNxHH5ZsQeWhic422c42lBOLYpHFftXdkMx0sYx3/7cVuzHG/fHPjc66rKEF+6hnF8UDF81ue7V+F43opAji2tcFy/Zwnj+KMgHMcpHB/a3hzHS5BSMB/FNc4gHC9lHK9cty4Ix/mM45hDi4JyfGTbUmDvvGY4Psg4rmyGY5PC8VtBOE5p2I+EklUoz1X2hipIQiXTej9anouJc7gNwalAm4VeXV0dfv3rXzPtLDU1FW+//XbAF9Fff/11dg1J20ceecRnelM9LisrwwMPPMCOP/vsM7z22mvYsmULO1fDThVIvSbLv7YjuDaoCiq9BxYtTg50Uaa6JWtUvK84FHsiVZAQGmQ+XWKWnJoHFUpTJUdpHl8qlG8ARqIJlTJfp6OP2NZ4LEyLVMtT4onR/HXWy2YtP6vUwM5V12d21LHzOpmPYKNQz85LZJ4+DC52XuWJ1OocI9ewsFzZa16fIFexsEOy11Q5Ua5kYYU6gyFygeZAGM9TWUdkeYLnme/hLsxUkKbKw31NoBNQwcIPegJN/NU0h/3SkFiIlXlcnl8cIUnJM9fjtzWCBjA4yuL2eejzPVJAvvHg9T/oCTSHJ82f4nI8fJ1UD5olsMv1AdwdS5noQ6AUV+CJQx0igpSpslmOUpW0wcqkr09eC/U5ECRtHKqY1yFqj0VyXEC+an0OBClTisZxu6AcxynPNXiZ1PoE8mSCE7YWOeb1yW2BJ2qXqjtAfZkSFI6DpVXLtJ/VB0Hq0zzHSUraYBzTsyF3htWeCBQG5bj5+qQo+e5j+QZrx5UtcFzRbJshju1onuPEZtqxvo/8+OfcUzbV2ebpzccffxw//vgjPv30UyQlJeGFF17AsmXLmACjKUoSehUVFXj55Ze1tTrS9LKzs7Fp0ya2jkdTnV27dsWf/vQn3H777UwlfemllzBv3jwsWrSIpaEwMtDQo6mpif306mxGRkabpzfJ+uyOjxVvAgICAgICZxwv1BbiL1bvoOCla7rjQbIwPcnTm23aslBbW4tPPvkEX375JUaNGsXCPv/8czZFqQdNW/7+99wMnUDanQp1qpN504iOZscE0hxp+lM9DwZa/yON8ERRonyqRkBAQEDg7ECti/YKepeK8hTDspONNgk9WoejNToyQlERFxfHtDY9BgwYgFOB559/HuPHjw/Q9NoK/49tFnz0MF649l3E6L2H+IE2bHInPb7n+nD/MH1creLT0yoHxqv/+muCXd9cPB1/Et2EB6vMJxwX7JxwPNe0JexkXNtaXEtpjjfPU5mvKNPZnVaU6eSkfbrSzPo3I5tU9Qq9rCAf5T1rN6dHRXnXZ04mzGYz+50oaOMxWTapC8ayy4EwclfZggUnzS5z73++5/pw/zB9nLobhe7R3HX6a4Jd31y8ehwG6aTE+Z8f7zVtCTsZ1x5PGtVf7/HmeSryFWU6u9OKMp38tGo/qN/vfM+QIC7kTrchS8eOHdm+urVr13rdr1VUYO/evSdckPDwcLa14XSAnCm/ej2Z4AuEOsb0MZ11+Yoynd1pT1W+51uZxpxAWtq2wL50cgrQplLRutuDDz6IZ555BvHx8cyQ5cUXX4RBdbB8AiADmNzcXGbhSWuENpvtpGh1zWFMz1R8eHd/tk9P8bN/TqMlB+VtifM/t9JMsNz2a441LM4qYXAnI9bscwNVx3cthd85jFugTv7ZERDXUpoBHU3omGIMmq6lPFuLO5F8RZnO7rSiTDgpaXOOuDFvi3c6U9Xwjnef3imz3iRjlsceewzTp09ngokMVsiaU92cTsKLvLPoPbSQIYtqvUnXEWhvHl1/3333sXOyyrzrrruwePFiVFZW4n//+58Wd6o2p6vbF1LatcNvL38PsdYg3sBP0pqeJ0L5knqDodnr9NcEu765eDru/rQBu/7pOeE4//MLxnHPDDvec7fpmraE0SdJyNvNiVzLvs2meM1pa5qW0p1I3JlKK8oUmvU5G8vUWrzL5cHuv6r9IPDI+yOPW8M7JdabqrY3adIk9lNBml8wS00VJAj9ZSsJNj1Iq/v229PzEUH/qc5jIZlpN3LguT7cP0wfp7pV9LRwnf6aYNc3F0/HJpMBJqPnhOP8z9XGScdtuaatYfR/ote2FNdSmuPN81TmK8p0dqcVZZJOSlrqSyT6dqjSD56qKU2f8pzyOwgICAgICJwlEEJPQEBAQCBkIISegICAgEDIQAg9AQEBAYGQgRB6AgICAgIhAyH0BAQEBARCBkLoCQgICAiEDITQExAQEBAIGQihJyAgICAQMhBCT0BAQEAgZCCEnoCAgIBAyEAIPQEBAQGBkIEQegICAgICIQMh9AQEBAQEQgZC6AkICAgIhAyE0BMQEBAQCBkIoScgICAgEDIQQk9AQEBAIGRgwjkMWZbZf3V19Qnl4/F40OisR4OjrvmLJBmQpcBzfbh/mC7O0OTm93IYm71Of02w65uLp+OyCjcamownHBfsnHA817Ql7GRc21pcS2mON89Tma8o09mdVpTpJKV1hCn94In15WpaVS40B0lu7YqzGPn5+cjIyDjTxRAQEBAQOEtw+PBhpKenn59CjzS0wsJC2Gw2SJJOCxM4JaCRFA0yqFHZ7fYzXZyQgOD89ENwfm7yTaKspqYG7dq1g8FgOD+nN6liLUl0gVMDapiiMzi9EJyffgjOzz2+o6OjW71GGLIICAgICIQMhNATEBAQEAgZCKEncMwwm8145ZVX2L/A6YHg/PRDcH5+831OG7IICAgICAi0BULTExAQEBAIGQihJyAgICAQMhBCT0BAQEAgZCCEnoCAgIBAyEAIvRDHBx98gPbt28NisWDw4MFYt25ds9d+/PHHGD58OGJjY9nv8ssvD7j+vvvuY95x9L8xY8achpqcn5x/9tlnAXxSOj3IFu3ll19GamoqIiIi2HPZt2/faajJ+cf3yJEjA/im3zXXXKNdI9p4y1i+fDmuu+465hmFuPnhhx9aSQEsXboU/fv3ZxacnTp1Yu3+RJ5jSxBCL4Tx1VdfYfz48cxceOPGjejTpw+uvPJKlJSUNNsw77jjDixZsgSrV69mroNGjx6NgoICn+uoAygqKtJ+U6dOPU01Ov84J5CXCj2feXl5PvFvvfUW/vnPf+LDDz/E2rVrERUVxfJsbGxEqKOtfE+fPt2H6+3bt8NoNOLWW2/1uU608eZRV1fHeCYhdSzIzc1lg4pLL70Umzdvxrhx4/DQQw9h/vz5J/TeNAvasiAQmhg0aJD8xBNPaOdut1tu166dPHHixGNK73K5ZJvNJn/++eda2L333ivfcMMNp6S8ocj5//73Pzk6OrrZ/Dwej5ySkiL/7W9/08IqKytls9ksT506VQ51nGgbf/fdd1kbr62t1cJEGz92kIj5/vvvW7zm2WeflS+44AKfsNtvv12+8sorT9pz1ENoeiEKh8OBDRs2sKkwvS9TOict7lhQX18Pp9OJuLi4AI0wKSkJXbt2xWOPPYaysrKTXv5Q4ry2thZZWVlMs77hhhuwY8cOn1HykSNHfPIk/4M0/XOsz/F8xclo45988gnGjh3LtGc9RBs/eaBnoX9GBNLi1Gd0Mp6jHkLohSiOHj0Kt9uN5ORkn3A6p070WPDcc8+xeXt9Y6Rpny+++AKLFy/GX//6VyxbtgxXXXUVu1eo43g4p071008/xYwZM/Dll1+yL4sMHTqUfVaLoKY7ked4vuJE2zitGdH0Jk216SHa+MkFPYtgz4i+vtDQ0HBS+qrz5isLAmcOb775JqZNm8ZGvHrDChoVq+jVqxd69+6Njh07sutGjRp1hkp77mLIkCHsp4IEXvfu3fHRRx/h9ddfP6NlO99BWh614UGDBvmEizZ+bkNoeiGKhIQEtkBfXFzsE07nKSkpLab9+9//zoTeggUL2AvfEjp06MDutX//foQ6ToRzFWFhYejXr5/Gp5ruRPI8X3EifJMxBg3qHnzwwVbvI9r4iYGeRbBnRAZcZI18Mt4bPYTQC1GEh4fjwgsvZFM0KmjqjM71moU/yFKQNIx58+ZhwIABrd6HpuFovYPM6UMdx8u5HjTNs23bNo3P7Oxs9uLr86RpIbLiPNY8z1ecCN/ffPMNmpqacPfdd7d6H9HGTwz0LPTPiLBw4ULtGZ2M98YHbTZ9EThvMG3aNGbl99lnn8k7d+6UH3nkETkmJkY+cuQIi7/nnnvkCRMmaNe/+eabcnh4uPztt9/KRUVF2q+mpobF0/8f/vAHefXq1XJubq68aNEiuX///nLnzp3lxsbGM1bPc5nz1157TZ4/f76ck5Mjb9iwQR47dqxssVjkHTt2+DwXymPGjBny1q1bmWVhdna23NDQIIc62sq3imHDhjELQn+INt46iKNNmzaxH4mYd955hx3n5eWxeOKbeFdx4MABOTIyUn7mmWfkXbt2yR988IFsNBrlefPmHfNzbAuE0Atx/Otf/5IzMzOZMCOz4DVr1mhxI0aMYObZKrKyslgj9v+98sorLL6+vl4ePXq0nJiYKIeFhbHrH3744eNqmOcz2sL5uHHjtGuTk5Plq6++Wt64cWPAtoWXXnqJxVPHMGrUKHnPnj2ntU7nC9+E3bt3s3a9YMGCgLxEG28dS5YsCdpPqDzTP/Hun6Zv377sGXXo0IFt1WnLc2wLxKeFBAQEBARCBmJNT0BAQEAgZCCEnoCAgIBAyEAIPQEBAQGBkIEQegICAgICIQMh9AQEBAQEQgZC6AkICAgIhAyE0BMQEBAQCBkIoScgICAgEDIQQk9AQEBAIGQghJ6AgICAQMhACD0BgXMYr7zyCvumG33Zmz6qSV/xpq/ZCwgIBIf4iKyAwDkKxWE8+6BsWloadu7ciXvvvZd945CEn4CAQCCEw2kBgfMId955J5KSkvDee++d6aIICJyVENObAgLnKPLy8vDEE0+gZ8+eiI2NhdVqxddff4309PQzXTQBgbMWQugJCJyDKC0txcCBA9kXu9955x2sWLECq1atgsFgQJ8+fc508QQEzlqINT0BgXMQs2bNgtvtxtSpUyFJEgt7//33mRFL3759z3TxBATOWgihJyBwDiI+Ph7V1dWYOXMmevTowYTgxIkTmUFLYmLimS6egMBZC2HIIiBwDsLj8eDxxx/HlClTEBERgbvvvhuNjY1snW/27NlnungCAmcthNATEBAQEAgZCEMWAQEBAYGQgRB6AgICAgIhAyH0BAQEBARCBkLoCQgICAiEDITQExAQEBAIGQihJyAgICAQMhBCT0BAQEAgZCCEnoCAgIBAyEAIPQEBAQGBkIEQegICAgICIQMh9AQEBAQEQgZC6AkICAgIIFTw/xH6kGeUgUuqAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"reset_plotting() # Default style for Simbelmynë\n",
"generate_sim_params(lpt_params, ICs_path, wd, simdir, None, force)\n",
"generate_sim_params(p3m_params, ICs_path, wd, simdir, file_ext, force)\n",
"setup_plotting() # Reset plotting style for this project"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "f5b71b98",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[15:14:42|\u001b[38;5;113mSTATUS \u001b[00m]|Read custom timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5'...\n",
"[15:14:42|\u001b[38;5;113mSTATUS \u001b[00m]|Read custom timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5' done.\n"
]
}
],
"source": [
"TSpath = wd + file_ext + \"_ts_p3m.h5\" if file_ext else wd + \"ts_p3m.h5\"\n",
"if TimeStepDistribution in [0, 1, 2]:\n",
" TS = StandardTimeStepping.read(TSpath)\n",
" aiDrift = TS.aiDrift\n",
" nsteps = TS.nsteps\n",
"elif TimeStepDistribution == 3:\n",
" TS = P3MTimeStepping.read(TSpath)\n",
" aiDrift = TS.aiDrift\n",
" nsteps = TS.nsteps\n",
"else:\n",
" raise ValueError(f\"Invalid TimeStepDistribution: {TimeStepDistribution}\")"
]
},
{
"cell_type": "markdown",
"id": "56d49527",
"metadata": {},
"source": [
"### Generate the initial phase"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "6969353d",
"metadata": {},
"outputs": [],
"source": [
"generate_white_noise_Field(\n",
" L=L,\n",
" size=N,\n",
" corner=corner,\n",
" seedphase=BASELINE_SEEDPHASE,\n",
" fname_whitenoise=input_white_noise_file,\n",
" seedname_whitenoise=input_seed_phase_file,\n",
" force_phase=force,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "af2c102d",
"metadata": {},
"source": [
"### Generating the input power spectrum"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "eeddae78",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[15:14:42|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid...\n",
"[15:14:42|\u001b[38;5;113mSTATUS \u001b[00m]|Setting up Fourier grid done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum...\n",
"[15:14:42|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook12/input_power.h5'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing normalization of the power spectrum done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Computing power spectrum done.\n",
"[15:14:42|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mL0=32, L1=32, L2=32\u001b[00m\n",
"[15:14:42|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]==|\u001b[38;5;246mN0=32, N1=32, N2=32, N2_HC=17, N_HC=17408, NUM_MODES=464\u001b[00m\n",
"[15:14:42|\u001b[38;5;113mSTATUS \u001b[00m]|Write power spectrum in data file '/Users/hoellinger/WIP3M/notebook12/input_power.h5' done.\n"
]
}
],
"source": [
"# If cosmo[\"WhichSpectrum\"] == \"class\", then classy is required.\n",
"if not isfile(input_power_file) or force:\n",
" Pk = PowerSpectrum(L, L, L, N, N, N, cosmo_small_to_full_dict(cosmo))\n",
" Pk.write(input_power_file)"
]
},
{
"cell_type": "markdown",
"id": "ed3ab1c8",
"metadata": {},
"source": [
"## Running the simulations"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e3ed21b6",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[15:14:42\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_lpt.sbmy /Users/hoellinger/WIP3M/notebook12/logs/lpt.txt\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 15:14:42: Starting SIMBELMYNË, commit hash 15f03ec44e13086a2d9c19f9742a0c06ec9b9a46\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_lpt.sbmy'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_lpt.sbmy' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook12/input_white_noise.h5'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook12/input_white_noise.h5' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook12/input_power.h5'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Reading power spectrum in '/Users/hoellinger/WIP3M/notebook12/input_power.h5' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading power spectrum done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Generating Gaussian random field (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook12/initial_density.h5'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook12/initial_density.h5' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.003 CPU - 0.002 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.049 CPU - 0.016 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs...\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook12/lpt_density.h5'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook12/lpt_density.h5' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook12/lpt_particles.gadget3'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook12/lpt_particles.gadget3' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook12/lpt_particles.gadget3' (32768 particles)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook12/lpt_particles.gadget3' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Computing outputs done.\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT output: 0.016 CPU - 0.004 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.068 CPU - 0.023 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 0.069 CPU - 0.023 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
]
}
],
"source": [
"run_simulation(\"lpt\", lpt_params, wd, logdir)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "39c97bc2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[15:14:42\u001b[00m|\u001b[38;5;227mCOMMAND \u001b[00m]|\u001b[38;5;227msimbelmyne /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_p3m.sbmy /Users/hoellinger/WIP3M/notebook12/logs/p3m.txt\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~~-.--.\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| : )\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .~ ~ -.\\ /.- ~~ .\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| > `. .' <\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( .- -. )\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `- -.-~ `- -' ~-.- -'\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ( : ) _ _ .-: ___________________________________\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~--. : .--~ .-~ .-~ } \u001b[1;38;5;157mSIMBELMYNË\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.-^-.-~ \\_ .~ .-~ .~ (c) Florent Leclercq 2012 - SBMY_YEAR \n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| \\ ' \\ '_ _ -~ ___________________________________\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| `.`. //\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| . - ~ ~-.__`.`-.//\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .-~ . - ~ }~ ~ ~-.~-.\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| .' .-~ .-~ :/~-.~-./:\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| /_~_ _ . - ~ ~-.~-._\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]| ~-.<\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|\n",
"[15:14:42\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|2025-06-24 15:14:42: Starting SIMBELMYNË, commit hash 15f03ec44e13086a2d9c19f9742a0c06ec9b9a46\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_p3m.sbmy'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]|Reading parameter file in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/example_p3m.sbmy' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot...\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Initializing snapshot done.\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT snapshot initialization: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions...\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook12/initial_density.h5'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Reading field in '/Users/hoellinger/WIP3M/notebook12/initial_density.h5' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Returning initial conditions done.\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT initial conditions: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores)...\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian potentials, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Computing Lagrangian displacement field (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Changing velocities of particles done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Displacing particles done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleLPT: Evolving with Lagrangian perturbation theory (using 8 cores) done.\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|LPT evolution: 0.048 CPU - 0.016 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModuleLPT: 0.049 CPU - 0.016 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M...\u001b[00m\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Read timestepping configuration in '/Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/simbelmyne/simbelmyne2025/WIP_P3M/results/notebook12/ts_p3m.h5' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputForceDiagnostic: force_diagnostic.csv\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|OutputSnapshotsBase: particles_\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModulePMCOLA: L_minus operator: changing reference frame before COLA evolution...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModulePMCOLA: L_minus operator: changing reference frame before COLA evolution done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 1/74, time_kick:0.050000, time_drift=0.050000.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 1/74 done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 1/74, time_kick:0.051250, time_drift=0.052500.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Density: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Accelerations (long-range): 0.064 CPU - 0.014 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Accelerations (short-range): 0.235 CPU - 0.040 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 1/74: Total Evolution: 0.325 CPU - 0.061 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 2/74, time_kick:0.051250, time_drift=0.052500.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 2/74 done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 2/74, time_kick:0.053813, time_drift=0.055063.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Density: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Accelerations (long-range): 0.064 CPU - 0.014 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Accelerations (short-range): 0.254 CPU - 0.039 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 2/74: Total Evolution: 0.342 CPU - 0.060 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 3/74, time_kick:0.053813, time_drift=0.055063.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 3/74 done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 3/74, time_kick:0.056503, time_drift=0.057753.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Accelerations (long-range): 0.060 CPU - 0.015 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Accelerations (short-range): 0.244 CPU - 0.038 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 3/74: Total Evolution: 0.329 CPU - 0.060 wallclock seconds used.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 4/74, time_kick:0.056503, time_drift=0.057753.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 4/74 done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce3.h5.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce3.h5'...\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce3.h5' done.\n",
"[15:14:42\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p3.h5'...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p3.h5' done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 4/74, time_kick:0.059328, time_drift=0.060578.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Accelerations (long-range): 0.061 CPU - 0.021 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Accelerations (short-range): 0.257 CPU - 0.063 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 4/74: Total Evolution: 0.346 CPU - 0.094 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 5/74, time_kick:0.059328, time_drift=0.060578.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 5/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce4.h5.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce4.h5'...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce4.h5' done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p4.h5'...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p4.h5' done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 5/74, time_kick:0.062295, time_drift=0.063545.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Accelerations (long-range): 0.063 CPU - 0.020 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Accelerations (short-range): 0.253 CPU - 0.061 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 5/74: Total Evolution: 0.346 CPU - 0.092 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 6/74, time_kick:0.062295, time_drift=0.063545.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 6/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 6/74, time_kick:0.065409, time_drift=0.066659.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Potential: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Accelerations (long-range): 0.064 CPU - 0.017 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Accelerations (short-range): 0.249 CPU - 0.054 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Drift: 0.002 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 6/74: Total Evolution: 0.340 CPU - 0.081 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 7/74, time_kick:0.065409, time_drift=0.066659.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 7/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 7/74, time_kick:0.068680, time_drift=0.069930.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Accelerations (long-range): 0.061 CPU - 0.017 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Accelerations (short-range): 0.255 CPU - 0.056 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 7/74: Total Evolution: 0.344 CPU - 0.083 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 8/74, time_kick:0.068680, time_drift=0.069930.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 8/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce7.h5.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce7.h5'...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce7.h5' done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p7.h5'...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p7.h5' done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 8/74, time_kick:0.072114, time_drift=0.073364.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Accelerations (long-range): 0.058 CPU - 0.015 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Accelerations (short-range): 0.233 CPU - 0.054 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 8/74: Total Evolution: 0.322 CPU - 0.080 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 9/74, time_kick:0.072114, time_drift=0.073364.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 9/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 9/74, time_kick:0.075720, time_drift=0.076970.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Accelerations (long-range): 0.057 CPU - 0.015 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Accelerations (short-range): 0.249 CPU - 0.049 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Kick: 0.005 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 9/74: Total Evolution: 0.334 CPU - 0.072 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 10/74, time_kick:0.075720, time_drift=0.076970.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 10/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 10/74, time_kick:0.079506, time_drift=0.080756.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Density: 0.007 CPU - 0.004 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Potential: 0.010 CPU - 0.006 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Accelerations (long-range): 0.065 CPU - 0.021 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Accelerations (short-range): 0.265 CPU - 0.070 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 10/74: Total Evolution: 0.356 CPU - 0.104 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 11/74, time_kick:0.079506, time_drift=0.080756.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 11/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 11/74, time_kick:0.083481, time_drift=0.084731.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Accelerations (long-range): 0.061 CPU - 0.037 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Accelerations (short-range): 0.251 CPU - 0.161 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Kick: 0.006 CPU - 0.004 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 11/74: Total Evolution: 0.343 CPU - 0.210 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 12/74, time_kick:0.083481, time_drift=0.084731.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 12/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 12/74, time_kick:0.087655, time_drift=0.088905.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Potential: 0.011 CPU - 0.005 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Accelerations (long-range): 0.063 CPU - 0.015 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Accelerations (short-range): 0.259 CPU - 0.061 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 12/74: Total Evolution: 0.349 CPU - 0.086 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 13/74, time_kick:0.087655, time_drift=0.088905.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 13/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 13/74, time_kick:0.092038, time_drift=0.093288.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Density: 0.011 CPU - 0.002 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Accelerations (long-range): 0.060 CPU - 0.015 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Accelerations (short-range): 0.256 CPU - 0.052 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 13/74: Total Evolution: 0.343 CPU - 0.075 wallclock seconds used.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 14/74, time_kick:0.092038, time_drift=0.093288.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 14/74 done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:43\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 14/74, time_kick:0.096640, time_drift=0.097890.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Density: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Accelerations (long-range): 0.064 CPU - 0.015 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Accelerations (short-range): 0.254 CPU - 0.045 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 14/74: Total Evolution: 0.342 CPU - 0.068 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 15/74, time_kick:0.096640, time_drift=0.097890.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 15/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 15/74, time_kick:0.101471, time_drift=0.102721.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Potential: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Accelerations (long-range): 0.061 CPU - 0.017 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Accelerations (short-range): 0.268 CPU - 0.052 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 15/74: Total Evolution: 0.357 CPU - 0.078 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 16/74, time_kick:0.101471, time_drift=0.102721.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 16/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 16/74, time_kick:0.106545, time_drift=0.107795.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Accelerations (long-range): 0.061 CPU - 0.016 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Accelerations (short-range): 0.255 CPU - 0.052 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 16/74: Total Evolution: 0.344 CPU - 0.077 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 17/74, time_kick:0.106545, time_drift=0.107795.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 17/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 17/74, time_kick:0.111872, time_drift=0.113122.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Accelerations (long-range): 0.061 CPU - 0.017 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Accelerations (short-range): 0.258 CPU - 0.050 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 17/74: Total Evolution: 0.347 CPU - 0.075 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 18/74, time_kick:0.111872, time_drift=0.113122.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 18/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 18/74, time_kick:0.117466, time_drift=0.118716.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Accelerations (long-range): 0.062 CPU - 0.024 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Accelerations (short-range): 0.258 CPU - 0.064 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 18/74: Total Evolution: 0.348 CPU - 0.098 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 19/74, time_kick:0.117466, time_drift=0.118716.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 19/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 19/74, time_kick:0.123339, time_drift=0.124589.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Density: 0.007 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Accelerations (long-range): 0.064 CPU - 0.038 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Accelerations (short-range): 0.249 CPU - 0.074 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Kick: 0.007 CPU - 0.004 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 19/74: Total Evolution: 0.340 CPU - 0.123 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 20/74, time_kick:0.123339, time_drift=0.124589.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 20/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 20/74, time_kick:0.129506, time_drift=0.130756.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Density: 0.008 CPU - 0.006 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Potential: 0.012 CPU - 0.006 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Accelerations (long-range): 0.067 CPU - 0.019 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Accelerations (short-range): 0.266 CPU - 0.065 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Kick: 0.007 CPU - 0.004 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 20/74: Total Evolution: 0.361 CPU - 0.100 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 21/74, time_kick:0.129506, time_drift=0.130756.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 21/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 21/74, time_kick:0.135982, time_drift=0.137232.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Potential: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Accelerations (long-range): 0.063 CPU - 0.014 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Accelerations (short-range): 0.252 CPU - 0.042 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 21/74: Total Evolution: 0.347 CPU - 0.065 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 22/74, time_kick:0.135982, time_drift=0.137232.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 22/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 22/74, time_kick:0.142781, time_drift=0.144031.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Accelerations (long-range): 0.063 CPU - 0.013 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Accelerations (short-range): 0.267 CPU - 0.040 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 22/74: Total Evolution: 0.361 CPU - 0.060 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 23/74, time_kick:0.142781, time_drift=0.144031.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 23/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 23/74, time_kick:0.149920, time_drift=0.151170.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Accelerations (long-range): 0.064 CPU - 0.013 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Accelerations (short-range): 0.254 CPU - 0.039 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 23/74: Total Evolution: 0.345 CPU - 0.059 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 24/74, time_kick:0.149920, time_drift=0.151170.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 24/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce23.h5.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce23.h5'...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce23.h5' done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p23.h5'...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p23.h5' done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 24/74, time_kick:0.157416, time_drift=0.158666.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Accelerations (long-range): 0.062 CPU - 0.013 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Accelerations (short-range): 0.261 CPU - 0.045 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 24/74: Total Evolution: 0.350 CPU - 0.066 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 25/74, time_kick:0.157416, time_drift=0.158666.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 25/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 25/74, time_kick:0.165286, time_drift=0.166536.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Density: 0.011 CPU - 0.002 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Accelerations (short-range): 0.255 CPU - 0.038 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 25/74: Total Evolution: 0.344 CPU - 0.059 wallclock seconds used.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 26/74, time_kick:0.165286, time_drift=0.166536.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 26/74 done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:44\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 26/74, time_kick:0.173551, time_drift=0.174801.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Accelerations (long-range): 0.061 CPU - 0.014 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Accelerations (short-range): 0.260 CPU - 0.040 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 26/74: Total Evolution: 0.348 CPU - 0.061 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 27/74, time_kick:0.173551, time_drift=0.174801.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 27/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 27/74, time_kick:0.182228, time_drift=0.183478.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Accelerations (long-range): 0.062 CPU - 0.015 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Accelerations (short-range): 0.248 CPU - 0.047 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Drift: 0.002 CPU - 0.004 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 27/74: Total Evolution: 0.337 CPU - 0.073 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 28/74, time_kick:0.182228, time_drift=0.183478.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 28/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 28/74, time_kick:0.191340, time_drift=0.192590.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Accelerations (long-range): 0.058 CPU - 0.018 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Accelerations (short-range): 0.249 CPU - 0.047 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Drift: 0.001 CPU - 0.005 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 28/74: Total Evolution: 0.335 CPU - 0.077 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 29/74, time_kick:0.191340, time_drift=0.192590.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 29/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 29/74, time_kick:0.200907, time_drift=0.202157.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Density: 0.022 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Accelerations (long-range): 0.063 CPU - 0.013 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Accelerations (short-range): 0.315 CPU - 0.044 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 29/74: Total Evolution: 0.416 CPU - 0.066 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 30/74, time_kick:0.200907, time_drift=0.202157.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 30/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 30/74, time_kick:0.210952, time_drift=0.212202.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Accelerations (long-range): 0.063 CPU - 0.012 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Accelerations (short-range): 0.271 CPU - 0.039 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 30/74: Total Evolution: 0.364 CPU - 0.059 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 31/74, time_kick:0.210952, time_drift=0.212202.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 31/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 31/74, time_kick:0.221500, time_drift=0.222750.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Density: 0.018 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Accelerations (long-range): 0.063 CPU - 0.013 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Accelerations (short-range): 0.269 CPU - 0.040 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 31/74: Total Evolution: 0.365 CPU - 0.060 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 32/74, time_kick:0.221500, time_drift=0.222750.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 32/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 32/74, time_kick:0.232575, time_drift=0.233825.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Density: 0.011 CPU - 0.002 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Potential: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Accelerations (long-range): 0.065 CPU - 0.012 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Accelerations (short-range): 0.261 CPU - 0.043 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 32/74: Total Evolution: 0.352 CPU - 0.062 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 33/74, time_kick:0.232575, time_drift=0.233825.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 33/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 33/74, time_kick:0.244203, time_drift=0.245453.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Accelerations (long-range): 0.064 CPU - 0.014 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Accelerations (short-range): 0.279 CPU - 0.041 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 33/74: Total Evolution: 0.372 CPU - 0.062 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 34/74, time_kick:0.244203, time_drift=0.245453.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 34/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 34/74, time_kick:0.256413, time_drift=0.257663.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Density: 0.022 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Potential: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Accelerations (long-range): 0.060 CPU - 0.014 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Accelerations (short-range): 0.274 CPU - 0.040 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 34/74: Total Evolution: 0.372 CPU - 0.061 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 35/74, time_kick:0.256413, time_drift=0.257663.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 35/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 35/74, time_kick:0.269234, time_drift=0.270484.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Accelerations (long-range): 0.059 CPU - 0.013 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Accelerations (short-range): 0.275 CPU - 0.042 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 35/74: Total Evolution: 0.360 CPU - 0.063 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 36/74, time_kick:0.269234, time_drift=0.270484.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 36/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 36/74, time_kick:0.282696, time_drift=0.283946.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Density: 0.012 CPU - 0.002 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Potential: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Accelerations (long-range): 0.057 CPU - 0.014 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Accelerations (short-range): 0.275 CPU - 0.043 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 36/74: Total Evolution: 0.359 CPU - 0.063 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 37/74, time_kick:0.282696, time_drift=0.283946.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 37/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 37/74, time_kick:0.296831, time_drift=0.298081.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Accelerations (long-range): 0.063 CPU - 0.012 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Accelerations (short-range): 0.269 CPU - 0.043 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 37/74: Total Evolution: 0.360 CPU - 0.062 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 38/74, time_kick:0.296831, time_drift=0.298081.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 38/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 38/74, time_kick:0.311672, time_drift=0.312922.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Density: 0.022 CPU - 0.004 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Accelerations (long-range): 0.062 CPU - 0.013 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Accelerations (short-range): 0.284 CPU - 0.045 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 38/74: Total Evolution: 0.384 CPU - 0.066 wallclock seconds used.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 39/74, time_kick:0.311672, time_drift=0.312922.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 39/74 done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:45\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 39/74, time_kick:0.327256, time_drift=0.328506.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Density: 0.012 CPU - 0.002 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Potential: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Accelerations (long-range): 0.060 CPU - 0.013 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Accelerations (short-range): 0.291 CPU - 0.045 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 39/74: Total Evolution: 0.379 CPU - 0.065 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 40/74, time_kick:0.327256, time_drift=0.328506.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 40/74 done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 40/74, time_kick:0.343618, time_drift=0.344868.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Density: 0.019 CPU - 0.003 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Accelerations (long-range): 0.059 CPU - 0.014 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Accelerations (short-range): 0.296 CPU - 0.046 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Kick: 0.005 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 40/74: Total Evolution: 0.389 CPU - 0.067 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 41/74, time_kick:0.343618, time_drift=0.344868.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 41/74 done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 41/74, time_kick:0.360799, time_drift=0.362049.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Density: 0.010 CPU - 0.002 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Potential: 0.008 CPU - 0.002 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Accelerations (long-range): 0.058 CPU - 0.020 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Accelerations (short-range): 0.278 CPU - 0.064 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 41/74: Total Evolution: 0.360 CPU - 0.093 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 42/74, time_kick:0.360799, time_drift=0.362049.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 42/74 done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 42/74, time_kick:0.378839, time_drift=0.380089.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Density: 0.008 CPU - 0.010 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Potential: 0.009 CPU - 0.029 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Accelerations (long-range): 0.069 CPU - 0.027 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Accelerations (short-range): 0.296 CPU - 0.106 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Kick: 0.007 CPU - 0.004 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 42/74: Total Evolution: 0.390 CPU - 0.179 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 43/74, time_kick:0.378839, time_drift=0.380089.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 43/74 done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 43/74, time_kick:0.397781, time_drift=0.399031.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Density: 0.007 CPU - 0.004 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Potential: 0.008 CPU - 0.007 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Accelerations (long-range): 0.066 CPU - 0.020 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Accelerations (short-range): 0.296 CPU - 0.064 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Kick: 0.008 CPU - 0.004 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Drift: 0.002 CPU - 0.002 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 43/74: Total Evolution: 0.387 CPU - 0.102 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 44/74, time_kick:0.397781, time_drift=0.399031.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 44/74 done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 44/74, time_kick:0.417670, time_drift=0.418920.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Density: 0.010 CPU - 0.004 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Potential: 0.011 CPU - 0.005 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Accelerations (long-range): 0.063 CPU - 0.015 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Accelerations (short-range): 0.303 CPU - 0.057 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 44/74: Total Evolution: 0.394 CPU - 0.084 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 45/74, time_kick:0.417670, time_drift=0.418920.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 45/74 done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 45/74, time_kick:0.437670, time_drift=0.438920.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Accelerations (long-range): 0.060 CPU - 0.015 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Accelerations (short-range): 0.308 CPU - 0.068 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 45/74: Total Evolution: 0.396 CPU - 0.094 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 46/74, time_kick:0.437670, time_drift=0.438920.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 46/74 done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 46/74, time_kick:0.457670, time_drift=0.458920.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Potential: 0.012 CPU - 0.007 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Accelerations (long-range): 0.061 CPU - 0.016 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Accelerations (short-range): 0.319 CPU - 0.068 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Kick: 0.007 CPU - 0.003 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 46/74: Total Evolution: 0.412 CPU - 0.099 wallclock seconds used.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 47/74, time_kick:0.457670, time_drift=0.458920.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 47/74 done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:46\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 47/74, time_kick:0.477670, time_drift=0.478920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Density: 0.014 CPU - 0.005 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Accelerations (long-range): 0.062 CPU - 0.015 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Accelerations (short-range): 0.329 CPU - 0.072 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 47/74: Total Evolution: 0.422 CPU - 0.099 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 48/74, time_kick:0.477670, time_drift=0.478920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 48/74 done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 48/74, time_kick:0.497670, time_drift=0.498920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Potential: 0.010 CPU - 0.005 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Accelerations (long-range): 0.063 CPU - 0.015 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Accelerations (short-range): 0.322 CPU - 0.068 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 48/74: Total Evolution: 0.413 CPU - 0.093 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 49/74, time_kick:0.497670, time_drift=0.498920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 49/74 done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 49/74, time_kick:0.517670, time_drift=0.518920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Potential: 0.010 CPU - 0.004 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Accelerations (short-range): 0.329 CPU - 0.067 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 49/74: Total Evolution: 0.421 CPU - 0.090 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 50/74, time_kick:0.517670, time_drift=0.518920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 50/74 done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 50/74, time_kick:0.537670, time_drift=0.538920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Potential: 0.009 CPU - 0.006 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Accelerations (long-range): 0.066 CPU - 0.020 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Accelerations (short-range): 0.332 CPU - 0.069 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 50/74: Total Evolution: 0.427 CPU - 0.101 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 51/74, time_kick:0.537670, time_drift=0.538920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 51/74 done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 51/74, time_kick:0.557670, time_drift=0.558920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Density: 0.010 CPU - 0.004 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Potential: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Accelerations (long-range): 0.062 CPU - 0.016 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Accelerations (short-range): 0.341 CPU - 0.076 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 51/74: Total Evolution: 0.433 CPU - 0.104 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 52/74, time_kick:0.557670, time_drift=0.558920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 52/74 done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 52/74, time_kick:0.577670, time_drift=0.578920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Potential: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Accelerations (long-range): 0.064 CPU - 0.022 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Accelerations (short-range): 0.342 CPU - 0.078 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Kick: 0.006 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 52/74: Total Evolution: 0.433 CPU - 0.111 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 53/74, time_kick:0.577670, time_drift=0.578920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 53/74 done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 53/74, time_kick:0.597670, time_drift=0.598920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Potential: 0.008 CPU - 0.004 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Accelerations (long-range): 0.064 CPU - 0.018 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Accelerations (short-range): 0.346 CPU - 0.077 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 53/74: Total Evolution: 0.438 CPU - 0.105 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 54/74, time_kick:0.597670, time_drift=0.598920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 54/74 done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 54/74, time_kick:0.617670, time_drift=0.618920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Accelerations (long-range): 0.062 CPU - 0.017 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Accelerations (short-range): 0.356 CPU - 0.081 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 54/74: Total Evolution: 0.451 CPU - 0.107 wallclock seconds used.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 55/74, time_kick:0.617670, time_drift=0.618920.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 55/74 done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:47\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 55/74, time_kick:0.637670, time_drift=0.638920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Density: 0.015 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Accelerations (short-range): 0.355 CPU - 0.074 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 55/74: Total Evolution: 0.448 CPU - 0.096 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 56/74, time_kick:0.637670, time_drift=0.638920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 56/74 done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 56/74, time_kick:0.657670, time_drift=0.658920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Accelerations (long-range): 0.063 CPU - 0.015 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Accelerations (short-range): 0.370 CPU - 0.076 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 56/74: Total Evolution: 0.462 CPU - 0.099 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 57/74, time_kick:0.657670, time_drift=0.658920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 57/74 done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 57/74, time_kick:0.677670, time_drift=0.678920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Density: 0.017 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Accelerations (long-range): 0.060 CPU - 0.014 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Accelerations (short-range): 0.376 CPU - 0.135 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 57/74: Total Evolution: 0.469 CPU - 0.157 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 58/74, time_kick:0.677670, time_drift=0.678920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 58/74 done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 58/74, time_kick:0.697670, time_drift=0.698920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Density: 0.011 CPU - 0.004 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Potential: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Accelerations (long-range): 0.063 CPU - 0.014 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Accelerations (short-range): 0.367 CPU - 0.089 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Drift: 0.003 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 58/74: Total Evolution: 0.460 CPU - 0.113 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 59/74, time_kick:0.697670, time_drift=0.698920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 59/74 done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 59/74, time_kick:0.717670, time_drift=0.718920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Density: 0.010 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Potential: 0.010 CPU - 0.004 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Accelerations (short-range): 0.385 CPU - 0.088 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 59/74: Total Evolution: 0.474 CPU - 0.111 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 60/74, time_kick:0.717670, time_drift=0.718920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 60/74 done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 60/74, time_kick:0.737670, time_drift=0.738920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Accelerations (long-range): 0.060 CPU - 0.014 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Accelerations (short-range): 0.392 CPU - 0.096 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 60/74: Total Evolution: 0.479 CPU - 0.117 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 61/74, time_kick:0.737670, time_drift=0.738920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 61/74 done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 61/74, time_kick:0.757670, time_drift=0.758920.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Density: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Potential: 0.012 CPU - 0.004 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Accelerations (long-range): 0.062 CPU - 0.013 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Accelerations (short-range): 0.416 CPU - 0.120 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 61/74: Total Evolution: 0.505 CPU - 0.142 wallclock seconds used.\n",
"[15:14:48\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 62/74, time_kick:0.757670, time_drift=0.758920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 62/74 done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 62/74, time_kick:0.777670, time_drift=0.778920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Accelerations (long-range): 0.062 CPU - 0.013 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Accelerations (short-range): 0.403 CPU - 0.089 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Drift: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 62/74: Total Evolution: 0.491 CPU - 0.109 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 63/74, time_kick:0.777670, time_drift=0.778920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 63/74 done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 63/74, time_kick:0.797670, time_drift=0.798920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Density: 0.012 CPU - 0.003 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Potential: 0.009 CPU - 0.002 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Accelerations (long-range): 0.067 CPU - 0.019 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Accelerations (short-range): 0.422 CPU - 0.124 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 63/74: Total Evolution: 0.517 CPU - 0.151 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 64/74, time_kick:0.797670, time_drift=0.798920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 64/74 done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 64/74, time_kick:0.817670, time_drift=0.818920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Density: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Accelerations (long-range): 0.065 CPU - 0.017 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Accelerations (short-range): 0.423 CPU - 0.126 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 64/74: Total Evolution: 0.514 CPU - 0.151 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 65/74, time_kick:0.817670, time_drift=0.818920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 65/74 done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 65/74, time_kick:0.837670, time_drift=0.838920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Density: 0.013 CPU - 0.004 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Potential: 0.010 CPU - 0.006 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Accelerations (long-range): 0.067 CPU - 0.018 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Accelerations (short-range): 0.429 CPU - 0.121 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 65/74: Total Evolution: 0.528 CPU - 0.152 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 66/74, time_kick:0.837670, time_drift=0.838920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 66/74 done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 66/74, time_kick:0.857670, time_drift=0.858920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Density: 0.013 CPU - 0.003 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Accelerations (long-range): 0.063 CPU - 0.019 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Accelerations (short-range): 0.442 CPU - 0.139 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 66/74: Total Evolution: 0.536 CPU - 0.167 wallclock seconds used.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 67/74, time_kick:0.857670, time_drift=0.858920.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 67/74 done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:49\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 67/74, time_kick:0.877670, time_drift=0.878920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Accelerations (long-range): 0.061 CPU - 0.015 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Accelerations (short-range): 0.435 CPU - 0.201 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Drift: 0.001 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 67/74: Total Evolution: 0.527 CPU - 0.224 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 68/74, time_kick:0.877670, time_drift=0.878920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 68/74 done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce67.h5.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce67.h5'...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce67.h5' done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p67.h5'...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p67.h5' done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 68/74, time_kick:0.897670, time_drift=0.898920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Density: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Potential: 0.008 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Accelerations (long-range): 0.058 CPU - 0.016 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Accelerations (short-range): 0.446 CPU - 0.129 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 68/74: Total Evolution: 0.531 CPU - 0.155 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 69/74, time_kick:0.897670, time_drift=0.898920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 69/74 done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 69/74, time_kick:0.917670, time_drift=0.918920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Density: 0.011 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Potential: 0.009 CPU - 0.004 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Accelerations (long-range): 0.062 CPU - 0.014 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Accelerations (short-range): 0.446 CPU - 0.172 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Kick: 0.006 CPU - 0.001 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 69/74: Total Evolution: 0.535 CPU - 0.195 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 70/74, time_kick:0.917670, time_drift=0.918920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 70/74 done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 70/74, time_kick:0.937670, time_drift=0.938920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Density: 0.016 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Accelerations (long-range): 0.068 CPU - 0.020 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Accelerations (short-range): 0.457 CPU - 0.135 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 70/74: Total Evolution: 0.558 CPU - 0.164 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 71/74, time_kick:0.937670, time_drift=0.938920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 71/74 done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 71/74, time_kick:0.957670, time_drift=0.958920.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Accelerations (long-range): 0.066 CPU - 0.016 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Accelerations (short-range): 0.459 CPU - 0.143 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 71/74: Total Evolution: 0.556 CPU - 0.168 wallclock seconds used.\n",
"[15:14:50\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 72/74, time_kick:0.957670, time_drift=0.958920.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 72/74 done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 72/74, time_kick:0.977670, time_drift=0.978920.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Density: 0.014 CPU - 0.004 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Accelerations (long-range): 0.067 CPU - 0.017 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Accelerations (short-range): 0.469 CPU - 0.147 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Kick: 0.006 CPU - 0.002 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 72/74: Total Evolution: 0.568 CPU - 0.174 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 73/74, time_kick:0.977670, time_drift=0.978920.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 73/74 done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Writing gravitational potential to /Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce72.h5.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce72.h5'...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing field to '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce72.h5' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p72.h5'...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]======|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p72.h5' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 73/74, time_kick:0.997670, time_drift=0.998920.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Density: 0.014 CPU - 0.003 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Potential: 0.009 CPU - 0.003 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Accelerations (long-range): 0.064 CPU - 0.019 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Accelerations (short-range): 0.477 CPU - 0.137 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Kick: 0.007 CPU - 0.002 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Outputs: 0.001 CPU - 0.001 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 73/74: Total Evolution: 0.574 CPU - 0.167 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: Begin COLA+P3M step 74/74, time_kick:0.997670, time_drift=0.998920.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|ModuleP3M: Compute time step limiters for step 74/74 done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Drifting particles (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Getting gravitational potential, periodic boundary conditions (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Kicking particles (using 8 cores) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModuleP3M: End COLA+P3M step 74/74, time_kick:1.000000, time_drift=1.000000.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Density: 0.025 CPU - 0.008 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Potential: 0.019 CPU - 0.007 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Accelerations (long-range): 0.130 CPU - 0.032 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Accelerations (short-range): 0.965 CPU - 0.307 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Kick: 0.012 CPU - 0.004 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Drift: 0.002 CPU - 0.001 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Outputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Step 74/74: Total Evolution: 1.154 CPU - 0.360 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p74.h5'...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook12/p_res/p74.h5' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModulePMCOLA: L_plus operator: changing reference frame after COLA evolution...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|ModulePMCOLA: L_plus operator: changing reference frame after COLA evolution done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Density: 0.905 CPU - 0.241 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Potential: 0.679 CPU - 0.276 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (long-range): 4.688 CPU - 1.235 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Accelerations (short-range): 23.905 CPU - 5.710 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Kick: 0.446 CPU - 0.143 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Drift: 0.121 CPU - 0.067 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Inputs: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Diagnostic: 0.000 CPU - 0.000 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Outputs: 0.019 CPU - 0.011 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]==|Box: Total Evolution: 30.763 CPU - 7.683 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModuleP3M: Evolving with P3M done.\u001b[00m\n",
"[15:14:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs...\u001b[00m\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Getting density contrast (using 8 cores and 8 arrays, parallel routine 1) done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook12/final_density_p3m.h5'...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing field to '/Users/hoellinger/WIP3M/notebook12/final_density_p3m.h5' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook12/p3m_snapshot.gadget3'...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing header in '/Users/hoellinger/WIP3M/notebook12/p3m_snapshot.gadget3' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook12/p3m_snapshot.gadget3' (32768 particles)...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS '...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'POS ' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL '...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'VEL ' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID '...\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]====|Writing block: 'ID ' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;113mSTATUS \u001b[00m]==|Writing snapshot in '/Users/hoellinger/WIP3M/notebook12/p3m_snapshot.gadget3' done.\n",
"[15:14:51\u001b[00m|\u001b[38;5;147mMODULE \u001b[00m]|\u001b[38;5;147mModulePMCOLA: Computing outputs done.\u001b[00m\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|PMCOLA output: 0.018 CPU - 0.005 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|ModulePMCOLA: 32.093 CPU - 9.015 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;159mTIMER \u001b[00m]|Simbelmynë: 32.143 CPU - 9.031 wallclock seconds used.\n",
"[15:14:51\u001b[00m|\u001b[38;5;117mINFO \u001b[00m]|Everything done successfully, exiting.\n"
]
}
],
"source": [
"run_simulation(\"p3m\", p3m_params, wd, logdir)"
]
},
{
"cell_type": "markdown",
"id": "7846fd8b",
"metadata": {},
"source": [
"## Gravitational potential"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2f634435",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[15:15:28|\u001b[38;5;113mSTATUS \u001b[00m]==|Read field in data file '/Users/hoellinger/WIP3M/notebook12/final_density_p3m.h5'...\n",
"[15:15:28|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]====|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[15:15:28|\u001b[38;5;113mSTATUS \u001b[00m]==|Read field in data file '/Users/hoellinger/WIP3M/notebook12/final_density_p3m.h5' done.\n",
"[15:15:28|\u001b[38;5;113mSTATUS \u001b[00m]==|Read field in data file '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce3.h5'...\n",
"[15:15:28|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]====|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[15:15:28|\u001b[38;5;113mSTATUS \u001b[00m]==|Read field in data file '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce3.h5' done.\n",
"[15:15:28|\u001b[38;5;113mSTATUS \u001b[00m]==|Read field in data file '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce23.h5'...\n",
"[15:15:28|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]====|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[15:15:28|\u001b[38;5;113mSTATUS \u001b[00m]==|Read field in data file '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce23.h5' done.\n",
"[15:15:28|\u001b[38;5;113mSTATUS \u001b[00m]==|Read field in data file '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce67.h5'...\n",
"[15:15:28|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]====|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[15:15:28|\u001b[38;5;113mSTATUS \u001b[00m]==|Read field in data file '/Users/hoellinger/WIP3M/notebook12/gravpot/gp_nforce67.h5' done.\n"
]
}
],
"source": [
"slice_ijk = (N // 2, slice(None), slice(None))\n",
"steps = [3,23,67] # Steps to compare\n",
"# steps = [1,38,75] # Steps to compare\n",
"DELTA_P3M = read_field(simdir + f\"final_density_p3m.h5\").data[slice_ijk]\n",
"DELTA_GP1 = read_field(gravpotdir + f\"gp_nforce{steps[0]}.h5\").data[slice_ijk]\n",
"DELTA_GP2 = read_field(gravpotdir + f\"gp_nforce{steps[1]}.h5\").data[slice_ijk]\n",
"DELTA_GP3 = read_field(gravpotdir + f\"gp_nforce{steps[2]}.h5\").data[slice_ijk]\n",
"diff_gp2_gp1 = DELTA_GP3 - DELTA_GP1\n",
"diff_gp3_gp1 = DELTA_GP3 - DELTA_GP2"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "931e6fe0",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAEXQAAARZCAYAAAB0nz/XAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs/VuMHGmbJ/ZF1onH7ibZ32F2dk4fOTszq+OCZEM2LANjNXthY7UQbPOgCwmGBDX7xhcajcAGDUELCYYJEl6vb8mWZeyFLpokBN2sZIik4ZV8WKjJ1q60ml3tiN2a8zff9zXJbjYPVZUH48ne4CSDWVVZWU9mRkb+fkB2dRWr3oyIfDPiH2+8+USr1+v1CgAAAAAAAAAAAAAAAAAAAAAA9mxp700AAAAAAAAAAAAAAAAAAAAAABAUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQREEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAMCUnTpwoPv7441kvBgAApJJzAQBgZ3IzAADMHzmeJtGfAYBJkDFoEv0ZmAQFXaDBPvjgg6LVak38cfTo0X5QOXXqVHHu3Lnixo0bxRdffFEsio8++mhX2yu2U93Ea7bb1x1gkcTJuBNyAPbq7t27C3WuBADAYpBzAQBgZ3IzsBPzEgCgfuR4mkR/BgAmQcagSfRnYFIUdAH27MmTJ/2g8vnnnxe3b9/uFziJAi9R6CX+P/6dP1NupzoxGQBge9euXes/mnxiHsfr8tgNwGTcuXPnVfFNAABoCjkXAAB2JjcDO1mEeQkAMG/keJpEfwYAJkHGoEn0Z2BSWr1erzex1oGZfzD70aNHr/3/rVu3ihs3bgz9/SNHjhRXr14tTp8+3f//Udsvv0ZgiSp0wwq4nD17tt/28ePHE9Zs+2WKZYhluX//fv8Cd7k8sU7x/LF+p06dKs6fPz/Seo6zneP54wJ7+bzVbXLmzJlXAW/WYntFyDx58mS/2ExVLGt8uD+23eD2mvRrCVAXcSyJQmWlixcvFufOnevvB5u0L4x1ioJjsU4PHz6c9eIANFKch0TmNhQD9TaLsQUAmGdyLsyHyLXXr1/vv1/j/8trfGXGjUdcL4rrQtMc95S/AVgUcjPMr8inMd/us88+6+fVMrNGNj127Fh/ztWFCxf68+PGtSjzEgBg3sjxNIn+DABMgoxBk+jPwKQo6AIL6OOPP35VbGRQTOKMi8F7FReYo3jLsMIxWc9RFRM94znj627EpNTYHvE1W2zjaDsu1peTYwc9fvy4FpNO4+L/4ITZQTHh4MGDBzNaMoCiVoWvtlJO0hr8PlMc3yZxnNpqHRV0AZicVqslY0ON1XFsAQDmgZwL9RZFnCOvVq9TbSfGCONvJnFNryR/A7Bo5GaYzywdc91Gzax7ydGLMC8BAOaRHE+T6M8AwCTIGDSJ/gxMysrEWgZq66OPPhpa0CXrbh7RTlzMjgvUUSwkipkMPvetW7f6d9nLEJNPo83ywnk8d1xcLu8gOHjxurxDSixbXHAP8XfxiN+Nn2fe0SQuzsc2CFHUpbrNo+DNpUuXilmKIi6xLeL1iAvzVbFtARbdTh90iH1pecfYSZhk2yX7e4DJK89ZTIaF+qnz2AIA1J2cC/UVuXXwOl2ZcWPyUflB0DLfxnWiwQ+plhk5rnNdvnw59XqW/A3AIpKbYb6zdPn+jZ/F18EMGtfz79+/38/UMRcssm7MwYoJ/7spurII8xIAYN7I8TSJ/gwATIKMQZPoz8AkLU20daCWBu/WMcrPxxUXr+PidBQzqYabU6dO7bn9mLh54sSJfnvxHPFcDx8+7E/ejO+rF8XLCaFRUCZ+d/DierRRtpVl8PmHfVA+lnPWbt682V/OrYJmdp8AmEezrqw66cGA3d6dF4DxlEUtt7u7IrMRE7DLDwayeOo+tgAAdSfn1pecu9jKbBofQI1cGxk33q9RmCXybBR1iUf8W/ws/u3x48dvFG6JD3XG+GG8xzM+4Cl/A7Co5Ob6kpupiht2lVk6DObpuLlXtaBgOe8qiriUmTquv7///vu7et6mz0sAgHkkx9Mk+jMAMAkyBk2iPwOTpKALLKDd3P0jQ0yyrF70jYveewk3cUeTmFQR6xJhKZ4jJp6OKn63OvEzxDJNYqJGPE91+eLi/eCdXGYhJsieP39+pssAUHezLHYSx7dJHrdj3WJCGgCTV37A7PTp07NeFCriHPCzzz6b9WIwA/M2tgAAdSTn1pecu9jvy8ikgzm3mlmHid+PD6HGh1Wrvx9t/uhHP9rTWKn8DcAik5vrS26mmi2joGFpN3m6FJk6irrEnLDdXItv8rwEAJhXcjxNoj8DAJMgY9Ak+jMwSQq6ADO78BshZ/Ai+KjigvdHH33Uv1j+5Zdfjn2HkHLCaFVMJp3ERfJY5mEFVWalLCgzbLkA+DP379+fyfPG8S3u9jVJjgEA0xPZOz58ZkJsvWTcYZ75NK9jCwBQN3JuPcm5iysyaFnM5d69e2Pl3MjIUTilWmwl+lW0PU7/kr8BWHRycz3JzVQzZTlhP96rkYl3m1ujQNBgwcHdzAtr8rwEAJhXcjxNoj8DAJMgY9Ak+jMwSQq6AFMRQeby5ctv/DzuRBJhZ7cX0ENcON9rQIqJoxcvXnzj53FxPdv58+ff+NnNmzeLWYnJA7H+u7n7IcAiT+SLu2jFhwXi+PP48eP+o9frpT/i2BaPKIY26eNATEgz2AAweSp219ejR49mvQjMyLyOLQBAnci59SXnLq4y58bY4l6u/5QFYapZOYqmvP/++2Mvl/wNwCKSm+tLbmYwr5ZFWEJk4d3m6Xivl0VhymKD8XXUwkFNnZcAAPNKjqdJ9GcAYBJkDJpEfwYmTUEXYGqGTa4MH3744chtxMXzuNgddzDJ+gB6OYl0UDxHGcSyxPJW72gSF+Ozn2dUsQ3jbogAbK0sOhaTta5evdq/O1VZcXUShVBivxzHhk8++WSihVbiOeL4G8dmAw4Ak1fePdyHy+pntwVGaYZ5HlsAgDqRc+tLzl1M5U0U4gOgMY65V1t9uDOe48aNGyO3I38DsOjk5vqSmwkff/zxa8Vcxi2OuFVhlLK4yyLOSwCAeSbH0yT6MwAwCTIGTaI/A5OmoAswNXEBeNgE0rgoPcrF6xCTPcuL6UePHu1P2Bz1b7ey1aTW8rkyDSugMonn2Um5zbcqsgPAd8pjzDQKYMWHDeKDEFH8q1oALFscR0NMBgNg8soPlGV8oI5cez2fZD7N+9gCANSFnFtfcu5iunLlSv9aXOaYX7y/h73HI0vHB0BHIX8DsOjk5vqSm4n5U1EYsRTv03Gv1T969Gjoz48fP76w8xIAYJ7J8TSJ/gwATIKMQZPoz8CkKegCTNVWdzAZdYLl/fv3+19jkmg84g4pGZXvht1tZBJ34olQV32uWIdRJ71mie09bFkAGD5xahon5fFBhtgvx12wJqm8g667bQFMT+x7Y8Ku/W79fPbZZ7NeBGZg3scWAKAu5Nz6knMXT4z3Rba9fPnyxIpDD4rnunnz5kh/L38DsOjk5vqSm4lr9FkFAi9cuDB0ntwo7/0mzksAgHknx9Mk+jMAMAkyBk2iPwOTpqALMFXvvffe0J/H5M1RDCt8Ehe19zpBc9jdUCZ1J57z58+/8bNRJ71mieerTkoAYPgkvjghH+WuWXsRd9qKY9w0iqzE/j8mjrnbFsB0qNg9H68Pi6UJYwsAMGtybr3JuYun/ODpxYsX09ve6gYBo37YVf4GYJHJzfUmNy+2KFw4mB8jS+9lXkBcf4+MXLYR7/t79+4t7LwEAJhncjxNoj8DAJMgY9Ak+jMwDQq6AFO11YXnvU6wfPToUTEv4uJ41V7u8LJbUTwnLs5PYlIvQNPE8en06dMTP/mPO+jGBK9JF1m5du1af51u3bo10ecB4M/cuXOn/zXj7uPkimPisA8WsrjmaWwBAGZNzq0vOXfxxOsdxVGiiPOkPpQ5bOJSPOde+pr8DcAikJvrS25ebPH6x7XzaoGXvYq5WA8fPix6vV7//T9qPm/avAQAmHdyPE2iPwMAkyBj0CT6MzANCroAU7XdhepRJkpsVRBmEhe1JzXpNSbUVtcjJr1O666BUTzGhXmA0ZQfhJiUOPadO3euf8yJu2BNUjxXTEK7dOnSxO/sBcCfUbW7vqLYJYupCWMLADBrcm59ybmL+34MMdYYNxaIcc1MW01cun///o5/K38DsMjk5vqSmxdb9cZbw+ZyTVOT5iUAQBPI8TSJ/gwATIKMQZPoz8A0KOgCzJVbt2698bOrV6/ueYLmsGIqk7xQH5NpZzFZJC7QR8gc9vwADC80duLEiYk9x4cffth/npg0NekPG8RzxXPEcROA6U7Cjf2vD5XVz5UrV2a9CMxIU8YWAGCW5Nz6knMXT5lD430Z15pu3LhRnDp1KvW601a5dpSbFcjfACwyubm+5ObFFpl50IULF2a2LE2blwAATSDH0yT6MwAwCTIGTaI/A9OwMpVnAahchB5mlNATdyN5/PhxcfPmzVeV7zImZw5brkncGbB08eLF4uOPP37j7i+XLl0qJim2W2xnFQMBdhb7y16vN7H2o8BWfKji7Nmz/ccklc91586diT4PAK9Tsbu+4ri43fkpzdaUsQUAmBU5t77k3MX01VdfDf15XIfKGnc8duzY0J+P0t/kbwAWldxcX3LzYhv2+k/6ev2izEsAgCaQ42kS/RkAmAQZgybRn4FpUdAFmKpHjx4N/fluJm7GhewoiJJZRW+Yc+fOFZNSFlUpQ195J8FYlpjYOilRNCZz2wEwnpggFseZOB7EXbAmLZ4rJmcZZACYrrKQ1gcffDDrRWHI3ShZbE0YWwCAWZFz60vOZVBcd8qy1U0ZtiomM+zv5W8AFo3cXF9y82K7cuXKG1k1o+BgHU17XgIANIEcT5PozwDAJMgYNIn+DEzL0tSeCWCbCZaTLGKyk08//XTLgiuTNGxSaRRcmZSyYMxHH300secAYPRJgjF56tatW1t+GCJL3Ik3nssELYDpU7W7nuKcyN1XacrYAgDMgpxbT3Lu4jpx4sTQn2eOO27Vt959991iFuRvAOaB3FxPcvNiK+dODWrye3Sa8xIAoCnkeJpEfwYAJkHGoEn0Z2BaFHQBpuqzzz4b+vNZFhm5cePGGz+7evXqxJ932J0Ib968ObHni2IxcUeZpt5VBmBe3L59u/84e/bsxE/6Y0LatWvX+sc1E7QApismyMak4Cbf2XEeRaGzYeeAMK9jCwAwbXJuPcm5i+38+fNDx/6GXYfayzjjMLPaD8jfANSd3FxPcjPDbkTW1PfoNOclAEBTyPE0if4MAEyCjEGT6M/ANK1M9dmAhVdWrRsUgWdWF45jeap33onlyZzkup24aB4Xz0uxLOXF9GwxKeXy5ctF00XhgrgzYwTqeC1PnjxZfPDBB7t+TaNv3Llz51UfKScrl0VxyjYVSAB2I/YncRes2Hd88sknE3++c+fO9fdZly5dmvhzASz6/v3+/fv9DBpFLONrmR/j344ePdrfH58+fbo4derUlh+2W0SxfcrsHdswvn/06NGr87SdMn0UB4270e90rIvXIybrD55/1UEsVxTfLPtM9bwjHnE8H/ecuWyzPKf56quvXvs+tnV86HGr86VYrji/Ku9aGl/LCxfleZH+PPuxBQCYFDl3fHKunDtNsZz37t3r94Xod/F9XA/KHBOsU0EX+RuAupGbxyc3y83TFn2t6r333iuaZtrzEgBgHsnxNIn+DABMgoxBk+jPwKy1er1eb9YLAUxfq9V642cPHjzoT4SYlJgYERMNqm7dujWRAiajiIBVvftK5naI7RzrFus4TExMiQkOg2IixrAJBHtRPs/jx4+3DJPx79WCO7N8bXYrwnO8nuUEkgjQ5YSfEKE61men1zYKwly5cuXV35WTUY4dO/baBJpSTAxy10dgVHEcjONh7OcnXcwsCnnFJMadjmvV/X/s8x4+fDjRZQNogsiLsa+NydbVjFhm7vid2AcPFggsxc/jA3bzkrezxfaIHF3eDTWOi3FMiuNQbL/I3zGZPH4vjmU3b97sb8f4m3JyfmT3mIQfk83jdaiKc704J4jjbvZE/e3OrUYRyxPnHeX5aPSH2AYxcTzWO47FcXwu/32cD2SWWWAnse2qE/YHl688vypfm3K7Dn6AMvpxvDaLWqF+0mMLADBNcu7eyLlybtPHNatmMdVA/gagDuTmvZGb5eZZiQJA1fdjbO95WPa6zksAgHkix9Mk+jMAMAkyBk2iPwO1EgVdgMUTb//q48GDBxN9zpMnT77xnGfPnu3NyvXr199YnvhZplHW8ciRI28sx+PHj1OX4+LFi70zZ85s+zvx79XluHXrVm9eHD9+vL/MV69efe3nsf0H1+nhw4dD/z76f9lGvCbRzrDfjdem2pd32rYA4c6dO1M79sW+KvZlsf/fSXX/H/tCALbfnw/bd0Z+jH8rs3z5O4PZPv499s3Vv52n3J15Llbm7t3+XWzb2GblNhx2vIvtPuy8N+sx7jlb/N3gOUqsy3bn4oPnKWV/GfXcfdg577DH4HlwLF/Zd2M5o89u1/7gsg07H1sE0xhbAIBpkHP3Ts6Vc5ts2LWsWVwbkb8BmDW5ee/kZrl5lnbzesbPY51ijlCZh+NrfB/bp645dJrzEgBgXsjxNIn+DABMgoxBk+jPQB0p6AILatoFXSLwVJ8vwkx24ZJRRaGO6uTTSVxoH+UC+aVLlyY++TTa3Ck4znNBl3IbDpscEq91td9tN5Fl1Akm1YkpoxRNABZbud+YxrEvjj1xnBvluRR0ARhN5MrqPjO+32pC83b71Ng/Vwd7FyVPltk9ts1WxRa3E+et1XO5rbZdtL/VY1gb2/1+9TGO6rLHthhVtVDldhPph22D+P1h556D55/l8u3mQwGh+r6IyeyzOtdv6tgCAEySnJtDzpVzmyy227BtPO1rSPI3ALMkN+eQm+XmOhQ6qT6GKd+jsT3i/2MuUeTf2F7x/eCcoXh9xu0X8z4vAQDqTo6nSfRnAGASZAyaRH8G6kxBF1hQ0yzoMuyC+KyLuVSLcUxq0ml54X6n5alun5jgkKW8M9FO5rWgS7n9titAUF2vwaIt5aSVmJiym/fAsLsZ1WmCBlAv5b5mNxPz9voBi1E/zKCgC8DOqhOdI69vl/3KffFOA7fVc6U6T3TOMHjX1L1k5+qHCccZIK9O2J/0Mbq6zOPcqTT6x17P4YcVW43MUJ5XRS4YR/UDBbM852/i2AIATIqcm0POlXObrjpJqbymMk3yNwCzJDfnkJvl5lkbNs+nmmvL3DnKHVfjPTyYUcd5Xed5XgIA1J0cT5PozwDAJMgYNIn+DNTdUgEwQTdu3Cg++OCD13528uTJ4sGDB8WRI0dmsjynTp0qvvjii/73Z86cKR4/flycPXu2mJXjx4/3H4M+//zzV8u4V9evXy8uXrxYNFWsX/j444+3/J1qX/v0009f9Ydr1671t/+XX37Z75ujOn/+/Bs/u3r16i6WHFgUsT+PfU24fPnyxJ/v3Llz/f1Zk/f9ANMSufzo0aOv9uPh0qVL/fOZaoYfdPfu3f7X6rlQVZyP3Lp167Xne//994um+vDDD/tf4xi13fbbSRzn4nWYF/G6xnno4Os+zvLfu3fvte/H6SvDnvfhw4f95YvteufOnWIc0Y8HX9PIP4Pr3DR1HFsAgN2Qc3PJud+Rc5vr5s2bb/xsGuOcJfkbgFmRm3PJzd+Rm2fnyZMnb/zs2LFjbyx3rEtsl53yZryWsT8o5xrFvKWd3vdNmpcAAHUlx9Mk+jMAMAkyBk2iPwPzQkEXYCIinESg+eijj177eRmIplXMJS5WR8CKi+YnTpzoL09coC8nIsRjFoVlqqrbabBQyV7Eusb6x4f7myom8obtChdUJ2VE/4xHbPd4/cfpB8N+vwzzAIPKglOxn5r0MScGIeLYNzhgAMB4bt++3Z+4W2bJMjeOUsSvnPQcg7g7iQnBg5Ooy5zaxO1ZbsuM85N5moxcXd9xj9PRBwf7SmzPcfpK9QJFeRGj+oGA3apO9o9M0pS+PC9jCwAwCjk3l5z7Z+Tc5l6DqV5jiW09yQ9Ry98A1IHcnEtu/jNy8+xEkZadXqt43+6msE28LrHtyu0aOXZWxWymOS8BAOpKjqdJ9GcAYBJkDJpEfwbmSg9YSPH2rz4ePHiwpzbj769evdo7c+bMG23Hz/ba/k7u3LnTO3nyZO/IkSND1y8eFy9e7D18+LA3LfGcZ8+e3fH3Hj9+/MayxnrsVbweo7Yz7HW7detWr85i+crXdTfbtty+8XUv/WFYX4M6uHTpUn9/ePz48X4/ncdHLHvsl2LfPs9iH1PuHyZ9/CmfK17/3aju/2PbAyy6yNF7OV/a7f40Mms1W076/Gna4ryoXLdY3wzlMWy784GtVLf3bo+fo4ply3yeYec3u80YkROrbVy/fr2XIdav2va85bk6ji0AQBY5N5+cK+c23bBcnLnu8jcAdSQ355Ob5ea69cPyEdujfN/v5Tp5vGcH243+2dR5CQBQV3I8TaI/AwCTIGPQJPozMG9WZl1QBqiPDz/8sDh27NjIv//o0aN+Bbvya1VUtTt//nz/DiDVO7xMQjxHVMUbtixx55d4xJ0E4xF38YtKeLF8dbgrSSxDLHvcqaUU6xHfj1LpbyvXr1/v33mlqT799NMd7+B0//79oT+P7RvbZy99c1hfi5/VoU+xuKIPlnfRmvf1iP122Mt+cNbKu2DFvmbSx8I4rsX+Z5RqsgBsv++uHkujCnecQ4wiqm7v9vhVnjvFucrg+dmDBw+Kpii3S6Y4Dxg8h6rjOg++phl3jh127hjnNXs5/kebWeeNsX7V90+8To8fPy7mxTyPLQDAduTcyZBzvyPnNne/Uc3FcdepzPFa+RuAupGbJ0Nu/o7cPFvDMmfpypUrxa1bt8ZuO/YRsR3L1zxeo/j/ac3Zmua8BACoIzmeJtGfAYBJkDFoEv0ZmEdLs14AoD4ijMQF5VEf8fvlh+3jYnCEnrNnz/YnCkQYiQvyey2YsRvxPPHc8ZzVR4Syhw8f9pcpfieWOyZ9Hj16tD95YLuL9tMSy1O1l8kC5UTXYe02RTlJZbsAvdXEoPibSUycMImYWSsncTWhL8Y6zPM+LPbBt2/f7v//pNcjnif2iXs5bgBQ9AdZqwO8sW/dzYBtmVE/+OCDXT13tUhheX7WFFEIdKeii7t1+vTpos5iAvigOGfOyGjVvlL9UMBuZX4YM9YvPuA5KM6397qM0zTvYwsAMIycOzlyrpzbVJF1q/uN2KbZxaTlbwDqRG6eHLlZbq5bPxwU7/uy0GBGUZVSZNdyXl1T5iUAQB3J8TSJ/gwATIKMQZPoz8C8UtAFeCUmR/Z6vV0/YiJlTKiMIi4RgOLi/KgV7aatnDzw5ZdfvgpqcVE7Jn9Ww9y0RTGcqr1MaojXM16Hpt55JUJvTPzYKXB/9tlnW26fvT4/1FVMdI998zj79Do9Yh2G7RvnxeCHGya9HlHZNZ4jc8IdwKKJAdXqRNfYt+52Hx7H4bDbffKw329Soa5jx46lZfFSXc87qxOoSxcuXEhpu9pX4rxoL+cng69NhmHrmf2hz1mr89gCAFTJuZMl58q5TVWdiBTXmsr9wLTJ3wBMg9w8WXKz3FwHwwoCxs+i+M7ly5f33H55M7Rpr/s05yUAQN3I8TSJ/gwATIKMQZPoz8A8U9AFWEgx+TPC12CQijul7LayXraLFy++8bPqJI9RRTGYJt95paxgWJ1UvNXvDYqJv3stdDPsrlFNLZ4D7N7gncbimDPJ/UPs6+P5Pvnkk4k9B0DTxeTqaq6M/fc4+9bIn7HfH+dOm9W/aVLV7sFjYZzjjHueMy+GfSghq/DasFyRdVfbDMMKi8Z7rEn9ue5jCwBQknMnT86Vc5vUn0sxrjn4oeAy986a/A3ApMjNkyc3y8117c+xbHGtPasQSrWgTWTrYYVk5nFeAgDUTVNyfKxHOcYVBYxbrVb/Ef9/6tSp/r+5AWXzNa0/R98t+3N8PXHiRH/94lxwkvkYAGh2xpCZF1tT+vMwkZEjMzf5c8CAgi7AgouJn4MXsyNERQCa1WDhsOIk49ydKNYj1uH8+fNFU41SDTG2wbDXMuPOOg8ePJirO0AB01VOmsqcnDdMDDzFc8Vdt8YZTADgOzGYX82NMcC7231reUFg3FxYvRNmOZG4CaofsItzn8Hj5bhiknUdP7w37AMJmecL1baGnZ/M0rD8U4cPgC7K2AIAlOTcyZNz5dym5dx4f1YnCcUdper0wVD5G4BscvPkyc1ycx1y81bv6axiLlu9zleuXCnmfV4CANTRvOf48sOIMa5VHtPjpqAxZzzmAsaxPZbt2rVr/Q+pRu71IdXmmvf+HL9T9ufos/H96dOnXy1HtBPnSfE78cHrYesLAOSb94whM9Ok/rzd8kT/jXbiATSXgi7AwouJqIMi/Lz//vszWZY4mRhWqW+3wS5OToa11bQgfunSpW0nEQ+rcjhuBcVR2q7jRCFgNgYnZU1y3/Dhhx/292uxPwRg/FxXnVwdg7TjTOAtM+K4+/5hOfXRo0dFE8RFlKr4kGAMQu/lbqxxPpc52TpDnL9VB9Wzz82GXRCok3hdq+p6B9Ymji0AQJBzp0POlXOblnOr7/P44G0dPxgqfwOQRW6eDrlZbq5zbs68nh8fWq3aSx+vy7wEAKibec/x8YHT+FBq5LjItI8fP+6Pw8WHUiM7x1zA8udllo7ljJw17MahzLd578/xAdQf/ehH/XWIvhv99uHDh/0+HcUn4/v4OjjOHO+B+Js6nycAwLyb94whM9Ok/rzdzXbKYi5A863MegEAZi0CXAwSDg4KxuBihKIojDJtcSIRJx6DopLkbj6sHyG1Opm1aeI122kS8bA7/GRMPB42ASer7UmKPh3LXYc7H0GTVQtxDZu0lSGODXG8qtsd1wDmTfXO4+Hy5ctjtVXmrHFz4bBCjpHf6nQn9HHFAHac01TPdeJYVl48iXOhGCCf9+KUWxWWzFTdPnX7YMew90C81tHH5/m1naexBQCQc6dDzpVzm5Rzo58OXvuoazGXIH8DkEVung65WW6uc27OfH2GrV95h9bsdZ/WvAQAqKN5zvFxM8vIxTGGNazw4aDID+VYV8wVLOeHxwf+6jJncJ7vIh+FErNuErqo/TlyfvTH+Pfok1v9XoznxrJFPy7XN54rzgHrWKgTAJpgnjOGzFwfMnPetZyyH0SGjj47r30CGJ+CLgD/OOxXJ1WUg4YxiDhN8ZzVSSwR1EYt6BLLHUHZ4ObwiTIZd6QZ1m5s87pPpBL2YTqqHxiYxHEkBgHieBEDVNM+TgE0SQzaD7tT5rhZOnLiXnJh3SZdZ4vK+LG9t7obZZzLlBdUYhvGYPk8TuD/7LPP3vhZ9rlC3e/AutX6xnI2ObvUaWwBgMUm506XnJtHzp2duC41mGXrXMylJH8DsFdy83TJzXnk5vGXKybLV02jEErsH7LncU1jXgIA1NE85/jIIjEOt9sCFpGly6xcthNjY/HzWTpx4kTtsug4ZjkWOs/9Oeawvv/++/3niw9Lj3LeFvNd4++i/5aiyOc8jEcDwDyZ54whM9eTzDz+tZy4zjHsc6ix/LEM1c8QA821NOsFAKiDrSaAfPjhh1Nflghj1Yvsu6nGGCct58+fLxZdDPgO22YZJxCffvrpRNqdtKZPAIO6GJyEOKlCT3F8iuPWrAeYAObdsLt2j1uxu5wEvJdcOKxqd92LBu5WnK/sVDE/RJaPiysxcePo0aP9ixrxobxhg9p1M+x1jHzQarXSHoMXnoZN4K+Dre5E2mR1GlsAYLHJudMn58q58yxex8EJ9PMyeV7+BmCv5Obpk5vl5lnaajtlFwwa1t6wQj/zMC8BAOponnP8lStX+l8j5546dWposbmt8kV1Gevwob9Z57sso74OkzDP/TnGYeP37927t6tMHTe4rf5+vCcAgDzznDFk5nqSmce/lhMFXaJ4S1wbic9/RTHEXq/Xv14S/wYsjpVZLwBAXUQYq94JKIJaPKZ9F5OYiBKPagDd6YP7EQpjAkuEu0U3bCJPBOSMiRjD2r5w4UJRd3EiWMeJPNAk1ePIJI4fsQ+K54njwjzdjQ6gbsrsXLWXit1h3MHVrQbtmzgJN45hsZ3iA4OjXqwoJ/DHI46vn3zySW3vNjmskGL0q3EvIIyijpkgzj2qFy4WochkncYWAFhMcu7syLn55NzJi5w6OFk+ri/VtQ8OI38DMC65eXbk5nxyc/2307BJ/nWflwAAdTTvOX5w2WP86v333y8eP3480nPF8b667vH9LAszR2GOyCXz+iHVyIfxWo3bfxa5P8fvxmsfyzpOFo3PQwx+TiK2RXzgOvoUALC4GWPw+YLMPHsy896v5ci4QElBF4B/7L333nvjgnf49NNPp37h+/z5828UdImJKTsVdInfiRDoQv13d5CsyjgJixPCYRMt6n63yljm7AkiwM77nklMsozjQ+znR7l7HQBbu3nz5pYDz3s5BoybC4cNONdxEnaWGEyPR1mkbDd3Vo1MHpX34+/qeDzcqvr6op2nDeu/i3BOUqexBQAWk5w7W3Ju8zUp58Zko5gAN6/FXIL8DcC45ObZkpubr465+cSJEzMrZpP9gY1pzEsAgDqa9xxfzQjxfeSEUZb/3XfffeNns/5QaMxp32leO83sz3E+FsYtXBnnclHkc/A9EW36sCsALHbGCDIzTerPAIOWXvsOYIFtNXli2ETQSYswVw2HW1UVHBSDmdVCMItqWGgft4JidRLwsL5T9wAexX6A6e97sieFlXequ3XrVmq7AIsouwBgZPWMQeKs5ZkXMWk/1j0q6MfxLSZtjDqxPc594g49UCd1GlsAYDHJufUg51J3cc0prpmUE+LmsZhLkL8BGJfcXA9yM9M0y6Injx49mqt5CQBQV/Oe44c9TxSDYzHNc38un+v+/fu7KtBZvfntoJgXO+sPXANAE8xzxggyM03qzwCDVl77DmCBbRXwZzU4GJNPqoOcUbBlq6AXdyGKZY0JL4sutsOwO/tkhORhk4DnoYhOWQ0dmJzYD1f3PZmTwmLfFpMSy/181vFp2OSxndp2hy+gCYbt68YtABjHgIxB4nnMmVligLy8K+vgdo3tEgPgW00AiWJn8bd1uhPrsOPkrO88OgvD1rnuhTCbOLYAwOKRc+tFzm2epuTc999//9X+Yl6LuQT5G4Bxyc31Ijc3Tx1z8+nTp2f23JkfOpn0vAQAqLN5z/Exj3dwea9evTpyRnr48OEbP5MB5ts89+fy+cp/j3O53d6k8NSpU0Pb1a8BYHEzRpCZaVJ/Bhi09Np3ADUWEzGOHj1atFqt/iBeGaSybBfwZzG5IgY3q8u03R0F46QlJtw62RgekGO77HVySFk0Z6cq4XWjajnMbt+TPTGrPBbEHbayHtXjaewvdvqbce+qAFAnw/LRuJN5y/3iuIPE8ffVc47IrotetTvOby5dutSfsN/r9fqTP4Z9yDAGw+uUd4edd2TffXMeDFvnOpyvLtrYAgCLR86tPzl3vtU15+7GuXPnXuXgSRdzkb8BqCu5uf7k5vlWx9y8VXacRm7MLGYz6XkJAFBn857j498eP37cz7jxNfLuXtZ90c8Z5t289udh+TnmtO72vGxYhq3TuR0AzKt5zRglmZkm9WeAQQq6AHMhJmBcu3btVfCJCZ8x8TNz4G67i9uzGiAcVihkq6IuN2/eVNXvH4sTt6qMCcmffvrp0HZnfRehUSZns1hiXxD7yJgoP6+PKBoS6zBPhUOG7XtmPSkNgOncHbI8Bow7KBsV5OetaOBu3bhxY88f3Iuil/Fhw2EXaIZtw0mKDyPGOg0TOaZqET9IOGydZz2pfFHHFgBYLHLudMm5cm4dcu5uM3F5nWnSxVzkbwDqTG6eLrlZbq5Lbh72Pp1GwZ3MdTcvAYBF1oQcX37gb7fLXZ1HGfmY+daE/ryX855h6/rVV1/tqg0AoJkZQ2amSf0ZoKSgCzAXtpoIkTkpY7sL9LMq2DGsQMv169e3rPJ38eLFKS1ZvQ2bCDRuBcWdiulcuHChqLO4+2X2HS+pt9gXlBPi4v/n9RGT7WMdpj35bi/u378/0eNHDCjF3eeyH8Mme+30N6rIAvNuq0kE4054jTwe+/xx/j6WZVgBs8hxTRLrc+XKlZS2Ih9UM8JW54yzMKz6+6J9kHCrc5BJflh0FIs6tgDA4pBzp0/OlXPrkHNHFcVVyj416WIuQf4GoK7k5umTm+XmuuTmYXOHsl+fYRl1WKGfus5LAIC6WuQcPyxfXb58eSLPxXTMc38e9jzxs93m/WE5/N13391VGwBAczLGXsnMzbPI/RloJgVdgNrbrhhF5kX17SpDz+pOJjG4WX3usnhLtciLypHfKQtBVO21+ED0w2Ht7lREJ/4uJkmPIl7bCPNxh8qjR4/27+oUX+P7c+fOvVZQJv5/uwkfsR3ib0Z97r2KbbPVso9aVCbaiIlW8ftRzCiWPybTxHpGW/F9Vaxf/E71OePvMwrZZL4m0xInmLE/aMKEndj/DStsVUdlIRoA5kPmcbLMHOPmzWGT2OMOo028m+KwwexxxTaqngNltr/X87hqH1u0CfvDJpTPuiDcIo8tALA45NzZkHMXRx1z7qhi/LqcTJRVzCXGyre6BiF/A1BncvNsyM2Lo865edhyZL8+wzJqVjEb8xIAWGSLnOOrHxKMect1KJbH4vbnO3fuvOqD8fXevXu7ft6HDx++8bMmzHsGgFma94yxFzJz8yxyfwaaSUEXYK4DWGbw2eoufrMeHBxWzGDw7kJxoT4m4s5L0YNJGzZJZ9wKitWiOVUR5HfqH1H0Y6eKi3FiEAVCojBJTBSJKqAxofrx48fFl19+WXzyySfFe++996qwSLz+0e6wSSXxO2WBk8FiI4PbJ4qSbPfYjbJwTBQyiYnbcbepW7du9Zc/lju+j5+X67fdxJLYDtGPy7uExvLH8sZ6VielxL/HOsZJUZxkxx244nlj28Xvxb/Hc8ZjnMIuma/JLMS2iGXt9Xpz/YgLNvNSrGqrfQ8A9ZV1LlEeA4bd1XEnkR2qH36L40fm3crrJHJaRtG9UnU71SWLbTXon7nudRfZuWqc90imRR9bAGBxyLnTJ+fKuXUXr1FZMD2rmEs5br/VPkf+BqDu5Obpk5vl5roW3Bm2vNmyCtqYlwDAolvEHB85cjADRK4YNp+Z+TPP/TmWPXJ0zPMdd8x5EjdvBQDmO2OMS2ZurkXsz0BzKegCzHX42qlQxm5sNXli1oODw4oZDJ5Y3Lx5sx8EZ72cdRFVv6sytk1s56pyAvR2oT0e2z1/nBREQZCYvBTFK6IQR7zm0e/jdY1HDHRH5cb49yiQsl3xnni++JtoIx7V5x78t60eo4plLwvHxDLG8kXfjOeM76Ot+D4G6+N54/d/9KMfbTmRKv4mfj9OarZajthOsb3ivR9FVaJoSfx+VE+Nvym3U/keKQuzbHWX0Gm8JiyGOk0QBGD884xx7mpY5s9xMuewDBEZp8ky75Iar+Hgdh92955ZuXDhwkh3Jc3KIXX7MMCw86dZF+pb9LEFABaHnDsbcm4+OTdvO77//vupxVxC+dps1Z78DUDdyc2zITfnk5t37/z58xPrl8Nei8xsal4CAItu0XJ8ecPFwUw1bI4082nR+nNVNYfH9sgsBg4Ai2rRMobM3GyL1p+BZlPQBZgL5d1EymIKEaBi4mnmwN1nn3028kSLaYp1rE6IHZyQEYUropgFW0+02OudfqLNYYF/p+0ehU62K/wSbZbLFkVDRunP8XpvN9El2hl8VE9Eo/hI9Xeqj1HEupXLXlZa32r5o//eu3fv1TpHsZRhk0zi72ObRqGUYcsed9qMvw1ffvnlttsh2hn8+5ggPkrRlUm8JiyGYceQY8eOzWRZABjNsIw2zkTYmIQd5yi7PTeJPFXNrpGDmp4rsi+UZH0YcTdGuRhQFgQcNGrW3q3IuR9++GFRF8POn+Icvg4TbxZ5bAGAxSHnzoacm0/O3btyvDu+Rh/N7FflfmW79Ze/AagzuXk25OZ8cvPuVeeOxHt/nA8BDDOscM9ON4vaDfMSAFh0i5Tjy5sZlusXc2InlSmZjUXqz8Oeu5rBMwuBA8AiW6SMITM33yL1Z6D5FHQB5kJZOOPq1avF48eP0yeebnfHlTqErGGFKKKIRFnYxcTU78Tg7rBgvte73cS2HqdffPrpp0Pv7lO6cuXKq+XbTX+O98EsRZ8bPCkaZdJVrF+ctJSv0yjFVaqvWzxvFHWJ4jDlRPCd/n5wW924caO4du3atn8zr68Js+dOWADzZ1hG2+0dMiOfRLbZbd6M40Z1gnXky0XIFJl3ugwnTpx49f/vvvvuyH9XneC8m8na5XF/p0nS1ckmse7ZmSGWO9rdyzlPZOxMw86f6tK3F31sAYDFIOfOhpwr59bR+++/339tIvfu9TpJVbS50zi9/A1AncnNsyE3y811EJm0OnH/5s2bKW1X589EZs68SZd5CQAsuqbm+Gg7cl05xzWKNJcfTI3niCLJw3IW862p/XkU1f5c3hAUANi7pmYMmXkxNbU/A4tJQRdgLpTFHyYVeobdISbr+TLu4jIsgMZkgjjZiEHMWdx1aF4m/4xTQXFYeK/aqSBJ/E08IvBvNam5XN7dLt+sX/PBYi7D7iy1lcuXL7+27uNM1opqqaMUcylFEZnB5YtJU8Nez8HlmsfXhNkzcQpg/pR3Bx+028H8MjvEhYFx7pBeihyxSFXh44JKlocPH776/93ksWre282k9VHuRB9iskk1u2af05YFCUcpmLiV7fLxbsW2iYr0g3ZbLHGS5nlsAQBGJefOjpybR87du3g/xjaI92B2MZdyktTp06e3/R35G4A6k5tnR27OIzePr/paZHzYI97X1fXPfs3NSwBg0TUxx0c+jkKF0X7kupjjWi5jPMd77723qzmzzI8m9ufdfBh70CKdEwPApDUxY8jMi6uJ/RlYXAq6AHOhrLwcg3jVu9hkGHYBPZ4zikGMqwxtGXeziQBavZtgtB9VJfcyMaNpqne6CTtNKB53QsROE6DLiTPbTc4oJ8aM00cuXLhQzEL0ucHtMVikZZR+PDhRZ7cnUfGeHGfiefU1qFbInPfXhHrIKN4FwPRV80hkgd1Mhi3z524yZ3mH9FLko3v37hV7FcsehffKCxZ1PjZlVsEfnGy+m6xYnUC+m9e9zIqjTEKvvrZxYSnrtSnPCXdTZHHUyTLjGnZ+Wqe7Hszj2AIAjEPOnQ05V86ti1jeWPeYTFS9tpRZSGWn10f+BqDu5ObZkJvl5jqI7Tb4GpY3bcosVlTm4Ux1fm8DwLQ0KceHyAu9Xu+1x+PHj/vLGXkixtXKD69mFuOjHprWn3d7U9FyG9SxCCQAzLOmZQyZebE1rT8DC6wHLJzHjx/34u1ffVy/fr1Xd0eOHElf1jt37gzdHg8ePEhrd5LLGa9nhjNnzrzR9q1bt3rz5Pjx42+sw9WrV/fcbrXNkydPbvv7Dx8+3PH3qu/D3b6O8dqM2rcGnyde54z3YDzi/3fr4sWLry3PTnaz3Udd7q3e39N8TWieYfvnvfTZaaoud+xLARbJpUuXxs5LkTFGzUSRLeLYMPhckY0mda4wTlabpGoeyzrXKNvdbc4dts1Gdfbs2V0dL+OcJDOTV7N1nH/sRrUfZh3/h23Tup5TztPYAgCMS86dDjlXzq2b8nWZ1DW/eF3KbT3qc8jfANSZ3DwdcrPcXEeRHbNem3Ke0OBjt69N0+clAECmJuT4cXNWxpxo6mWR+nOMEc/y+QFgkSxSxpCZm6+p/bnad7OuHwD15FPHsICGXUSel8AaF9PLCRkZyxtBqzpxJGtSwWCAy9q21WXNDGrDJm3MQ5GfnQoVZUzerW73mKAzSnGcnZ57sN2YILObyRzlpOlRZPWZsmDJqNthlDbi5GPUZd/LJJRqIZmtln1arwnNstX+Zx76w7Blr9sET4BpqBY3HCUHlxN9R8lXkXmqmTIzaw8rbBiPGMCui+r6ZxxvBrPlOLl/3A8RjHOOV+1jez1HLCe5jNOPqud+5ffj5PvBLFzdnnXqf/M8tgAAeyHnTp6cK+fWyWDfifXPeMT7cKv34k7j+yX5G4C6k5snT26Wm+uqWnBn3NdmnP3IIs1LAIBJmPccv9cP+WXdDJR6WIT+XM2zezkHAQBGswgZY3BZZOZma2J/VtAFFouCLrCAqlXpMu+4Mg2DEz8jqIx7R5MI5sMmtmRMJo1Bxmq7GSGuWpQia3LqVkV+5umi/yTvOlUN/dtNPCkne4wyOaX6epZ/l32XnqxwX+3X47xXqn1tpzay+mO1kMxWfWNarwnNMs8Tp6p3PNjthzEAmqQ6iXmn/F7mvp3yTPX8K54n+47hw/bl5aMuqoXz9ppNBz/AN2718+pxcJTlKV/3cS70VPP0uOeIZbYdd72HVY8vz6fGyfjDzq3nYbL+PIwtAEAGOXey5Fw5ty7KiUjTfOymv8jfANSd3DxZcrPcXGfV12a318oz5tI0fV4CAEzKPOf4va6rD/o1T9P78+D6KeYCANPT9IwxSGZuvqb1ZwVdYLHU58otMJELuTEhMh4RIuIgv1Uxl8EDf1z8j98v/7aOhQximQZDWEww2E1QGlY1L74f5wPssZ3juWO7xXIMuyvgYKCLEBjPM06wq07IHcfg6xrtRXjdbpnnpU8M69tZQbYakLcaSC4nzow6WWKrQjrlJKZ4nugvez0JyNom496harvl2WkiT9YklGHbeth2ndZrQrPUvSjWYB4o9/3lMWu7TBDvz3nY/wNkqu4b4/utJmaXRf+G5YL4m2o+jSw1qUrd2+X5uuSWwWUsj0XjTtKI41HGpP9hg/vbZdzymL+XyejD+thulP1q3Mn6W03YH7xwsZu2B1+LUS+Q1EmdxhYAYJLk3MmRc78j585WLO9275dJPcZZTvkbgDqTmydHbv6O3Fxf1aIso7zOsf7j3BW2qfMSAGBW5jXH7/WmhnvNptRTU/vzYN5WzAUApq+pGaNKZl4MTerPCrrAYlHQBRqsetF4mpMyp6WcUFA+YqJABLHBD6CX4v8jVFUnJ5SDg+N+SH2nD8Rv9xhnkmk5GWKcAc1hJydN6RPD+ntmiB4cTI6APhj24//LfrDbiRLV8L3doyyus1sZ4X7YnX5iWeLnu31UT5xGXfa9TkIZtvyzek1onmH9oy4XnqrHyr0+6jLgBjApcWwfnIAc2S8GbKvnC+UE9FLknPjb6qTf8u9nta+vy3572N1Sy/OT2N6jnhsNrmvGdh1299Bh+a6cmJ4xMTrWtdrHdqr+Ptgv9/qabjVhv1y2WJ74ne1ek9hu1X5XhzsszPPYAgBMmpw7GXLun5FzZ2cv16nGfeylz8jfANSZ3DwZcvOfkZvra1hOje1dzaexbarv9Wmtf53nJQDALM1jjs8q5rjVBxeZX03rz4M5W3YFgNlpWsbYisy8GJrSnxV0gcVSv0/kA+kFLiJUxCOCyqiP8m+qwaWuYrCvOslilEdso71eUC8nyo66nQe36zgFXcrQOc4k1XJCzODr25Q+MSxMZ590DU6KjvbjOat3kxznOYfdVXKnidK7ef0zwv1Wd/rZ62OnE57qeu9F9bm3m+g06deE5hlWVKouxX7KC2Lj7PuH7f/rMvETYNJif1c9x4h9Yezzy+xZTmwelhsiG07zLuGDy1tOHI6vO00En5byWFLNy4N3sIx/j+0WyxzH0XjEekVmHMzdGedxg2KZqucTsS3jZ/Hc5fLF18xzjGHnsbGesQ3ieePrYMaI/8/InNtN2K9uj1i+WJZ4HeL1iGUeNlG9LrlnnscWAGBa5Nxccu6b5NzFKOiSMfFe/gagzuTmXHLzm+TmehrWH7Z7lEVfpqXO8xIAoA7mLcdnZIG6ZH7yNaE/D96IdqcbgAIA09GEjLEdmXmxzHt/VtAFFksr/lMANMQXX3xR3L17t7hz507//+Px5MmT/r8dP368OHLkSHH69Onigw8+KM6ePTvrxSVRvNbnzp3rf43X+Pr16/3XPFv0r6tXrxb379/v963oU2fOnCkuX75cnDx5ck9t37hxo7/cn3/++Ui//+DBg5Ges9Vqvfr/WNZ4f+xWLNOpU6de+9nDhw8nso23WvZY11jncR09evTV/iDE63jp0qWZvCY0T/St2AfFPiL2C7FP2Kl/ATAfIl/evn37tXOMQbHfj0wUGfTEiRP9LBCZqw4iv8WyRO6ZtTgH++ijj7Y8D4tjaWSv6naO7Xvs2LH+do02Yn0mlUHjOcvsVy5DeQ653bLvVTzfp59++sbzxnrGusd6X7x4sf+zrH4xmG+j7VjvUV6T8vWIZSvPqyd9TjALxhYAWARybg45d2tyLqOSvwGoM7k5h9y8Nbm5nmL9b968Wdy6deu1PhnrG4/okxcuXJj6/BDzEgCg+Tl+O5FLI6MN2uu8WupvXvtzZNY4bwiRWetwbgoAzH/G2InMvJiakJn38plPYD4o6AIANVROXo6vWxUTiROKL7/8cseJOwq6vNlWiElJMTlpFq8JADDfYvC0zAZ1GNCdhwn71MeoE/YBgMUj5zLP5FwAYFrkZuaZ3AwALKpZ5/iygGB8LYv27da1a9eKjz/++LWfxVzVx48fJy4p82DW/Xk3c85HufkmAFAPs84YMjNN6s+jUNAFFsvKrBcAAHhThPDBE4YI6XFiGhUjB++8EyeamZNros04+a3eRWhY4Zb4vXm+21LcOWoeXhMAoH7u37/f/1rXAd7BvPbuu+/OejEAAJgTci4AAOxMbgYAgPkzyxwf80qjuEV8DTHnNG5uuNt5psNuNFi2yWKp83lpnIu+//77Y914EwCYLZmZJqlzZgYW09KsFwAAFtW5c+dGPjGME4hbt271T0gHTzBv3LiRenIZRUrKgfQmndTGBYKqatGaur4mAED9ckUc6+dhgDeWc1iOAwCAKjkXAAB2JjcDAMD8mXWOHzanNH62W8Pmpcr8i2fW/Xk7sVwffPBB/2vMr95NMZePPvporPcFANCMjCEz06T+DDCMgi4AMANxYhAVQ6OAym5EEZIY5N6pWMkkVE9kHj16VMyL6naOE/Ljx4/P/WsCAExfmRViAkKdlRclqpkHAACGkXMBAGBncjMAAMyfWef4hw8fprTz1VdfvfGzY8eOpbTN/Jh1f95O3FA05k/HnOqzZ8/u6m9v3rypPwPAAmcMmZkm9WeAYRR0AYAZunPnzliFVQarlt+/f7+YhnPnzu152Weluqznz58f+Xfr/JoAANNXZoW6V+0u88jp06dnvSgAAMwBORcAAHYmNwMAwPyZdY4/ceLE0BsJ7tawGw3W/dyE5vXnrcSHZT///POxirlEUdJ4KEoKAIubMWRmmtSfAYZR0AUAalD1ca/FVUb16NGjsf89iqAcOXJkz8s+uA4ff/zxru8iNo7bt2+/9v12zzvt1wQAmC9lVhjnQsE0xQSJmOgwmN8AAGArci4AAOxMbgYAgPkz6xxffd74UOG9e/d23U4Uy6j66KOP9rRszJ9Z9+dhoh/Gco1TzKWu6wQAi2bWx2OZmSb1Z4BhFHQBgBmK6p/DThh3cuzYsVf/v1NF8t1M0nr48OGW7UU7ly9ffq3AyrjFT+Jvo8jKsCqq4xaj2cqNGzde+z4uFmy3zabxmgAA8ylyQuSYeajYHTltHpYTAIDZk3MBAGBncjMAAMyfOuT4eO6YfxvzSnu9Xv9u8bstvhjrEOsyKD6c6AOKi6UO/bnq2rVr/Xna4xZzCeO8JwCAZmUMmZkm9WeAYRR0AYAZu3Llyq7/ZvAk8/Tp09v+7mBxkZ0KlcRJy3bFSC5duvTav3/88cfFuOscJ9cXL14c+W9i2cYptDK4jPGcn3zyyUjLN8nXBACYT2Uxuw8++KCos8hMkU1UlQcAYBRyLgAA7ExuBgCA+VOXHB83U9xLTh82p3WUubA0S136cykKucQc7evXr/c/MBvzvHd6xPugfMT6RBvxMO8aAGanLhlDZqZJ/RmgSkEXAJix27dv77pQSVQbHaxCup0LFy689n214uigmzdv7njSUj53iOWOgfTdiL+JiuxXr14tduvcuXO7+v04kY8LAKWoAD9KldZJvyYAwHwaPN7XWUyWiCJ8qsoDADAKORcAAHYmNwMAwPypS46PmylGRi+LV+xGzPmNObeDYv6tzL946tKfyw/Klh+2jq9Hjx4d6XHixIlXj5ivXrax3c1IAYDFyBgyM03qz6MY/LzjTp/3BOafgi4AUANRqKQaxLcSAb08OY2q5ju5ePHia99vVUglBtdjGaq/XxWD5nGCUxYticH0soLlKMv+/vvvF2fPnt3xeYY9726KulRP4qOYy25OyCb5mgAA86nMPHUe4C/vYBOT9gEAYBRyLgAA7ExuBgCA+VOnHH/v3r3+csSc21Hnp8bvVOfMxtzb+LAri6cu/TlumLnTzUN369SpU6ntAQDzlzGCzEyT+vNO/bZ6LSeu8cQN6oFmUtAFAGYsThKiWEkMRu9UTTH+vRwEjwIlo1Qkj8Irg0VcovBIDKZXTwTihHfUE9YojPLgwYNXzx/LtNOksKh2GhXV429j2Xcr1iMKycTJVTzfdtsq1qWs2h5/F8saRWTq8poAAPMnjvmRmepesTsyUOSR3RbPY3FU8+2jR49mtiwAwOzJuTSFnAsATJLcTFPIzQDAIqlbjo+5rPEB1ZjLGh/S+9GPftSfd7vVHNWY5xtzWAfn+8YNB910cDHVpT/HMsSNPbOZew0Ai50xSjIzTerPIT4DGQWH4hGfPYxHfLby6NGjQ/t1/F78W/Tr+N3ybxXyh/m3MusFAIBFVp5sxteYXBWhPE4833vvvVdFReJk4v79+/1iJnFCGj+LAiW7qRZZFmopA3wE+/hZPE+cAMTJarQ3WPhlJ7EcDx8+7BdqiXbjaxSLOX/+fP+kIdYp2o5ljZ/H9/E8e5k8Fs/55Zdf9k9GYltFW/H/8fN4rjgJv3LlyqsqrLGOu1mnab4mAMB8VuzOvsNMpshcsZzjFM9jsS5WDKoWewQAFoucSxPIuQDApMnNNIHcDAAsmjrm+JiXGpk95p3GXNeYdxuPmINaPqLoXuS0wQ/3xRzWmAur6MXiqkt/jv5ZPa/IcPr06fQ2AYD5yRiDZGaa1J8jO0dfLvt2afD/h4m+XfbvaMPnFWH+tXq9Xm/WC0FzxcEvPvD++PHjqT93WaCgDGflASwOdjHgE8sWhQB2OvgBTEpUTIzCIYOhOvZVcQIZJxGD+61jx471K0RG8ZK9VIos941l+xHq42Q1CpeURV/GFScYn376aX+/Ww7YlyfL0X6cHO9Wq9V69f+xnaJoSimeJ9YljjOD6xKP2E5RWGa3+/hZvCYAwHyIY37knboWcYucUhaiM2Gf0uBgfuTmyLXDKrpHni3v3ltmaBe1AGAxyLnMIzkXAJg2uZl5JDcDAIuu7jm+nAcb824H5/SGci5sfN4hcr58xjz0ZwBg/sxDxpCZaVJ/BhaXgi5MLCh9+OGHr+7iEQVdplU4pay+N3gHkbjwXD5/eZG6DG9xsXqvRQwAmIztCroAAExTFH4LsyhYOopTp071z3MfPnw460WhRnfkjUn443JBAwAWg5zLvJFzAYBZkJuZN3IzAED9czzshv4MAEyCjEGT6M9Ana3MegFolqhy9/HHH/eLqsziueNCdFTbC3FROYq1RDGXYaLgSyxrPGJCw/Xr16e8xAAAAMyDsqJ7VHCv8/IpfscwZYHbY8eO7fi7jx496n8ti+ACAM0m5zLP5FwAYFrkZuaZ3AwALKq653jYDf0ZAJgEGYMm0Z+BulPQhT0f6KIwymeffdYvpBL/PwtRQObcuXOvvr9169aOB98o+HLnzp1+QZdr164VH3zwgQM2AAAAbygnL+/lbpaTdPz4cXde5Q0XL17sPwAAtiLnMo/kXABg2uRm5pHcDAAsurrneNgN/RkAmAQZgybRn4G6a/V6vd6sF4L5cvTo0S3vxFEWRIkCK4MeP3786o4f2W7cuPHqQBvPce/evX6xlp1EAZoo5lIWoTlz5ky/wAsA9dFqtV79f+zb3VUMAAAAAAAAAAAAAAAAAACou5VZLwDzpyzmEsVT4i4vp0+fLj744IN+QZT42bVr194o6DIpg8Vcwq1bt0Yq5hJimasFXgAAAAAAAAAAAAAAAAAAAABgLxR0Ydd6vV5RB59//vlrxVwuXbrULyoziq2Kt0SxmihKA0B9C4oBAAAAAAAAAAAAAAAAAADU2dKsFwDGde7cuVf/f/z48eLq1asj/+2xY8eG/lwxF4D6evTo0awXAQAAAAAAAAAAAAAAAAAAYEcKujCXPvroo+KLL7549f1uirmEkydPFmfPnn3tZ7ttA4DJun379mvfP3nypPj8889ntjwAAAAAAAAAAAAAAAAAAACjWBnpt6BG4sP8N27cePX9kSNH3ijOMopbt24Vd+/e7ReGOX36dL/ICwCzE/vk69ev9wu3xL55sHBX6dSpU/399bFjx/r7/yjGdfz48ZksLwAAAAAAAAAAAAAAAAAAwDAKujB3rly58tr358+fH7utM2fOJCwRABmikMvt27f7hVpC+bWqLPYSv3/58uUpLyUAAAAAAAAAAAAAAAAAAMD2FHRhLj/sP+jcuXMzWx4A8pw9e7bo9XqzXgwAAAAAAAAAAAAAAAAAAIA9UdCFuXLlypU3fnbmzJlinuz7p/7FlHZWVo4VWd5e+eWUdh69/K+LLOeP/Usp7Xz5PGc393c7f7vI8s+v/mZKO397/T8rsvzlA//LlHZ+492nKe38lZ//cZHlb/3xz6W087uPDxdZ7r38r1La2Wh/ldLOwdVfLLJ88/TvpLTTWlotshw4+BdT2nnx/B+ktLO6/xeKLAeXfz6lnSu/9r0iy+V/9LOUdr5+/nlKO62lfUWWpeVDKe10O8+KLEsrb+W008o7Lej22intvPh7n6a0w3zq/u1/IqWdzs9tprTTb+tgq6ib1mZOIbTlnAhXLP00b5/b/XFO9tr8ac5+Mrx8lLNMG8/2p7TTXs/LS73OUko7reVukWVpuZPUTs77pNfN2wdsvFhLaef513nnKI9+cjSlnT/5ox+ktPPwD/LGPH73ZU7//qOll0WW9VbOe+V73Zy+9CtF3v7kL/zgeUo7v/JLeeMCv/CjP05p5wcnctoJb/1qzvqt/uv/n5R2mE/d/9+vp7TT/n7e8bt9OGefm2lpPWf9lpNO5Zd/mpjh/iQpn/747SLL+uOcsZONbw+ktNPeSLwM2kvKg628gtZLSzlttZLa6bTz9gEbz3POL188zemT4cnP3klp5yd/+m5KO3/wx3mZ+eGTnO39+628cZiNpMz8bjdnv3t8Je+c8MTPf53Szi//yp8UWf788T9Kaed7v5q3TAdP/CSlneV/OeeaHPPrxR/9Wko77cN5+4HualIeSNpX9vVyjuNLmznbaeVZXmZaeZo0jv6z5SLNTw+mNNP+aU7W6XybM2bdb2t9pV75O5pKaqvbzukD3c28vtROGmteT7puEV58k9O/nyWNf3+TOI7+9ZOc8+fnz/O29761jZR2vv/DRynt/PAX/rTIcvQXcuZEHfrzOe2E1Z/7JqWd1g/z5ox0vpczP2P1n/jdlHaYT7//h38upZ0jS3ljcQdaOce45VbeeFWnl5O/X/Ry9t1Puznv//DTbs5r9wftI0WW313Pmff7xYvvp7Tzk/XEuSftnPGqdtJ5XOgmZebNbk7WfbGZdy3l+UZOW89f5uyXwsbzpLae5bx3l5/m9aXVpzl9aXm9SJM0RFysfy9pHObn8lbu57/3JKWdXz+SMxYb/uKhnDHiX92XN2fkl1Yep7Rz8pd/P6Ud5teP/yjncxuHW3nHuX1J8//rmJvbRc780afdnPwdHiUdCv64nZct/9FG0uflXvwwpZ0/TczNz9s5mamdlFFDt8jJOhud5VqdW4RnGznb+1libl5/kbN+3Wc57Sx/m5ibk9paytvFFZ2kj4Gsfz9nvOJg4hjqie/ljBH/xbfzMuqv7c9p61fWflpk+bnlb1Pa+ad/6Q9T2mmi+s2uhW3cvn37te9Pnjw5s2UBAAAAAAAAAAAAAAAAAAAAgCoFXZgbT548Kb744ovXfnb69OmZLQ8AAAAAAAAAAAAAAAAAAAAAVK288ROoqbt3777xsxMnTmz5+1H8pSwAc/z48f4DAAAAAAAAAAAAAAAAAAAAACZJQRfmxp07d974WbVISxRwuXr1anHjxo2hbZw9e7a4cOFC/ysAAAAAAAAAAAAAAAAAAAAAZFtKbxEm5O7du2/87MiRI6/+P4q4nDhxorh//35x69at4uHDh0Wv1+t/je+jiMvt27eLc+fOFadOnSo+//zzKa8BAAAAAAAAAAAAAAAAAAAAAE2noAtz44svvnjjZ8eOHXtVzOWjjz4qrl+/Xjx48KBfvOX48eP9f4uv8X0UdYl/iyIwUcwlirpcu3Zt6usBAAAAAAAAAAAAAAAAAAAAQHOtzHoBYK+iOEsUc7lz505x5syZbX/35MmTxb179/rFXMLHH39cPHz4sF8IZlraP/lHRfenvzvW3y59/y8UKz/4tfRlAgCAOvn3/u8/Lf79v/mzsf723/3ffa/4a//a99OXCQAA6uTf+w9+Vvz7/+Gjsf723/3XjxV/7d/4XvoyAQBA3fwf//pXxf/pb4yXm/8Pv3Ws+Hd++930ZQIAgDr5G/+Xp8X/9W88G+tv/83fOlT81r/1VvoyAQBA3fyf//rT4q//jW/H+tvf/q3Dxb/923IzAMAiW5r1AsAonjx5suW/nTt3rrh06dKOxVwGi7oMFnC5ceNGce3atZTlBAAAAAAAAAAAAAAAAAAAAGCxKejCXHj0aPgdkz799NP+v129enVX7V28eLE4fvz4q+8//vjj4vPPP9/zcgIAAAAAAAAAAAAAAAAAAACw2BR0YS588cUXQ39+48aN4vLly2O1efbs2de+//DDD8dqBwAAAAAAAAAAAAAAAAAAAABKCrow1548eVJcvHhxrL+9cOHCa99//vnnxd27d5OWDAAAAAAAAAAAAAAAAAAAAIBFtDLrBYBRHDt2bOjPjx8/Xhw5cmSsNk+ePPnGz65evVqcOXOmmKSVH/xaUcQDAAAY6q/9a9/vPwAAgOH+2r/xvf4DAADY2r/z2+/2HwAAwHC/9W+91X8AAABb+7d/+63+AwAAxrE01l9BTQwryrIb1WIwd+/e3eMSAQAAAAAAAAAAAAAAAAAAALDIFHRhLlQLr5SOHz++p3aPHTv2xs8UdQEAAAAAAAAAAAAAAAAAAABgXAq6MBeGFV4JJ06cSC8Uc+fOnT21CQAAAAAAAAAAAAAAAAAAAMDiUtClAe7evVu0Wq09P+psWOGV7Qq97MWTJ0/S2wQAAAAAAAAAAAAAAAAAAABgMSjowtw4fvx4epvDCsI8evQo/XkAAAAAAAAAAAAAAAAAAAAAWAwrs14A2E1Bly+++GLiz/PkyZOJtv8b+//FlHb+uyf/QZFl453vpbTTaz8tsvwnT/9OSjv/09X/eUo7//sfniyy/P437ZR2/srKXy6y/OYv/CylnR+/WEtp5z/64heLLD99sS+lnZ9stIos7e7zlHY2n3+Z0s43xe8VWXpFt6ib9c0fp7TT6+W8d4tiOamdovhnl/7JlHb+48TD6/9s7fsp7fynz/6rlHZ6iXE36z23tHa0qJv9yz9Ma2spsY+zuDrf30xpZ+NYXg3TzoGcdlqdIs3KtzntLD/v5TTUSmonUa+zVLu2Ops5+8n2xkrt1q21nJcFV3JOLYpW0puu2807H+hs5rx2Gy/X8jJzUlvrSf2yl7g72V/kvHZHeqtFlm7S+r3by9mfvLs/7+D0zls557uH33pWZDl0JOeAuf9Y0oE3jr3fz1s/FlfnWM5xd+NoZmbO2cEttVu1u6/B8vP6jXkVWcfLXt727nZyjk3ddr3aCb1uUmbOPG9ayTmGt3rdWm2jzL60mXjetJmU4zuJ/TLL/qTdwLu9vO3dSTop+F4rp19+/+2XRZYj7+RkwbeP5F2XPXQsp621xMzcOpZzbgG91ZydXNIp+D9uK+uaY55W1vhgu37j6K31pIY2EseaN5dqlb8yx9Gz9BLPUzLPeeq2bqnbKUnWOc9S0vnO2lrONcdw+HBOjtu/P2vHVBT7D+S09c6xr1PaOfBOXoZbe+tFSjvLBzeKLK0DOf2pt5Y3zpR4GsYCW2vlHE9WW3mheTnpfD5TN2lAtpPUTt4RriheJp3wPOvmzNUN692ca7PtpHXrZo6jJ12/zpS1fpnbqW6SdpXfWcrZD/SWc9rpruVdt2gfqtc8vX5bSbumzjs5gx5vHcobaz62Pyd/H1nNy/GHl3PW79BS3nnTvsyBJhZaVkJdTjyo1DE3Z9ns5bx3NxMnIr5MOgl/1sub9/m8m9PWZlpubm6fzMy7vQbn78w5MWm7uKzcvC9v3bL2Ta2DRZrOgZwxy+V3ckYsjhzKGR8O7+7LGdt/ZzlvmbLy7v5W3gjRaquG8yMbxnB+QwqdXLx4sWi6kydPFnfv3n3tZ48ePUp/niNHjqS3CQAAAAAAAAAAAAAAAAAAAMBiUNClIQVdrl+/XjTdBx98UFy7du21nz158mRPbQ4rCBPbEwAAAAAAAAAAAAAAAAAAAADGsTTWX8EMnD59+o2fPXz4cE9tDisIc+LEiT21CQAAAAAAAAAAAAAAAAAAAMDiUtCFuXHkyJHi5MmTr/3siy++SH+eM2fOpLcJAAAAAAAAAAAAAAAAAAAAwGJQ0IW5cuHChde+v3///p7aqxaEOX78eP8BAAAAAAAAAAAAAAAAAAAAAONQ0IW5cvHixde+f/LkSf+RUcwlfPTRR2MvGwAAAAAAAAAAAAAAAAAAAAAo6MJcOXLkyBtFXe7evTtWW9W/i7YvXbq0p+UDAAAAAAAAAAAAAAAAAAAAYLEp6MJUPHr0KK2tq1ev9ouvlK5fvz5WO9W/u3z58p6XDQAAAAAAAAAAAAAAAAAAAIDFpqAL6b766quJth/FXKKoS+nu3bv9x27cvn27+Pzzz199f+bMmeLSpUupywkAAAAAAAAAAAAAAAAAAADA4lHQhXSDhVK2+9leXLx4sV+EpXTu3LniyZMnI/1t/N6HH374WoGYW7dupS4fAAAAAAAAAAAAAAAAAAAAAItJQRfSRNGWjz76qLh79+4b/xYFVG7cuFF88cUXac93586dV0VdokjLqVOndmw//j1+ryz+cvz48eLBgwf9oi4AAAAAAAAAAAAAAAAAAAAAsFcKurBrH3/8cXH06NFXj1ar1X9EoZQo2jJMFFCJYi8nTpx49fuDbUQxmHGLupw9e/ZVsZZo/9q1a68Ktgw+fyx3/HtZ9CWKwUQxlyjqAgAAAAAAAAAAAAAAAAAAAAAZVma9AMynKJBy5MiR/v+XX8dtZ69u3bpV3L59u1+wJYq1xNd4RKGWWLb42eDzxM+vX7/eL+gCAAAAAAAAAAAAAAAAAAAAAJkUdGHXrl692n/UydmzZ/uPu3fv9gu8xNdHjx71i7lEUZeTJ0/2C7hcuHCh//8AAAAAAAAAAAAAAAAAAAAAMAkKutAoUbQlHgAAAAAAAAAAAAAAAAAAAAAwC0szeVYAAAAAAAAAAAAAAAAAAAAAgAZS0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASVayGgJGc7TYn9JOa/lAkaVbbKa085cO/atFlt8t/l5KO+1eSjPFP3x0OG/H28pZqO8d3Ciy/N2fvZXSzs8dWk9p55197SLL3/zJnZR21lbeLbK0209S2lnal7NM3fWviixZy1TL+nWdnH3lP7f6LxRZ3t3XSWnnv3j5PxZZnm/+NKWdQ4f+mZR2nj3/nSLL2qG/kNJOr5e3j+ts/CSlnf2rv1Fk+cmT/yytLRZX51BSO3mRueiu5hwHlorVonZyDidF0c6rGdvr5LTV67aKLJ3N5ZR2Nl+upbTz8tsDtVu3VmLZ4NW1nPOdlbWc4263m7dyL7/NGRd4+nXeeerXT3LOCb9J6pcbSfuAsC+pnXd7ecOoOe+4oji2kjO+cOydnHP5cPjQi5R2Dr71vMiy/+1nKe2sHs1ppy9xm7O4Ogdzck43a0cZ2Ws557jb6+Zl5lYnZ1/ZyjkdKIr1xMzczjmidJPa6beVlCvb6zl9YP3Fvvpl5qTrA2F5Nedkbmk5p51eYmZef56TmV88yztvevY0Z7DiadIybSa+d/ct5fTLdxPPwZdbOW29ezDn2PTOWzk5Nxx++9uUdg69k9NO2PdOTv5efjtvOxVvZR18WXS9pF1TL2lfWVetpH34UtJY89J63vZubSR1go28Y29vPWecqZe0TN3Esf3uZtK6Zb15+9cbks6fO0nbO+ncot9W1nlh4nhs2lh6Uh9YWu4WWfbtz7lucWDpZZFl/4GcccYDSXl33+G8PLh8IGd7t/Yn5sq1pAPdvrzjXC/nsiMLbrXIO+42WbfIOaZs9nLaeZY4Fvc86UJBVjvhaSdpfLCTM9a80cm7VryRlCs7vbw+0E7qT52kdrK2UeYydRPHPovMtjIkzvXpJuWcxO5ddA/k7HdXksaa39qfN1fg7bWc/P3OSl6OP7SUs36rrawJjUWx1so7L2SxLdcwN3eSsuVy4sTPbtGrVW5+mTi0/zxpLsuzxNz8vLOvXrm5m5fj2klttRODxWZSTs3aTpuJ54WdpIyaOraf9f5NmqfTW87boXT3d2u3TMWBnPx14GDWZ4vzxtHfWslp663lxLH9pc3a5ebVpGM4W0s81QUAAAAAAAAAAAAAAAAAAAAAWGwKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQREEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJCtZDQGj+f8+/49S2vnFt/5qkeVx7w9S2vn1Q70iy+89fyulnbeWc5bpZ5utIsvv9P5eSjvrz39WZOn22int/JWXfzmlnT/eyNvenRd/mNLOy7WnRZbVtT+X0s7Gi4cp7bSWDxRZept52ynL8sEfprTzgyP/Uko7/8y73xZZ7v4spzbfV9/+F0WWw4f+Uko7T7/9PKWdpdWjRZa15Zy2Di19v8jyVdIx5UXvSZFmySkGe9dbzckCveVOUTdLm3ltLb/IybpL3y6ntFO8WM1pJ1679Zx9SXczb5/UXs9Zv/Vn+1Paef7NoSLL+su1lHZaS3nnhKurOW+W1X057fR6eecoL57l5O9vnuScN4fHXx9OaeebZznvk05eVyoOJY0LvJ3XBYrVpGU6cmgjpZ23D78oshw4mNPWvgPrRZbVAznbqbU/7yDe299Na4vF1UuKcDLzaJaeLdUuM3eT2upu5GXmzkZSZn6xL6Wd598cLLJsJp0PtBIzxfJqzrj+ykpOO91u3n1EXj7POW96mpRzw9ff5LT19FnO+ddmO68zHVzNySZvJZ4T7lvLOT69lZSZ33n7eZHl4KGczLyWlHPDyv6kzHwgMTOvJZ4YstB6SYenVjfxIN5aqtfKJWbw1mbOe7eVt4srWi+TTp5ertRu/LuTNK7bfpHTTuaYfC8xW/aSDim9Ts4ydTKvWySdz7WTzuUyl2kzqZ3Msf3VtZyd5VrSdYuwPylb7jv4MqWdlcR1W1rLOVdtJZ1b9CWdO/WSrhH020qMKFAnnV7O+61b5L3fXibNsX2eFE6e9/KO3990c8binnTyxmO/7eSMET/drFc7Yb2ddD6QeBDIykybSZm53Uk6j+uPo+a01Ulat9BLGtttZY0RJw7DdVd7tRsbbB3I2X/vS5ovcHg1b9DjwHLOMu1LvDi7v5V03lTk5fi8dy/k6GQNVkX/buW01e3lvefWezn7gZdJ5wTPsybXpObmvLm/X3dy5qI+a+fk3W8Tc/NmN+e1ayeONW926rVMG0lZN3Xd2om5uZOUd5OWqZV5DpaUm7PGK/tN7c/JzQeSxtEPrjQ7N6+2crb3cuYJHRPn3AQAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJVrIaAkbT23ya0s63xVdFlhcbf5DSzpetk0WWf/OXvpfSzt/7SSelnXd6ebvL5fZaSjuHV365yLJa7E9p54eH1lPa+f31nG0UWquHUtpZWn6ryNJuP0lpp9fJ2d7L+35QZNm/75dS2lnf/EmRpdt9kdLOLxU/n9LOy/bLIsvzIueYcvjQXyqyLBc579+3D7+X0s6zjS+KLOudnGNvr+gWWbrtr3MaytvtFkurR/IaY2H1llpJ7eS937K02oltbSQ19HI5pZney7zM3F3PaauT1E5oJ2XU9Rf7Utp5/uxAkeVl0jL1ejnv3bC8nHMut7Ka006vV6R5+SLn/Ovrbw4XWb59ntO/292cPrC6lLfB96/mHAsO7MvpS2H/vpyDwaGDOeeEbx1+XmQ5cCjnfGdt/0ZiPs157VrLiTuCxD7O4srKzJla3aXmZubnObmy92K1yNLdSMrMGznnA6GdtEwbSfn0RWJmXn+Zs0zdpLwUlpe7tcrembLOUb59erDI8vxFUmbu5OwrV1cSM/Nazo73wP7Nom6Z+eDBnHx66PCzIsu+A0nXdtY2G52Ze25NRJJWt17tfCcnf7USD+FLSbuUpfWc/cDSi8TznedJ49/P87J8J2ssLimfbD7PyV6hs5GznbpJmSlz3LqXtEyZ5wSdzZxzsM31vP7d3sxpq9PJO1fNsrrart3YZ1Zbq0lZPitXhlZWW0nnzt+1ZVyXZuoUOX17s5cYUJMOl5nLtN7L2Z88SxpHf9rNueYcHnVyrjs/bufM1Q1fb+aM7T7dyNlOzzbyJte9yMrMifMzsjJqVvbuJJ4PZLXVTbyWUrST1q+T1AcST8F7WePWSfM8wspazrFg32pOZl5NvCazbynnHGU1cZBpOWkQbSlxMK5+M0hZ9NzcTeyVm0m73cxlepmUwZ8nrduT7r7a5eafbeZ9Nu1pOyfvfrOZ0863G3nb+2V7pVbX50Mn6Xyu2+TcnDiu28vKzXUMA0njjEtJWTesJs0bWUvKu2tLieuWlHeXEzvTclKuyGqH6TANBgAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQREEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACDJSlZDwGhay/tS2jlS/FyR5Un376a00y16RZbbv/dWSjv/oH0vpZ1Wa7XIcnD5hyntHE3sA7+38V+mtPM3f3YopZ21pXeKLL1uO6WdbvdZkaW3+TSlnX2Hfz2lnSMrv1pkedF7ktJOd/OrIsuRw/+TlHb+/P5uSjv/6ZNHRZY/+eZvpbTT624UWX7+yP+6qJNvXvy/8xpr5dRC3Ow9LOqWKzq99SJLdzNnPwDsrJUTc4qi00ppptfOqxnbay+ntNNNaie0N3KGUDbXc84tNpLa+a6ttZR22p287d3rJfXLpNPUXjdnecLGZs5r9/xFzusWOknrt7KUs8FXV/LGFw7t30xp5+CBvMx8YH9OWwcO5GS4g4efF1n2Jy3T6r6c1y0srXSSGsrrl5Ch1c06yCXW/W/ljJ20Et9uzc7MOW11EzNcZ3O5Zpk5Ly+tv8xpq5OZmRMzap0yfNjYzDn/ev4iZ+wsdJL2AyvLOfvKleXEzJyUdQ8mZcHMrLv/wMuUdg4cymknrCWdD6ysZR3kEg++ifsByNLq1KudvqS33FLeUEXR2sxZqKWkQ0HrZeJ5yvOcHNdNaqffVlLe7WSNWSdl3cy2Okl5MDM3Z7XT7eb176y2sq5/hG4nZ5mWlrq1aiesrOWMWa6s5o19Lq/mZMKl5ZwDXSvpfCdVZkbNaitz7Cszo7CwNpMuqC4XefuATtIbZbOXt0wvk7bTei/nuPtNd3+R5UnnYEo7X7cPFFmetXNy5Yt20rX5jbz5GS9frtZubD9rXkXWMS5z7LuXlE+LdmKm6NZrTK+X15WKImmuR2s1b/+9lJRRl5PmCyxlXghN0k28XtxJamszsWN2CuPW1Cs3R6/MkpXBs/J3Zm5+lpSbn3bzMupXncMp7Txu5+Tv8M3m/lrl5meZuTmprXbiPPK0sea0+dF5x7hu1ryopHb6stpKijq9pHlxfStJ49+J80aWkvLuSuKYfJZu0nulk9WZEjPqRuIybcrNE5d4BRwAAAAAAAAAAAAAAAAAAAAAYLEp6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkqxkNQRM1x9s/p20tlZWjqW08zvd+0WW5y9/N6WdVms1pZ21tT9XZPlh60cp7Swn1uQ6uPqLKe08ff5fp7Rz5si/WmT5vbf+yZR2fufFf1Jk6SW1s7n+xyntPOpuFFk6nW9S2rnwg3+lyPJrx75Naedv/WErpZ3DxTtFluV9P5fSTmf9x0WWP3n6/0hp5/Dhv5TSztEj/4siy7P2H6a0s/kyp53w/cO/mdLOT57+P4ssh986ldYWi2tpvZvTzmZOFgy95U5KO62sIJCpk5Mre0ntZLbVTVymrLY6neVatRPaSW21N/OWaSPp/buxkTP01U7sS5tJ22mjnbdMrZyoWxzYl7OvXF3JOQ6EtbV2rdrpt7VvM6WdffvXU9pZW8tZnrCymtRW4gGz18vp4L2NvH3c0su8tlhcSxs575OlzcS6/62cvt1qJ4bmrKaS9iVp7URT3frl+G47Keu265dP25s5uXKznXdpNmv9spapnZhPs5apk9i/s+xPy8w57YR9Sfl0NTEzr67Va5lWs3JujOsnjTFlSjumJGbm1su8YyaLbWkzKxAm9smkw1Nmbl5az2mrlXXZeSNxrDnpnCcr637XVtIyJeXBzkbetZSN5/tS2mknXt/pZG3vrONlUjuZ1y16Nbx2tZKUd5cSc/Ny0rj10nLe+HftxlAzz8Gy2spcpqRjSmuzVcOswyJ7mdaNEvdvScuUeQb+LOkY/qyXk3Oed3NyV7+tTk5bLzp5Ge5lUlsbSXMhsuYdhHZSW73E86ai26pXO4mHt1YNlylLbyVpoTKH0ZeTxhdqOMEuKzO3E88J17s5+5OX3cT9d9JxLqud79rK+5wEi+150q5pX+pBJaetzJGKl0n7y+dJ+6Znmbm5u1ar/XfY6Obk3fWk6/MbifMh1tdz+kA38fplLy03F/XK33WcX5VpqVerrBtaDc7NWXm33atfbs46DoSXSW29XMrMzfWby9I09ZvFBgAAAAAAAAAAAAAAAAAAAAAwpxR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiyktUQMKKltZRm2s++LLK0Vg6ktPO9w/9UkWVj9XFKO53O05R23l7+hSLLH/X+QUo777Z+pcjy7fr/kNLO8toPUtrp9FpFln1Jh7puO6cvhV53I6WdP//2X01p5+Iv7i+y/PPf+2lKO63iiyLLjf/+eEo7XxY575NfL36tyPKw105pp7WccxwIK0n7gZUip18+eXa/qNu6tZYPFVl+8s2dWu2XQre3mdYWi2vl65x2uvty2vmureWUdlqbvZR2vmsrKTO1c2q99tbzhhg6G1kZLud1C71uzvbudpdq1c53bdVr3UI7qV++TOqXL5P6ZGh36ldfeXWlk9LO2ko3pZ3V1ZzlCSvLOcvUSzxPzWorc5myZC1TJ3H/vfk8JxCsPc07d1765nlaWyyu5W9y2lldzsun3dWcfcDSRg0z80bOfqmX1E7oJrXVTcpdmXmwl9QFcjNzVo7PO35vtnMy6ouXOdet1jPPCRO3U5bV1ZxcuW+1XbvMvLyUs26Z6ph167Y/aa+vprTTb+tZTmZefZo3GLf8Tc6+CZZe5ASLVicvo2bt4lp5h4JiaT2nndZ6Uv7aTBw/y8q7iWN6vU5Wls9pp7OZd57S3sw5Pm0kZdTQTlq/dlL+zhz3yspMy8t5O5TVtZxrxUtJy7SUmHVbrV6trjeFbtK+KWt/0k3cn3STzjG7L/Jy8/KLnP7dWst7z7WSzjFZbE97Oe+3zSIxoCbJnIf6PGk7PUuayPKyl7d/2+wl5aVuYq5MGj/pZI3rZp4PbCS1ldVOHE/aOe+VViernSJP1rX5xOtpvdWktrK6wFLeuhWt+o0PZ12XyZrrs97Ju5byrJ1zTPm2kzeu+6RzMKWdQ1mDVXGemrpTYZE9S8qDG728sYrlpLGKzV5erniZlC2f9dbql5u7OX2gnbSNwkbScSXr3Kndrt+cmN7LvGXKyrtFt2bLE5IiYS1zc6t+uTltrLmGuXkj6RrYt5t5GfWb1ZzPTH7byZtD/HQ5p639iZ8FXKvh2F7T1O8TJAAAAAAAAAAAAAAAAAAAAAAAc0pBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQZCWrIWA0hw78Rko733Y+L7IcP/y/TWnn4dNPiyxrB06ktLOy8k5KOz95erfI0lo+mNLOt52/W2RZWs3ZTkutnMPKvRf/eZGl0/46p6HuZk47sZ32vZvSzq+2/lxKO7/5/X9YZPmnf/G/S2nnP//df67I8t8876S087zzpynt/Hj5+0WWtdWcttrLB4osvaKb0s5G72lKO93Nr/Peu/t/MaWd/fv/QpGltX85pZ3l1mqRJeu9wmJb+iqnT64t5R2/u/tz2mlt5LTTb+vbnO3U+3YtpZ3Os31FlvaLnGVqr+ft39rtnKzbaS/Xqp3MttqdvGXKaqvdyallvLGZVxO5022ltLO60iuyLC/ltLWykpMFW628dcvqA51uXh/o9XL6wPJSzvZeXcs7Xq6/yDkWrH6bd46yui9n/VYPrhdZlg/ntKVa+2LLyswrvbx9QG8tZ//dylukovUsJ8P1niXl06dJJxbR1vN9tcvM3XbScTcpC2a1EzazMvNm3qXZzc3leq1bUu7KzMwryzl5KTN7LS93apiZk95zLzMzc047S0mv28pKO6Wdfltr7fpl5v05A1YrB/IGvpYOJg6isdCWn+UcU7rtvP1ukbNIRSvnkPJdW+s5C9XKOhas52WmXlLW6W4s1y4395LGq7qJ417tpIy6kXiesrmR01Y7qy8l5uYsrX2J+7gG6yS9d4ukuVX9ppLG9rPGBjaTru+F5X05uXkpqZ1+W0lZvpV0LSUs1W+Xwhx61MmZz7o/cWB3qZXzPun28t4kz3o5+7in3Zzz+aedvHGB592cdVvvJo59dus1ZpmZmYukTLG0nrdMS5tJ54RZh7i8Q2XaOXg3q6E4l8ua65EV4zNPBzo526nXatVuTtR60vWdZxt5mfnJSs6x4NDKoSLLvqWk8e/MgS9I8iRpEvFa0Wl0bn7ZW61Vbn7WzZvXvN7LORasd/Jy80ZSbt5Mm6ORmJnaSRl1I2+ZWlnL1KlZ/u43ltNM0lSPvl5qUE2QNO+331TWuWriyVPWHKT15Zx93Lcbefvvr1dzjuE/WzlcZNmX9DmnpcwTaNVGJs5wPgAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFHQBQAAAAAAAAAAAAAAAAAAAAAgiYIuAAAAAAAAAAAAAAAAAAAAAABJFHQBAAAAAAAAAAAAAAAAAAAAAEiioAsAAAAAAAAAAAAAAAAAAAAAQBIFXQAAAAAAAAAAAAAAAAAAAAAAkijoAgAAAAAAAAAAAAAAAAAAAACQREEXAAAAAAAAAAAAAAAAAAAAAIAkCroAAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJKsZDUEjObFxh/kNNTt5LRTFMWPu/+wdsu08W3OMrVWDuS0s7RWZFlePZbTzr6cdQsnl38zpZ3fL/4kpZ0n3aT3SVEUf/WdfyGlnRftvBpozzvLKe0cWsl5z/2H/8OvFFl+9Wc/qN323tfLiTvd3suUdn5//b8ssiwv5+wH3l49UWR58vLvp7TzYuNnKe18/8j/qsjyeP2/TWlnfeN3iyyr+38ppZ1WK+899/bK8bS2WFy9Pz2c0s7S5vOUdvpt7U/Kupt577fe1/tS2mk/OZjSzsY3efl049uctjZe5OX49kZOpmi3c7LgxmbekM7G5mpKO5ubOesWNjaStlPS9u71itpptfIWqtXKaafby2mok9iXNpP6wGYnb/+9lnQu1046b8p63fptJW2nbnepdu+V5bV2kWXlwEZOOymtMK96Pz2U0s7S5osizb5uTjvtvP1S8TQnM3e+2Z/STvtZTjthI6mtzZd5mXlzI6etzY3VWrUTNrKWqYY5JytTdLqJ792a5dzMTJGVczqdvJVrJ2W4TmKGW0k6n++knRPmbe+0thKXKat/L63mXSte2reZ0k7eXpd51fom58xpaV+nfrfeSorfobWRtFDPcjJT70VejusmtdVNGh8OnaSx3U7W2FDitfmsdcvM8ptJy9SrYd5dWu7Wbqy5duOMieO6WTrtvB145vs3RWJfWlrOaau1lHjATHrPrWSeq9bv7csc+knnrZR2Di2tF1mWi5zO3Sny3nAvuzljFV91cubDfN3Jm5/xtJ0z1vy8nZfh1ttJ8zOSxqu6iWNxraS2WonXUlpZp7xZx6XEY2XaENpS/Q66raRzlNT5MFl9KWmefeb7N+so9zQxwC0nZd2VVl5mXk1qazlxmSDLT9tv1y43LyUNEnfTBq2L4mUvJxM+6RysXW7+up3T1rNO3hyN9U5Sbk4aQ+slXi8uksa9MnPz0mbNxogzc3PSWFyvhrk57Xpa4jWCXtJklt5S/eYxZM1EXErMzavLh2qYmzu1GkPLzgMMZwsDAAAAAAAAAAAAAAAAAAAAACRR0AUAAAAAAAAAAAAAAAAAAAAAIImCLgAAAAAAAAAAAAAAAAAAAAAASRR0AQAAAAAAAAAAAAAAAAAAAABIoqALAAAAAAAAAAAAAAAAAAAAAEASBV0AAAAAAAAAAAAAAAAAAAAAAJIo6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAACAJAq6AAAAAAAAAAAAAAAAAAAAAAAkUdAFAAAAAAAAAAAAAAAAAAAAACCJgi4AAAAAAAAAAAAAAAAAAAAAAEkUdAEAAAAAAAAAAAAAAAAAAAAASKKgCwAAAAAAAAAAAAAAAAAAAABAEgVdAAAAAAAAAAAAAAAAAAAAAACSKOgCAAAAAAAAAAAAAAAAAAAAAJBEQRcAAAAAAAAAAAAAAAAAAAAAgCQKugAAAAAAAAAAAAAAAAAAAAAAJFnJaggYzdLSgZR2Wgd/OaWdflut5ZyGlpLaKYpi38HfSGln4+UfpLSztv8XiyxLxWpKO/uXjxVZvrfWTWnnV/flLNPPHz5YZDnzw/8xpZ2//82RIsvP1nP6wP/rj3KW6d7L/6bI8hvf/LMp7Rxeyqs59wv7cvr30sb7Ke08ePF/K7L8wlv/m5R2/rTzO0WW7ssf5zS0lBNTf773Synt9Ntay2nry7W/X2R50c7Z3u3NR0WWZ628fTiLa+PHb6e0s/I855gbWvvaOQ31Wnn73OdrKe1sfp1zjrLx7f4iy+aLnHVrJ+Wu0GnnHJu6nZyc0+vm9aV2O2eZ1jfzhpk22znnl93E7ZRlqdUr6iZrO21s5LxuG0l9Mqxv5LS1kfTeDUtJ4zAvN3Lecy838vaVz5/nHAtevsg7pnS7Oa/d8mqnyLKybzOlnZwjOPNq80/fSmln+UXePmBpLSkzJ8rLzAfrl5lfJmXmxONAJ+kYnrXv7iWef3U6STknMTNvJGWBrCzYqmHOzZTVLzeT+uXmZt41uRdJfWlzM+89t7xcr/fJi6R9bjiclJnXE5cpa3+5kpgFltdyMnPekZe59c1avcaHw3LSMTMx6xSbSfkraUw+K8eHTlJbncSx5m7ScbyXlE8ytZZ6tcuWS0nLVNRw3ZaXc8arlpZz5lRk5ua6tRM6SdctMs9VV5MyU3tztVbbqK77uKJVw/1AWksssj/dzJmD+NbyiyLLUpF3bMryvLsvpZ2vOzljzY838+ZnfbOZc/b8bDNnG4WNTnPnC/SyjgNZObe/TEnbKWtzJ8aAXtJ26mVGk6w8mDRUsZT4PmnlXVJP01tJOrdIugb2opO3vTPPLbKsLNWvE3RS38Assp+2c+ZoPFvKG/tcS9rxdhIPvi+7OWMMT7s5GfXrdl5ufpqUm79NzM3rSfOaO3Uch8nKcYmDJ71uveZEpK5bVhdI7EqtrJya1k5OM9+1Vb8c19vIWcHNfTmd4Nsa7pcy5//XMTdvZu5UGKp+vRoAAAAAAAAAAAAAAAAAAAAAYE4p6AIAAAAAAAAAAAAAAAAAAAAAkERBFwAAAAAAAAAAAAAAAAAAAAD+/+z965NdV3ofaK5zywtAIBNASS6VLiaSRY/dbnsIgKixPXK3RSRFRvTMxLgIFNnR7XZ3qJBw8TtBsf4Ak2CJ3yYsAixGjz2elopAkd0fultFgOBE27JkCQBZoXZLlggQ1LWqVEQmErfMPLeJfcqAwZvEyw/IjczniTiRyCTyPeucs/fa715740cgRKALAAAAAAAAAAAAAAAAAAAAAECIQBcAAAAAAAAAAAAAAAAAAAAAgBCBLgAAAAAAAAAAAAAAAAAAAAAAIQJdAAAAAAAAAAAAAAAAAAAAAABCBLoAAAAAAAAAAAAAAAAAAAAAAIQIdAEAAAAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIaacKAR9Pv3cxUmfYv1JSrnQvZAr1u5k6VanBtUyhZmaaG29uLSmbGj8WqbM4/F5JObuyEqnTXMnkhC31NpaU/+KP/ihSZzg8V1LG25+L1NnQyG2XKf97/zcidabL3SXlZ1a+EKnzO73XI3X+yqaHSsrfaGe2gdnp+0vK/9baEanzTu+3InW+0Mm1u9smMse5P728uaT0mlcjdfqDH5aUa5d/J1aL9evKn22J1Bm/MlFSmmO9TJ12v6QMuq1InW7ofeotdyJ1RrVCr204bJSURnMQqdMJbUvj47nzr+WVsUidlW79lpnarczn1mzmtqXhMFUnN6bl0D7XD01xy71cBvVSP/M+9YLvdymZWldC79PFa5nPvzK5MB6ps3Vz7hg+GGTep3Y7M39XWqFa2yJVuFNd+8FUpE7nSma/rbTGQ/tJ6PhdGfYyc1zv6ljteuZBr4Y9cyPT6HTGMr3u+MRySVlZyfS6vWCf02uF3u9Gv3bb0iBUK9V7V5ZXQj3zoFGr8VSWupntsht6bUmXlzLv0/jlzHGgsmFxMlJna3DdK6Xdya1VpNbQpiNVuJMNLmb2lUaq1w33uzH9zLFguJTpdweh/ntUK9THpdbjK8PQMTPVf7dDa9aV8Q1LtXptlW5qGwitMSX75pTkmPqhc9V+v1Wrz39Uq9up1XtUaYaOKROTmX13cik3f/d79bvmVEJzUyN0Pp/cf3NbJXei73cz9zFd6ufOUyeamfPLfuiaXKU7yMxLF/uZdYHFXqZO5XI3c51gZdCq3fpgs5mZc1vt3Hlcb7Jfp9O4kUY3tK+kznWC67oxwTGFluRLI3QvRDO45NFcCW0DudvryjA0NfWXMq+tH3qPKteSE0FIK7QDN4MTwSDYD7C+/bC3KVJnQzN3j0bqOm+0bw5NvJdD5xcL3Q0l5VIv89kt93NrHqnZMjXvtjvBe+QnM9vlIHROUOmn7vcInV40arjWnOybS8365kYv936Hlj2yfXM7tLY/ntlPeqH7WCqXQvtK8tpVq1G/68WptRg+Wv3O4AAAAAAAAAAAAAAAAAAAAAAA7lACXT7EN7/5zfL666+v9jAAAAAAAAAAAAAAAAAAAAAAgDuMQJcP8cwzz5Q9e/aUVqtVHnvssfLd7353tYcEAAAAAAAAAAAAAAAAAAAAANwBBLp8iLfeequcOnWqfPWrXy2vvvpq2blzZ/nSl74k2AUAAAAAAAAAAAAAAAAAAAAA+AsJdPkIVYjL4cOHy4ULF8p3vvOd0u/3Rz97/PHHV3toAAAAAAAAAAAAAAAAAAAAAEBNCXT5GGZnZ8vp06fLt771rfKrv/qr5Utf+tJqDwkAAAAAAAAAAAAAAAAAAAAAqKF2WYNOnjxZzpw5U86ePVvOnTtXpqeny+7du8vOnTvL/fffXzZv3vyp6u7du3cU7rJr167y8MMPl1/7tV+Ljx0AAAAAAAAAAAAAAAAAAAAAuHOtqUCXN998s+zfv38U5vJ+x44du/HnKtilCmZ58MEHywMPPPCJnqMKhzl+/Hj54he/WF555ZXyD//hP4yMHQAAAAAAAAAAAAAAAAAAAAC48zXLGvHGG2+UXbt2jcJchsPhB/579bPrj9OnT5dnn312FOjSarXKo48+Wl5++eWP/VwzMzOj4Jjnn38+/CoAAAAAAAAAAAAAAAAAAAAAgDvZmgl02bdv343AlvcHuFz/WaPRuPG4+b8dO3Zs9PufJNzl53/+58upU6du+esCAAAAAAAAAAAAAAAAAAAAAO4c7bIGfOMb3yjnzp0b/Xl2dnYUzrJ169YyPT1dFhYWRv/tt3/7t8uJEydG319XBbtcdz30pQp3qR6VAwcOlL1795YHHnjgA895/fkAAAAAAAAAAAAAAAAAAAAAANZUoMu3vvWtUTjL8ePHPzR85WZvv/32KNil+rs3B7x8WLjL4cOHR4/Kzp07y8zMzOhRhblUoS9VeAwAAAAAAAAAAAAAAAAAAAAAwJoKdKkCVvbu3fuXhrlUtm/fXvbv3z96VN54441RIEwV0FLVuTnc5XqwS+X06dPlzJkz76l14MCB8CsBAAAAAAAAAAAAAAAAAAAAAO5kzbIGLCwslAcffPBT/e6OHTvKM888U956661RaMsTTzxRpqamboS5VOEu1x+V6ufVY25urnz5y1+Ovg4AAAAAAAAAAAAAAAAAAAAA4M62JgJdpqenI3WqcJdDhw6VCxcujMJd9u/ffyPc5fpjZmamHD16tPzyL/9y5DkBAAAAAAAAAAAAAAAAAAAAgLWjXdaAKmTl7Nmz0ZpVuMvhw4dHj4sXL45CXrZv3x59DgAAAAAAAAAAAAAAAAAAAABgbWmWNeD+++8vJ06cuGX1p6amhLkAAAAAAAAAAAAAAAAAAAAAAOsj0GVubq6cOXOmvPPOO6s9FAAAAAAAAAAAAAAAAAAAAABgHWuXGnjooYfK9PR02b17d9m7d2+5++67P9Hv79y5c/Q7+/btK7/1W791y8YJCZ2xHy910yydTJ2JTJ3KSn8+UqfRyIxp8fJvl5T/4vP/KFJnsj1dUn7n4likzv/e/41InflrMyWlu5QJ+2oF990r134vUqc//smOlx9layv3fn9/8GakzrbWj5WUZmlE6nSad0XqtENzbmXzWC9SZ7zVLyn/l7syr2/p8n8aqfP/W/7XJeVv9f6vkTqX+n9UUlZCc9xwsBKpAymL398SqTNxdbykjG1YjtRphebupN5SZu4e9FulbpqtQaxWJ/TZbdh4LVKn0RiWlFY70wt02htKytVrmf2328tsl71eLhN5aSWzHHdtOTembj/TM3cHmToroTqVXmhXyXXMpaQ6r+WSeXH9fm4+6fQz2+Wld3PzSSO0q3TGuplC1XlhJ7lFsV5d/kFmbXD8rkxvUumEeuZmch8JTXG9pcz66SDYUwxDry3ZV7ZDPfNkHXvm0PrZWPCcMNYzdzM9c7eXu+y8stKqVe9dWelm9t9eqPdeCfVdo1qhU+f+MNfHrwzr1Xv3g/P32FJm371yLbd9t1rDWq2dVJqhMf1kpAp3st5C5vyyNRm8jtLOTLyNZq7XGYaOK4PlzNw0CPUCo1qh9cFh8DiX+uxS1xsyZzs/0gitySfXYbormWsgvVBv2Q/2zd3QmHrd4Ji6nVq9ttR4KkuhtYGV0DaZnJs6lycjdTZsXCopqe0yuTbQDF1PS82VSbmr6tyJvr+8OVJnYzuzPlwZb9bwvopBpme+NsgcT670cl3cyqB+PXMzNH93Quu6w4lu7e5j6XVyx5NBaO2zhOoMQ2uolUY3U6vRC27foTGlpsrmSvC1hZZPmrldLqZ9LfM+9ZZbtbvXZ6mZ6wbnQ3Ncqxmc44LHJ9a3H6xsitSZbOUmuU6jfvcfdYeZee5aP7N+cqUf7Jv7ofXv5FpzqE4ntOaRfG3N0LGg28kde/uh6w2p/nsYvIZdevXrm1O1Yv13sEdtLddvTCmDTqhvDp6ndENLxJebE7nzi1Df3A72zdx6wVn70zt+/Hg5duxYefLJJ8s999xTtm3bVh599NHyzW9+s5w/f/5j1Th8+HA5depUeeWVV275eAEAAAAAAAAAAAAAAAAAAAAAahvoMjMzU4bD4Y3H/Pz8KODlwIED7wl4efnll8vi4uKH1pidnS1PPPFE2bt3b3n99ddv+2sAAAAAAAAAAAAAAAAAAAAAAKhFoMv09PToa6PRuPGovD/gZd++fWXLli3l3nvvLV/72tc+EPBy6NCh8sADD4zCXYS6AAAAAAAAAAAAAAAAAAAAAADrMtBlZmbmxp+vh7hUj48KeDl79mw5cuTIewJennrqqVGIy7e//e2yf//+UajLc889t4qvCgAAAAAAAAAAAAAAAAAAAABYb2oR6LJ169Ybfz58+PDoMTc3V7Zv3/6RAS83/7wKeHn22WdHIS5VwMvp06dHPz948GD50pe+VL773e+u6usDAAAAAAAAAAAAAAAAAAAAANaHdqmB6enp0deZmZmyf//+0Z+vf7148WI5ceJEOX78+OjruXPnbvxeFexyXRXgct2ZM2duhL6cOnWq7Ny5s+zbt6985StfGYW+bN68+Ta+OgAAAAAAAAAAAAAAAAAAAABgvahFoMs999xzI9Dl/aampsojjzwyenySgJfr31ehLtXj6NGjo0elCnipgl12794t4AUAAAAAAAAAAAAAAAAAAAAAWFuBLlu3bh19nZ6e/kv/7icNeLk55KUKdqmcPn26nDlz5sbPqyCZKtjlwQcfHIW93H333dHXBwAAAAAAAAAAAAAAAAAAAACsD7UIdKnCVK4Hq3xSnzTg5f3hLpWzZ8+O/t6RI0duBMtcD3ipvgp4AQAAAAAAAAAAAAAAAAAAAADumECXKpRlMBjEan3WgJf5+fly7Nix0eN6wMv9999/I+Dlvvvui4wVAAAAAAAAAAAAAAAAAAAAAFhbahHocit92oCXm0NeqoCX6u9Wj+v27dtXfvVXf/W2vQ4AAAAAAAAAAAAAAAAAAAAAoP7WfKDLJwl4OXXqVDlz5sx7/v7NIS/XA14qR48eLQsLC+XXfu3XbuPoAQAAAAAAAAAAAAAAAAAAAIA6W3eBLh8n4KUKdqkCXqqgl48KeKnCXaq/AwAAAAAAAAAAAAAAAAAAAABw3boPdPmwgJc9e/aMHn9ZwMv1vwMAAAAAAAAAAAAAAAAAAAAAUBHo8gkDXiqvvfba6KtAFwAAAAAAAAAAAAAAAAAAAADgZgJdPgVBLgAAAAAAAAAAAAAAAAAAAADAh2l+6E8BAAAAAAAAAAAAAAAAAAAAAPjE2p/8V4DP4u7WlyJ1vtDcUFJ+Z3A2Umdh5fdKSm/5TyN1xibvidTpjP1MSfnpzdcidTrNYUk5fvFSpE47tF3+yaX/paQM+5n3e9B7u6Q0QnlqS+V8pM7iZG4+6TQ3R+q8M/x3JeXHG5l5YGPzxyJ1rpXM/la5vPL5SJ2TV/+wpGwv2yN1/s7k1kidS92fLSm/2f0/InXGm5nXVumPZea4TZ27S8rC5d+M1WL9uvjn05E6vZXcKe/EcqiHm1gpKc32IFJn2M/0JsNBo9RNI9gzj00sR+o0W/1ajacyHqo1MblUUq5c2hipc/XqRKTO5VCdytXlTqTOci+X03y1n9l/+7ldrnYyM+6PLJXMG7XQ6EXqXG1k5qXK+DC0XQ4y+0ll08J4pM5dG6ZKSqfTjdVi/br07qba9czjoWNcsmdutDIz+KDXitQZDnM9cyNUqtnMHeU645n5rZXqmUPjqYyHtsuJyVwfP3FlMlLn6tVUnVzPvLKS2eeWV4I9czczprXcMydfWmpPWSiZ+eRKsGceC10jai7njuGb5jPn4BuCPXPqWAC9y5lzwmFwHaYRWtdN9bojoT51EHqfBsHzlFQvn9QMfXaN0NpQ8pwg9draY5nXVmktZWr12plz3pWlsZLSD+1z/X5uP1kJrQ10V0Lvdze3ztjrZuambujcorISGtNwmDleXgtu36nrjp2x3NpAZzyzNtBq53rdRiNzJpY5I+BO9edLd0XqXOvk5tzxZqjPCe0jlUGoZ14eZObupX6uZ+4P6vf/B26FetSx0NvUCt57knptveDxpNsOrX2G6gyWg+dxoV63EbqnotIMtSfNlcyYQlPuj2qFNsvomGp2ab65Ur//v/tKJ3dMudbJnFtcDK4PJ/sB1rcfLmf65o3tldr1zUmDkjk+Xetnzi+u9HJrFSuDGq41h+a4sdC8m5xzu6F729vBayndXqZWt5k59gZb1DJMrREH/y1BrN9N9d/d4D1fvfr1uqkxtZbq934PS2b77rZzx5TLncy823FfxR2lfitwAAAAAAAAAAAAAAAAAAAAAAB3KIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAA3MmBLr/0S79Udu/eXb7+9a+X8+fPr8YQAAAAAAAAAAAAAAAAAAAAAADWRqDL888/X06fPl0OHTpU7rnnnlG4y3PPPVcWFxdXYzgAAAAAAAAAAAAAAAAAAAAAAHduoMtLL71U9uzZU4bD4ehRhbscPHiwbNmypTz88MPllVdeWY1hAQAAAAAAAAAAAAAAAAAAAADceYEuO3fuLMePHy/z8/Pl+eefH31/Pdyl+vnevXtLq9Uqjz32WDl58uRqDBEAAAAAAAAAAAAAAAAAAAAA4M4IdLluamqqzM3NlVOnTpWzZ8+WJ554omzfvv1GuMvRo0fLgw8+WLZt21Yef/zx8uabb67mcAEAAAAAAAAAAAAAAAAAAAAA6hvocrMqyOXQoUPlrbfeKqdPny779+8fBb5UwS7z8/Pl8OHDZdeuXeXee+8tX//618v58+dXe8gAAAAAAAAAAAAAAAAAAAAAAPUMdLnZjh07RgEuFy5cKMePHy+PPPLIKNilepw9e3YU/HLPPfeU3bt3lxdffLEsLi6u9pABAAAAAAAAAAAAAAAAAAAAAOoZ6HKzPXv2lKNHj5bBYFBeeumlMjs7eyPc5fTp02Vubq5s2bKlPPzww+WVV15Z7eECAAAAAAAAAAAAAAAAAAAAAOtY7QNdbrZ3797y6quvlvn5+fLMM8+UnTt33gh3OX78+Oi/t1qt8thjj5WTJ0+u9nABAAAAAAAAAAAAAAAAAAAAgHXmjgp0uW5qaqocPHiwnDp1qpw9e7Y88cQTZfv27TfCXY4ePVoefPDBsm3btvL444+XN998c7WHDAAAAAAAAAAAAAAAAAAAAACsA3dkoMvNqiCXQ4cOlbfeequcPn267N+/fxT4UgW7zM/Pl8OHD5ddu3aVe++9t3z9618v58+fX+0hAwAAAAAAAAAAAAAAAAAAAABr1B0f6HKzHTt2jAJcLly4UI4fP14eeeSRUbBL9Th79uwo+OWee+4pu3fvLi+++GJZXFxc7SEDAAAAAAAAAAAAAAAAAAAAAGvImgp0udmePXvK0aNHy2AwKM8//3yZnZ29Ee5y+vTpMjc3V7Zs2VIefvjh8sorr6z2cAEAAAAAAAAAAAAAAAAAAACANWDNBrrcrApvefXVV8v8/Hx55plnys6dO2+Euxw/frzs3bu3tFqt8thjj5WTJ0+u9nABAAAAAAAAAAAAAAAAAAAAgDtUu6wjU1NT5eDBg6PH22+/XZ5//vnywgsvlIWFhdF/P3r06OgxPT1dHn300VEQzH333bfaw2aN+cP+G5E6fzzolJSl7vcidQa9+ZIyNnl3pE6vdyFS5x9sfKCkXF65HKnzzuKGkvLD/m9E6ix3vx+p0+xsKSn9/rVInU1Tf7ekXL74byN12p3PReos939YUna1H4zU+ePyg5Jy7tr/HKnTCb3fw+GgpPxWaUXqvHvtt0rKYLIfqbN47acidf7rn1kqKX93+IVInf/tT3Jz3L8eZI5zPz38Ykm5NH4+Vov1a/HiXZE6w2GJGfQzc+5EL9ObVNrj3UidRjP0Rg0bmTrBMTVL5rg00qrX5zbs5zJ6xyeXI3XGJlZKSrsd/OwCri2NxWoNBpl95Vo/t89dCc6XCRPBWu3U21Sz96iy0sicWyw1cvtbs2Te8EHw/V4JzZeXr46XlMnFTK/D+nbp4qZIncEg11MMQvvboNfKtXBjmd4rZRh8v1Oawb4r1n+HWq/OMNefdkK9bmcs2DN3eqVOVpZz1636oX3lWjc3n1zuZfqcRqg/HWvkGqZOampKNnGhNYalUM98NdgzN0KvLXnWvBzaV65cmSwpExMbY7VY37pXJmrXxzU7mT240cpdcyyh9aphqM6gm7udbRhcQ0uJfXahdfRWM7ctNduZWo2V3DbQCPZNCf3Q9aZKM7QNDIPXd7ormfOC5VCd1LyU3JZareA2GVr2WA7tc6lzucrktcz587WruR518sq1Wl0rjPcDrFuXupnrH4PQNaLKRCuznzSDfcAgdLxc6Wfm3KVQncrKINefpLRCn10j1Osme+ZUrZXgtZTUmuVKaD9J3g8zDPXMydOKZmituVmvS2AjqVOLYf0up5Vmt37317VCtzA0r+Xe8P5EZm662sndp9VK3RvJurfYnahd37zcrF8f1wv1lqkedamfu4bdrWPfHOotm6HjU/IcLPXaujU8DqTWY5Pruv1us359c+iCeLMbutejhstwyb45tTU1U7cy5f4pYGlfC92jEeyblycyx6dL7fHarcXw0Wp4qnt7bN++vRw6dKhcuHChnD59uuzfv38U+DIcDsv8/Hw5fPhw2bVrV7n33nvLc889V86f9w9TAQAAAAAAAAAAAAAAAAAAAIC/2LoNdLnZjh07RgEuVbjL0aNHy969e0fBLtXj7Nmz5eDBg+Wee+4pu3fvLi+++GJZXFxc7SEDAAAAAAAAAAAAAAAAAAAAADUk0OV9HnnkkfLSSy+V+fn58vzzz5edO3feCHc5c+ZMmZubK1u2bCkPP/xweeWVV1Z7uAAAAAAAAAAAAAAAAAAAAABAjQh0+QhTU1Oj8JZTp06Nwl2eeeaZsn379hvhLsePHy979+4trVarPPbYY+XkyZOrPWQAAAAAAAAAAAAAAAAAAAAAYJUJdPmY4S4HDx4sb731Vjl79mx54oknRj+7Hu5y9OjR8uCDD5Zt27aVxx9/vLz55purPWQAAAAAAAAAAAAAAAAAAAAAYBUIdPmEtm/fXg4dOlQuXLhQjh8/Xvbv338j2GV+fr4cPny47Nq1q9x7773lueeeK+fPn1/tIQMAAAAAAAAAAAAAAAAAAAAAt4lAl89gz549owCXwWBQXnrppTI7O3sj3OXs2bPl4MGD5Z577im7d+8uL774YllcXFztIQMAAAAAAAAAAAAAAAAAAAAAt5BAl5C9e/eWV199tczPz5fnn3++7Ny580a4y5kzZ8rc3FzZsmVLefjhh8srr7yy2sMFAAAAAAAAAAAAAAAAAAAAAG4BgS5hU1NTo/CWU6dOlbNnz5ZnnnmmbN++/Ua4y/Hjx0fhL5/73OfK4uLiag8XAAAAAAAAAAAAAAAAAAAAAAgS6HILVUEuBw8eLG+99VY5ffp0eeKJJ0aBL1Wwy4ULF0ahLwAAAAAAAAAAAAAAAAAAAADA2tFe7QGsFzt27Bg9Dh06VF577bXRzx544IHVHhYAAAAAAAAAAAAAAAAAAAAAECTQZRXs2bNntYcAAAAAAAAAAAAAAAAAAAAAANwCzVtRFAAAAAAAAAAAAAAAAAAAAABgPRLoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQMiaDnQ5f/58OXny5OjrJ/Xtb3+73HvvveXxxx8v77zzzi0ZHwAAAAAAAAAAAAAAAAAAAACwtrTLGvTNb36zHDp0qJw7d+7Gzw4cOFD+2T/7Zx+7xuzsbPnyl79cXnjhhXL48OGyb9++0Z83bdp0i0bNenFv80uROlca10rKO813I3V+fOPPlZQfK5+P1Ple+48idX5scqWkXO1lpt7LvVwmV6PRClUaZMoMQ3WCriz9fqxWoz2ZqdPoROoMhsuROqNaZRip87c7nyspy+XvROp8fvhTkTp/3Hi7pFxY+m6kzrB3taQMht1InVYjM8d9/+pYSfmJjZljwd/5iYWSsvQn/yBS5/MTvZLyt9sPxGqxfl27kjlWttv9SJ1RrU6mVqud298arUzP1ArVGQ4bpW4azUxvUmmGajVD22WjkXtt7bHMdtlo5cY06GfOUZaXMr1Au31XqZt+tFbms2uVzDzQDk4nE6Htshs8TR0L1RobZnrm8WDm90RsTLmNoNnIvOG94DrM0tJ4rBbr17UrE5E67WB/muuZg0e5UM+U6iuHgxr2zMEhNZqZObcZOkdJff7J7bIZeo8qg0Hm2LSyHOqZL+fmk5R+bhMomVXPUjqhMXVSl3Wq3iu1vhCcUMZD82WqP+2X3Bt+V6pnTs7fofmy2829T3pmUgbdzLX5QbJHDWkEz1NTa7uDXmYeGAZfW6pnSkr1hLE14uBbNBiE1hmDfVwJbd/tXmYe6HdyfXOzhucpqfPnVGvZbOdeWyt0T1Ty+k7drs1F1xhC79MwOJ/0Q/f89VYy93tV+iups1XWs6XQtt0OXY+pDELzWzM45/ZCfWV3kOmZu6Hr6cnXlpT67NrBPicldbgctHIH3uEw1Ou2Q2tx/dznNmxlxjQMnqQMU01TvVrBkWFoakruubFDQehzq1kLPxI8hJcSWtPphdaYKsvBWqxvy/0a9s2hfiDVf1d6oX53KfR+p/rvSr+GfXNq/aSVWrNOHuhC7/cgeE7QbvVrtc/1+7n3O9XLp/rvUa1mapE4UyZ52SLVy9fwNrRSQpdAgtN3TCO4zw1CfXM3dC28stRZk3EjtVK/TuIzeuihh8rc3Fw5e/ZsGQ6HNx5VKMvJkyc/dp2pqalRKMyFCxfKt771rfLqq6+W6enp8vrrr9/S8QMAAAAAAAAAAAAAAAAAAAAAd641Fejyla98pZw4cWIU3lJpNBqjx3Xnzp37VHX37t07CnZ54IEHyuzsrFAXAAAAAAAAAAAAAAAAAAAAAGBtB7q88cYb5dixY6Mwl/3795cdO3Z84O/cf//9n+k5jh8/Pgp1qQJeLl269JlqAQAAAAAAAAAAAAAAAAAAAABrz5oJdHnyySfLrl27yle/+tXR90ePHi2bN28uw+Fw9P3BgwfLfffd95mfpwp12bJlS9m3b99nrgUAAAAAAAAAAAAAAAAAAAAArC3tsga88cYb5bXXXhuFrVw3MzNT5ufny9tvv122bt1apqamYs9XhcN87WtfK+fPny933313rC4AAAAAAAAAAAAAAAAAAAAAcGdrljXg8OHDo68PPPDAB/7b9u3bo2Eulbm5uVHNI0eOROvy6Zw4caLs27ev7Nq1q2zZsqU0Go1yzz33lAcffLA8++yzZWFhYbWHCAAAAAAAAAAAAAAAAAAAAMA6sSYCXU6dOlVmZ2dv63Pef//95fTp07f1OXmvKqzlenBLFeoyMzNTnnrqqVHAz969e8uFCxfKk08+OQp5qf7OuXPnVnvIAAAAAAAAAAAAAAAAAAAAAKxx7bIGVEEdu3fvvq3PuXPnzvLtb3/7tj4n//Hzvjmg5eDBg6Mgl+np6Q/83Sro5cCBA6OvVfjLoUOHRn8fAAAAAAAAAAAAAAAAAAAAAG6FZlkDFhYWRmEdt9O2bdtuBIpw+5w5c6bs2rXrxnt/9OjRUUjLh4W5VGZnZ8vZs2dHXytPPvnkKOAFAAAAAAAAAAAAAAAAAAAAAG6FNRHoUoV5vPvuu7f1OauQkI8KEeHWBffs2bNn9LVy+PDhsnfv3o/1u8ePHy8zMzOjPx85cqQ8++yzt3SsAAAAAAAAAAAAAAAAAAAAAKxPayLQpQrqOHHixG19zpdeeulGQAi3x759+26EuezcubPMzc19ot+vAmCue/LJJ8u5c+fiYwQAAAAAAAAAAAAAAAAAAABgfVsTgS7bt28vZ86cKZcuXbotz/faa6+NgkUEutw+VWDPzaE9Tz311CeuMTs7OwqCuTkgBgAAAAAAAAAAAAAAAAAAAACS1kSgy6OPPlqGw2HZv3//bXm+AwcOlEajMXpebo8nn3zyxp+np6fL3r17P1Wdmz+zKgSoegAAAAAAAAAAAAAAAAAAAABAypoIdLke7nH06NHy4osv3tLnqgJBzp07N/rzl7/85Vv6XHx48Mrs7OynrvX+IJjDhw9/prEBAAAAAAAAAAAAAAAAAAAAwJoLdKns37+/DIfDMjc3d0tCXRYXF0dhLlVoTKPRGD0Pt8f7Q1d27979qWvNzMy85/sjR4586loAAAAAAAAAAAAAAAAAAAAAsGYDXZ599tkyPT09+nMVtvLwww+Xd955J1L75ZdfLtu3by/Hjh0bfV89z6FDhyK1+cu99NJL7/l+586dn6ne+0Ndrn+uAAAAAAAAAAAAAAAAAAAAAPBZrZlAl6mpqfLMM8+U4XA4+v748eOj4I4q2OXkyZNlcXHxE9U7f/58+aVf+qVy7733ln379pX5+flR7UajUV544YWyefPmW/RKuNm5c+fKwsLCXxjI8km9PxCm2lYAAAAAAAAAAAAAAAAAAAAAIKFd1pC5ubly9uzZ8o1vfGMUvFIFsFRhHdcDO6ogkCrMo/q6bdu2Mj09feN3q9CQ6nerAJFTp07dCBG5HhBzvd7BgwfLl7/85VV6hevPiRMnPvCzzxrosnXr1r/0OW6lP2/8IFLnb7V+sqS8vXQtUme+8VZJWWici9TZ1PrpSJ03Lg9KypVyJVLn+/3fLind3nytcsIazbFInXStmNCYust/FKnTaE6WlN9a+ReROp3xzL5b+X9u/vuROsu9zPa9vPJTJWVl/FKkzrVGriX8G42/GanzyPYfRurcvfFqSTn8uz8TqfN7/UwvULkw+K1Inda1iZIyKN1Inf8+UoU7Vb/fitQZDHIZpsNho9TNcJAZ06DRqN17NOyHPrvGj87pI5qZWo3QmBrN3DlKs5MZUye0TVbGJ5cjdSZCdTZsWCopGycyx92NS5m5stLrZT671IjGQvtbpdMK7XMlt31PhvaVjcPMO95JvrZhZv7OnaWW0gwdUv7DMnFEv1+/voI7T6rXrWPPHO0rB/WaBJKvbRDsvVJaoXOLVB/fDPYUjU6vXttk1TNNrETqTExmet3JUO9d2TiZeW0brnRKSi/UezXKsFZ9bmUsdE7YyOwmIxP9TJ3NoX1uLDh/bwxdS5tMznGhlzcIvk/90DUZSJ3LpdZif1Ssfn3zILTP9buZa47DXqt220AjOO+mVnabqTXi4Dp6bv07OKbQ+9RsZxqUVqhOpTOWacDGJ3K9fC+0/7Za/TW77tEKXt9J7XOp+aQd+twqkxsy22UndD6fnE9SnxvUzSB4vSl1fpk8T+0OMse4a93MelUveIxLvU/N4PzWTvVwNZxzU2NK9hT9ZqjPaYU+t+T5V2jtczCWG1N/PHTNKTQNNJPXrmPn4Jk6PyqWKRM6DJTQpYaR/kS99pOR4P4La1Wyb071hIPUQaWUstTPrBEv9TJ983LofvS6rg11arZGnOy/h6m+OTimVug4FzsnCN4z0G9ntqXBWPA8ZSJ1D1KoTG7pM3ahKNnLp5ZQBu069s2hc7Bg35y6DpZca67jGspas6YCXSqHDh0ahbG88MILoxCWm0NZrge2/GWu//3KzTWefPLJ8vTTT9+ysfNB18N4km4O8ql8nG0CAAAAAAAAAAAAAAAAAAAAAD6ONfm/NTp8+HB56aWXRiEs1aMKZbn+uP6zv+jxYX//6NGjwlxWwfvDVt4fxvJpbNu27QM/O3PmzGeuCwAAAAAAAAAAAAAAAAAAAABrMtClsnfv3vLWW2+VRx555EYoS+XmsJaPelSu/05V5+zZs6M6rH6gy9atWz9zzQ8LhXn/8wAAAAAAAAAAAAAAAAAAAADAp7FmA10qMzMz5ejRo6NAlv3795epqakbQS1/0aP6e3Nzc6Pfe+mll8r27dtX+6WsWwsLC7fleQS6AAAAAAAAAAAAAAAAAAAAAJDQLutAFchy+PDh0ePtt98uJ06cGIW1VGEhFy5cKFu3bi3T09PlnnvuKbOzswJcahzmUn1On1X1eb/fu++++5nrAgAAAAAAAAAAAAAAAAAAAMC6CHS5WRXWsn///tUeBh9DFbZzu5w7d+62PRcAAAAAAAAAAAAAAAAAAAAAa1dztQcAH2VhYWG1hwAAAAAAAAAAAAAAAAAAAAAAn0j7k/11uH0uXLiwJsNjLv7pa2Xxz17/VL+7+Sd+rkx9YU98TAAAUCf/3+9/p/zKD179VL/7X/74z5f/6q88FB8TAADUyT//49fKv/iTT7fO/N/85M+Vf/xT1pkBAFj7nv3X/65849/87qf63Sf+3t8oB3/2b8bHBAAAdfJH/59/Xf7kX/6bT/W7P/lf/73y0//oZ+NjAgCAujn3//6Ncv5f/Oan+t27/5u/U2b+278bHxMAAHeO5moPAG636enp1R4CAAAAAAAAAAAAAAAAAAAAAGuUQBcAAAAAAAAAAAAAAAAAAAAAgBCBLqw7CwsLqz0EAAAAAAAAAAAAAAAAAAAAANaodlln3nzzzXLixIny7rvvlnPnzo3CPaanp8vMzEzZtm1bmZ2dLffdd99qD5NSytatW1d7CAAAAAAAAAAAAAAAAAAAAADwibTXS4jL008/XY4dO/ax/n4V8PLoo4+WgwcPlrvvvvuWj4/1ZeoLe0YPAADgw/1Xf+Wh0QMAAPhw//in9oweAADARzv4s39z9AAAAD7cT/+jnx09AACAjzbz3/7d0QMAAD6NZlnjQS4PPfRQ2bVr1yjMZTgcfqzH/Px8OXz4cLnnnnvK448/XhYXF1f7pfAfLCws3JK6VYgPAAAAAAAAAAAAAAAAAAAAAHxWazbQ5Rvf+MYoyOXEiRM3gloajcbHflz/nSrYZWZmprz++uur/ZLWnVsVsnLhwoUP/Kz6jAEAAAAAAAAAAAAAAAAAAADgs1qTgS4PPfRQ+cVf/MUPBLlUrv/sL3pUbg52qQJAZmdny3PPPbfKr2x9uZ0hK9u2bbttzwUAAAAAAAAAAAAAAAAAAADA2tUua8yjjz5ajh8/PvrzzSEulenp6XL//feXnTt3jgI8qu+3bt06CmxZWFgo7777bjlz5kw5ceLEjXo31zh48ODod37hF35hVV7belS939Vnc131WX1WN9e7+XkAAAAAAAAAAAAAAAAAAAAA4LNaU4EuTz31VDl69Oh7QliqoI65ublR0MuOHTs+dq033nijPP/88+WFF14YfV/VrOpVtWZmZsrP/dzP3bLXwX9UBe7cHMDyYWEsn1QV3PN+VdAPAAAAAAAAAAAAAAAAAAAAAHxWaybQ5e233y6HDh26EbxSBblUAS9PPPHEp6pXhb8cPnx49HjyySfLN77xjRu1Dxw4UH7/938//hr4oJ07d5Zz585Fa35YKEwV0nO7/OnCK5E6PzX9eEnZMP5XI3X+87GPH5r0lxlvDSN1Hpn5XqTO5d7FknL/9J9F6pxa+Gsl5d9+f3Okzu9enIzU+b3yuyVlfuX7kTrDldw20OhsitQZdq9k6rRWInVGtfrLkTorvdxx9uhKZp+b3rAzUuc/G8vtuz9Y2RCp8xPjD5SUv/8TmX3lr2+6FKkz3blWUlqNzLFpfvhHJeXKle9G6rTGfqyk9K79cawW61er1Y/Uabd7kTqjWp1upE6zPSgpjWZmXkoZ9puxWv1+K1KnEZq7R4Y/Co+ti2Y7s58k36dmcJvsjGd61I2brkbqrKx0Skp3JbMc1x/ktsnOlbFInV4/M6Z2aE0g2cMNc1Nc6fyHMOrPamNoXpoYZubcysaSGdNkHbeBmh0HoN3J9LqdUJ1KK9R/N5rBnrlmc0C/lzugDAfBg9NavXwZ7JlLaFtKbt/tscw+N7FhKVJn0+bLJaUb6r+TPfPYpYlInV4v1DO3c/1SqD0treC0NBY6v9wY2gYmQn1uZUPotW3o5OaTVnBuSmkGzwlY35qdfg3XdQdr9jx12MusMfS7ubWK1PvUDF23SK5VlNSxt4bbUnJtP7XPNVuZOq3QvFTpjGXW0ccng+eqoe2pFXq/U+vxdb12larVCW2XqfWqyuSGzL0e4xOZ+5gqnfHM9eJWcj0uOKewfo2F+pxOM7c9tkPH70Gwz0nV6oXWdVdCvXfy+N0OHb/rulaxljVDu0oz9Lm1gmv7g07mxQ3Gc/NJP9QODpcz88mwF+xPQ21OI7VRBu/1aIRuGwrenlH6E6HroOPBbWAsMw+0g/NAJ7imw/o23spMcmPN3DlhM7Qu0Au2XqnesruG++ax4L/mTq01N2q4RlxHqX0uVid43tQKXQcbjufGFDunb2Tmk+ZKbj9phNqTQfRaSqmVQbuOfXPwnq/Q/R6dYN+cWiPko9VsN/v0qpCVShW4UoWAVAEvnzbM5f2qoJi33nqr3H333aPvz549W5577rlIbf5iu3fv/liBLJ/EhQsXPhDmUgUAAQAAAAAAAAAAAAAAAAAAAMBntSYCXarwlhMnTpRGo1H27dtXTp06VaampqLPUYV+nD59uuzYsWMUGvNP/+k/jdbnw83Ozn7gZ+fOnftMNd//+9VnCwAAAAAAAAAAAAAAAAAAAAAJayLQ5dixY6OvO3fuLN/61rdu2fNMT0+X1157bRQWs7CwUE6ePHnLnoty4zN9vyqwJxnoUoUAAQAAAAAAAAAAAAAAAAAAAEDCmgh0OX78eGk0GuWFF1645c9VhbocPXq0DIfD0Vduvb17977n+7Nnz37qWlUQT/W42Ve+8pVPXQ8AAAAAAAAAAAAAAAAAAAAA1lygy7lz58rOnTvLfffdd1ueb3Z2tszMzJRTp07dludb75566qn3fH/ixIlPXev9v1uFxVQhPQAAAAAAAAAAAAAAAAAAAACQsGYCXe6///7b+pyPPPLI6Hm59aqwnupx3ZkzZz51rePHj7/n+wMHDnymsQEAAAAAAAAAAAAAAAAAAADAmgt0mZ6eHj1upy9+8YtlYWHhtj7nevbUU0+95/sjR458qjo3/14VEjM7O/uZxwYAAAAAAAAAAAAAAAAAAAAAayrQZevWrasSrjIzM3Pbn3O92rt37yiA5bpDhw594hrPPvvse74/evRoZGwAAAAAAAAAAAAAAAAAAAAAsKYCXaqgjxMnTtzW5zx79qxAl9usCmCZnp4e/fncuXMfCGj5i1SBP08++eR7AmF8fgAAAAAAAAAAAAAAAAAAAACkrYlAl6985SujgI933nnntj3nsWPHRkEyH9ebb75ZTp48eUvHtNZVASyvvfbaje+rgJbqc/g4YS579ux5T5jLwYMHb9k4AQAAAAAAAAAAAAAAAAAAAFi/1kSgy969e8vU1NQo4ON2+Pa3v13efvvt8tRTT33s33nggQfKz//8z9/Sca0HVYjO6dOnR+EulX379pVnn332I//+mTNnyq5du0ZfK8JcAAAAAAAAAAAAAAAAAAAAALiV1kSgS+WZZ54pR48eLa+//votfZ6LFy+W/fv3j0JkNm/e/Il+twqdIRPqcvbs2VEwy/T09CjIZ8uWLeXAgQPlyJEjo0f1syrIpXqcO3du9Hld/x0AAAAAAAAAAAAAAAAAAAAAuFXWTKDL3Nxcue+++0bBHe+8884te549e/aUrVu3lhdeeOET/d7CwsItG9N6dejQoTI/Pz8K8pmdnS2nTp0aBblcD3apVAEup0+fHv2dmZmZ1R4yAAAAAAAAAAAAAAAAAAAAAGtcu6whr732Wtm1a9couOPEiRPl537u52K1z58/Xx588MFy4cKFUUDI5s2bP/bvvvHGG7Fx8EFViE/1AAAAAAAAAAAAAAAAAAAAAIDVtiYCXRYXF0dfm81mOXbsWNm3b1+ZnZ0tBw4cGAV9bN269VPXPnfuXPnWt741qls5evRoWVhYKG+++eZf+rtV+Ev1d5988slP/fwAAAAAAAAAAAAAAAAAAAAAwJ1jTQS6TE9Pl0aj8Z6fDYfDcvjw4dEjoapXPUcVFvNpfhcAAAAAAAAAAAAAAAAAAAAAWPuaZQ2YmZkZhabc/KjCV97/s8/yuB4Y81l+FwAAAAAAAAAAAAAAAAAAAABY29plDZienv7Q0JRbEaQinIW6eGPlf43V+mtjeyJ1JlqDkvJTm69F6tw3/ceROv1hq6RsGr8cqfNv//3/qaT81KalSJ3/+8/8IFLnX/7BvSXlf1o5F6nT714oKY3mZKTOoMxH6jQG/VI7w9x80mxtitS53P3DSJ3fLBtLyn829tcidf5gpVtSfv3P7orU+cOLGyJ1fnrz1ZLy571hpM6Va79XYvqZz27QvxKpAymTGzO94Ia7MnUq45PLkTqd8ZWS0gz138PBmsh6/VDDYaN2tfq9zPs9zByWRprNULFGblDt8cwxbsOmK7Xblhqh96nVyvXxk4uZHvXy1bFInW4vdw7e79dvTXAstM/dNajfOuVk6LVt6OTOCcfHMrXGxoL73ESuH2D92hDqmSc2ZtYFK2Ohbbs91ispjVSf069fz5zqT1K9SWUYOjYNQsfdYTd3GbTRzB2bUtpjmZ55YmOjdj1zSrRnnsise165Oh6ps7yS65l7oTmulRtSGY9dc6zf/D3Rzry2DRO54+XEeGZfmQidy1cmJ3M9Cutbao2pNZHbvhupOa6G6wLNXq92a5+pHrXVyfUVzXZqwSr0RtVwHb2OvWVq3419/sE5bix4naiOn11MaEkveR7ebvdqNaZ2cK6c3HCtVtd4k2tfnWDfnJoHWN8m26Hrsu3ctY92aC2uFzzGDULHuOVmZs2y30yueWSOA2Oh41KlE9oGUse4ZI+T2pbqqBW7FyK3Hj8IrcUNQ9ecR7VC7WDwLutcpVSrm7x2FVq3HobepmHwX/D1J0Lbd2h9uNIO3VcxFrxePNnJ1WJ9S/W7E61u7Y69y/3c5NQLTbypMfWDfUXKWPAa9niwB69br9sNnc8Na/j6UucpsXu/g/8moRHqvyvDTugepNTbNEz2zaF9JXh6GfvkQm/TYCy3fQ9CfXMj2DePhdZ1J0P3jlU2dNzXfKutiUCXrVu3luFwOPqHFdVXAAAAAAAAAAAAAAAAAAAAAIDVsCYCXaanp2/8eefOneXQoUNlZmZmFPSymi5cuFDm5+fL3NxcOXPmzKqOBQAAAAAAAAAAAAAAAAAAAAC49dZEoEsV3nLdyZMny+bNm0sdTE1Nle3bt5eXXnqpfPGLX1zt4QAAAAAAAAAAAAAAAAAAAAAAt1izrAHbtm27EexSlzCXjwqcAQAAAAAAAAAAAAAAAAAAAADWrjUR6DI9Pf2er3VU57EBAAAAAAAAAAAAAAAAAAAAABntsgZs3br1PV/raDgclosXL672MAAAAAAAAAAAAAAAAAAAAACAW2hNBLo88sgj5ezZs7UOdDlz5sxqDwEAAAAAAAAAAAAAAAAAAAAAuMXWRKBLZfv27aXO6j4+AAAAAAAAAAAAAAAAAAAAAOCzawZqAAAAAAAAAAAAAAAAAAAAAAAg0AUAAAAAAAAAAAAAAAAAAAAAIEegCwAAAAAAAAAAAAAAAAAAAADAWgt0+drXvla+/vWvlzvBU089VR5//PHVHgYAAAAAAAAAAAAAAAAAAAAAUDO1CXQ5fPhwOXToULkTVGOtHgAAAAAAAAAAAAAAAAAAAAAAtQx0udNMT0+v9hAAAAAAAAAAAAAAAAAAAAAAgJoR6PIpLCwsrPYQAAAAAAAAAAAAAAAAAAAAAIAaql2gy+LiYqmzixcvrvYQAAAAAAAAAAAAAAAAAAAAAICaql2gy2uvvVbq7MSJE6s9BAAAAAAAAAAAAAAAAAAAAACgptqlZr761a+Wc+fOlR07dpS6OXPmTHn66adXexgAAAAAAAAAAAAAAAAAAAAAQE3VLtBlfn6+HDx4sNTVcDhc7SFwh2uOb8sUajQzdUop/3751yJ13uptLCl/a2lPpM4L38vss49M/a2S8t3FzGf3O1d/taQMB0uROv/l5/9xpE6rmZtrv/r5fxCp89//+W+Xurlr/IuROouL/6bUTnCOa7XuitQZDruROsvDSyXl731hIVLnD9+eKik/bFyN1Pnp0onUefl7jZLy9tL/GKkz7Oa2gWEZROo0gvscJExvXYzUuWs6t7+Nb1iO1GmNZY4nlUZoihv0M3NAo5Hr4ZqDfq3eo6TBIDOoQa8VqTOqFfrs2p3M51bpjGf2lVY7M6ZmO3PMHdVqZcbUauXG1Al9dq3mpkidS1fGS8q1QWZfaQXnuPHQ7tsOzXHN4Gub6GS2y8nx3HwyOZGZT6Y2Zc51Klu2XozVYv3atCXT604Gt+3OxErtjrtlmJks+71Mz9wOzrllGJorg2NqhNZ1h6FzlH6ozkiqpwj2cK1QD9dsLtfq8x/VCm2X0fPU0GfXbGbWq8vlyRKTmb6rV5cqVMbHMu93u5/ZBprB6WRirFerPreyMbTuNTV1uaRM65kJaU+GetTQWlWlkex3QxqhuakZWosbdHO3sw1D67Gp1zYS6lGGg8wBatDNrTWX0JiSUn1qYzCs1fpwpd0JbQP9zBzwo1qtWtXph+pUBqHtO7UtVZqh7bvdzmwDneB10PHJTI86FlqvStZKraFV2qH3ifXtrk5mO9rUzm2P7WaorxzmepOJVmaunGhl5sqrvbFSN+1m8Jp6qGfuhY7fy/3cOUpqTMPQ9Y+k1HpsqseJng8Ez+WH/cxnNwytfQ57w9q9tuBSc+pSYRm2M+/ToBN8v8dD1y2C92eMhdbQNgTPLTZ2cv0369vGdmZbmgz1g5V2I7P/bmzlJt7U60v1zUv9zL9JqQxCB5V2I9k3Z2r1hpk1tOVerm/uh/59S7eOa9Y1vB8idb99spcftkL9bupeplA/OKoVar+S54Wx9zv0Pg3HgvfYhfrdznjuWsp4J3TfSCfXV2wI9TrcQYEujUaj1qEpdR8fAAAAAAAAAAAAAAAAAAAAALB6ahfocj00BQAAAAAAAAAAAAAAAAAAAADgTlO7QJfhcFjqStAMAAAAAAAAAAAAAAAAAAAAAHBHBbo8+OCDZWpqqtTNwsJCOXfu3OgBAAAAAAAAAAAAAAAAAAAAAFDrQJeXXnqpPPnkk+X48eNl37595cCBA+WBBx4odVON8Rvf+MZqDwMAAAAAAAAAAAAAAAAAAAAAqKFmqYm9e/eWs2fPltOnT5ctW7aU2dnZsm3btvL1r3+9vPPOO6Uu/sk/+SerPQQAAAAAAAAAAAAAAAAAAAAAoKZqE+hy3Y4dO8rzzz9fBoNBefrpp8urr75aZmZmykMPPVReeeWV1R5e2b59+2oPAQAAAAAAAAAAAAAAAAAAAACoqdoFutxsbm6unDp1qvzBH/xBue+++8ov/MIvlG3btpWvfe1r5bvf/e5qDw8AAAAAAAAAAAAAAAAAAAAA4M4JdLluZmamHDp0qFy4cKEcPny4nD17tuzYsaPs3r27vPjii2VxcfG2jmd6erosLCzc1ucEAAAAAAAAAAAAAAAAAAAAAOrvjgh0udnevXvLq6++Wubn58u+ffvK008/XbZs2VIeffTR8vrrr9+WMQyHw1GoCwAAAAAAAAAAAAAAAAAAAADAHR3oct3U1FQ5ePBgeeutt8p3vvOdUcjKnj17yr333luee+65sri4eMueuwqTeffdd29ZfQAAAAAAAAAAAAAAAAAAAADgznTHBrrcbHZ2trz00kujoJUnnnii/Mqv/ErZsmVLeeihh8orr7yy2sMDAAAAAAAAAAAAAAAAAAAAANaJNRHoct3U1FSZm5srp06dKn/wB39Q7r777vILv/ALZdu2beXrX/96eeedd1Z7iAAAAAAAAAAAAAAAAAAAAADAGramAl1uNjMzUw4fPlwuXLgw+lqFvGzfvr3s3r27vPjii6s9PAAAAAAAAAAAAAAAAAAAAABgDVqzgS4327t3b3n11VdH4S4PPPBAeeKJJ0qr1Spf+9rXyne/+93VHh4AAAAAAAAAAAAAAAAAAAAAsEasi0CX66anp8uhQ4dGwS7f+c53yrvvvlt27NhR7r333vLcc8+VxcXF1R4iAAAAAAAAAAAAAAAAAAAAAHAHW1eBLjebnZ0tL730Upmfny9PPPFE+eVf/uWyZcuW8uijj5bXX399tYcHAAAAAAAAAAAAAAAAAAAAANyB2mWdm5qaKnNzc6PHmTNnypEjR8qePXtG4S4HDhwY/fzuu+9e7WGylvSXImV6vT8tKe3xz0fqDIa9kvI7vdcidf7+2IOROp+bvFRS5i9di9RptDaWlEH3YqTOr3zvn0fqTGz46yVlX+tLkTr/+dg/KCnfeff/Famz3BqP1BkG992U5JhWrp2N1Gl2tkXqLCz9Zkn5re/940idHdPdkvKvLg4idVrNYaTO5uGGktJfyhx7GzXMVBwuz6/2EOA9pj63EKkzOXW1pLQnViJ1Wp3cMW44bETqDHqtUJ36zW+N0PGkMhxk3u/ecidSp7s0VlJS20BSq9OP1OnUcN+t2xxQGQwy+2+3m9mWev3cfDIITQPJMXWCn11Co5GbK8famfOByYncOcrUpkw/sHVbpj8Z1fpx/Tef3aZti5E643dl1qsrrfGVNdvDDbqZy2nD0DE3qdHMzN3J/iTVM5ermfXTSj/YC6Q0W5meuTmW6XUbrfptS6k+N1mrF5pPUr13ZTDM7CuNYJsbmgVimsGeuRM6390wmTnuVqamLkfqbAn2zFPbMtcuobUhs680Q2tMlUYndMwMzk3NUK8zDM1Nw+R6Zc3WYZLnKcNQP9BvdOp3Dhaqk2xSUudOzVawRw314M3geWHsPCVUp93Ore0PUnNlcF5KfXadscx6bCd0flkZCx17U9eJRrVCx7l2sJdP1mL9mupk1og3tzP3xVbGm/W7NtsdZnqv5UFmbehaP3i/QA175kHJjOlaP9PrXu6O1+79zp0R5saUWh9MXr9uhq45Ja9dlVSt0KnFsB28Ljes17nlqFYrM6hhp151Ko3xzPlAeyxz/lUZD91fNdnJ3TOyaSx3PZz1bWMrc/61sb1cUjY0V9Zs3zwd6uOWB7m1z+6wfvcMDEJjWh5kPrfLjfHanRP0gvcMDEN9aj/02pJncskePKZRs7451FdWBp3QNpBqwGvYN5ex3HWL1nim3x0Lrn9PhtbkJ9u5vnlDsBYfrn6dxCrauXNnef7558tgMCiHDx8ur776arnnnnvKl770pfLKK6+s9vAAAAAAAAAAAAAAAAAAAAAAgJoT6PIR9u7dW1544YWyY8eOcurUqdH3rVarPP744+XNN99c7eEBAAAAAAAAAAAAAAAAAAAAADUk0OV9FhcXyy/90i+Ve++9t9x///3ljTfeGP18OByOHocPHy67du0qjz322GoPFQAAAAAAAAAAAAAAAAAAAAComfZqD6AuXn755VFYy4kTJ0bfV+Et1zUajRt/vv7zm/87AAAAAAAAAAAAAAAAAAAAAEBZ74Eu58+fH4W4HDlypCwsLLwnqOXDQlwqc3Nz5cCBA2XHjh2rMGIAAAAAAAAAAAAAAAAAAAAAoM7WZaDLN7/5zVGQy5kzZz4Q2PJhQS6zs7OjEJdHHnlkFUYLAAAAAAAAAAAAAAAAAAAAANwp1k2gy5tvvjkKcTly5MjHCnGZnp4uc3NzoyCX7du3r8KIAQAAAAAAAAAAAAAAAAAAAIA7zZoOdFlcXBwFuFRBLufOnftYQS579+4dhbjs2bNnFUYMAAAAAAAAAAAAAAAAAAAAANzJ1mSgy8mTJ0chLseOHftYIS4zMzOjEJe5ubkyNTW1CiMGAAAAAAAAAAAAAAAAAAAAANaCNRPocv78+VGIy5EjR8rCwsJ7Als+LMSlUgW4VEEuO3bsWIURAwAAAAAAAAAAAAAAAAAAAABrzR0f6PLyyy+Xp59+upw5c+YDgS0fFuSyc+fOUYjL/v37V2G0AAAAAAAAAAAAAAAAAAAAAMBadkcGurz55pvl8OHD5ciRIx8rxGV6errMzc2Ngly2b9++CiMGAAAAAAAAAAAAAAAAAAAAANaDOybQZXFxcRTgUgW5nDt37mMFuczOzpYnn3yy7NmzZxVGDAAAAAAAAAAAAAAAAAAAAACsN7UPdDl58uQoxOXYsWMfK8RlZmamHDhwoMzNzZWpqalbFi5T2bx58y2pDwAAAAAAAAAAAAAAAAAAAADcmWoZ6HL+/PlRiMuRI0fKwsLCewJbPizEpVIFuFRBLjt27Ljl45ueni7NZrP0er1b/lwAAAAAAAAAAAAAAAAAAAAAwJ2jVoEuL7/88ijI5cSJEx8IbPmwIJedO3eOQlz2799/28c6NTV1258TAAAAAAAAAAAAAAAAAAAAAKi32gS67N69u5w5c+Y9gS0fFuIyPT1d5ubmRkEu27dvv+3jfPvtt2/7cwIAAAAAAAAAAAAAAAAAAAAAd4baBLqcPn16FOBSBbd8WJDL7OzsKMTlkUceWcVRlnLs2LFVfX7ufMP+cqZQs5OpU0rpLf9ppM74hntLSq+3EKmzMBhE6ry1sLGk/KB/OlJnw/hfLSnDsZ+K1Lly+c1InZXu90vKv/yz/yFSZ3LD3ygpjdKM1Nl01/2ROosXf73UTWvi87Fanc7nInVWVv4sUqcMupk6pZRv//k/j9QZm8yF5HWX3onU+Vz57yJ1fnfwr0rdDEvm2JTUaE/mig17uVqsWxu3LUbqjG++VlLakyuROo2xGu4j/UxvMui1ylo27P/HtYrPond1PFKncbHE9JYz55eNVu4Y12hmajXbmTqtYb+kdMYz/eDYRGZeqkxuyMyXG+/KbN/LK2MlpT/IzHHd7o/WKBNuWvr8TJqN3JhSmq3MmCYncudNd226GqkzteVSSdm8NdPrsL5NbrkcqTO2KdczN0P7bur4nTToZY4nwzXfM2fep97VTC/QCB4rV1J9fHNYu+NurPdu5XrmVjtz7twJnoOPT2Su701MLkXqbFjJXeYfpHrmZm6OS+2/qd47qRPavieC54QbNmb6gbumrpSUjaFeB5qhfaW5IXeeWkLHp0aoFxgZNmq1hlq6uWNKbEyh9yh5XjBcCb1PNVxjSl5JGfQz71OzZOoM+sl1xmHttoHUmJqp85TgOVi7k9kyh8H5JPU+tTv9Wl3/qLRDx8ux0DXeSjv0+lLXnSutYC3Wr83tzDnh5nZmzaOyoZVZh+k0cutVg2Fo/WSY6SmWBrl7yFNjGgSPccuDzNrXtVZmrblZ6tczl5K7pp4yHGY+t+SSXvI6QUpqzXKYem3N4Plu6nQ+2McPQ+snw3ZoTJ3cddDmWOY4Nxa8lrJhLNMzbxoL/ZurqlYnV4v1LdU33xXqddd637zUzvQV3VBfOaoVOtCl6kT75n6mt2zVsPdKutbt1OrcqZfbdde2GvbNJdWjJi8Vpq47huo0Q2vWlU6o1kToGkFlQyfTN98V7HU3tvXN6ybQ5brroS6VmZmZUYjL3NxcmZqaKnXw9NNPr/YQAAAAAAAAAAAAAAAAAAAAAICaql2gS2Xfvn3lqaeeKvfdd1+pizfffLPs37+/LCwsrPZQAAAAAAAAAAAAAAAAAAAAAICaql2gy/T0dDl37twoPKUOqgCXCxcu3AhyaTQaZTgcrvawAAAAAAAAAAAAAAAAAAAAAIAaapaamZ+fL2fPnh19rYJTVvsxNTX1nu8BAAAAAAAAAAAAAAAAAAAAAD5Ku9TMvn37yre+9a1SN2fOnCn79+8vb7zxxmoPBQAAAAAAAAAAAAAAAAAAAACoqWapmUOHDpU62rlzZzl9+nSZnp5e7aEAAAAAAAAAAAAAAAAAAAAAADVVu0CXu+++u9TZL/7iL672EAAAAAAAAAAAAAAAAAAAAACAmqpdoEvd7du3b7WHAAAAAAAAAAAAAAAAAAAAAADUlECXT2j79u2rPQQAAAAAAAAAAAAAAAAAAAAAoKZqFegyPT1d7hQLCwurPQQAAAAAAAAAAAAAAAAAAAAAoGbapSbm5+fLneJOGisAAAAAAAAAAAAAAAAAAAAAsA4DXaampsqd4k4aKwAAAAAAAAAAAAAAAAAAAABw+zRv43MBAAAAAAAAAAAAAAAAAAAAAKxpAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIKSdKgR8PI3OpkidZmtjSekvfS9SZzBYLimt0Ov7YZmP1Pn95T8sKf3+lUid4bBbUu5q/9VInSuNRqTO9omfLyl/2P2NSJ3HtvyfS8r/2NwaqXPh0r8qa9Wwfy1Wq9dYzBTqL0XKdDZsLyndpdTc1C918+/L70fqdHuZ40Cl0Qi1zo1gpmKjVepHZiSf3dimzJw7Np3puyqtTZletzmR6+FKa5CpM8z0cKUfqlMNqZeZ34aD4JhWMmNqjmWOu8PU51ZZ3BApMxyW2hn0MselQWibTL5PjUbuDW+F5pN2uxepM9bJzZWddidSZxiaciutVuazazaDgwppNYe12wbGJzLH8PHJTH9SGduYq8X6NbYps3bSmb5aUpobM/tbI9QvjYTmpZLqK0O9SWXYD9Ua1rBn7kzU7nwgJdlXpqTOLYaD4JpQarsM9szN0HzS7mR65k4nN1cma6WkzndSvXfy/Kvdyrzf4+MrkTrJnnlsMneteGyDnpmM5obM+WVjY26fK+OZY0EJzXFJjRquNTdStbqt2vXNw3YNb/tL9ZbJ9e+lTK1+Wbu9fPS8sGbbQLKPS9ZKSa0RN0M9aqpOpRW63tAKnu+0xjJ9RSt4vTh67Zl1a3M7c/61tZ27P2NDM3N+OdGs3z7SHWZ6ipVhu3ZjWh5krstWrg7GInXa/fpdTx2UTJ8zCPZw/dDabh37pXr2zGXNir1Nycs7qUsXqcsWrfrd6zMW6r0rk6F7PTa0c2txm0K9DtzVyvSoU+3cPRqbmpn7RsYa9btWuBLqUbs17JuXhsG+uT8eqdMJbQPNRq7/7g5C506D4DbQz4ypl7y3omairW7devk69vHNGtYK3VuT/Gd37XboHo1k39zO9M0bg31zao2Qj7Z2Z38AAAAAAAAAAAAAAAAAAAAAgNtMoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAABAiEAXAAAAAAAAAAAAAAAAAAAAAIAQgS4AAAAAAAAAAAAAAAAAAAAAACECXQAAAAAAAAAAAAAAAAAAAAAAQgS6AAAAAAAAAAAAAAAAAAAAAACECHQBAAAAAAAAAAAAAAAAAAAAAAgR6AIAAAAAAAAAAAAAAAAAAAAAECLQBQAAAAAAAAAAAAAAAAAAAAAgpJ0qBHw8jUYnUqd/7U9LSqOzKVJnov3jJeXS5TOROn/Y/F6kTimDUJ1SGq2NkTqd1nRJWRpciNRpjf1YpM65K6+UmEbmUPc/X/zzkjIYdiN12hNfiNTpr/ygpAy6lzKFmrkWpb/y/VChzOe20vuDUjfLl/99rFZzfFukzsXl34vU6V37w5LSaI5l6rQzx4FKq7M1UmfQvxapM6q1lOtRWL/akyuZOtO5bbuZqrUhczwZ6eR61Ih+I1aqsdLKFErVKaUMr2SOA8NBJlu3vZQ5t6z0VzK9V28p8x5V+t1Wrd7vfjfXn3ZD71N3ObcNrKyE1ir6mc9tEPrcKv1+plYvVKcyHA4jdTqdTJ1mM1On0mr1M3XamTrJ19dsBd+nTu71sX61NmR65tbmpZLSmArVmuiVmNBcGVse7uaOJ41ec832zK1+HXvmTK3hMHfeNAhtA4N+6HwgdF6RrJUcUzd0TtBL1Qn2p/3Q+XxyTI3YrpLpuzrBNZhUz9xs5saUqpUcU2s82A+wrjUmQ+uxk8FtMlRrmOp1K6m1gUFmAm8kT5tTPfhK8p6RQa0+t0bwGN7sZc4vmqH14Uo/dM9ITPCcYBj67JLrsalaqTqp9eHkmJLnhY3GsHZjSmmk5rhk3xxa1212cn1FM7mOxro11b6aqdO6UlI2tzJrzRON3P0ZzdAi8SD0/+JdGeb6paVhZu3z6mC8pIyHajVL5ngyCB4rl1uZ/nSpmVv/bgWPlwnBs90yCJ2nhi7x/0hoTLk6JaZRr01ppIatbu3OB1rBe0Y6zUzPvLGVuRZeuau1HKvF+pbqm6dbmTqVTc3Mfc1jwQVZffPHqDPI9XGd0GfXquFBfLkd6ptD90NUrgV78LpJ9c3R9e/UmEL3QzRS46mkdrlkr5uqlTx3qlnf3A6eO481M+u6+uY7S+6KFQAAAAAAAAAAAAAAAAAAAADAOifQBQAAAAAAAAAAAAAAAAAAAAAgRKALAAAAAAAAAAAAAAAAAAAAAECIQBcAAAAAAAAAAAAAAAAAAAAAgBCBLgAAAAAAAAAAAAAAAAAAAAAAIQJdAAAAAAAAAAAAAAAAAAAAAABCBLoAAAAAAAAAAAAAAAAAAAAAAIQIdAEAAAAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIKSdKgR8PIPexUidYRlE6oxqdTNjWrz46yVl/K7/JFJn5drbkTqTG/56Sbl25d9F6lxd+l5JaXamInVana2ROmWY274brfFInR8unykp943/PyJ1fq91JVLncvdsqZtWa3Os1rA5Gakz6Gfe72Yzs01WBt35SJ1G+65InVGtRidSZ9B9N1JnbOO9JaXRyGQhbmh9oaR0h5nt8srSdyN1IKU1sRKp09y0XGK2ZGoNNvVKynCs1EpjJVjrWj9T50pu2aMxaETqNJcyx8rWWG5barZy/XdKfyXzPnWXM3VWlnI73PK1TD947Uqmz61cubQhUudyqM6lKxOROqNaVzOf3dJy/XKxx8cy++54JzPnViZDH91Er5UpVB17Q/P3cJipU2k26zfvcudpTWaar8bUUkkZhnrm4Ybg2nemFagW5CMa3UydUa1rzTXbMzeWM2Nqjed65lYnU6sX6k8r/W67VmOqY8+8dDXXV169nOm/r13N1LkS7Jkvh2otd3M9XEqq1x0Pzicpk4PcutdgUL/zHT0zMROh/XcyuK4b6neHnVCTWtVKTeHDzJgawWm30Q2NqROclxqhMUWqlNIMHsOHoV6+0cxt36lag37mHe/3csfdfj9Ta5AcU2h76q1ktqVu6FrDqFa3U6epcqTdDl1PC81L7XbweBlaY0hqhK6nNdrB++JqeK7CnWdTM7NGPN26WlI2h8Y0EVyQbTbqdZ7ajTXxpSyFFtKj73foHvlBq1m79/taK7OO2m7mrvGmpK6nJteqUj3FMHQ+MNILXUsJ1Wl2c6+tEayVMgxdBku1p8NOo3b3QiS1Q+u6461cn3tXK3gPKevapua1WtVZ633zYJjpB/qxVdRc33ylkfv3RK3Qmk5Ksm++Osj0zWPBvrlZs/d7ELyfMXaPZfLUOdWDD+rX6yavg6UM26HzudDp3KA/WNP3Q6TmpslW7h/wbGrl7iPlw9VvSwQAAAAAAAAAAAAAAAAAAAAAuEMJdAEAAAAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAABAiEAXAAAAAAAAAAAAAAAAAAAAAIAQgS4AAAAAAAAAAAAAAAAAAAAAACECXQAAAAAAAAAAAAAAAAAAAAAAQgS6AAAAAAAAAAAAAAAAAAAAAACEtFOFgDvXtumfj9SZv/zrJWUwXE5VilTpx8ZTyoa7/nakznL3eyWl0RyP1Okt/WmkTqO9oaQM+1ciddrjXygp/8mmbqTODy/dE6lztfO7JWXQvRSp01v6k5LSaG/MFBqsZOqE9rdKo5Fp5X5mMnMcqPzRtdcidRqtzOfWaubmk7HmVKTOoPRLypXLb0bqDFPbd/XZyYwkoDmROVaWTbkebjDdi9TpbSoxg/HM/tYYDCN1WlczdSrNUB/f6GXqjCxn5u9GJ7MtNdq540mjlXmfBoNGSemtZPqc5asTkTpXL01G6oxqXcn0J1cu5/qcK5czr28xVGfhUuZzq8xfzWxLi/3g9h2qM7bcitTZ1MotEU+F9t1WM3dMmerWbwm82Q4en1i3GrGeOVSn6gWmQmuxd+Xm3EGnUaueubmUm99ajVDP3M/1lWUlU6s5Vr+euTRCn90wt333e5leYGVpLFJn6UqwZw71lVeDY7p8ObNeefnyRK1678rFy51InUvdzDZZ6Yd2ubFQX7lpLDefTN2VeZ/GOt3azSeN1FxZHQs6wTmc9S20/w4ncudxg4nMvjLMTN8/qlWzU+dGL1hrJdTLBy9/NQahOS61XhWcc1M9eGrNujIMrVsP+pnj5SC4VtUP1ep1cxNKqtbKcuY85VroGkFleSlzr0c/tC1VWq3MPrch1KO2gvvu+IbMdd5h8Dw8JbpekazFurWxuVyrOpUNqTEFG8tmyZ3zJnQbuf2/M8zUagXfo0Ho/rNu6GTnajPTm1Tazcz73W7W73pjr5/53Hq93AlYPzSmYXBMqXO55kqmTmsp1y+lxhSc4sqwnRlTL7Ro3WsF58qJVu165tTxcqyZO4ZPNHNr6axvqW2pjn3zRHDijfWEoampnypU0745pTvMHFOWm7l1xvHQsaAZvH6Z0h80a3fP9jA0pmGo/872zZkxNZN9c6g9aSS3gXao3x2Gtu92/c4Lk1JzUyd4DB/XN99y9dsSAQAAAAAAAAAAAAAAAAAAAADuUAJdAAAAAAAAAAAAAAAAAAAAAABCBLoAAAAAAAAAAAAAAAAAAAAAAIQIdAEAAAAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAAAAAAAAAAAAAAAAAAAEIEugAAAAAAAAAAAAAAAAAAAAAAhAh0AQAAAAAAAAAAAAAAAAAAAAAIEegCAAAAAAAAAAAAAAAAAAAAABAi0AUAAAAAAAAAAAAAAAAAAAAAIESgCwAAAAAAAAAAAAAAAAAAAABAiEAXAAAAAAAAAAAAAAAAAAAAAIAQgS4AAAAAAAAAAAAAAAAAAAAAACECXQAAAAAAAAAAAAAAAAAAAAAAQtqpQsDHNByWunl34dVSN8Pe25k6ZRCps3z5/4jUGdUqa1dzbEum0KCXqVNK2bRhR6ROq9EpKb9/aSxS5wtlW6RO2fh/y9Qppfzx8q9H6rRakyWlu/y9SJ3hMDOfDLsXI3VGtfrXInXOL/xKqZuxjfdG6ky2PldSusOrkTqXL58pMY1WrhbUSGOsnyk0npm7K/0NqTq5XNVh6Iy+2W1E6gybwXOdzJBKaQTH1MrUaiTfp5DhMLQNDHLbd3c5038vXxuP1LlyeWNJuXTxrkydy6GJqXp9VzPv0+KVzLnOwtXckuUPQ4eUHza6mULVZ9fInPO2QlndW/u59/vzVzK1JsYy21Kl38/0zI3gMaXRDm2YrGuNTmidop3rmQeh5Zzehkb9euaVzJiaK8FeMNR6DUN9bqXRCm1PuU2gdvq9XM/cW8n0zCtLmePu1cu5Nd3LlzL99+VLyZ55IlLn0pVMnYuXc9cs3l3O9Es/CF2Tq1xqZPqlziAzoWy7lluH/cl+ZhvYuCF3xXGQOp9v1PCYAp3MdjkM1akMMsswZdgJ9s01u9yUPAdPdV/DQbCXD21PjdSadat+6+hJqXXrfjezo/RCdeo6ppXQ2v5SaG3/cnBt/+LFTK2r13Jrn83QPrd16nKkTjN4DWxi41KkzrDfrN3xKXmtMLVGyPo20cxcA5sIXkvbGLqWtiG0vlBJtd+pvbYbupex0iqZeWnQyM25qe0ptX13ottS/a4T9kM9cy/Ve/dy/emwH9p5e7lz8Ea3WatrV+0rudfWvhKqs5Trl4ahqWllKnV/XW77HmzIzCfJJY9mY1C7uXI8dCyAWH8S7JsnQvtKqv+u5DrCjORZcx375pXQvyVJbZd17JtTx6bKIHSv9Uqo3+0F++ZB6Lp6rP+u+uZQreZyqG++mnttncxybGkF/5HyoN2oVd+83A5eS9nYrNUcEO2bm7l5N9mjcGf0SQAAAAAAAAAAAAAAAAAAAAAAdyyBLgAAAAAAAAAAAAAAAAAAAAAAIQJdAAAAAAAAAAAAAAAAAAAAAABCBLoAAAAAAAAAAAAAAAAAAAAAAIQIdAEAAAAAAAAAAAAAAAAAAAAACBHoAgAAAAAAAAAAAAAAAAAAAAAQItAFAAAAAAAAAAAAAAAAAAAAACBEoAsAAAAAAAAAAAAAAAAAAAAAQIhAFwAAAAAAAAAAAAAAAAAAAACAEIEuAAAAAAAAAAAAAAAAAAAAAAAhAl0AAAAA/v/s/W+MXOmeH/ad6j8k58+9t4fce9da7a6t5tpRHMGWejhWjEQRnCUjv4gTBG6Sr+IADoaEA8SG9gWJCeDs3WySCflCWi+cAOQF4iSKDcyQSeAXdoJ0T2QrshFoSWoVJ4YsmZRXG+2u7r0k+965M8N/3RU81azqOqeeOl1V/auu6lOfD8DprvPnOc+pevrU9zld/RsAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCrEQ1BIxm+fQ/EtJOe+9FSDv7bb2Maef1l0WU1qnvhLTTfvU8pB1Gsxf0fLeWThVR9orXIe38cvEniyh/8tsxP3P/0vm/H9LOf/T054ooW7//3wlpZ69dhHmzEtPYw9f/t5B2/szqXyii/Kd7D0LaubD8zxRRfuHdVyHt/K2v9kLa+aMi5uck+frl78U0tLcbV53x9Ach7ezuflNEWTodd01hgb0Jqj36uhU3tmMiRbH0Ou5Nrr0bc37LL2KuuctfF2FaL5bmaywlr2Paar9ZDmmnaMeN72Ivpq29qHNL701vYm5ZvXq5OlftJC9exMx3vnkR16evX8Q831+/jBkDXwdd35KfFjHZ6w+X4u7D/NFSzAVzqYh5nv54670iyju774a08yrwehKltRTzfglhgq6VrcBrbutNTDtLcdPmIuond+lVTI5firkt2NF6GTQGIjNzUFtRc512YGZu7y3NVTvJ7uuY98s3r2Jy5evXcfn01cuYzPzi5ekiyjdRfXoV87r9LGiOmjwvYq5xf7AcmJlb85WZf2nv/SLKe69ixuXroHnz3Iq878FiW45JhO24t7miHTTl3VttzV2fWoG/443Sbsd0qh0Ym1tLQU9UVDvz+MI1+L0pck4QNefZi5ynBN3Xe/UqJn//9Kcx9yuT3//ht0La+b2g+XzkfY9f+UlMRj1zJubzIsm3P/hpSDt7Qb8DC7UceN11DSfAmVbMhyHORN0g7rQVc5P4TOAlYLUV9L4b0kq65xH3878b1KvVoNdtv62Y8bQcdG5LrbjfEy4FXbsjx8C85dP2PN5jCrxXFfWjsvQqpk8rXxVh3vuHMT8r7/7DuFwZ5ctfjMnMu6fixtKL7yzN3Zxw3q6V0e9PLLb3gn7Z/15Q/t5vKyYznQ7MzaeCcnOUV0H3h/fFXE9eB86dXgRd46KulZG5OcqyeyfHa/5+5ML+BmQ1MDe/G5Sb3/ujuPeU9nLM9funvxzzS9XddwJ/b7EWlJsD54VR16Z5vBfDcPM38wIAAAAAAAAAAAAAAAAAAAAAOKEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQVaiGgJGtVfMm/beq5h2As+t/ep5WFucQK1WWFPfaf1CSDu/cnq5iPKjr1dD2vl3/t4vhbTz+fO/XUT56uV/ENJOe/fLkHYir3Gt5XdD2vlbrS+KKH9i5b8W0s6//1v/+yLK7rdixvf/6F/9F0Paefyzf6KI8l+ceS+knZ+c+v0iyvtLPx/Szg9f/F+LKO1iN6wtFtfu16dC2ln+yZkiytJ7MWN7JTIzt9oh7Sx9E9JMsfR1YM3Yr4NuV3wTd9uj/bPTIe3sfRPzXrn3Oi6fttsx+bsVNCb3G4tpa3l5d67aSVZWY9paXQns03LQ8x30ur0u4nzdirnu/rQVM69I/nDpq2KefKcd876bRL3LrS7HvV+urLyZu2tc+03cNZzFtRuUTVZ+FpNNkqX3g953V+KuAUtBtxmXXga187O4+56tr5bnLzN/FfOeshc0J2y/Wml0Zl5aivlZWQp6343NzDHv36tBOSBZWY4ZT61WzHV3N2hMJl8H3c97HpiZ/97yT0PaWSlinqe1dsz7brJbxLS1HHQNCL02BY7L3VcyMzHaqzHjux04JNurMT8re6vz978Dawddmpb24q4n6TdXcyfq/KLaCbx+hwnMza2g98zlUzHZcuV1XEbd21uauyzfWgq67gaNy29ext37/PsvY/r011Z/XET5Ouhu+u6LfySknV/+MuYzFcnePN5DDbo2tQLvfxer8/dZVE6eM62Ya8mZVtz7yemgeHKmFfcZhqXAz7TGiPv5f9mev8y824557XaDJjt7Qf3ZbytmLC0FZubVoDwY1c6blbjn+3XQvKm9HPiZqKDLSdBHIYqVF3Fj6d1/GHOP+NTv/r0iSvtlzC/5vtX+kyHtfP3zcZ9nDLsvECjq2rQamCtOteLm4Sy294J+D/buUtyYfFduPtRSYG7eC7rXHJnjONxS4O8IVpdi3p9OBX32981u3M9uOyhX7DU4Ny8H/b1F8t4fxtyLOf3oPy+itIN+d/Ht4r8c0s7XPx93bz/yZ2Xerk2RufnMUuSn98mZv5EIAAAAAAAAAAAAAAAAAAAAAHBCKegCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQRR0AQAAAAAAAAAAAAAAAAAAAAAIoqALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEGQlqiFgNKsr50LaefGz/28RpbXyTkg77d0iTCuo3lS72AtpZ+nUB0WUVmu1mDd7b74Maae1FPO28v67/1QR5XXxIqSd/8eLuJ+577b+sZB2vvzJt0Paebn7vIiy++IPiqZq774Maeflq7jn+9trvxrSztf/eNw17sUHMe8pX7+JuZ78Z8XfKaI8//p3QtppLZ0uorxZibl+v/Otf7qIstv+OqwtFtfey5i8tPezU0WUpZ++immneF2EWW7HtPO6FdPO14G3GIJeu8gxsPuzMzHtfBnTzpsXcefW3osZA63lmPlXsno65mfl9DsxGe79vbiayK2lmJ/d1ZU3RZSVlZjX7vWb90PaWX25XERpFzHP95tW0DU30DvtmOvu6Xbc8/1uEXM9efedmPfd5FTQ9WR5Je7G195u0HsvC23vRUxmbkdm5p8FZd3luJ+3dtCt2FZMpChaLwL/PwtfBY2Bn8Tk02T3y9Pzlb2D5pZJezfmtWstxWXmlVMxefBUUGZ+rx33/tYKyl5Lgc93VFuvX8dkr9Wv4ubg7b2Y53s36Hdykc4EZeYzkZk5aE54OijnJiurQfPLwHnT3m7cc86CCxpKQZeTt20FvWcGRst2UFutBv/vyVpxt+KKVtQ9+VcxA7wd1E7Hm/l78ZaC7n1G5e/2btx9r3bQW++bV3EXudXVoHtxQfcGlgLzSdTdip9G3WQoiuInrZjx9CboPnrUXC5ZCrofu7wad59p6VRMW63Ae81F0DWOxXamFXPtPtOKG9tnWjF5abUVl02WgkLqXtRnmov5sxs3IyheBN3c/2ov5p7113txv0t5uReTvfYC78euLsX8/J459Xruzq0d1Nar13E/de2VoL+RCPrcWNQ9gaQVdK957+u4z6C2X8bk76XXQbkr8qMCQfeaVwI/73VmOWbufGYp7v73u0txczAW27tB4/LdwLnzu0tBv3eMupGe5uFBWT5O3I3dpcg/mgzyKuh3mF8F5d25zM2Bb76ngu5ZvhN0DzUoeoXm5t3A3xHsReXdqEtcaw5z88++KqK037yZr9wcKepz+4GfaTwdlJvfXYr7ndO3l2L+BpuTdT8PAAAAAAAAAAAAAAAAAAAAAOBEUtAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARZiWoIOF7f+85fCGurVSyHtPPDr/5qEWVp5Tsh7ey++KOQdtq7XxdhVt6Paae9F9NOURTvvvdfCWnn1ZunIe2stt4rouwVMc/Te61zRZS/cC6mntp/8ZN2SDutN/NX321pNeYakLSW35mr68kvrP33iigPvvorIe3c/Vf+hSLKmeWYn7n/y4//DyHtLJ/6XhHl1Ok/HtLOqxe/V0T54Mw/E9LOl3t/UER5b/kXw9picbVOvYlpZyUuL4WJ7FLQW3grJlIUxW4rqKGiaH+zGtLO7k9jckDy5sszIe28/llMO29exjxHye6ruLairJx6HdLOO9+KGeCrp2P6k5x+52VIO2eC2kmWV3ZD2vnmRcxYOv1l3Jhcbsdcm0614+ZNH7RPh7Tz7aB2zga1k3xnOeZn7t13XhVRTp1+NVc/J522VuPaYnEtnZaZRxL049aKyrqB9+Ha38T8im/3y7j3gTc/eTeknVdB2Tsy5+6+mr9fqa4EzZ3PFC9C2llZielPp63VmPy9shrXpyjfvDgV0s7pn8T8nCSrQde41cD/l8x392Lm82thmTnuevL+qZg3utOB89TVoJ+VlcCcuxx0jYO90zHz1PZq3L3PvZiPZxTtoHY6bc3fr4vnbn7Reh03BoqgLN/+WUyu2AtqJ9n9Jqat9pu4Ad5airkOLAfds94L/F3Kyu7S3N3/jmrr9JmYe3rvvxcz30l+cSVmzvtnX/98EWU36Jd8v7ISM5Y++OCnRZR33vsmpJ3VoLGULAfdt269E5h1T8/hvT1OnHeXgq7dgXFptRX0HteKyxRLQfc9Xrfn7OZ3oBeB90++DLo39PxNzGeRn7+OyQHJl29i7uu9ippcBjq9HDMudwPv6+7uxfzsvlmNe773VmMuBHtBU7k378ZdwL/5bkyn3v8nf6WIsrQXk5d+8otBnxsL+hxTshSUK98/Hff5o2+vxszBvrMcMx9I3luKOz8W23utoN/NtuKuu6tBfwt4ujV/vwvfK4Lu6RWBE5UgrwNvyH8d9LvQZ7sxf+f4/HXc3wL+NCg3v9ydv/G9GpSbTwXd00te78b06fVy3PO9txKUm4OmqkHTy45vvheTm7/1p/9kEaXVjnm+v/zFmOvS62/H5ebT78Tc+/rOqbjfN6ytxPyt+neWvyqivCs3T12TfyUPAAAAAAAAAAAAAAAAAAAAAHCsFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQRR0AQAAAAAAAAAAAAAAAAAAAAAIoqALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACLIS1RAwmhdf/52QdnbPfF1E+dbqnwhp57/x/v+giPK3238/pJ0f7v1HIe0U7b24SlpL74W0026/KaL8SuvDkHb+u3/iZyHt/Au/8PtFlL/5k58v5s2/+yRmDPxnb74MaefFl/+fYt7svf5JXGORbQX4o5/938PairoO/OTVchHlbzz9Tkg7q2f+0ZB29va+KaLs7n4V0k77dUw7kV68jHnfTX7pnf92WFssrlPfjXmPa3037uetvfY6pp3VdjF39lohzcS0sq+9G9Pa3su42x5vvjkV0s7rr0+HtPPmVdy5tffmr97vyqk3c9XOqTNxz9Hq6ZjrydJS3Dz19avVkHbefedVSDtnluOulWdex7x277bjfubO7p0JaeeDdsz15Nxe3Ll9653dkHbOnIkZS8nqatB14N2XRZTTa/M3J+DkWf65mPtwxc/FzZv3vhNzDdiLiV2h2q/bc5eZizcx93P2XsTkgMjM/OZFTDu7QRkn2Quao7TbcaNgaSXmZ251OSZXLq/G9CdpBeXByOf71cuYcflOUM5551TcfOCdoPvD327P3wX83F5QZg6cD3wrKFeePh2YmYPaOv1+XK44JTMTJGgKXuydjntPaQdFlPb83dKLE/c2V7Si2grKgx0vgrL810G5+auY98tk72XMAN97M38DvDWHuXlvN+o+esw962Q16J786TMxmenb34rLFL/03ZifldPP3imirATNnf6xP/7jkHbOffdZEeWdb8d8NvLUt+Iy6tK7QRn8nbifuXbQPXkW23utmGv3mVZcXjrTipmHL/n/3o5kN+jO9et23GcQv9yNmcz9+PX7Ie386FVMO8nXb2Jy/KvA3/FGWQ76DMPq8u7c9Wk56H58srcS87OyezrmGvf6vbjr91c/H3Nub05/q4jSXo45v6/+WEw7r87FjaX33o+ZN31wOu7vks6uxszBvrMcN5f71tKLsLZYbFG3iFdbgZ9DbMVcd5cD+7Qb+Ld3EXaLuM8hRp1ZZG7+aVBufv4m5m/cfvQq7j38yzcx9+Je7cY933tBnz9YCfrFxXIrbnyvBOXmpaD76B2rMW3tnolp5/X7cdfKn/2xoCz/btzPXNQU86tfiPk5efNzcZ+H+Ln3Y/LuudNxGfXnVmM++7m2HJfl32vFPefkuVMJAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQhxKVLl4oPPvhgJsd+8uRJcfPmzU4fzp8/X7Rarc6/1J+07Pbt28XOzs5M+gYAAAAAAAAAAAAAAAAAAADAYlmZdQc42R49elR8/PHHna9JKpyytrZ2LMe+f/9+8emnn/aOnVy8eLHY2Njo9eXBgwfF9vZ2p+DLrVu3ihs3bhxL3wAAAAAAAAAAAAAAAAAAAABYTAq6MJEnT550iqSkoiqzOPb169c7hVqSVMAlFWtJxVxyUsGX1Nf07/Hjx8WdO3eOuccAAAAAAAAAAAAAAAAAAAAALAoFXRi5iEoqjPI7v/M7nUIq6ftZSAVkLl++3Ht87969YnNzs3afVPBla2urU9Dl9u3bxaVLlw7dBwAAAAAAAAAAAAAAAAAAAAAmoaALQ33wwQfFzs5Odl23IEoqsHJc7t69W1y/fr3z/draWvHFF190irUcJhWgScVcukVo7ty5o6ALAAAAAAAAAAAAAAAAAAAAAFOhoAtDdYu5pOIp6+vrxYULF4pLly4VFy9e7Cy7ffv2sRV06S/mkty7d2+kYi5J6nO1wAsAAAAAAAAAAAAAAAAAAAAATIOCLgzVbreLefDo0aNSMZcbN250isqMYljxllSsJhWlmTe7P/69gWXLP/ePzqQvAMnesz8YWLZ09hdm0heA5Pvf//5Iy2iu37j/DwaW/frmH59JXwC6/tKD3x1Y9msX/vRM+gKQyM38xmd/OLDs16/+sZn0BSD5Sw/+5sCyX7vwZ2bSF4BEZuY3/42nA8v+9X/t3Ez6ApDc+n/+pwPLbv65f3ImfQHokpv57b/05cCyf/XXvjWTvgAkv/9X/vrAsl/67//XZ9IXgERm5i9nMvNflJmBGZKZgXn0/QXPzQq6MPcuX77c+359fb24devWyPuePXs2u3wei7kk7We/P7hQQRdghtrPB//4p1DQBZih3/iN31joCRxF8Zv/58FiYwq6ALP2lx/+rYFlCroAsyQ385uf/9HAMgVdgFn6rUe5zKygCzA7MjP/i99+PrBMQRdglm7/9b89sExBF2DW5Gb+zd/6amCZgi7ALP2D/+N/PLDMH6cCsyQz81t/eTAzK+gCzNL/T2YG5tBvLHhuXpp1B6DO9evXiydPnvQej1PMJdnY2Cg2NzdLy8ZtAwAAAAAAAAAAAAAAAAAAAABGtTLylnDMHj16VNy9e7f3eG1tbaA4yyju3btXbG9vdwrDXLhwoVPkBQAAAAAAAAAAAAAAAAAAAACmQUEX5tann35aenzlypWJ27p48WJAjwAAAAAAAAAAAAAAAAAAAACg3tIh62EmdnZ2ivv375eWXb58eWb9AQAAAAAAAAAAAAAAAAAAAIBRtNrtdnukLaHi9u3bxc2bN0vLnj9/XqytrR257dRuar/fIgzVVqs1sGwRzhuYX65LwLxxXcIYAOaRaxMwb1yXMAaAeeO6BMwb1yWMAWDeuC4B88i1CWMAmDeuS8C8cV3CGADmjesSMI9aC35tWpp1ByDn/v37pccbGxsz6wsAAAAAAAAAAAAAAAAAAAAAjEpBF+bOzs5O8eTJk9KyCxcuzKw/AAAAAAAAAAAAAAAAAAAAADCqlZG3hGOyvb09sOz8+fNDt0/FX7oFYNbX1zv/AAAAAAAAAAAAAAAAAAAAAGAWFHRh7mxtbQ0sqxZpSQVcbt26Vdy9ezfbxubmZnH16tXOVwAAAAAAAAAAAAAAAAAAAAA4LkvHdiQY0fb29sCytbW13vepiMv58+eLBw8eFPfu3SseP35ctNvtztf0OBVxuX//fnH58uXiww8/LB49enTMZwAAAAAAAAAAAAAAAAAAAADAolLQhbnz5MmTgWVnz57tFXO5fv16cefOneLhw4ed4i3r6+uddelrepyKuqR1qQhMKuaSirrcvn372M8DAAAAAAAAAAAAAAAAAAAAgMWjoAsnRirOkoq5bG1tFdeuXavddmNjo/jiiy96j2/evNnZdx58//vfL1qtVvZfTv/6tC8AADSdzAwAAJNn5sNys8wMAMCicK8ZAADqudcMAACHc68ZAICjUNCFubKzszN03eXLl4sbN24UFy9eHKmtVNTlzp07vcd3794tbt++HdJPAAAAAAAAAAAAAAAAAAAAAMhZyS6FGXn27Fl2+WeffdZZd+vWrbHau3btWmefJ0+edB7fvHmzUxAmFXsB4HC//uu/PusuAJS4LgEwj7w/AfPGdQmAeeO9CZg3rksAzBvvTcA8cm0CYN54bwLmjesSAPPGexMwj359wa9NCrowV7qFV6ru3r1bfPLJJxO1ubm5Wdy+fbv3+OOPPy4ePnw4cR8BFsn3v//9WXcBoMR1CYB55P0JmDeuSwDMG+9NwLxxXQJg3nhvAuaRaxMA88Z7EzBvXJcAmDfem4B59P0FvzYtzboDMIqdnZ3i2rVrE+179erV0uNHjx4V29vbQT0DAAAAAAAAAAAAAAAAAAAAgAOtdrvd7nsMI7t9+3Zx8+bN0rLnz58Xa2trE7eZiq18+OGHA8vX19eLx48fT9xuq9UqPb548WKxtbU1cXsAAAAAAAAAAAAAAAAAAAAAkLOUXQpzZmNj40j7V4vMbG9vH7FHAAAAAAAAAAAAAAAAAAAAADBIQRfmSrXwStf6+vqR2j179uzAMkVdAAAAAAAAAAAAAAAAAAAAAIimoAtzJVd4JTl//nx4oZitra0jtQkAAAAAAAAAAAAAAAAAAAAAVQq6MFdyhVfqCr0cxc7OTnibAAAAAAAAAAAAAJ6B74cAAI0GSURBVAAAAAAAACw2BV2YO+vr6+Ft5grCPHv2LPw4AAAAAAAAAAAAAAAAAAAAACw2BV1YiIIuOTs7O8dyHAAAAAAAAAAAAAAAAAAAAAAWh4IuzJ2NjY2BZc+ePQs/ztraWnibAAAAAAAAAAAAAAAAAAAAACw2BV2YO5cuXRpYtrOzc6Q2cwVh1tfXj9QmAAAAAAAAAAAAAAAAAAAAAFQp6MLcuXDhwsCyx48fH6nNXEGY8+fPH6lNAAAAAAAAAAAAAAAAAAAAAKhS0IW5s7a2VmxsbJSWPXnyJPw4Fy9eDG8TAAAAAAAAAAAAAAAAAAAAgMWmoAtz6erVq6XHDx48OFJ71YIw6+vrnX8AAAAAAAAAAAAAAAAAAAAAEElBF+bStWvXSo93dnY6/yKKuSTXr1+fuG8AAAAAAAAAAAAAAAAAAAAAMIyCLsyltbW1gaIu29vbE7VV3S+1fePGjSP1DwAAAAAAAAAAAAAAAAAAAAByFHQh1LNnz8LaunXrVqf4StedO3cmaqe63yeffHLkvgEAAAAAAAAAAAAAAAAAAABAjoIuTOzp06dTbT8Vc0lFXbq2t7c7/8Zx//794tGjR73HFy9eLG7cuBHaTwAAAAAAAAAAAAAAAAAAAADoUtCFifUXSqlbdhTXrl3rFGHpunz5crGzszPSvmm7jz/+uFQg5t69e6H9AwAAAAAAAAAAAAAAAAAAAIB+CrowtlS05fr168X29vbAulRA5e7du8WTJ0/Cjre1tdUr6pKKtHz44YeHtp/Wp+26xV/W19eLhw8fdoq6AAAAAAAAAAAAAAAAAAAAAMC0tNrtdntqrXOi3bx5s1OcpatbHGVc/UVUvvjii2JjY2Oidi5fvlzcv3+/9/jWrVvFtWvXSu2nPn766afF7du3e8tSMZh79+4p5gIAAAAAAAAAAAAAAAAAAADA1C1N/xCcZP1FXFJBlEn+dduZtCBMVyrKkv6tr6/3Cs588MEHxfnz54sPP/yw83361y3mkrbb2trq/JvnYi6XLl3q9HsWnjx50nkeUx/S89hqtTr/Un/SsvRcHvV1A06W7e3tTgGt7nU1XRPS9cE1ATgKeYcIxhEwL2RmYBpkHSIYR8A8kZuBaZB3iGAcAfNCZgamQdYhgnEEzBO5GZgGeYcIxhEwL2RmYBpknVitdrvdDm4TjiVkpOIu6euzZ886P3ipaEsq4nLx4sXi6tWrxcbGRjHPHj16VHz88cedr8nz58+PrfDM/fv3i08//bR37CQ9b/0FeB48eNC7oN26dau4cePGsfQNmI0UYu7cudMJO+lakK4JH330Uef7x48fd6633WtGWpe27RbYAhhG3iGCcQTMC5kZmAZZhwjGETBP5GZgGuQdIhhHwLyQmYFpkHWIYBwB80RuBqZB3iGCcQTMC5kZmAZZZ0pSQRfg+Dx+/Li9ubmZCimV/j1//vxYjn3x4sXeMTc2NtpbW1tDt3/48GFv+2vXrk29f8DxS9eF9fX13nXhxo0bQ69H6XrRv+2tW7eOvb/AySDvEME4AuaFzAxMg6xDBOMImCdyMzAN8g4RjCNgXsjMwDTIOkQwjoB5IjcD0yDvEME4AuaFzAxMg6wzXQq6wDFcSO7du9cJRukiUr2YHddFLfWh/3jp8ahS38fdB5h/Kbisra2NfV3oD0cnJfAA0yXvEME4AuaRzAxEkXWIYBwB80puBqLIO0QwjoB5JDMDUWQdIhhHwLySm4Eo8g4RjCNgHsnMQBRZ53gp6AJT0B+Kqv9SharjrlJ1586d3nFS31JwG0WqYNV/IU7BDWiGdM3pv1al68Q4VOcE5B0iGEfAPJOZgaOSdYhgHAHzTm4GjkreIYJxBMwzmRk4KlmHCMYRMO/kZuCo5B0iGEfAPJOZgaOSdWanlf5TAKFarVbn69raWrG+vl5cuHChuHTpUnHx4sXOstu3bxc3b94s7fP8+fPOumh3794trl+/3nu8tbXV6cc459HPJQOaIV2Ttre3O99vbGwUDx8+HGv/tG9qo+vx48ed6x2wOOQdIhhHwDyTmYGjknWIYBwB805uBo5K3iGCcQTMM5kZOCpZhwjGETDv5GbgqOQdIhhHwDyTmYGjknVmZ2WGx4bGmpcf/EePHpUuaDdu3Bj5gtYNd1U7OztTufgCxyf9fPf/jH/yySdjt5GuJWnyl64zyeXLl8eeCAInm7xDBOMImFcyMxBB1iGCcQTMM7kZiCDvEME4AuaVzAxEkHWIYBwB80xuBiLIO0QwjoB5JTMDEWSd2Vma4bGBKUuhqitVy7p169bI+549eza7fJ4vaMBo+qvkpZ/pzc3Nidq5evVqKUR1J3QAx0neIYJxBFTJzECTyDpEMI6AHLkZaBJ5hwjGEVAlMwNNIusQwTgCcuRmoEnkHSIYR0CVzAw0yeUFzDoKukBDpepUT5486T0e54KWpGp71WA3bhvA/KlOtkatXJdTvUbcuXPnSH0DGJe8QwTjCKiSmYEmkXWIYBwBOXIz0CTyDhGMI6BKZgaaRNYhgnEE5MjNQJPIO0QwjoAqmRlokusLmnVWZt0BIF4KaHfv3j1y1b179+4V29vbnYvjhQsXOhc64GSrTrQ++uijidtK1e/6peuOiRxwXOQdIhhHQI7MDDSFrEME4wgYRm4GmkLeIYJxBOTIzEBTyDpEMI6AYeRmoCnkHSIYR0COzAw0xaMFzjoKukADffrpp6XHV65cmbito1TsA+bP559/Xnp81LCSJnL9FfHu378/UYgCGJe8QwTjCMiRmYGmkHWIYBwBw8jNQFPIO0QwjoAcmRloClmHCMYRMIzcDDSFvEME4wjIkZmBpvh0gbPO0qw7AMTa2dnphKh+ly9fnll/gPmRJlvpGlFXWXNc1Ung1tbWkdoDGIW8QwTjCMiRmYGmkHWIYBwBw8jNQFPIO0QwjoAcmRloClmHCMYRMIzcDDSFvEME4wjIkZmBpthZ8KyjoAs0vELVSaw0BUzH9vb2wLKjTuLOnj176DEAosk7RDCOgByZGWgKWYcIxhEwjNwMNIW8QwTjCMiRmYGmkHWIYBwBw8jNQFPIO0QwjoAcmRloik8XPOso6AINU61QVa2YByyuaVTMXFtbG6j8CTBt8g4RjCMgR2YGmkLWIYJxBAwjNwNNIe8QwTgCcmRmoClkHSIYR8AwcjPQFPIOEYwjIEdmBpri/oJnHQVdoEF2dnYGAtSFCxdm1h9gvlSvD9UJ2CTOnTs3sOzRo0dHbhdgGHmHCMYRMIzMDDSBrEME4wioIzcDTSDvEME4AoaRmYEmkHWIYBwBdeRmoAnkHSIYR8AwMjPQBDuyTrEy6w4Acba3tweWnT9/fuj26QLYvQiur693/gHNVQ09Z8+ePXKbuYlgOs6iVcgDjo+8QwTjCBhGZgaaQNYhgnEE1JGbgSaQd4hgHAHDyMxAE8g6RDCOgDpyM9AE8g4RjCNgGJkZaIJtWUdBF2iSra2tgWXVC1W6iN26dau4e/duto3Nzc3i6tWrna9A8yrZzWKyCBBJ3iGCcQQMIzMDTSDrEME4AurIzUATyDtEMI6AYWRmoAlkHSIYR0AduRloAnmHCMYRMIzMDDTBlqxTLM26A8B0q1T1V8xLF7JUterBgwfFvXv3isePHxftdrvzNT1OF7L79+8Xly9fLj788MPi0aNHx3wGwHFO4HIVNceVq+z59OnTI7cLMIy8QwTjCMiRmYGmkHWIYBwBw8jNQFPIO0QwjoAcmRloClmHCMYRMIzcDDSFvEME4wjIkZmBptiWdRR0gSbJVcLrBqx0Qbt+/Xpx586d4uHDh50LWLeCVfqaHqcLW1qXLoTpgpYubLdv3z728wDiPXv27NiOpSonME3yDhGMIyBHZgaaQtYhgnEEDCM3A00h7xDBOAJyZGagKWQdIhhHwDByM9AU8g4RjCMgR2YGmuKJrKOgCyyCdIFKF7Stra3i2rVrtdtubGwUX3zxRe/xzZs3O/sCzavKCdAk8g4RjCNYbDIz0HSyDhGMI0BuBppO3iGCcQSLTWYGmk7WIYJxBMjNQNPJO0QwjmCxycxA0z1aoKyjoAssQEC7fPlycePGjeLixYsjtZUubKmaVVeqcHXSqlUBs6vKacIITIu8QwTjCBhGZgaaQNYhgnEE1JGbgSaQd4hgHAHDyMxAE8g6RDCOgDpyM9AE8g4RjCNgGJkZaAJZZ5+CLtDwgPbZZ5911t26dWus9lI1q/X19VK1qlTtCqDf2trarLsALBB5hwjGEXDcZGbgOMk6RDCOgFmQm4HjJO8QwTgCjpvMDBwnWYcIxhEwC3IzcJzkHSIYR8Bxk5mB4yTr7FPQBRriyZMn2eWpwtQnn3wyUZubm5ulxx9//PFE7QAARJB3iGAcAQBNJusQwTgCAJpO3iGCcQQANJmsQwTjCABoOnmHCMYRANBkss4+BV2g4XZ2djoVpyZx9erV0uNUpWp7ezuoZ0BTrjEAsybvEME4AqZFZgbmgaxDBOMImCa5GZgH8g4RjCNgWmRmYB7IOkQwjoBpkpuBeSDvEME4AqZFZgbmwc6CZR0FXaAhzp49m12+vr5erK2tTdTmxsbGwLJbt25N1BYwn9cIgJNE3iGCcQQMIzMDTSDrEME4AurIzUATyDtEMI6AYWRmoAlkHSIYR0AduRloAnmHCMYRMIzMDDSBrLNPQRdouNyFaRzVC+K8V6kCABaPvEME4wgAaDJZhwjGEQDQdPIOEYwjAKDJZB0iGEcAQNPJO0QwjgCAJttYsKyjoAs0xLBKVKlKVXT1q3m/sAGj2dnZmUq7k1bGAziMvEME4wgYh8wMnDSyDhGMI2BccjNw0sg7RDCOgHHIzMBJI+sQwTgCxiU3AyeNvEME4wgYh8wMnDSyzj4FXaAhchef5Pz58+EXy62trSO1CRy/aU2snj17Fh6mAIaRd4hgHAHDyMxAE8g6RDCOgDpyM9AE8g4RjCNgGJkZaAJZhwjGEVBHbgaaQN4hgnEEDCMzA00g6+xT0IWFkKoqtVqtI/87iQFt2MVuHiv5AdNznBOrc+fOHduxgMUi70yf3BxrUccRnFQyM9AEss70ycyxFnUcwUkmNwNNIO9Mn9wca1HHEZxUMjPQBLLO9MnMsRZ1HMFJJjcDTSDvTJ/cHGtRxxGcVDIz0ASyzj4FXaBBphHSchfFXBU+4OSFn4if5VzImVYFUIBE3iGCcQQMIzMDTSDrEME4AurIzUATyDtEMI6AYWRmoAlkHSIYR0AduRloAnmHCMYRMIzMDDTBuqyjoAs0yXFV3ZvnKlXA6CEl4mf56dOnA8suXLhw5HYBhpF3iGAcAcPIzEATyDpEMI6AOnIz0ATyDhGMI2AYmRloAlmHCMYRUEduBppA3iGCcQQMIzMDTbAu6xQrs+4AHNcP+7Vr14qm29jYKLa3t6deUUrFPTi514gnT55MPeQcV8ACFpO8M11yc6xFHUdwksnMQBPIOtMlM8da1HEEJ53cDDSBvDNdcnOsRR1HcJLJzEATyDrTJTPHWtRxBCed3Aw0gbwzXXJzrEUdR3CSycxAE2zIOgq6sBhSoLhz507RdJcuXSpu374dWlEqd1EU0OBk+uijj4r79+8PXCOOElSq14h0fZjn4AOcfPLOdMnNkzOOoBlkZqAJZJ3pkpknZxxBc8jNQBPIO9MlN0/OOIJmkJmBJpB1pktmnpxxBM0hNwNNIO9Ml9w8OeMImkFmBprgkqxTLM26A0CcCxcuDCx7/PjxkdrMXRTPnz9/pDaB2bh48eLAsqNW6azuP8+hB2gGeYcIxhEwjMwMNIGsQwTjCKgjNwNNIO8QwTgChpGZgSaQdYhgHAF15GagCeQdIhhHwDAyM9AEF2QdBV2gSVIlvI2NjdCANmoQBOZf9fqQPHjw4EhtVq8xly9fPlJ7AIeRd4hgHAHDyMxAE8g6RDCOgDpyM9AE8g4RjCNgGJkZaAJZhwjGEVBHbgaaQN4hgnEEDCMzA02wJuso6AJNc/Xq1akGtFRxT9U9OLk2NzfDKtmlKnbVSnZXrlyZuD2AUck7RDCOgGFkZqAJZB0iGEdAHbkZaAJ5hwjGETCMzAw0gaxDBOMIqCM3A00g7xDBOAKGkZmBJri64FlHQRdomGvXrh0askaVq3B1/fr1ifsGzN4nn3xSery9vT1xW9V90wQxVcsDmDZ5hwjGETCMzAw0gaxDBOMIqCM3A00g7xDBOAKGkZmBJpB1iGAcAXXkZqAJ5B0iGEfAMDIz0ATXFjzrKOgCDZMCVPXCNmlIq+6X2r5x48aR+gfM1sbGRudf16NHjyZua2tr60SFHqA55B0iGEfAMDIz0ASyDhGMI6CO3Aw0gbxDBOMIGEZmBppA1iGCcQTUkZuBJpB3iGAcAcPIzEATrC141lHQBebEs2fPwtq6detWqTLenTt3Jmqnul+1mh9wMlV/lu/evTtRO/37pYnhxYsXj9w3oNnkHSIYR8BxkJmBWZF1iGAcAcdFbgZmRd4hgnEEHAeZGZgVWYcIxhFwXORmYFbkHSIYR8BxkJmBWZF1YijoAjPw9OnTqbafLmjpwtZfbWrcSlX3798vVetL4WzeK1QBo9nc3CxV5uy/Xozq9u3bpcf37t0L6RvQHPIOEYwjYFZkZuA4yDpEMI6AWZKbgeMg7xDBOAJmRWYGjoOsQwTjCJgluRk4DvIOEYwjYFZkZuA4yDrTo6ALzED/xaJu2VFcu3atVCHv8uXLxc7Ozkj7pu0+/vjj0kVSQINmST/T3Wp2T548GZiUHXaNuHnzZu9xClHr6+tT6Sdwcsk7RDCOgFmSmYFpk3WIYBwBsyY3A9Mm7xDBOAJmSWYGpk3WIYJxBMya3AxMm7xDBOMImCWZGZg2WWd6FHSBY5QuXNevX89WjEoXkbt373bCVJStra3ehS1dqD788MND20/r03bdC2AKZg8fPuyFPaAZ0s/2F1980XucJmWpOt1h0rXhV3/1V0sTuJNQwQ44PvIOEYwjYB7IzMC0yDpEMI6AeSE3A9Mi7xDBOALmgcwMTIusQwTjCJgXcjMwLfIOEYwjYB7IzMC0yDrHoA2Eu3HjRnttba33L/2oTfKvv42HDx9O3J/Nzc1Su7du3Wo/f/68tE16nPrdv93FixcHtgOaJV1b1tfXS9eHiG2B5pN3iGAcASeBzAxMStYhgnEEnBRyMzApeYcIxhFwEsjMwKRkHSIYR8BJITcDk5J3iGAcASeBzAxMStaZnVb6z3EUjoFFkqrb3b59O6SyU7daVKoUtbGxMXE7qdpe6ld/lapUgSr1MS3rHqe7/M6dO70KV0DzpetDqpSXrgXpunDlypVOxbrk8ePHnep6qdJesrm52anGma4VwOKSd4hgHAEnicwMjEvWIYJxBJw0cjMwLnmHCMYRcJLIzMC4ZB0iGEfASSM3A+OSd4hgHAEnicwMjEvWmR0FXWDBpCB27969ztdnz571Alu6kKWL2NWrV4908QROthSAPvvss07Y6QYe1wjgpJF3iGAcAcPIzEATyDpEMI6AOnIz0ATyDhGMI2AYmRloAlmHCMYRUEduBppA3iGCcQQMIzMDTbDd8KyjoAsAAAAAAAAAAAAAAAAAAAAAQJClqIYAAAAAAAAAAAAAAAAAAAAAABadgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAAAAAAAAAAAAAAAAQRR0AQAAAAAAAAAAAAAAAAAAAAAIoqALAAAAAAAAAAAAAAAAAAAAAEAQBV0AAAAAAAAAAAAAAAAAAAAAAIIo6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAIDGe/ToUXH+/Pni9u3bs+4KAADMLbkZAADqycwAAHA4uRkAAOrJzAAAcDi5GWiKVrvdbs+6EwAA03Tp0qVie3u72NjYKB4+fDjr7gAAwFySmwEAoJ7MDAAAh5ObAQCgnswMAACHk5uBpliadQcAAKZpZ2enM3lLLl68OOvuAADAXJKbAQCgnswMAACHk5sBAKCezAwAAIeTm4EmUdAFAGi0zz//vPf99evXZ9oXAACYV3IzAADUk5kBAOBwcjMAANSTmQEA4HByM9AkK7PuAADANN25c6fzdWNjo1hfXz9SVc9nz54Vjx8/7jxO3z958qTzffqaqn1ubW0F9x4AAI6H3AwAAPVkZgAAOJzcDAAA9WRmAAA4nNwMNImCLgDMjRSEP/jgg5G3T4H84cOHxXG7f/9+cfny5ZG3v3btWm8SwfFKE6tHjx51vr969erE7YwyLtfW1iZuHwBgHHIz0eRmAKBpZGaiycwAQBPJzUSTmwGAppGZiSYzAwBNJDcTTW4GmmZp1h0AgElDcArmaTJ13G7evDnW9oL97PRPnNNEelI3btwoNjc3O1U3h1X1/OijjyZuHwBgXHIzkeRmAKCJZGYiycwAQFPJzUSSmwGAJpKZiSQzAwBNJTcTSW4GmqbVbrfbs+4EANRVVEwTpjRRSxOhVLWzXwrUW1tbx9afNGn88MMPO8fd3t4urUv9+8EPftBZZ9I2H86fP98ZQ9Hj5O7du8X169dLyx4/fjx0cgcAMG1yM0chNwMAi0Bm5ihkZgBgUcjNHIXcDAAsApmZo5CZAYBFITdzFHIz0DRLs+4AANRJgfjevXudCVH6PlVF7JcmUSmgH2eFx9SH3ATtk08+GbqO45cm292xUZ1sReuOTwCAWZGbmZTcDAAsCpmZScnMAMAikZuZlNwMACwKmZlJycwAwCKRm5mU3Aw0kYIuAJwIZ8+e7U2ScpOq45KrxNi1sbFxbP3gcP3jojrxP6qHDx+WHqeKnwAA80BuZlxyMwCwaGRmxiUzAwCLSG5mXHIzALBoZGbGJTMDAItIbmZccjPQRAq6AHAidKtcpklStfJhmlQdh3Sc1A9h/WT4/PPPpzJ561aC7Xfp0qXwYwAATEJuZlxyMwCwaGRmxiUzAwCLSG5mXHIzALBoZGbGJTMDAItIbmZccjPQRAq6AHDiVCti7uzsDATqaVV4vHbt2tSPw9Gl8ZDGRTKsguqkUrtPnjwpLTOpBwDmkdzMYeRmAGDRycwcRmYGAJCbOZzcDAAsOpmZw8jMAAByM4eTm4GmUtAFgBMnN4lKk6tpSoH90aNH4ZMBpqM7HqZRQbV6syAdo1olFgBgHsjNHEZuBgAWnczMYWRmAAC5mcPJzQDAopOZOYzMDAAgN3M4uRloKgVdADhxcqH8/v37vQqM05oQpGMK6idDGg/JlStXwtve2toqPVaNEwCYV3Izh5GbAYBFJzNzGJkZAEBu5nByMwCw6GRmDiMzAwDIzRxObgaaSkEXAE6kXGXMu3fvTu14qW3VOE/W5C2ZxmtWrch59erV8GMAAESRmxlGbgYA2CczM4zMDABwQG5mGLkZAGCfzMwwMjMAwAG5mWHkZqDJFHQB4ETa3NzsVOasVs2c5oQgHZP51x0HqXrqxsZGaNup6uuTJ09Ky1TkBADmmdzMMHIzAMA+mZlhZGYAgANyM8PIzQAA+2RmhpGZAQAOyM0MIzcDTaagCwAn1rVr10qPU7B+9OjRVCYEV65cCW+XeGmC1a2YOY0Jd7UaZ5okVm8kAADMG7mZKrkZAKBMZqZKZgYAGCQ3UyU3AwCUycxUycwAAIPkZqrkZqDpFHQB4MS6fv36wLLoqpzdCUHuWMyfu3fv9r6fxmu2tbVVeqwaJwBwEsjNVMnNAABlMjNVMjMAwCC5mSq5GQCgTGamSmYGABgkN1MlNwNNp6ALACdWqoa4sbExNMBHSO2lY1SPw3z67LPPOl/T65XGx7Qrcl66dCn8GAAA0eRmquRmAIAymZkqmRkAYJDcTJXcDABQJjNTJTMDAAySm6mSm4GmU9AFgBMtV3Xx/v37Ye2nCp+qcZ4MT548KR49etT5fhqvWarOmo7RT0VOAOCkkJvpkpsBAPJkZrpkZgCA4eRmuuRmAIA8mZkumRkAYDi5mS65GVgEK7PuAAAcxbVr1wbC+qefflpsbm6GVF9Mgf3KlSvFNKSJ5rNnzzoTg6dPn3aOlb7vLkuPnz9/XqytrQ3slypPpslKd9tUfTL9SxUi07lPoxplrv+pH6mf3b6nvqZjX7hwofO6HGcl0zTZ7prGa1atxpnOs/rapNck9ePBgwcDz8nVq1eLGzduhPcLAGAUcrPc3CU3AwDkycwyc5fMDAAwnNwsN3fJzQAAeTKzzNwlMwMADCc3y81dcjOwCBR0AaARk7i7d++WQnQKz0edxKQgniZD1ZAeIfXv8uXLY+2TzvHmzZu9CVuqBpn6lh6nCUOaYKR/aZu0LvU/eiKXjpXa73++0yQtvQbnzp0rHj9+3Dm3tD79S/24devWsUzkupVYu89LtK2trdLj/psE6XlPE9Z07ulcUx/Onz/f2y/1rTu5u3fv3rFObAEAuuRmuTmRmwEAhpOZZeZEZgYAqCc3y82J3AwAMJzMLDMnMjMAQD25WW5O5GZgIbQB4ATY2Njo/Mt5+PBhO72l9f+7cePGkY73/PnzTjtbW1vZ9ZubmwPHHLbtsPYvXrzYOaf19fWBtrr/0nbpX9ouPU7Hffz48dDnobtd1PPQ786dO+21tbVe26kvqW/DpOejv9/T1D8G7t27N5VjVF+n7uudnuP0OJ3rsNcmbdu/b+ovAMA0yM1ycx25GQBAZpaZ68nMAAD75Ga5uY7cDAAgM8vM9WRmAIB9crPcXEduBhaFgi4AnPgJXC5cp4nGUScrqc1hjjqBq+qfpFWDfupHOp9R26/2LWLy1J2kdP+l52dUadu0T5qwTsu1a9d6fZuG7oS+OrlO5zTqpLG7bXeyBwAwDXKz3FxHbgYAkJll5noyMwDAPrlZbq4jNwMAyMwycz2ZGQBgn9wsN9eRm4FFsVQAQANcv3699HhnZ6fY3t6euL07d+4MtDlNa2trxa1btwaWX758uXjy5Enx8OHD4uLFiyO1de/evWJjY6P3+P79+8WlS5cm7lt6Hm7fvl16bq5duzby/mnbtE96Pe7evVtMw+eff975urm5OZX2q2MpPb83b97sLN/a2hrpuOm17Hr06NGRxicAwKTk5gNyczy5GQBoApn5gMwcT2YGAJpCbj4gN8eTmwGAJpCZD8jM8WRmAKAp5OYDcnM8uRmYFwq6ANAIuQlFmjRMIk2YUsAeZ5ISYX19PduXNEHIravzxRdfdCaFXWmy0D8JG1Wa/PVPutIkcpznJfX/ww8/7E2Gc5PUo0rnlibsybQm3ek16JfGR3pe0vJRJ9Znz54daAMA4LjJzWVycyy5GQBoApm5TGaOJTMDAE0hN5fJzbHkZgCgCWTmMpk5lswMADSF3FwmN8eSm4F5oaALAI2QJivVIJ0mH91gP440yUht9U+AjkM14CdpsjTqBKFf6vsnn3xSWpYqSI4zaUiTr/4qkpNMitPkrf+Yqc30L1K3T7kxECVXPbM7TkZVHU+PHz8O6RsAwDjk5jK5OZbcDAA0gcxcJjPHkpkBgKaQm8vk5lhyMwDQBDJzmcwcS2YGAJpCbi6Tm2PJzcC8UNAFgMZIE5Sq/mqSo/r888+nVtlxXNUJ1Dhu3LgxMGnIPUfDVLdNk5VxKoOmiVpuAh09gUsT9eTKlSvFNKRzqPZ5Y2Oj8/yO2840nwcAgFHJzWVycwy5GQBoEpm5TGaOITMDAE0jN5fJzTHkZgCgSWTmMpk5hswMADSN3FwmN8eQm4F5oqALAI2Rq6I5bgXJ7mRgc3OzmAe5Kp3jSBU9q5UlR6nKmSYX3edikslfXd/HmQQepn+CPq1Jd64a5w9+8IOx26lO2I674isAQJfcPEhuPjq5GQBoEpl5kMx8dDIzANA0cvMgufno5GYAoElk5kEy89HJzABA08jNg+Tmo5ObgXmioAsAjVKdsKTQPMqEpX/CV23jJLt69erAsk8//fTQ/W7dujWw7MKFC2MdO01QqlUr03MbOYG7d+9e52tqM1XJnIatra3S4zS5n+RYv/M7v1N6/NFHHx25bwAAk5Kby+Tmo5ObAYCmkZnLZOajk5kBgCaSm8vk5qOTmwGAppGZy2Tmo5OZAYAmkpvL5Oajk5uBeaKgCwCNkqvKOGpVzp2dnU71xWlVdpyFNNGoVn6sVtrM+fzzz0uP0wRpkgqSaSL48OHDzmuQJkLjVkgd5fWadgXVakXO3KR4knamNeEEABiF3FwmNx+d3AwANI3MXCYzH53MDAA0kdxcJjcfndwMADSNzFwmMx+dzAwANJHcXCY3H53cDMwTBV0AaJRcZca7d++OtG+qVJn2jawYOQ9ylTTrqpSmKqZpchQ12Uj7pkqcFy9eLCL1v67TmnSn5yE9H/0mOY/cczpuhVMAgEhy8yC5eXJyMwDQRDLzIJl5cjIzANBUcvMguXlycjMA0EQy8yCZeXIyMwDQVHLzILl5cnIzMG8UdAGgcXJhfpRJXNqmSdU46yZf1eqQh62bx0ntZ5991vk6zUl3rormJJVJo9oBAIgkN5fJzZOTmwGAppKZy2TmycnMAECTyc1lcvPk5GYAoKlk5jKZeXIyMwDQZHJzmdw8ObkZmDcKugDQOKn6Y9WdO3cODdipYmJu35Pu3LlzA8uePn06dPvHjx+P1MYspQqX3aqi05x0b21tlR5PWlU0qh0AgEhyc5ncPDm5GQBoKpm5TGaenMwMADSZ3FwmN09ObgYAmkpmLpOZJyczAwBNJjeXyc2Tk5uBeaOgCwCNVJ2IpbCfQv8waYLXxMlbkqv8WPdcpInsKG3MUv+E/MqVK1M7TrWS5kcffRTSzqVLl47ULwCAKHLzAbl5cnIzANBkMvMBmXlyMjMA0HRy8wG5eXJyMwDQZDLzAZl5cjIzANB0cvMBuXlycjMwbxR0AaCRclUah1XlTBOW+/fvT7Wy4yydPXt2pEla17Nnz4p5d/fu3V5ly2lNLtNzVJ3oTlJJM908qD7fKnICAPNCbj4gN09GbgYAmk5mPiAzT0ZmBgAWgdx8QG6ejNwMADSdzHxAZp6MzAwALAK5+YDcPBm5GZhHCroA0EgbGxvF+vp6NvRXff75551t0z5NlJuQ1U16chO+edI/IZrmpLtaRTONkUkmi5999lnp8ebm5pH7BgAQRW4+IDdPRm4GAJpOZj4gM09GZgYAFoHcfEBunozcDAA0ncx8QGaejMwMACwCufmA3DwZuRmYRwq6ANBY1XDfrbxZdevWrcZW4xxWfbM6ue2Xm6TUVfA8bv2VVac5Gdra2gqpolkdc1evXj1SvwAAosnN++TmycjNAMAikJn3ycyTkZkBgEUhN++TmycjNwMAi0Bm3iczT0ZmBgAWhdy8T26ejNwMzCMFXQBorGvXrtWG/251xydPnmS3bYqnT58OLDt37tzQ7c+fPz+w7PHjx8W8SBVUj6Oy5YMHD0qPL126NHYb3fHVT0VOAGDeyM375ObJyM0AwCKQmffJzJORmQGARSE375ObJyM3AwCLQGbeJzNPRmYGABaF3LxPbp6M3AzMIwVdAGisVFmyGpa3t7dL1SXThC5tk6tC2RRpElFVV10yt646CZmVVN2y+/pNs4pqOkb1edvY2Bi7nc8++6z02OQNAJhHcvM+uXl8cjMAsChk5n0y8/hkZgBgkcjN++Tm8cnNAMCikJn3yczjk5kBgEUiN++Tm8cnNwPzSkEXABotF/Lv3r1b+n6aE4F5kCat/dJktW4ysr6+PjChrVannJXuhCj1r24SelTV803HS8/LuPrHWnL16tXaSqjV7QEAjovcLDdPQm4GABaJzCwzT0JmBgAWjdwsN09CbgYAFonMLDNPQmYGABaN3Cw3T0JuBuaVgi4ANFoK+dXJSKrC2a3uOO2JwDxW47xy5cqh+1W3SRUqI6pypnbS837UfUc5h6PY2toqPZ5kjKTnvr/6a11FzrRten4nmSQCAESQm+XmScjNAMAikZll5knIzADAopGb5eZJyM0AwCKRmWXmScjMAMCikZvl5knIzcC8UtAFgMa7du1a6XEKyikwf/rppwPrmqY7We138+bNQ/fLbTPpxKtfes5HOX7O559/3vt+2lVUq1VML126dOTnvm6sdbdt8s0EAGD+yc1lcvPh5GYAYNHIzGUy8+FkZgBgEcnNZXLz4eRmAGDRyMxlMvPhZGYAYBHJzWVy8+HkZmBeKegCwIlRrW44qlzY//jjjzuTuGlPBI7qqFUw7969OzCJGKXqY9qmWj0yNxmcpD+TTlK6x09929jYKKY5zqqVTCfpc/+EM7l8+XLttsOqdQIAjEtuHp/cPD65GQA4yWTm8cnM45OZAYCTTm4en9w8PrkZADjJZObxyczjk5kBgJNObh6f3Dw+uRmYZwq6AHAipInMs2fPJto3Bf5qAE8BPU0CRpnMzNJnn3028b7Vypdra2vFrVu3Rt6/um16DY5SlTPtmyZHk1Tk7J9UTXvS/eDBg4HnbdxxkvpbveEwbBKYqn+mbT/55JMJegsAUCY3j09unozcDACcVDLz+GTmycjMAMBJJjePT26ejNwMAJxUMvP4ZObJyMwAwEkmN49Pbp6M3AzMMwVdAJh7Kbh3A3G1UuKocqH/KIF50uqgk0x6JqnKmfa5fft2adm9e/c6k5FRpUlL2qdayXTSc0/7pqqTk0ya+yuLTrty5dbWVunxhQsXxm6jerOhroJomtCm9dOsMgoALAa5WW6WmwEA6snMMrPMDABwOLlZbpabAQDqycwys8wMAHA4uVlulpsB9inoAsDcS8E/9/04cqH/KBOB3KRq0snlYS5dujTW9mmCVd0nVdccVhGyTnqObty4UWp7ktcg9Sft+4Mf/KCYxJ07dzpfj6OKaqqQeZTnP6n2cVif0wQ9jZtJnxcAgH5ys9wsNwMA1JOZZWaZGQDgcHKz3Cw3AwDUk5llZpkZAOBwcrPcLDcD7FPQBYC51K0o+cEHH5QmRun7tCytG7dS5bVr17Lfj9uvVEExd+xPP/20E8gjq3WmipipuuOHH344Urtpm1/91V8t9S9NfvonYeNKk7/+/dM5Xr58eeT90wQoTYpSpctxKoJ2pXPpnk+usmq06kR8kolvddKWm8B1J8NpLKrGCQBMSm7eJzfLzQAAw8jM+2RmmRkAoI7cvE9ulpsBAIaRmffJzDIzAEAduXmf3Cw3A5S0AWBOPH/+vJ3emib5l/Y9zMOHD3vbp+9Hsba21vk3SZ+6+964cWPi80/9fPz4cXt9fb3T1r1794buv7W1Vepr2icti5KOPU77d+7c6fX7KP1Iz984r/NRpH5WX4OjPF/dNjY3N0vruq/pxsZGQK8BgEUjN8vNOXIzAMABmVlmzpGZAQDK5Ga5OUduBgA4IDPLzDkyMwBAmdwsN+fIzQAHVsrlXQBg9sat2jhqBcxU9XBzc7P3/TjtT1JJsrvvUSt0pmqODx8+7FRvTJUw0+N0HufPn++sf/z4cadKZrdqZerrJ598cqQqnDnpmKk6ZapIevfu3c7xUrXNdLwrV650+vP06dNORcsHDx50zjttn/o+6fOXpGMlqa2jtDOJ7niZdN9UbTP1P70+qYpseu1SZdK0LJ1P+h4AYFJyc5ncLDcDAFTJzGUys8wMAJAjN5fJzXIzAECVzFwmM8vMAAA5cnOZ3Cw3A3S1UlWX3iMAYGbShOeDDz4oLUuTn/7JZtrm008/7UyS0gQq/UuTmjQxuHDhQmeClyYGxyFNSj777LNeP1LfUj/Sv9Tn69evd74/iu3t7c4kMbl3796RJlSjSsdLx42aYKXn6c6dO51JbZJep/TcHMe5AAA0kdw8SG4GAKCfzDxIZgYAoEpuHiQ3AwDQT2YeJDMDAFAlNw+SmwHKFHQBgBM0gVs0aaLTrcgpsgAAkMjNg+RmAAD6ycyDZGYAAKrk5kFyMwAA/WTmQTIzAABVcvMguRmgbKnyGABgbnQnb6pXAgDAcHIzAADUk5kBAOBwcjMAANSTmQEA4HByM0CZgi4AwFy6f/9+qTInAAAwSG4GAIB6MjMAABxObgYAgHoyMwAAHE5uBhikoAsAMJfu3LnT+bq2tlZcvHhx1t0BAIC5JDcDAEA9mRkAAA4nNwMAQD2ZGQAADic3AwxS0AUAmDs7OzvF9vZ25/srV67MujsAADCX5GYAAKgnMwMAwOHkZgAAqCczAwDA4eRmgDwFXQCAufP555/3vr9+/fpM+wIAAPNKbgYAgHoyMwAAHE5uBgCAejIzAAAcTm4GyFPQBQCYO3fu3Ol8XV9fLzY2NmbdHQAAmEtyMwAA1JOZAQDgcHIzAADUk5kBAOBwcjNAnoIuADAnnj17NtKypnvy5Enx6NGjzveqcQIAUCU375ObAQAYRmbeJzMDAFBHbt4nNwMAMIzMvE9mBgCgjty8T24GGE5BFwCYEzs7OyMta7r79+/3vt/c3JxpXwAAmD9y8z65GQCAYWTmfTIzAAB15OZ9cjMAAMPIzPtkZgAA6sjN++RmgOEUdAGAOalC+fHHHw8sv3nzZq865aK4c+dO5+vGxkaxvr4+6+4AADBH5OYDcjMAADky8wGZGQCAYeTmA3IzAAA5MvMBmRkAgGHk5gNyM8BwKzXrAIApTtg+/PDDQ6tu9m+3trbW+frFF190JjdNlCar6ZyT69evz7o7AADMmNycJzcDANAlM+fJzAAA9JOb8+RmAAC6ZOY8mRkAgH5yc57cDFBPQRcAmJE0cUuTsu7EbNR9nj17VjTVZ5991vv+ypUrM+0LAADzQW4eJDcDANBPZh4kMwMAUCU3D5KbAQDoJzMPkpkBAKiSmwfJzQD1Wu12u33INgAAx+KDDz7oTFIvXrxYbG1tzbo7AAAwl+RmAACoJzMDAMDh5GYAAKgnMwMAwOHkZoB6S4esBwA4Ftvb253JW3L9+vVZdwcAAOaS3AwAAPVkZgAAOJzcDAAA9WRmAAA4nNwMcDgFXQCAubK2tlZsbm7OuhsAADDX5GYAAKgnMwMAwOHkZgAAqCczAwDA4eRmgOFa7Xa7XbMeAOBYq3JeuHChM4kDAADy5GYAAKgnMwMAwOHkZgAAqCczAwDA4eRmgHoKugAAAAAAAAAAAAAAAAAAAAAABFmKaggAAAAAAAAAAAAAAAAAAAAAYNEp6AIAAAAAAAAAAAAAAAAAAAAAEERBFwAAAAAAAAAAAAAAAAAAAACAIAq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACCIgi4AAAAAAAAAAAAAAAAAAAAAAEEUdAEAAAAAAAAAAAAAAAAAAAAACKKgCwAAAAAAAAAAAAAAAAAAAABAEAVdAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgyEpUQ8Bwe3t7xdOnT2fdDQCAxjl37lyxtKROZRPIzAAA0yM3N4PMDAAwPTJzc8jNAADTIzc3g8wMADA9MnNzyM0AANNzbsFys4IucAzSBO573/verLsBANA4P/zhD4vvfve7s+4GAWRmAIDpkZubQWYGAJgembk55GYAgOmRm5tBZgYAmB6ZuTnkZgCA6fnhguXmxSldAwAAAAAAAAAAAAAAAAAAAAAwZQq6AAAAAAAAAAAAAAAAAAAAAAAEUdAFAAAAAAAAAAAAAAAAAAAAACDISlRDwHiWf/lPFcXySqWu0v73rdbbZa3WwLqit+5gv9bAutbwdcXywbpKW62i73it5dL+vW07y7pttAbb7G1f3n//DOrWVY7Xt667fXebbjv92+XXlZcttw/Or7us+rW8rFX6uv9994xbAy9Rd11vv8y67vaton2wrlXdpm5dX5u979sDx+u2X9dmd5v+NrvbdRct9e1X7XvpeK3hx+s2llvXO06uLwP9LQbbrPS3v41cm7XnXte/mtetbr/q+fUfM/sc1xyv9vmvLCtdOarnXIz2ulWX5c+h22Zmv16f2jX9rDu/3H6Z41WWlV+H9qHnkGtzcPv+dXuH7pc/Xnld+Wdkr7xf6eeue5y32xzsddDGUubcK22Wj/f2++66t/uXzqe3X98Bq8fpP95Stc2+/YqadQPnMHi8gR+o0n7d4/ev6+6f2a+6rG5dX5u9t4+DC/2g6gW7r612/Q/n22Pk3lBa461rHb5fri8Hy7r75c6rvE1pv8zxDp6zt+v6Llq97Xrr+vrS60PluG/bePbjl8Wf+9P/Xl8Habpvrf5a0Wq9W8pf3a9LfYOnmtu62+TW9V8SB/JbZr9uRu7Pyr392oP7dbertl1ua3Bd9bKXy6DdtaU2e5fE8nEP60v38nxw+Rs8XnX/3LrS5XnINuVl1XMa+7Jce6kfzFrF0bNd5RKYy8gHl8lctqu8uP1ZIvP+OLAuu1/fSQ9tsyb75PJGJotUM0Fuv+y51/al2odcmzVzlUxuqMta1eOU1lXyTe05lI5Xabtmv7p15b4Me34yr0NdzsxlrRHOr3cR6ms//7pX+lT32mZeo2Lc56zyvOTaPOhDrs23CzL9zD0vg5n3YNXA9v19WRqlzXI7+TaHZ+z+C+FAH3Jjvrp/7vnI9DN7DrX7VfqQGYO58xvYr9R+5XEpMw6O2YE3hsy6drXtzH7lHHz4ut6yUrYeYb9cJh/Iz7l1la+ddeXntrvf06e7xZ/9M3+/7+A02bun/mKxUryXzcz9uTmXeZfrcnDmx7raRj7rZjJkJTdns3VmXTUb53/0B49Xzc3ly095+7q+9L211Gbkwdw9uK4+8+barG4z2rqRcvfgZWggD49677H6nluXXXP3kwcyc9/CbHZdqsu1+eP2y7dZ7edo+e0g5x+eT7PnXtuXzPtx9V5nds6Sy2j54+aXZdZl7z3WnENlLORzbV3mrTleNRtms11fk5XnLDeWRsmn2WxX9/uVXEare21r5hcjPWeZ52WgzdK4GP665e41D2S6bLbOnHNlXf+4rG+z0lbd651ps3fPOJdna17Tunvi1fvY2bZq9+tbV11Wc375/YYfbyAz57Yvv0HnM3P/9pn96vNpTR7uHWeE/TI3dKqZub+tgT6V+jA4ltJ+MvPica95Me81T/wrxMHL0Ei/i8/dj667v5jLrtX7reXjlV/cbHatZOZcH3JZcuAYpTZz/Tw8v1Uzc38b+Yw9fN0o+TSXc6rPcd1cYNTMWz1O/f3vXFsHLbnXnM927jUf1ma5nXybC3yvOXsDqZqZO48qfelbVb3X3P+2V/dZlpHy6eC66r3m9qj7DXzupH+/Vj4zl86vu25wLPXuNT97VfzZP/0P+namyf7Z4r9VrLbOdL5v9cZXX4KsLivf9Hr7pXfBPVhX/cxR33697TOfSzp4A8m0WQ1umb7U9bPv5snQfmZ/bnI3QqufdSpd86tt9h9vyP6Z8yvPryvLMkH64HNXB6uq/cu2WT1+p43Dj5fvZ+U4uc+VdR8vjblf9hxqlmXOq/75GPI1279i6Hll11X7lDlO/fNYs64Ys5+jrCtG26+2T5WcUfdc178OB89a6fkbeg65HDa8zcHnbHBdr6nsvcdM71p1GbS6TX8/h88hDj6PW2m79COZy+2jfG6oGD6/q55mpq2636/kPk+9lNmvuix3vG5b2f2y88Ly5777+1I9XqnN3nHK+yfLvePsDbS5XNfPt58F7y5bfrt///bdZd22949XPpfu8Uv9q7S9v93b7bPnXt6vv83ufku157eXOYfy9v3ruu1Xn9fSuu7z8rad3PNY7md3XW/RwG3r5b51A38B1ffDVb0XWLqf9na76t8Y7W+/VPz42W7xT/353z84EI33z7b++WK1OHWQj/v/Ji+To6s5s/9v8zIfQB3YbyAz929Xzb6lZZXHuePU9DP7xpX7e4Lut6VMVz1O//Y1/Rv4O4JirNw9SobMZsLe/Li/L8XwNivblH53VZslq/3s78uQbXK5edT9xsiEuXyae67rz2/IcYctG6WfQ9rOnsOofanrU01fatcN6VN2u9rnsz3i2B2+rpe7B7s3UuatazP/nFXyael4NffRanJtMcLlKH+vOt92/3YHPzLD83D954YybVYyc/9xcvm77vcr1Txbl5Xzf486QubNZvPBLFnNYXX5O9dGf26r5ubluuP0Z8FKbi7n0nJuPvjr9sHc3J89BzJ53/EGs/zgft02S5m19vzKubl0fpXcXMr5lT6U5wDlPuRe74N+9q/rtl3+ut+Ht18zP67d3Fz7+/NKZi5vv7/s2bN28af+/O8Vi0xBF5iV5ZWitbxa+Q3420lcpmjLwScQRynosjRhQZelMQu6dNeNWtBleYSCLpnCLLUFXYavqy5bLn0Qayn7df8ZWjr0w1a9mzWtmg9pZdYdzPeGvxnmPrAySnGSUQus1BU1WZpCQZfqXDp38zj7B5tD+lRqM7CgS33/yvuVlw3uV/d6T1rQpf7DYOVl/c9HtfBI+Z5GzTgZ2Cb3muYmD9U+tWv6mZmQBBZ0GZjI1P2x8MjrxinosjfaB6rGKeiSWTduQZe6D72P94GjEQu6tIIKuiyNW9Clsn9/G7k2a9YN3BTMz7QnK+iSuwHYO04rfF21eEtpWfUX8P3LRtlvadKCLoNtDivowuJJH7Bfar0/5IP0k33IvvyjX103uF8ruy6/f3n7oqbNcddV2+4/XrUvxUh9qV7uxv6QfTt3vFHaLD/OrSstG355HfJhgco22Xx5eLbL/3Hk8HX5oibl7Ws/7F76vVg1N0y4LqCgS7V/dR/Kr/2Aes0HsevbLMb6wP5oH5YfzDDjf8i+sv2Y5zf5h+xHea6LifbLn0P5cen7EV7b7C9Dsh/8rsuZ+eOO3ubbBRNm3lw+HSkPZ9vsbjxZxs5/yH7463fkD9nXfOi9br/sh+xH+XB+qa3K49IvpAfPeeKCLnUfWh9YN7jfQZ/6M+so+w2+uY1T0KW0rvLclv4Il8XKzEU+Mx92r7OuoEtdnq3PwYfn7roiKvVZd9wcXM7Yue3ri8v071dtO3e8YnBdJTeP3ma1T8PXZe9x1u1Xyb65ZWPfe6xk5ty6fFGT8ra5ZZMXdBm1zbq+DM9TdZl+pIx9xHw6ekGXCfPpxPk7v81+p4/al/Lj0vcT5u9x96vLi/W5tqbNmtdv8oIuw8dX7QebJizoMlLunrSgy5ht9u4ZZ84he35HLehSU2Clbr9cHq6bA4xV0KU2Y+f6WVPQJfNG1MvN2XXlZeU/yKpk3dr9Bt/cxi3o0luXmY/IzYvJvebFvNecuQwdks1zeXiUHN2u2S+XG4avGyxq0r9uhOxaycy5tsZed8SCLqPeB12aQj4draDLhPl0hPydb6sY8z7tZFm3NkOOdF4Hu7nXPGLmHXHu4F7zlO81j1rQpTZjV/t0sGrgXnPmjWggM5fWDe5Xvdc8dkGX7P3oclt197jLc4Huc9U9h/4/haDpVovTxaluQZfMH3gOLMsEnNZSZl112bgFXXJtDv4SP7Ou0nZuv5o/bq0rvjLuH50euaBLbn5d2SakoEuvzdEKuoz3x6Ot0QpZjbNf3fGybY36fEzaZn7/bN+Lox9v0nXTKOgy2h/Ttid6rqv7D2w3tC+Z9/iaNgefs8F12Rw28Hzk9hueawfa7mu/bg4x0Hbp0pHL7aMXdMnNC/OfyS+3ld2vsn92XWYON3bxlcr2S2MXdCkXPhm1oEt2Xe84wwusjFLQJV/wZHhBl2rb/cvq/gD24A9Mc/0st507v3LRllEKunT3a9UUdKlbl3sdisxxuv3tX9eqrButoMvBH7AuZdb1v4mxKFIxl5Sbe/m4/2/yMjm6mgl7mbl/XTZHv91+lFyba3OEzFtb0CV/Q3Ng3Sg5uHb7yIIuuc9yVXNlLhP25s79fRmyfy4X1RR0GTV3j5Stp1nQJbtf7jmrtDV2m4P71fazOGoGnWzdNAq6jJbNM5l3pP36j5fJ3UP7UpNrM23mn7PDc+3kBV1yObrcdt3nVbL3lSuPS+t6l7rcuhHycO7vLjP9rMvRkxZ0Gan4ygh5uL7N4YVPcm1kixD2cnB7pAIroxR0qc/Imb7XFnQZnmeruTlX0KVaULG832C2ri/oUs7N+YIudetyr0M+M+8fp7uulVnXXdY93sEPQm9ZJTOX13Vz9F6x6MweAAAAAAAAAAAAAAAAAAAAAACCKOgCAAAAAAAAAAAAAAAAAAAAABBEQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgK1ENAePZffaHxcp3f3nW3QAI8Vce/Qedr623j9PXf2njz8+0TwDAfPobxb1eZkjS9//V4vIMewTN9Nv/79/pfG0V7f0FraL41/7pC7PtFDTQb/4bT3vft9++wf3rv3Zudh0CmMB/uHev9Dhdzv65ZRkdkt/63YcHD1r72fovbmzMrkMwR/5n/+unB78YSnm4KIr/6f9YFgbG8zeL+52v/feMPyw2Z9YfgGj/yy/+TtEq/WKsXfxPLv4TM+wRALPy+B/81YMHb98bzv/Sf3Nm/QGYZ3/33/p/VT5f1i7+S//yn51hjwAWy999+tf7Hu1fkf/x7/25mfUHgPH97f/t3+h9hrx7j/pP/Q99jhxmRUEXmJWf/MOiUNAFaIh/+3f/2sAyBV0AgJwHxf9pYJmCLhDv3/xPHgwsU9AF4v3Pf/vZwDIFXYCT5q+1BzP6PyejQ8dv/61HA8sUdIF9v/m/eT6wTEEXYFy/m7lfrKAL0CT/q7/6dweWKegCsJie/MH+/zSvn4IuAHmP/3d/Y2CZgi4Ax+fxs/94YJmCLgAny9/5t/b/x6D9FHSB2Vma4bEBAAAAAAAAAAAAAAAAAAAAABpFQRcAAAAAAAAAAAAAAAAAAAAAgCAKugAAAAAAAAAAAAAAAAAAAAAABFHQBQAAAAAAAAAAAAAAAAAAAAAgiIIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgK1ENAeNr776u1FV6+32r+7VVs27C/Yrlg1UDbfXt1+pulzvecmn7dl+brbfbt97u333c31Z+XXlZu29dd/vucUrretsPrtt7u2ypu0374Py6y6pf9/frLmuVvvY9G8Xe22X9T3V3XW+/zLru9q2ifbCuVd2mbl1fm73v2wPH67Zf12Z3m/42u9t1Fy317Vfte+l4reHH6zaWW9c7Tq4vA/0tBtus9Le/jVybtede17+a161uv+r59R8z+xzXHK/2+a8sK10BqudcjPa6VZflz6HbZt/r3Wfnm68q59ce4/xy+w0er7qs/Dq0Dz2HXJuD2/ev2zt0v/zxyuvKPyN75f1KP3fd47zd5mCvgzaWMudeabN8vLffd9e93b90Pr39+g5YPU7/8ZaqbfbtV9SsGziHweMN/ECV9usev39dd//MftVldev62uy9fRxc6AdVL9h9bbXrfzjfHiP3htIab13r8P1yfTlY1t0vd17lbUr7ZY538Jy9Xdd30ept11vX15deHyrHfdvGsx+/7Osci6Dd/vrtFTAN27f56+CH62C7Xi4d/AGvrttr1+S3Uu5r5Y/bv197cL/udtW2y20Nrqte9nIZtLu21Gbvklg+7mF96V6eDy5/g8er7p9bV7o8D9mmvCzv6+Kn+ctypZ/54wyuy1zOM/tlsk9mXW22q2mz1/fee2ff+VWzQf+5D+SG3Lq+HYbt167JPrm8kckivffvtz+Iuf0O3iJqsk9/3hjoQ67NmrlKJjfUZa3qcUrrKvmm9hxKx6u0XbNf3bpyX4Y9P4PZrC6DlnPYoKcvvskfJ5MJB86z/3kY5bXNvEbVLJrfb/jzkmvzoA+5Nt8uyPTz4Hntf2MYfg4D2/f3ZWmUNsvt5NscnrH7L2gDfciN+er+uecj08/sOdTuV+lDJu/nzm9gv1L7lcelt/3BMTtwMc6sa1fbzuxXzsGHrystq/jR0zfD98tl8oH8nFtX+dpZV35uu/s9fbo7vHM0NDMPz67dgTGYmfe3rC6r5uZyFizn0XzWzWTISm7OZuvMumo2zv/oDx6vmpvLl5/y9nV96b/lVZeRB3P34LrBmcphbVa3qVmX7WeuL/mvw3zV/unb7do1fWnXnF+7pi/dzPp2XeZ9J5tdu21l81t13eA5Zfd7m5ur+/dvl8toBzm/nJlz2+fupecz4fB11TybvXefzWj54+aXZdZl7z3W5ej8cUvPVW3mrTleNRtms11fk8Xh+XukfJrx9JtvBo9X7cOor23N/GKk5yzzvAy0WRoXw1+33L3mgUyXzdaZc66s6x+X9W1W2qp7vTNt9u4Z5/JsTV6vuydevY+dbat2v7511WU155ffb/jxBjJzbvvyG3Q+M/dvn9lvIJ9W/OjZbj4z945zeJv995MP7qF3t+nLLdXjZG5iVTNzdz+ZefG41zy/95pzvil+OvK95rrMW3sJzvQll2vrsnn1vnC+L+2aNtuHtll626q87+R/r1yzLrtf38GH7VfJzP3b1eW3ambO3WsuZ+zh60bJp7mcU50f5PN3Zl1dDivGuf+da+sE3mseyN01/XSvubTdsHnFj3720r3mgf2C7jVnbyBVM3PnUaUvfauq95r73/bqPssyUj4dXNdbNhhN6vcb+NxJ/35vc8tI978Hx1LvXnPK9yyM18XL3mBpZQbdwLLMpK+117vgDqzru4AdrKl+djn3RtkdkPkPew72pffGk+lntQ/ZD5e+/fnJhrTh/ex91ql06pntK169/qq8f+b8yk91ZVlu7n3wIdqeav+ybVaP32nj8OPl+1k5Tu5zZd3HS2Pulz2HmmWZ86p/PoZ8zfavGHpe2XXVPmWOU/881qwrxuznKOuK0far7VMlZ9Q91/Wvw8GzNpCwsueQeY+vaXPwORtc12sqe+8x07tWXQatbtPfz+FziIPP41baLv1I5nL7KJ8bKobP76qnmWmr7vcruc9TL2X2yy3r93Lnm15b2f2y88Ly5777+1I9XqnN3nHK+yfLvePsDbS5XDlOuc1yW8t9v1zqbt9d1m17/3jlc+kev9S/Stv7273dPnvu5f362+zut1R7fnuZcyhv37+u2371eS2t6z4vvbt4g89juZ/ddb1FA7+vXW4N+wuotO5gZfde13Lu3t7b7Xp96VuX+vBjmXnhvC5edS7HB/n4YNTlcnT1TbSXmQ9/Q3i7KHMVrubM/kBVzaX9bXb7Us3MuXUZr958PbBNdg48+Evjvu1r+jfwdwTFWLl7lAyZzYS9qUN/X4rhbVa2Kf3uqjZLVvvZ35ch2/Tpvcyj7jdGJszl09xzXX9+Q447bNko/RzSdvYcRu1LXZ9q+lK7bkifstvVPp/tEcfu8HW93D3YvZEyb12b+eeskk9Lx6u5j1aTa2tuIwzeV87ds6y03b/dwY/M8Dxc/7mhTJuVzNx/nFz+rvv9SjXP1mXl/N+jDua+qpfP9z/vUj7OYJas5rC6/J1roz+3VXPzct1x+rNgJTeXc2k5N/f9xfxAbu7PngOZvO94g1l+cL9um6XMWnt+5dxcOr9Kbi7l/EofynOAch9yc5yDfvav67Zd/rrfh7dfMz+u3dxczcz9y6qZubz9/rJnz4aPy0XRarf7/sIHmIof/ehHxfe+971ZdwMAoHF++MMfFt/97ndn3Q0CyMwAANMjNzeDzAwAMD0yc3PIzQAA0yM3N4PMDAAwPTJzc8jNAADT88MFy82H/H97AQAAAAAAAAAAAAAAAAAAAAAYlYIuAAAAAAAAAAAAAAAAAAAAAABBFHQBAAAAAAAAAAAAAAAAAAAAAAjSarfb7ajGgLy9vb3i6dOns+4GAEDjnDt3rlhaUqeyCWRmAIDpkZubQWYGAJgembk55GYAgOmRm5tBZgYAmB6ZuTnkZgCA6Tm3YLlZQRcAAAAAAAAAAAAAAAAAAAAAgCCLU7oGAAAAAAAAAAAAAAAAAAAAAGDKFHQBAAAAAAAAAAAAAAAAAAAAAAiioAsAAAAAAAAAAAAAAAAAAAAAQBAFXQAAAAAAAAAAAAAAAAAAAAAAgijoAgAAAAAAAAAAAAAAAAAAAAAQREEXAAAAAAAAAAAAAAAAAAAAAIAgCroAAAAAAAAAAAAAAAAAAAAAAARR0AUAAAAAAAAAAAAAAAAAAAAAIIiCLgAAAAAAAADA/7+9uzFqYmvAABzufAUItwKlA9EKlA5AKxA6gLECRzoAK1DoAK1AsQO8FVy0A755c2dxiQn5283+5HlmGAOSzebv5D3J4d0BAAAAAAAAAAAA1VDoAgAAAAAAAAAAAAAAAAAAAABQEYUuAAAAAAAAAAAAAAAAAAAAAAAVUegCAAAAAAAAAAAAAAAAAAAAAFARhS4AAAAAAAAAAAAAAAAAAAAAABVR6AIAAAAAAAAAAAAAAAAAAAAAUBGFLgAAAAAAAAAAAAAAAAAAAAAAFVHoAgAAAAAAAAAAAAAAAAAAAABQEYUuAAAAAAAAAAAAAAAAAAAAAAAVUegCAAAAAAAAAAAAAAAAAAAAAFARhS5Qg8+fPw/29/cHOzs7g83NzcHGxsZge3t7sLu7Ozg5ORn8+vWr6V0EAAAAesR7EQDAtKxweHh4Lyvk3+SFZIizs7PBjx8/Bm2Tfcp+Hh8fL7x/yUHJQ7nuuQ3orj5l3j5dF5plfDe+Q1+sejwzDgF1kfUBmEb2BbhPhgZoL9kVoBtkami/jdvb29umdwL6Ii9up6enw0nDo0ePBi9fvhw8f/58ePr6+nr4wvj9+/fh7+b/8rtPnjxpercBFpJQ/+3bt8HPnz+b3hUAgDsyCuvGexGwel5rgC65uLgYvHnzZuYP5pMXsjgq/7ZBskzG3UJyTPYtCxCePXs2/D65pyy5KPnn69ev97JQXF1dDZ4+fbrS68Dy+pR5+3RdaJbx3fgOfdHUeGYcAqom6wMwjewLcJ8MDdBesitAN8jU0B0KXaACecHLhKFofzw6Ohq8ffv2j0lCuZ2y+N33798Pfx+gKxLk8+ZMEejzB2zjxjsAgFWSUVg33ouA1fNaA3RNskJyQBwcHAzzQHmxUrJBFmIVH+yX7e3tDT58+ND4ODe6YGsZ5+fnw+tFd/Qp8/bputA84/t9xnforibHM+MQUBVZH4BZyL4Av8nQAO0muwK0n0wN3aPQBZaUP+B48eLFXevkrIF/dIKTiQxAmyW4pzU3b76U+QM2AKBJMgrryHsRsFpea4CuSUZIVkhmmPXoKhnnctSWspzn8vKy0SOzVLFgK2N18tKyRwNjtfqUeft0XWiW8f0+4zt0VxvGM+MQUAVZH4BpZF+A+2RogPaSXQG6QaaGblLoAkvIi97jx4/vXvzyIpYXs1ltb29rNgNaK+NTQv7Xr1+Hgb04Avkof8AGAKySjMK6814E1M9rDdB1Ozs7w7Fr3g/fz87OhkdkKcs4988//zQ23i27YGvZI4DRjD5l3j5dF5pnfP/N+A7d1obxzDgELEvWB2AWsi/AbzI0QLvJrgDtJ1NDdyl0gSWUW8mePn06uLq6WmqicX193eiR0AA2NzfvQv2ooq3REckBgFWTUeA370VAPbzWAH1RHAErR5vKUa8WPX9ZskIyQxMWXbCV65+FB8lLdE+fMm+frgvNMr7/x/gO3deW8cw4BCxL1gdgGtkX4D4ZGqC9ZFeAbpCpobv+anoHoKvy4lW8+MXbt28XmjCUJwv7+/uV7R/AIoo/XssfpGV8Skvj+fn58I/U8u/z58+b3kUAYA3JKPAf70VAfbzWAH2QI6hkkVQ+aF9kkVVkkdPoB/XFdpuUI8LkOuXf5JlyoVZOZ59TwJUjz2Tszu9arNVNfcq8fbouNMv4bnyHvmjjeGYcAhYh6wMwjewLcJ8MDdBesitAN8jU0G3/a3oHoKvSHlmeDBRH6p3X69evB9+/fx+ezr/5MokAmnJ7e9v0LgAA/EFGgf94LwLq47UG6IMskhrNDIvI+Q8PD+/97N27d8Oyq/JCqVX6+++/h4sK8kW/9Snz9um60CzjO9AXbRzPjEPAImR9AKaRfQHuk6EB2kt2BegGmRq67a+mdwC6qHihKiwzQRh94Uw7JAAAAECZ9yIAgGnOzs6G/2ZB1DLGnf/Xr1+DT58+LbVdWKfM26frQvOM70BfGM+APpD1AZiF7AvwmwwN0G6yK0D7ydTQfQpdYAGjL1LPnz9feFtPnjwZOxECAAAAKHgvAgB4yOfPn+8+sC9/gL+ocUdeOT8/X3q7sC6Zt0/XhWYZ34G+MJ4BfSHrAzCN7AtwnwwN0F6yK0A3yNTQfQpdYAGj7ZDjJhzLvAheXFwstT0AAACgX7wXAQA85PLy8m7B1c7OzmBjY2OpD9zHHcmlWMwFdelT5u3TdaFZxnegL4xnQF/I+gBMI/sC3CdDA7SX7ArQDTI1dJ9CF5jTjx8/Br9+/XrwBWxeoy+gxYQIAAAAwHsRAMAseWHU4eHh2J/PYnt7u4K9gvXMvH26LjTP+A70hfEM6ANZH4BZyL4Av8nQAO0muwK0n0wN/aDQBeY0rhly2RfAra2tqZcBAAAArCfvRQAA04x+cL/sa/xoVigsunAL1inz9um60DzjO9AXxjOgD2R9AGYh+wL8JkMDtJvsCtB+MjX0g0IXmFMdbWOPHj26972JCgAAAFDwXgQAMO9r+7QFU9A2fcq8fbouNM/4DvSF8QzoA1kfgFnIvgC/ydAA7Sa7ArSfTA39oNAF5jT64jRp8jKPv//++4+fff/+fentAgAAAN3nvQgAYJrDw8M/fpbM8PLly4W2d3NzM/bnFm5Rlz5l3j5dF5pnfAf6wngG9IGsD8AsZF+A32RogHaTXQHaT6aGflDoAku+AFYxqRj3IqrVDAAAAAjvRQAA02RB1fn5+eDJkyd333/58mXhD/Gvr6/H/ryKRQHQ98zbp+tC84zvQF8Yz4A+kPUBmIXsC/CbDA3QbrIrQPvJ1NAP/2t6B6Brfv36tZLL8QIIAAAAhPciAIBZ7O3tDb+qMO6oK4sehauufHR2dja4vLwcZph8ZbFBFprlK0cSa9P+sl6Zt0/XhXYwvhvfoS+6MJ4Zh4CHyPoAzEr2BfiPDA3QfrIrQLvJ1NAPfzW9A9D1F78qWiLHtaL9+++/S28XAAAA6DbvRQAATfj8+fMfP9vd3R00LYsH9vf3B5ubm4Pj4+NhLsrirBw17P3794Nnz54NLi4uhvua38miLtqvT5m3T9eFfjK+A31R9XhmHAKmkfUBaIrsC3SVDA2wfmRXgGrJ1NAf/2t6B6BLbm5uVnZZGs0AAAAA70UAAKs2aZHT0dHRoElZiJXFWlmYkAVak44SloVc+b0c/atYzJWvKhY0UI8+Zd4+XRf6x/gO9EXV45lxCJiFrA9AE2RfoMtkaID1IrsCVE+mhv74q+kdgK43mgEAAADUxXsRAMCq5UhWbftj/9PT0+EirIODg8HPnz8nLtaKJ0+eDK6urgZPnz69OwrYixcv5KoW69N906frQv8Y34G+qHI8Mw4Bs/JcB6AJsi/QZcYMgPUiuwJUz1gG/aHQBVraaObFFgAAAPBeBACwSjlq1egRV7IAatziq1XKPmWxVhZuzSpH3Spfryzaop36lHn7dF3oF+M70BdVj2fGIWBWsj4Aqyb7Al0nQwOsD9kVoB4yNfSHQhdogUePHjW9CwAAAMAa8V4EADDOmzdvHlz41JSXL1/OtVhr3AKxLNo6Pj6uYe9oqz5l3j5dF5phfAf6ourxzDgENE3WB2AS2RdgPBkaoH1kV4Bukalh9RS6AAAAAAAAwJo7OzsbLmoaXWT19OnTxvapWKh1eXm50Plz1K6yk5OTP44MBtB3xnegL6ocz4xDAAC0mewLAEBXyK4AANMpdIEW+PXrV9O7AAAAAKwR70UAAKPZ4PDw8N7PcvSqvb29QdNGF13Ne0SZ0YVijsK1PvqUeft0XVgt4zvQF3WMZ8YhoA1kfQBGyb4AD5OhAdpDdgXoJpkaVk+hC8xha2ur6V0AAAAA1oj3IgCAVdjf3/9jkdXR0dGgD549e3bv+4uLCwsTWqZPmbdP14V+ML4DfdHG8cw4BOtF1gdgVWRfoC9kaID+k10B6iVTQ38odAEAAAAAAIA1lSNSff78uVWLrKq0s7Pzx88+ffrUyL4ArJLxHeiLto5nxiEAAKom+wIA0BWyKwDA7BS6wJLqaml89OhRLdsFAAAAus17EQBQne/fvw+2t7cHGxsbrfva3NwcHB4e1nr9z87OBicnJ61bZFX30WouLy8b2RfWM/P26brQHcZ36A95tb3jmXEIkPUBqiX7yr5A/8nQQF/IrrIrQFNkaugmhS7Qghelm5ubP3725MmTWi4LAADot3X/oAj6xnsRAFCvb9++DX78+DFo6wfwWQhV59yhnM9PT09bs8iq7jxVPlIYzetT5u3TdaG7jO/QL/Jqe8cz4xCsF1kfoH6yr+wL9IsMDfSZ7Cq7AqyCTA398b+mdwC6ZJUvSn///ffKLgsAAOiPLnxQlA9wgNl4LwIA6vXq1avB9fX1MKuO+7C66SNH7e7u1rLtzBlevHhx9/35+flgb29v0EfjjsBV19FqWEyfMm+frgvdZHw3vtM/8mp7xzPjEKwXWR+gfrLvf2RfoC9kaKDPZNf/yK4A9ZKpoT8UusACrWblIF/FxGvcxKCu9jQAAKDf1vWDIugz70UAQH3y+vf+/fvBOkkO2NnZucsDl5eXg5cvXw7WTRabObpMe/Qp8/bputAtxvf/GN/pG3m1e+OZcQj6S9YHqJfsK/sC/SNDA30lu8quAKsiU0M/KHSBBf4AsfyCVUVL47///vvHz549e7b0dgEAgPWzjh8UQd95LwIAqGORVeYOX758GTx9+nTQNicnJ4N3794N9zNH9Prw4cPCCwcmnc9RuNqlT5m3T9eF7jC+/2Z8h26rezwzDgHLkPUBqJLsC6wDGRqgH2RXgObI1NAPfzW9A9A1dSx8G/ciqvURAAAACO9FAABVefHixfDIU1nEdHV11co/9r+4uBgcHx/f5ZV8v7+/v/D2Ji1kkH3apU+Zt0/Xhe4wvv/muQHdVud4ZhwCliXrA1Al2RdYBzI0QD/IrgDNkamhHxS6wJyeP3/+x8+WbTW7ubn548Vv0SZJAAAAoF+8FwEAVGF3d3fw/fv34ev+P//809oP4j9+/PjHzz5//lz55cg+7dKnzNun60I3GN/v89yA7qp7PDMOAcuS9QGoiuwLrAsZGqD7ZFeAZsnU0A8KXWBOL1++/ONnaZlcxuj527rIDgAAAFg970UAAMvKEayy6Cmv+Tli1rwfwucoWBsbG0tnkFksu+hg1Lh9tgihffqUeft0XWg/4/t9xnforlWMZ8YhYFmyPgBVkH2BdSJDA3Sb7ArQPJka+kGhC8zp6dOnf/zs27dvlb4AZsIDAAAAEN6LAACWcXh4OFwolUyxyCKr+Pr168o+wB93GQcHB5UdVSZevXq18PaoR58yb5+uC+1mfDe+Q1+sajwzDgHLkvUBWJbsC6wbGRqgu2RXgHaQqaEfFLrAAvb29u59f319vfC20iQ52iZpogAAAACUeS8CAFjEycnJ4OzsbPjh/pcvXxY+8tT3799XdjSW7e3t4b/Z53wdHR0NTk9PF95eFpeN2t3dXWofqUefMm+frgvtZHw3vkNfrHI8Mw4BVZD1AViU7AusKxkaoHtkV4B2kamh+xS6wALevn177/vPnz8vvK3R8+bFddGJDgAAANBP3osAAOaVBVbHx8dLHTGrfGSXcUd8qcPLly/vjviV/X7//v1S2xvNPrkdRhc60A59yrx9ui60j/H9P8Z36L5Vj2fGIaAKsj4Ai5B9gXUmQwN0i+wK0D4yNXSfQhdYQNH6WG6MXNTl5eW97zMBAQAAACjzXgQAMO+H73mNz+KncUegmsePHz+GR2aZduSsUTnPxcXF8Gv0yC4PSebJZS1z1K3yvuerbNkFYKxP5l30MdzG60J/GN//Y3yH7mtiPDMOAVWQ9QGYl+wLrDsZGqA7ZFeAdpKpofsUukBFrWZpoFxE+Xx5US2aJQEAAADKvBcBAMwiH9rv7u4Oj6Ay+iH8IooFTs+fP59rHx4/fjzY398ffuX0PIsJcpn5/ZQFLCNHDivLQrCDg4Oltsl6ZN5lH8Ntui70h/H9N+M7dFuT45lxCKiCrA/ArGRfgP/I0ADtJ7sCtJtMDd22cXt7e9v0TkBX7ezs3C1QS8i/vr6e6/wnJyf3Jgs5/7xHQANYpdFxK4xdAEDTZBTWifcioBlea4CuyNGmkhdypKtlPnC/ubkZbqN89Kocgat8tJeHbG5uDs9f9ujRo8HPnz/nzj3zXG5ZzpttlBm7u6ENmbeKx3Bbrgv9YHz/zfgO3daG8cw4BFRB1gdgGtkX4D4ZGqC9ZFeAbpCpobsUukBFE5aiEfLo6Gim8+Y8WfBWmOe8AE1JaE94LxPeAYCmySisE+9FQDO81gBdkNf6x48f//GH9lWZ9SPF5JXt7e2x/zfP2FnezryLtsbdFufn58OjidF+TWfeqh7Dxbbkd5ZlfP/N+A7d1sbxzDgELErWB+Ahsi/An2RogHaSXQG6Q6aG7vqr6R2ALsuitC9fvtz7w46Li4uZXvxevHhx970XP6ArihbHaT8DAFglGYV14r0IaIbXGqDt8lpf/sC+avMUWGxtbS30f+Mu8/Lycng61220WGuSjM+ji7WyHYu1uqPpzFvVY7gN14XuM77/ZnyHbmvTeGYcAqog6wMwiewLMJ4MDdA+sitAt8jU0F0KXWBJaXxM82Mxydjf339w0pCJQiYWxR98ePEDuiBj1uHh4eDz589//N+bN28GZ2dnw5ZHAIBVklFYV96LgNXxWgN0RcakOsejeRZaPXr0aOziqPws/zePly9fDnNPzpdFCDlSTHLPuAVlGbOTi8oLzrLf19fXw+3QLU1m3iofwyG/swzju/Ed+qJN41kYh4AqyPoAjCP7AkwmQwO0i+wK0D0yNXTTxu3t7W3TOwF9kclC/ogjE4FMHl69ejV8sYtMCPKHH8ULXxa25cVv3skJwCrGscKiTbvlhbtpfsxkAQBgUTIKTOa9CKiG1xqg63Z3d8eWT1UlH+QnR8wjhVifPn0anj44OJj7/OPG6vIChIy5W1tbw9Oji8zyf7m8XC7d11TmrfoxHPI78zK+G9+hL9o4nhWMQ0AVZH0ACrIvwGxkaIDmya4A3SZTQ3codIEaXFxcDD5+/DicIOSreEHMi11aHl+/fu2POYBWKt70WOQoo6OKP35L66MxDwBYhowC03kvApbjtQagGzLGpkTg/Px8mHlubm6GP0vmyRgu9/RbnzJvn64LVMH4DjTNOARURdYHoO1kX6BtZGgAJpFdAWYjU0P7KXQBAAAAAAAAAAAAAAAAAAAAAKjIX1VtCAAAAAAAAAAAAAAAAAAAAABg3Sl0AQAAAAAAAAAAAAAAAAAAAACoiEIXAAAAAAAAAAAAAAAAAAAAAICKKHQBAAAAAAAAAAAAAAAAAAAAAKiIQhcAAAAAAAAAAAAAAAAAAAAAgIoodAEAAAAAAAAAAAAAAAAAAAAAqIhCFwAAAAAAAAAAAAAAAAAAAACAiih0AQAAAAAAAAAAAAAAAAAAAACoiEIXAAAAAAAAAAAAAAAAAAAAAICKKHQBAAAAAAAAAAAAAAAAAAAAAKiIQhcAAAAAAAAAAAAAAAAAAAAAgIoodAEAAAAAAAAAAAAAAAAAAAAAqIhCFwAAAAAAAAAAAAAAAAAAAACAiih0AQAAAAAAAAAAAAAAAAAAAACoiEIXAAAAAAAAAAAAAAAAAAAAAICKKHQBAAAAAAAAAAAAAAAAAAAAAKiIQhcAAAAAAAAAAAAAAAAAAAAAgIoodAEAAAAAAAAAAAAAAAAAAAAAqIhCFwAAAAAAAAAAAAAAAAAAAACAiih0AQAAAAAAAAAAAAAAAAAAAACoiEIXAAAAAAAAAAAAAAAAAAAAAICKKHQBAAAAAAAAAAAAAAAAAAAAAKiIQhcAAAAAAAAAAAAAAAAAAAAAgIoodAEAAAAAAAAAAAAAAAAAAAAAqIhCFwAAAAAAAAAAAAAAAAAAAACAiih0AQAAAAAAAAAAAAAAAAAAAACoiEIXAAAAAAAAAAAAAAAAYG4/fvwYfP/+vendAACA1pKZAdaXQhcAAAAAAAAAAAAAAABgLp8/fx5sb28PdnZ2BmdnZ03vDgAAtI7MDLDeFLoAQM/bOzPZOzk5aXpX6Km0w+ZNhby5AACw7nzQAgAAD5OZAQBgOrkZAIAuOT4+Hnu6L+RzAACWJTMDrDeFLgDQ46KNTIh+/fo1ODg4aHp36KmnT58Onjx5Mtjd3TX5BgDWWnJ3MvjW1lbTuwIAAK0kMwMAwHRyMwAAXZKDASa/lvNsn9aSyucAACxLZgZAoQsA9LjMJa6urgaPHj1qepfoscvLy2Gxy+Hh4eDk5KTp3QEAaOwDl3j58mXTuwIAAK0kMwMAwHRyMwAAXXJ8fDzTz7pKPgcAYFkyMwAKXQCgx2UuX758UebCWEWj6+7u7mBzc3OwsbEx/MrpPH729/eH5SzlFtiH5LH25MmT4ZsKfWqKBQCYp+QueUj+BgCA8WRmAACYTm4GAKBLf7g5bo1psT61D+RzAACWITMDEBu3t7e3bgqA5iWc//jxY/j177//DoP5zc3N8Pvi9Pv37wcHBwdN7yotlsdLyjjymMmESLsl41xcXAzevHkzfJzMam9vb/Dhw4cHJ9gefwDAOtve3h7mn9PT06Z3BQAAWklmBgCA6eRmAAC6IutFJx00MGtNf/78Oeg6+RwAgGXIzADEX24GgHZIucL+/v7g+Ph4cHJyMmxZTOlCUfQyT/EC62t3d3f4WEnxjzINJrW7ZqzJ4+Pq6mqQbr+8AZDTR0dHE8+X8ejTp08PbjuNqil9iVxGxi4AgHWQDJ7skzwOAAD8SWYGAIDp5GYAALq0FjVr3HOwwHEHK022zVr4LpPPAQBYhswMQEGhC0BLpFwhAf3p06fDhkWY1+Hh4XASlFKNKlstM4HMttMKurm5OdjY2Bj+mwbNlHZk8qi4oztyn+WNgPPz8+F4Exlzcvr9+/fDcpdJxS55bE2TcSxfmZTnsgAA1kEycyhVBACA8WRmAACYTm4GAKArcgDTePv27d3pUVmT2mXyOQAAy5CZASgodAFoiQTwFCxcXV09WKgAkyZARStnVWUuFxcXw+KWtGRm22kFTUlHuUEzv5Oyl5S75PeKiRjtlPsr991DE/6UuxTFLil+KQqmMibNOsH+8OHD8Hx5zEx60wEAoE8uLy+H5XfKOQEAYDyZGQAAppObAQDogqwVzvrQ4kCmybA5PSrrjIu1zV0knwMAsCiZGYAyhS4ALdX1hkVWK6UqkcldFa2WKWfZ398fln+k1CNFQ7e3t3df19fXw8doJl3lyWb5fLRPJvoxy0Q5v5NyoBS75D6fZ0wqSmHi5ORk+CYEAECfJQtrlwcAgMlkZgAAmE5uBgCgC4oD/b19+/buZ5PWmHZ5Pbx8DgDAomRmAMoUugC0WLksAyZJYUZR1LHsJC5FLDs7O3cTqhS3pNQjbaCjj82jo6Ph/+ffsouLi+E2in2iPXJ/xSoKVlIEVBTHvHnzpvbLAwBoSjJ0sm/KDQEAgD/JzAAAMJ3cDABAF2R9cdagZo1xeW1x1hXnoJSjknGzrrhr5HMAABYlMwMwSqELQIsVZQgwSSY+RWtnJnXLlgC9ePFiOGlMGcfl5eVM20uJTEpfRvcrpS6ZnNE+Hz9+XMnlFAVDeUx18c0FAIBZP3iJ0RJEAADgPzIzAABMJzcDANAFxZrlcQegnHRQyuI8XSKfAwCwKJkZgFEKXQCgw8oTtkmTunm2VTSAjha0TJMCmKOjo3s/S5lLSl26Jvud26GPtre3h/+enJyspGwnj4uimOrNmze1Xx4AQBNShJjMs2y5IgAA9JXMDAAA08nNAAB04Q82i3XG4/5oM1k2B6cclYNEdu2ggPI5AACLkJkBGEehCwB0VAo5islaJnrLTIAy8UvJR7aRCdUiUigzug/FdrvkxYsXwyKaoim0T8pvBrx7924ll5lSl+LxenZ2tpLLBABYpeTG5HEAAGA8mRkAAKaTmwEA6MpBKB86AOWk/ysfwLIL5HMAABYhMwMwjkIXAOiociHH4eHhUtsqJoPLTv7GnT/7mTKPrkgJTaQRtW/KE+UU7RTXtU7lx+ZDb0gAAHRRcm4y1e7ubtO7AgAArSQzAwDAdHIzAABtlzW1+co61PLBBUflwJB7e3t//Dx5tziIZdvJ5wAALEJmBmAShS4A0FFnZ2d3p8dN5BbZ1sHBwVLbGXf+TNI+ffo06Ioulc8sW+qybBHQLPJGQ/FGRCbraWAFAOiLIttomAcAgPFkZgAAmE5uBgCg7YoDPs5yYL9Jv7PsQSdXRT4HAGARMjMAkyh0AYAOSgFLUTyybAlLeRKVJtBljWsRPT8/X3q7VKNc4pL7vlwMtIrLnOWNCQCArri8vBw8evRoWGIHAAD8SWYGAIDp5GYAANosa4uz3jTrjMetER6VXDvuQJU5KODFxcWg7eRzAADmJTMD8BCFLgDQQaenp3end3d3l55ERSaOOzs7g42NjaVKPsa1axalMTQvE/5MmstlK5nw16n8mMhjoSgjAgDoquSZ5JpPnz4NP4yoohgRAAD6RGYGAIDp5GYAALrg+Pj43r+zmHTwv3m2sWryOQAAi5KZAXiIQhcA6JhMfsoTnnEFKvMYV+axTMnH9vb2UvtD/Q4ODu59v2wp0DSZpJdbVzNxBwDokuTvfECS3LS5uTn8yukimxfFiMnCydI+oAAAYN3IzAAAMJ3cDABA1yST5g82nz59Otd65awZzQEIR2Vt8sXFxaAN5HMAAKogM8vMANModAGAjimXYWSy9+jRo6W2l0nUOJlMLmJra2vszxctiKF6b9++/eO+ycS5TuU3Jc7Pz2u9LACAKiQnn5ycDD9kyAcOOZ3snSx1eXl514x/fX19930+XDk7Oxv+fr58MAEAQJ/JzAAAMJ3cDABAl+WPN6PIrcusVR3dZhPkcwAAqiYzy8wA0yh0AaBTEugzEUj5xP7+/vD0uslkpzBPc+ckkwphJhWz0H25zw8ODu79LBPnfNUlDayFb9++1XY5AABVSC56/Pjx8AORm5ub4YcNP3/+HBbTHR0dDXN4PojIBxD5yvf5ebJ6fp7vi+b5Jj9UAQCAusjMAAAwndwMAECXJYvm4JA5+OQi65UnnS8HIby4uBismnwOAEDVZGaZGWAWCl0A1lRCfQpREpA3NzcHGxsbw+bElC4kMNfZhJht5zLKl51/i7CeSceoTG6KlsbT09PhpCCK7ayT8oTs+fPnS28v5TjjCj8WLYsp7ptRCmLaZVzzax4L455/VcibDOW21rouBwBg2blK5kXJRcksKcHLBxH5sGG0CDFzlHGZOR9Q5IOJokAvJZTlcjsAAOgymRkAAKaTmwEA6IPiDzDHrTed1aTzrvKPO+VzAADqIjP/JjMDTKbQBWCNJFAnWKdAJWUuCdsJ0An+aUosij0SmFOSkiCekF2VXF6CeLadyygCfi7/1atXw+/z86JYpih8yH7l+wT7q6urYWNj9rcoCMl2m2idbMJo0U65JGNReQzk9sztW3z/5cuXPyZcs8r9M86i26N6eW69e/du7P9lbKhDHl/lx0CVYwsAQFWt8pmrJCslt+RDhZRJjlMU1D30QUPOW3xgkewzrkgRAAC6RGYGAIDp5GYAAPqyXjn5M+uUFz1AZEw6f3LwKtZ+y+cAANRFZh5PZgb4k0IXgDWRcL25uTn8t2g8TPFGylRSqrK3tzdsTczP06CYnxUBO18J3FWE+6LEIQUixeXnchPW830R+PN7KXbJeXLe7FfOUy4wKRdCFOUvfTdaglGUsCwr939u/9vb2+FtvUxRzGjpTCwzMaXax09R1pTypHH3S+6/POfq8OzZs7vTeZwBALRFPiwoPjDIhxEpknwowxa5fFrOLX+gkYyl1A4AgK6SmQEAYDq5GQCAvjg+Ph7+m3Xey5q0jUkHJqyKfA4AQJ1k5slkZoD7FLoArIFyuC6KOx4KzgngCc5F4UJC8+PHjxcuTUnwLrcpZrvZj3FSJFMO7SmXKDczjl6vwqTt9U3uu8IypSt1GjfJeqh5k/qVy5nynMrzLI+lPBdTqDTpTYWqlQuIxhX/AAA0YX9//16h3ZcvX6YWJyZH5Xcyd3pIfqc8V9EyDwBAF8nMAAAwndwMAEBfZH1n1gJnnXIVB3SctJ3icuognwMAUCeZWWYGmIdCF4CeK4frhPvz8/OZz5uJQFHq8uvXr8HOzs7cJQz5/XLoTpHEtIlKfqdcVpJyiVz+qBRRpJTi9vZ26oShL759+3Z3uo3XuTyRKxtXGsJqXFxcDLa3t4cT+KItNSVJxePn7du3f5wnz7eTk5PK9yX7UVi0IAoAoEqZayQvFTL/maU4Mdlq1g9gXr9+fS8DaZkHAKBLZGYAAJhObgYAoE+KgwK+f/++sm1O2lYdByCUzwEAqJvMPJ3MDPCbQheAHkshQzlcpylxXgnZRRlHSh5SEDOuXGWSN2/eLDSJKJfA5PJGt9PmUpM6lUsw2njdx00elbk0J8+3PGcjE+t//vnnjwl2Sl5SojTq48ePle/P6GNWqQsA0HQZYbnEbpbyyWJ+khyTwstZjOaveUo2AQCgSTIzAABMJzcDANAnOZBn/tAy6z1n/UPNWfPsuO0Vl1cV+RwAgLrJzDIzwLwUugD0VMJ6uTwlpRopbljE27dv704neE8qVxmVyUL2o5DLn7WEZHQikGKadS9/yMSnXKazvb09aJPc16P3Ue7vKttGmV2e/8UEO/fD1dXVxDFgXNHSuPtzWQpdAIC2SK4ul0gmJ82aW4sPRWb9EGZra2vs+QEAoM1kZgAAmE5uBgCgb4r1pHWs/Z20zVkPFjqNfA4AwCrIzDIzwLwUugD01P7+/sRSlnklnKdtsVyuMkuIHm1OnLXMZdLv5nLX2Wj5xejEpmnjin60ZzZjtC318vJy6vNttPm0jsmyQhcAoK3ZNR9GzFqAmWw1T1nl6HZvbm7m2FMAAGiGzAwAANPJzQAA9EkOBJh1o8moe3t7lW8/61TH/fFncbnLks8BAKibzCwzAyxCoQtAD6X4pFyUkCA/a7ietSBmlmbHb9++LVzoEqMFE1+/fh2ss9GJy7y3Z90FIpkcjpa5jCsJoV6ZoJfbUk9PT2d6rIwrfbq+vq5030bHoaq3DwAwi+TWclnkaIHlLHlr1nb5os3+oe8BAKBtZGYAAJhObgYAoG/evXt390eddZm07VnWpT9EPgcAYBVkZpkZYBEKXQB6PDkoVFGqMRq4Z2l2LJfKVKHq7XVNWycu2a9ygUgxeayjaZT5ypdS5DLr5HrcpLru51xbH9MAwHrNl+b5MCL5JRlpd3d35vNolAcAoGtkZgAAmE5uBgCgT5JP88edWXda5/rfrGkft151lnXpD5HPAQCom8wsMwMsSqELQM8kHCegl80Tlh+SCUfZ+fl5JdtlMWnCbFuBSFHmcnR01Nj+rLMU65RLUuZpfM3jafQ5Xnehi8k5ANCEcrt8jJYTPqT4IGSehvnR+dlo5gIAgLaRmQEAYDq5GQCAPjk+Pp573emiJl1GsQ+LkM8BAKibzCwzAyxKoQtAz4xrWtza2qpk26PBeVqr47Nnzyq53EmXv27aWH6RiWD5caDMpTkpXzk7O7v7fpHG17S4lpXLYfpWRAQArKfRDyPGldo95PLycu7zfP369d736z6vAQCg3WRmAACYTm4GAKBv60+TcRdZd7qIrFUdXa9a/MHntLXp48jnAADUTWaWmQGWodAFoGcSkEdVFXhHixgyGcnXJKOXO9qsOM3otp8/fz5YZ6PlGlUV9Swq5SEnJyeNlrnkMbK9vT3Y2Nio7KtcVlPVNjc3N+dqLq2ifXWRyxt9TNVdvlJHYQwAwDzzpXma4iMfgixynrL9/f25zg8AAKskMwMAwHRyMwAAfZL1suPWodZp0mUV+zIP+RwAgLrJzDIzwDIUugD0zLiClapKGcYViDxU6DJaKPHQ785S9rCKBktmk3Ke8v17enq68jKXYj/mfVw1IY/lRRpQ59l+CnbKDg4O5t7O6FhRR2lQ00VEAMB6G82Ou7u7c2WunH/e84wWW7569Wrm8wMAwKrJzAAAMJ3cDABAXySbXlxcDA/iucp12vlj0KdPn/7x8+TeedfbyucAANRJZpaZAZb1v6W3AECrrLrcYrR0pSyThkxWyvs0ayPj6MQiE55si99ubm4qK+uZR+7PFy9e3H1/fn7eWNlOLjeXX+XjvmgqzeN0nsnmQ3I/zdtEOo9Pnz7d+z6XVcVjo47HVx63dW4fAOAho7lxnrK5Yo4yT6579+5dLTkNAADqIjMDAMB0cjMAAH1RrJkt/l2l9+/fj12nm325urqaeTvyOQAAdZKZZWaAZSl0AeiZhwpW6lAuZxgnZRs7Ozt335+ens4U4DPheOj7KhTtkCkFqWL7advM9ct285WJxrNnzwb7+/vDFsllJx5tmLjk8ZX7s3icXV5e1lpUMouqy2SKCXYeG0dHR4MuyP1QtmgRzej48fz580Gd5nkDAACgDvOURiZzJZPPc56zs7Pa5zUAAFAnmRkAAKaTmwEA6KKsdc7a52TTg4ODlV9+1h/n4KHfv3+/9/N8P+sBRMeRzwEAqIrMLDMDVOGvSrYCABNk0lAuxcgkZnQSMSq/U7Q3FsF/ntA/68Rge3v7rnxlGdnXzc3NYXFLrm/29+fPn8Omy3x/eHg4/P/Ryciy5RerLu8pl7lkIpbr13SZC/8pP19i0ftltKApj9+qlR+3bSgpAgDWyzL5Y94PPpL/y9knRYR15CsAAKiSzAwAANPJzQAA9EFxAMTi3yZM+sPOef7gUz4HAKAuMrPMDFAFhS4APTOu+KSq4o/RsodJlzdqd3f33vcvXrz4o4CiHNpTjFJIOUoVpSFFI2bKVTY2Nob/ViH7W1y/6+vr4WQot0nRPJnvU+6S07nMqi63CbnfcjsWZS4mU+2Q5/foc3zR+2a0bOnZs2dL7RsAQNuMzl/GzXHGSd5KFh6d2zz0+6Mf3nz48GGOPQUAgGbIzAAAMJ3cDABA1xXrqrMm+ODgoLH9yBrxcWtes8582gFEC/I5AAB1kJllZoCqKHQB6JlxjYmzhuxpxhXDbG1tTT1fSkwycUk5SyYQ2U6C/M7OzjCkpxQl/25vb98VnmSykYKUZctcss0UuOTfFMV8+vRpcHR0NFMRzTSZ+BT7e35+PnGbuU9y3SPXNV+LWHTyVIXcX5nkZR/++eefSm4/qpGJcdky9015W0UxUZVGx5C///670u0DAEzz+vXrhcovi0LKWecnmd+Ut535QtXZCgAA6iAzAwDAdHIzAABdV/yRZQ5c2bRJ+zD6h6CTyOcAANRBZpaZAaqi0AWgZ8YF5FlD9jTjCkTGNTyOBveURCSQZ9+urq6GXyl4yX6dnJwMS1FScpKAnrKV/H8KUKooDcnlnp6eDrf38+fP4VcmMVVMBlIQU9wG0yYmuS5FG2eu7yL3yejtMVrkUZdcz9yPufzcN/PedmkjTanOqvZ33Yw+L6c9JycZbWUtyorq3FfFQADAqo3m9qJ4cZr8XnLwLPkl+bdc4pj5x97e3gJ7CwAAqyczAwDAdHIzAABdlvW8yZvJpsXa5qbz9bi1r1m7PLq2ddL5y+RzAACWJTP//j2ZGWB5Cl0AemZ3d/ePn3379q2SbY8WcszSrpgylSgH90wg8vPr6+vB7e3t8CtFKykLSVhftJBinEya8pV9rbLRMUU0RSnLrMUX5d+btQGzbHT/c/vVLfucCVXuk0XKXOLr16/Df5V3rMbW1tZC5ytaUwt1TJpHxxCPCQBg1UY/WPn06dPMWWmW+U9+ryh+jFxWSisBAKArZGYAAJhObgYAoMuyVrv8bxtM2pdZ1lvL5wAAVE1m/o/MDFCN/1W0HQBaYlxIThFHFUUMRYFJoRy0J0nLY5VFKm1RFNXELBOTKBfVpHGyvI1ZpQCjKMUYvT+qltKa7Gf2+8uXLwvfj3kMKO5YXYHLovfTx48f707nPq/jPht9zFZZ3gQAMM8HGkUDfPJJTj/Unp/fSQaf9oFHcm+5YDOX48MIAAC6SGYGAIDp5GYAALoombTIsVlfPutBLZuSPwxNRp623lQ+BwCgKjLzf2RmgOoodAHooYTelHGUg/myEq4famac5ObmZhjg89WXYpfcFkWpSsxTfFEuZLm4uBjs7e3Nddnl85f3oWqZlGXClcncsoVA3759m7n0hvlVUbySx1L5OV5Xg+yizxsAgCplXnJ5eXn34UFy76tXrybOV4r51EOZNvOv8gcW2b4MDABAV8nMAAAwndwMAEAXldeHFn/M2XbJyMnGD5HPAQCoisz8H5kZoDp/VbgtAFri7du3D5Y1LOL09PTBy5hka2tr+O+nT58GfVEuyJm3pKZcYjFtojROuS0zRSl1Xb+0h2YCtWyZSx57KfNR3lGfPAbLt+8iRT/l53ceY3VNnr9+/Xp32mMCAGhS8s75+fnwdPLqzs7OxByV3D6auQo5Tz7YKD6MyHavr699GAEAQOfJzAAAMJ3cDABAlyR3duUPUkfXNc+yDl4+BwBgWTLzbzIzQHUUugD0UMJyuQ1yXCHLPBLQyyUmCeJHR0cznbcI7Qno2U4flEspisKaWZULYMq36ayKFszI7Vn1bZrJWy5jb29vocKZUcXj8Pnz5xXsHZPk/iosUt5UfrPhw4cPg7qU961cTgQA0FSGSoFhMno+WNje3h42xY9Kbh/9gKHIzTlP/j/znuTnfCmuAwCgL2RmAACYTm4GAKArRteWd0nxh6LTyOcAACxDZv5NZgaozsbt7e1thdsDoEJpOSwXIGRSMGuRSuzv7w8uLi7uvk/YXqREYXQ7aUycNWRnMlCE+pwn1yFhvlxs0vRtm4lI0S45i0w6ivbJXJd5ik8ODw/vlWcs8jK8sbFxdzqXXVV7Za5TbpeUxCyzzZubm+E2yg2diz72mlDcvvM+35qU23tzc/Pu+58/f878HCs/R3N963zzoa7HLgDAspKH3r17d1eYmDlCSgkzh8l8KN/ndOYQ3759u/d7yfhyDQAAfSczAwDAdHIzAABtVl7/3DVZE5u1sfOQzwEAmJfMLDMD1EGhC0CLpaChCLqLli2Ui0sSzP/555+5ylQSzMsNjSk+SehetGhiFtm/ra2t4b8J/ZkIpAykypC/TKFLuZRi3kKXcnnGvMUb4/a9qtKR3E+PHz++93irUpfiRhcLXUYfWwcHB4PT09Op58njKI+nyHMsxTt1KV9W1x4TAMD6SFt85gb50KFcrhmZmxRfaZefZ14EAAB9ITMDAMB0cjMAALSHfA4AAA+TmQHq9b+atw/AAlKqUW43LKSsIeUm8wTfFDQkLCdYZ3svXrwYfPnyZaYSkdEylxSXzFuqkstJMUZ5O9NkP4vrnknAxcXF3bZSVPH27du5S1Dqsux+3NzczL2N3AfF5Ojr16+DZeW2TtFGXWUumbBRvzzP8jzPY+Ps7GzYhPrQ87UYD4r7KONCnbJvBQ2sAEBbJaeUs0ra45OtlNEBAMB/ZGYAAJhObgYAgPaQzwEA4GEyM0C9/qp5+wDMKKUrm5ubg42NjeG/KVMZJyUN+Z3i9xKOp0kRy9HR0fB0yh4eP3784PnyO9mfooQlZQ8phlm0hCGXXVz+MlJAkdtl1uvdBYuUqOS+KRRlN8t48+bN4MePH4O6KHRZnZSyPH369O5xMunxked4UeKT38/zu+6SpIxD5XEMAKAL0jSvjA4AACaTmQEAYDq5GQAA2kM+BwCAh8nMANX6X8XbA2BBNzc3w3KFeUoV8vuzFoK8f/9+2I6YkpaUPOR0vvb29oaFG3///ffg+vp68Pnz57tyj+xLzndwcLDw9cq2so2igCWXla9x17N8XXK+h0pGsu/5/SqKYuouYJl2v88rE6LcfsW+pJyjKPFow3Uatcy+MZ88LlLOkud5yo9SnJLbP4+Z7e3t4X2dYpU8zyPPnzw/V6G4zDCpBwC6INkpWXtVeQkAALpGZgYAgOnkZgAAaA/5HAAAHiYzA1RPoQtAS6SEoW4pUjk/Px8G60+fPg1PJ2CnaCE/K4pWUvLw+vXrpYs4UuKS4pXItnJ5uYx5pNQl+5gSiqIUppDSiqKQZlUWKWCpo0wlJTsp7IiPHz8udV/ltqVfMml++/bt8DlTPHeK53i+iqKmeQqkqipzyWN1lc9ZAIBl2uVDGR0AAIwnMwMAwHRyMwAAtId8DgAAD5OZAaqn0AVgDaXEIWUO+apLylaKwpEE+EVLQ4oCihS3nJ6eDvb39wcXFxd3/5/vV1GGs2wBS9VSlFPcvrk9tF4yqihnylfTUuZUSNEMAEAXFHOYZYsuAQCgr2RmAACYTm4GAID2kM8BAOBhMjNA9f6qYZsArLnv37/flY2kVGLRMpdJxRDlIppc1o8fPwarkuvThu2l5KaYGOX653aAtjo7O7t7vKecCQCgCz5//qxdHgAAHiAzAwDAdHIzAAC0h3wOAAAPk5kBqqfQBYDKvXnz5u7027dvK9/+6enpve8vLi4GXbW1tbXwecu37ehtwvIlO1WX96yr8vOzjvEAAKAuKU3c3d1tejcAAKC1ZGYAAJhObgYAgPaQzwEA4GEyM0D1FLoAUKlfv34Ng3thb2+vlst5+vTp3enr6+tBUwUsub7LWKY0JLdtcf6zs7Ol9oPfXr16NbxdtYlW4927d3enDw4OGt0XAIB52uVDJgQAgPFkZgAAmE5uBgCA9pDPAQDgYTIzQD0UugBQqZubmwcLUKry7NmziZdZp2UKWMYVwCx7+3z48OHutFKXapyeng5+/vw5ePLkSdO70nkpdyoKnlLmsuzzBwBgVS4vL/8okgQAAH6TmQEAYDq5GQAA2kM+BwCAh8nMAPVQ6AJApUYLSn78+FHL5ZS3+/z588EqlUsp5i2TGf39ZQsu9vb27opHjo+Pl9oWVK14TOZx/v79+6Z3BwBgroZ5H0YAAMBkMjMAAEwnNwMAQHvI5wAA8DCZGaAeCl0AqFSKG8rB/ePHj5Vfxq9fv4YThMLLly8Hq/Ts2bN7+7JoEU1RxLKs8/Pzu305OTmpZJuwrO/fv989Tz98+LB0eREAwKqzzOvXr5veDQAAaC2ZGQAAppObAQCgPeRzAAB4mMwMUA+FLgBU7v3793enUzBSLjGpwps3b+6Vuay6+XF3d/fu9M3NzVznLRfAVLXf2c7BwcHw9Lt37yrZJlT1PM1zdG9vr+ndAQCYWVFKt+riSAAA6AqZGQAAppObAQCgPeRzAAB4mMwMUB+FLgBULsH96Ojo7vudnZ3KSl2Oj48HFxcXw9NPnjwZnJ+fD1atPDEpF7TMonw7lIthlnV6ejq8PbI/h4eHlW0XFnF2djZsZS0emwAAXZJMnWy96uJIAADoCpkZAACmk5sBAKA95HMAAHiYzAxQn43b29vbGrcPwBo7OTkZFrAUUuxwcHCw0LZShJKikqLtMZODlLlkorCIlMwUhRN7e3tzF8Nsb2/flbNcXV3NNFnJxGZzc/Pu+58/fw4ePXo0qEquT65XXF5easSkEXle5Pmx7HMeAAAAAAAAAAAAAAAAAAC66q+mdwCA/jo6OrpXdpJClhQ9nJ2dDctNZpECl/39/eH5ijKXYruLlrlUIdelvI+zKP9eSmSqLHOJ3M4p0IjcZrPexlClPPYiRS7KXAAAAAAAAAAAAAAAAAAAWEcbt7e3t03vBAD9lzKT9+/f3ys1SSHLy5cvh2UtRblJSkj+/fffwffv3wffvn27KyXJ76ZEJQURVRSh5DJ//PhxV65yfn4+9zY2NzeH+5d9u76+nqno4uLiYng6v19XIc3x8fHg5ORkWPCS4htYlTxHU9iU5/Xl5WXTuwMAAAAAAAAAAAAAAAAAAI1Q6ALAyqXU5OvXr8PSlpSq3Nzc3BW3pKxla2tr+O+zZ88GOzs7w3KIKstPclkpYynMWsgyKvuf/YvT09Nh2cwkKbLZ3d0dnk6xzdHR0WAVxRqLltXAvFIilDIhRUIAAAAAAAAAAAAAAAAAAKw7hS4A9FqKVFIaUxTGpLil+FlZSihSHPP3338Pvy8KZfLzWUosIiUW434/l5Xil+xDSl9S/rIKRalLymNSIgN1ljTt7+8rcwEAAAAAAAAAAAAAAAAAAIUuAPRdUWqSgpZ5pHwlJSgpQ5kmBTEpsygKW3KZKbZIkUuKLorClxS55P9XqSicaeKyWQ95nG9vbw/29vYG5+fnTe8OAAAAAAAAAAAAAAAAAAA0TqELAFQkxTEptPj27duw3CUlMk+ePBm8fv16WKYyb6lMlYUbkX2BquWxnsf8y5cvm94VAAAAAAAAAAAAAAAAAABoBYUuAAAAAAAAAAAAAAAAAAAAAAAV+auqDQEAAAAAAAAAAAAAAAAAAAAArDuFLgAAAAAAAAAAAAAAAAAAAAAAFVHoAgAAAAAAAAAAAAAAAAAAAABQEYUuAAAAAAAAAAAAAAAAAAAAAAAVUegCAAAAAAAAAAAAAAAAAAAAAFARhS4AAAAAAAAAAAAAAAAAAAAAABVR6AIAAAAAAAAAAAAAAAAAAAAAUBGFLgAAAAAAAAAAAAAAAAAAAAAAFVHoAgAAAAAAAAAAAAAAAAAAAABQEYUuAAAAAAAAAAAAAAAAAAAAAAAVUegCAAAAAAAAAAAAAAAAAAAAAFARhS4AAAAAAAAAAAAAAAAAAAAAABVR6AIAAAAAAAAAAAAAAAAAAAAAUBGFLgAAAAAAAAAAAAAAAAAAAAAAFVHoAgAAAAAAAAAAAAAAAAAAAABQEYUuAAAAAAAAAAAAAAAAAAAAAAAVUegCAAAAAAAAAAAAAAAAAAAAAFARhS4AAAAAAAAAAAAAAAAAAAAAABVR6AIAAAAAAAAAAAAAAAAAAAAAUBGFLgAAAAAAAAAAAAAAAAAAAAAAFVHoAgAAAAAAAAAAAAAAAAAAAABQEYUuAAAAAAAAAAAAAAAAAAAAAAAVUegCAAAAAAAAAAAAAAAAAAAAAFARhS4AAAAAAAAAAAAAAAAAAAAAABVR6AIAAAAAAAAAAAAAAAAAAAAAUBGFLgAAAAAAAAAAAAAAAAAAAAAAFVHoAgAAAAAAAAAAAAAAAAAAAABQEYUuAAAAAAAAAAAAAAAAAAAAAAAVUegCAAAAAAAAAAAAAAAAAAAAADCoxv8BrUq1xM5u/FsAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fields = [\"p3m\", \"gp1\", \"gp2\", \"gp3\", \"diff_gp2_gp1\", \"diff_gp3_gp1\"] # fields to plot\n",
"\n",
"figname = \"_\".join(fields)\n",
"slices_dict = {\n",
" \"p3m\": DELTA_P3M,\n",
" \"gp1\": DELTA_GP1,\n",
" \"gp2\": DELTA_GP2,\n",
" \"gp3\": DELTA_GP3,\n",
" \"diff_gp2_gp1\": diff_gp2_gp1,\n",
" \"diff_gp3_gp1\": diff_gp3_gp1,\n",
"}\n",
"titles_dict = {\n",
" \"p3m\": f\"P3M $n_\\\\mathrm{{steps}}={nsteps}$\",\n",
" \"gp1\": rf\"$\\phi$, step {steps[0]}\",\n",
" \"gp2\": rf\"$\\phi$, step {steps[1]}\",\n",
" \"gp3\": rf\"$\\phi$, step {steps[2]}\",\n",
" \"diff_gp2_gp1\": r\"$\\phi_3 - \\phi_2$\",\n",
" \"diff_gp3_gp1\": r\"$\\phi_3 - \\phi_1$\",\n",
"}\n",
"\n",
"npanels = len(fields)\n",
"fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)\n",
"\n",
"ims = []\n",
"for i, key in enumerate(fields):\n",
" ax = axs[i]\n",
" data = slices_dict[key]\n",
" title = titles_dict[key]\n",
"\n",
" if key.startswith(\"diff\"):\n",
" im = ax.imshow(data, cmap=\"viridis\")\n",
" elif key.startswith(\"gp\"):\n",
" im = ax.imshow(data, cmap=\"plasma\")\n",
" # im = ax.imshow(np.log10(1 + data - np.min(data)), cmap=\"plasma\")\n",
" else:\n",
" im = ax.imshow(np.log10(2 + data), cmap=cmap)\n",
"\n",
" ims.append((im, key))\n",
" ax.set_title(title, fontsize=fs_titles)\n",
" for spine in ax.spines.values():\n",
" spine.set_visible(False)\n",
"\n",
"axs[0].set_yticks([0, N // 2, N])\n",
"axs[0].set_yticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
"axs[0].set_ylabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for i, ax in enumerate(axs):\n",
" ax.set_xticks([0, N // 2, N])\n",
" ax.set_xticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
" ax.set_xlabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for ax, (im, key) in zip(axs, ims):\n",
" divider = make_axes_locatable(ax)\n",
" cax = divider.append_axes(\"bottom\", size=\"5%\", pad=0.6)\n",
" cb = fig.colorbar(im, cax=cax, orientation=\"horizontal\")\n",
" if key.startswith(\"gp\"):\n",
" cb.set_label(r\"$\\phi$\", fontsize=fs)\n",
" elif key.startswith(\"diff\"):\n",
" cb.set_label(r\"$\\Delta\\phi$\", fontsize=fs)\n",
" else:\n",
" cb.set_label(r\"$\\log_{10}(2 + \\delta)$\", fontsize=fs)\n",
" cb.ax.tick_params(labelsize=fs)\n",
" cax.xaxis.set_ticks_position(\"bottom\")\n",
" cax.xaxis.set_label_position(\"bottom\")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.png\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
" transparent=True,\n",
")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.pdf\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "d72ee660",
"metadata": {},
"source": [
"## Residual momenta"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "23a0401c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[15:15:38|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook12/p_res/p3.h5'...\n",
"[15:15:38|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]======|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[15:15:38|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook12/p_res/p3.h5' done.\n",
"[15:15:38|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook12/p_res/p23.h5'...\n",
"[15:15:38|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]======|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[15:15:38|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook12/p_res/p23.h5' done.\n",
"[15:15:38|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook12/p_res/p67.h5'...\n",
"[15:15:38|\u001b[38;5;246mDIAGNOSTIC\u001b[00m]======|\u001b[38;5;246mranges=[np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.float64(0.0), np.float64(32.0), np.int32(32), np.int32(32), np.int32(32)]\u001b[00m\n",
"[15:15:38|\u001b[38;5;113mSTATUS \u001b[00m]====|Read field in data file '/Users/hoellinger/WIP3M/notebook12/p_res/p67.h5' done.\n"
]
}
],
"source": [
"component = 0\n",
"slice_cijk = (component, N // 2, slice(None), slice(None))\n",
"DELTA_P1 = read_field(momentadir + f\"p{steps[0]}.h5\").data[slice_cijk]\n",
"DELTA_P2 = read_field(momentadir + f\"p{steps[1]}.h5\").data[slice_cijk]\n",
"DELTA_P3 = read_field(momentadir + f\"p{steps[2]}.h5\").data[slice_cijk]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "1b01111c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAADAEAAARiCAYAAABvIA+pAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs/QmYXWd5IOquqtIsWaPnWRIGA2awBoZAAlgScULIhGSRk6EzSW5I7k13n1i+ptN90p2cGJnQ3efJOR1kQ/om3ekHWw7ORCBINpCByZJsM5jBljxhG2OrSpM1V9V9vuIu9db2rvmr2nvtet/n2Za0XfXttddee63v/9f//X9Hf39/fwEAAAAAAAAAAAAAALS8zmZvAAAAAAAAAAAAAAAAMDKKAAAAAAAAAAAAAAAAoCIUAQAAAAAAAAAAAAAAQEUoAgAAAAAAAAAAAAAAgIpQBAAAAAAAAAAAAAAAABWhCAAAAAAAAAAAAAAAACpCEQAAAAAAAAAAAAAAAFSEIgAAAAAAAAAAAAAAAKgIRQAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVoQgAAAAAAAAAAAAAAAAqQhEAAAAAAAAAAAAAAABUhCIAAAAAAAAAAAAAAACoCEUAAAAAAAAAAAAAAABQEYoAAAAAAAAAAAAAAACgIhQBAAAAAAAAAAAAAABARSgCAAAAAAAAAAAAAACAilAEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKkIRAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqAhFAAAAAAAAAAAAAAAAUBGKAAAAAAAAAAAAAAAAoCIUAQAAAAAAAAAAAAAAQEUoAgAAAAAAAAAAAAAAgIpQBAAAAAAAAAAAAAAAABWhCACmmHXr1hUdHR0T/li0aFGxfPnyYuXKlcWGDRuK22+/vdi3b18xVdx4442j2l+xn1pNfGaj/dwBppKbb7554AEAAAAAAAAAADCZOvr7+/sn9RWBphcB7Ny5s2mvv3DhwuKGG24otm7dOvD3di4CiEH0o7F9+/Zi/fr1RauIQo4DBw6M6ndcUoCppCx+2rt3b7Fs2bKiHcV1YOnSpQPX7m3btjV7cwAAAAAAAACAiignVoyxgkA+RQAwxcRgvu7u7rP+HoPPBxuwHgP14yK8atWqEQ3aL2OWf+7YsWOg6KDRYPIY8B6xJ3rgZLx2bENsy65duwZWJCi3J95TvH68v5iNPwY5ZhQnNNrP8fq33Xbbmdet3ydr164d+JlWEPsrCkZWrFhR7Nmz5yX/P7Y1Ch1i39Xur3YdBAtQL64lseJNafPmzQMr38R5sJ3OhfGe7r777oH3FMUOAAAAAAAAAAAjMRUmV4RmUgQAnKm6Kweo14pZf2NgY8ZgyRjw36jYIOs1Gg1kj9cc7coHMcA99kf8mS32ccSOAogYXB/7pVZPT09LrJAQgz5rCyhqRWHA7t27m7RlAEVLFUsNJs7lixcvPuvfmeL6NhHXqcHeoyIAAIDJ04zJDAAAoJVEDhz3D8t7aeUEZGU+HI/ou4w+0skcSCRXBwCgXUQeG+P47r///oG8tsxty7EOMT5s48aNA2PcxmqqTK4IzaQIAGh40S1FJ1bmIMN4nbiY188unzkLfrxGzFJfDl6PpCHil52BtR1uZRITHYkx03H9NsXzmUlHJEuLFi0aSJAibn3hRQzq3LJlS9FM5TbG59GoiGKiijYAqiQaw3GtaZZYxWc8je2RiLygLFZTBAAAMPFacTIDAACYTHGvLnLb+km0hhJ9l/E7E3nvSq4OAEA75dwx9mukue148u2pMLkiNJsiAOCsgd/1Ysb3qOzLFoUA9YPuM2aYj5jlLPYxOPKWW24Z8fZHYUL8bn3HYnYhRCxzFNsWiUZ94UUrDLKMga2RvMWqBJGI1Sd9kzHwFKDVRQFAo9VtJstErxxTv0JQK1yfAADaVStPZgAAAJOhfhKxMh+Oe3zloKAyF477do0GLEXeHPcFMyfbkqsDANAuGk3cG3lqPFe/wlaMI4yVryL3jnER8e/4/zGubzTjFKbC5IrQbIoAgLMGp09WEUBoNMB8PCsClIlDJBtxER/LwP1IWmKJzvpCgMykoCwCiJjxWvWrIkzkPh+J2KZYqjQ6IxUBADTW6Pw4WSb6PNxodSBFAAAwcaKDfbxL6lJdVZjMAABgosmJp7ba2UHLSbSGGywf9/NuvfXWl6y4HSIXjj7U8U6iIlcHAKpKfk29yJtjIsDSSPPu+kkERzvBb7tPrgitoLPZGwBMXY064KKjrzbpGKnoTIvEIZKTxx57bMwdaLE9jYoQGnXUZWhU7RiD75sl3mO5LwEYXFS9N0Nc3ya6s8Y1AAAmVwwsuf/++5u9GTRB3PyI/oayLyL6SUYzKUB5w6X+Rk0MoKqfeRQAoJXJiaeusgCgNiceyUCk+PkYtBQTl9T/fMRcunTpuO7rydUBgCqTX1Ofg9aOxRtN3l2K3DtW3IoxZY0KcQczEWPtRiqjMBiqQBEA0DTlspz1Ilmonx1/OOVMHKNddqiRSHI2b978kufLWUgy3XDDDS957q677iqa2RCI99/MlQgAqiBmmgrR0I1Gclx/ooo8HrHQVvYjrm3lSjcTfR2Im2QawwAwuTkFU09VJzMAAMgmJ566Il8tCwDuvffeMeXEkU83WmE7jquIPZbjS64OAFSZ/Jr63DPu/5f5aeTOo81vYwxBbTHraCa3befJFaFVKAIAmqrRYPuwadOmEceIJCM6yyLJyBq0WBYV1IrXKBOjLLG99UlHJOTZrzNSsQ/NAA0wtLJQLW4sRcV7NCDj7+VA/WxxXo5rwx133DGhg/PjNeL6G9fmVatWTdjrAAD/S3d3d7M3gSap6mQGAADZ5MRTV5kTj3aW/XplEUF9Xh339dasWTPm7ZKrAwBVJL+mNq+tXYUqcubR5t0xfq0sJCgLWePPkRabtOvkitBKFAEATRUX3kYVhjHAcqSzYJQVhrF00aJFi1Jm0Bis6nE01Ywj1WjQ/US8znDKfT5YYQYAP1BeYyajaCoa07H0dBSMTXSlerkEYBQ2AACTY7Sr4NEeqjyZAQBANjnx1FSuCh6DgcY6036twQb6xGtE/+pIydUBgKqTX1Pe+68tABhr4e1gg+lHMi6vXSdXhFajCABousGSjJEOhC+XDooLeTzKZYjGq1FCMBHJciQ59a8V72Gyl+iK/d1oWwBo3KDNuDk1khtEcV6OhupEKm+GaRADwOQabwE71VT1yQwAADLJiaemW2+9daAfMnNCksiJG+XFkXeP9J6bXB0AqDr5NXHvP4pua/PRsU44ONjKErHi1VSdXBFajSIAoOlWr17d8PnaisShNOq4i0RivAP2GyUsE5Us33DDDS957q677iomU7xeo9lIADjb/fffP3CDaiQN26pUqsf5P4ryNIgBYPLzCqaeqk9mAACQSU489cTgnMiDb7nllglb7bRWvNZI77nJ1QGAqpNfUz/2azzFpxs3bnzJc+Vs/lNxckVoRYoAgKYbbBDleAfcD1aN2IoaVT1O5gwg5coDmzdvnrTXBKiquD6tWrWqbSrVYxaAeE+DLeUHAEzsNZ+ppx0mMwAAyCInnnrK+18TcU9qsBWvR3rPTa4OAFSd/Hpqi6LY2jwzcu7xTG4YYxUily5jRL597733TtnJFaEVKQIAmm6oC/BIluccLFmYiAGaE5UsRJVk/fuIDsXJ6gCMhM3szwAjE+fnOG9PlLj2TValerxWdARs2bJlwhvfAMDZor03kjYvU0eVJjMAAMggJ5564vMu+1cn6p5bo5lG4zXHc6zJ1QGAKpBfT23x+ccEgMOtlDVaUUiwd+/eor+/v9ixY8eI8/h2m1wRWpUiAKDyGs1cvHXr1nF3HjYagD+RAyQbrQYQM/RPtGgARFLU6PUBOFvZabJ8+fIJe41NmzZNWqV6vFa8Rlw3AYDJNRntPVpTO0xmAACQQU48tWemjYlQ4t7UeGfZr7du3bqGz+/atWvY35WrAwBVJr+e2upXv2o0Ie1kaqfJFaGVKQIAmm6oKtSRdIBFwtDT0zOQzMQjqg9jRuOJ2K6JrFBstOzpSJcnHY+77rprYD83mhkFgLPF+TIq3CdiqeryJlh0zkxGpXr5Wo2K6QCAiXfrrbc2exNoknaZzAAAYLzkxFNPmbPGgKDom4xZO1euXJk6YG2wHHgkq2/L1QGAKpNfT22RW9fauHFj07al3SZXhFY2rdkbADDYEpqj6fyKi3nmgMzBZh2JCsKJUg7Er50FJToFJ7oyMgoNJmowKwCtW6kerxWFBorAAGDyxQAXyzJPXeVkBlGUHyIfyxgANNmTGQAAjIeceGrav39/w+dvvvnmtElRFi9e3PD5kRxvcnUAoKrk11Nbo89/oicdHMnkihNlMidXhFanCABousEG3E/kwPfh3HnnnS95bjJmy48BmbVFAKFc4WAilEUGZoEGaL6yUn3Hjh0TXqkeN9XKqngAoDnXfaa2dpjMAABgPOTEjHaW/pEarG91sAKERr8vVwcAqkZ+PbXVrwIROW27rjw12ZMrQqvrbPYGANx///0Nn7/xxhuLVlkiqVzuc6I16lQsZxuZCFFcEElfuyZ+AFURVeplpfpEF5zFDbXbbrstZRlrAGD0oq1rRibaZTIDAICxkBNPXcuXL2/4fGY/5WDH1pIlS4pmkKsDABNNfj21lRPA1mrnXLOcXDEmvDXeARQBAC2gfub7EIPSm5WQxPbUJ8exPZmzfgylfpmi2JYYGDpRxQ7NLLaYLDHYdeXKlUVHR8dAB3NUhDYq9BjJsRGzZ0esiBPxypjr1q0beB0NK2C04rwRDdXJqlSPc2Bc17Zs2TLhrwUAnC3aE2Npi0CrTmYAADBacuKp7YYbbmg4UCfzHtxgqwo0a0IsuToAMJHk1zRaeapdJ4OdzMkVoSoUAQBNFRfmRoOmm9n5FQlyvagenCyNBuXHjP0TVewwWcUNzRDvLwbox2canb6RAHZ3dw8cd7Gf4/8NtgxrrRjcv2jRojMD/SNWOUtLJM7x77JAIH6u0TEE0AqV6tEBFOe9ybyuAbSTyPkiJ4ycL4pBozg08srBBhg0EufhsrC0jFMWqk5U8S+DK4uu43Msi33Lz2UkRcTxe9FGGE4cIxFnJD87mWK74niM47pRoXO8v0aF+6OJH78f+zjee7xW7Ify9WJfD3WDqvy+xO+U2xe/E59V+bkoxG7+ZAYATC1y4vYjJ5YTT6bo/7z33nvPDNiJf8c9wcz7gq1UBCBXB2A48uv2I7+WX0+2HTt2vOS51atXF+1msidXhMroB/j/i1NC/WP37t0T+porVqx4yWuuX7++v1m2bdv2ku2J5zKN5D0uXLjwJdvR09OTuh2bN2/uX7t27ZA/E/+/fju2b9/eXxXLli0b2OatW7ee9Xzs/9r3tHfv3oa/H8d/GSM+k4jT6Gfjs6k/lofbtwBhx44dk3bti3NVnMvi/D+c+vN/nAsBpro4f5bnxcj96vO/LVu2DHsers1D45wcMeKcW5v/x9/j+sDEiry+9jONzyHy/WjvxP6PtkD8Ge3B+LnyM6ptW8Tf47nBrq0RI36/vv2R8Rhv+zDeZ+0xHH+PYziej22Ov9f+/7I9NN72daNHozZ37fbFa8fnE/s5tqv+O1PmUoO166aCRn0rE92fA8DUJCduL3JiOXG7Gux4awa5OgBDkV+3F/m1/LpZynFNtY+qbPtolMe98xmcTREAcEajxGgiO6LK5LX2EYlJ9mD3kYoEqD6pyy4ACGWyOJRIMkeSpI53O4Yb0F/lIoByHzZqNMRnXX/cDdV4GGnDoz6xHslAW2BqK88bk3Hti2tPXOdG8lqKAAAa55bRQVx7Hi2LuYa7KVPb9okcsVHna30bYLgbPIxdmeuP9iZD+XtxnYx20VB5fxwn2TdhMm7I1N8YjPcyVLu/tjC6zAlG2k8wlhsysX1lHhLbOVRnfvxefRtstDeN2sFkTGYAAEFO3F7kxHLidtZooq1mTNwkVwdgKPLr9iK/ll8302g+z3g+3lOce8q8uSwgiv3TqvnqZE6uCFWjCABoShFAfcOlFQoA6hO5iRrsPpKkpH6Qetn4y1I2HoZT1SKAcv8NNWi1/n3VJu5lYzgS3dF8Bxo1ONqxuhbIUZ5rJqPDLc5lo7nJpAgAYOS5Zf05sz5fLju/I58fLjd0U2bilfs4Ps+x5OpxTa0fUDJY8W/EH+zRKMZQP1//GIv6bR/N8VU/s9RIZ9optzd+vlGxe21+Um7faG76NPoO1t84bWeTNZkBAMiJ24ucWE7czsp+0Gbf25KrAzAU+XV7kV/Lr5up0fi7wcaDlStVxP6Iv5crVZSrU9SOm2u1lRAmc3JFqBpFAMAZk1UE0GigdDMTptie2qQ0krmJ3JYyWWrmck3lslYj+blmd5SORZnoD9WhWt8AKossyuNzLEUpjSqvrQYADFfsNRnXvzinjaaYTBEAwEvPiYN1QNd3Mpfn2zi/l0vLjiYnrG8HWNY0T+1MSuNpW9UPKhlLzl/fHpnom2/12zyW2YvqlyMfS39BoxUBow1W5kZjnZ2z/oZRMycZaMfJDABATtw+5MRy4nZXDmyqfcSxNpnk6gAMR37dPuTX8utmazQGrz7/LfPTeAyXl8b5ofac0QorIUzm5IpQRZ0FwCTZs2dPsW7duuLGG2886/ktW7YUu3fvLhYuXDgp27Fv375i586dxc0331wsX758YHsOHDhQrFixotixY8fAY7K2ZSj1+yls27Zt3HHjvcb737BhQ9Gubr/99oE/N2/ePOR+qD8+4xH7PT7/sRwHjX4+9jVAvbgGleepib7m3HbbbQPXvu3bt0/o6wC0o7LtEG2FtWvXNvyZJUuWnPXvyCnj99asWTPw92jvjCaPr28HNGoXMDabNm06c/1dtmzZmOPE8RCfa1XEcbhy5coz/45jeSzbf++995717zjGR6vR6+7du3dg+8o2+VhEnlP7mcZ3sPY9t2ObN95fvM/yM+3p6SnWr1/f7E0DoA3JiduLnPgH5MTt66677nrJc7fccsukvb5cHYDhyK/bi/z6B+TXzVM/9iksXrz4Jdsd7yX2y3B5aXyWMYYv9l05riHG+jVLbH+Md5jsvB6qRBEAMOGJX1yMIyGIpKJ2QHSZOGzdunXCXj9eL1530aJFRUdHx8AjBv7H9pSDIiMZj0QntmWwRlYzNBrAXg5uH4+IEQNOW+m9Zrr77rsHktzRFADUNyjiWBhrA61+MG/Z0QvNFo2zOB/GOTDOiVV8lOfvqhfXxHkhzlW1xQAT+VrxGtH5MZ6OJ4CpqmyrDHVTZP/+/S95Lq655c2Y0bZ36vPY2usG428nhIyC6Cp1Nte/37EWBkZbp/aGSuzPsdwwrM9Jyg78+hs+o1V/Mye+O+1yQ7MqkxkA0J7kxO1DTvy/yInbU9z/qr//E/t6IgfUydUBGC35dfuQX/8v8uvmifFuw31WMT5sNMUQ8bnEviv3azn2rt0nV4SqmtbsDQBav2q1tkJwON3d3QNJWflnvbgg33DDDQMX6ckYjBivEclMo22J5Cwe0SkYj+iQi2Qttq8VEodyoH7tYNdyFv/xDOCPivChBshX3Z133jlsI2vXrl0Nn4/9G/tnPMdmo2MtnmuFY4qpK47BsqFb9fdRO4NSVZUN1TjXTPS1sFzdZCIL7gCmwgyCoy0wjefiWjWW82+jvDFyVLMG5rQTwqpVqyakvdaKIheoLUyOGyrjaZvEjajavDLa0qNt3zd6/fiujLfNVA7uqd++8iZHVZQDiOJzG6yAPc5Jk9WvAgBy4vYhJ/4BOXH7ajThSsYK2yW5OgAZ5NftQ379A/Lr5orxefXK9x3bHeeOsRRpRIz4vXLwfxQhxYSNY11ZodUnV4QqUwQADCku4mMRyUAkQ+Wfq1evHkiAyuWCJku89nCNoEh4Ikm79dZbB5LVeERj54477mj6wO3YlvoEP5KssSaTZeFDq1WmZir311D7aLDjOn5nIgokmn0cQdlhEAUwg92cqNJ7qfI5rLahOtHvI14nzomT2RAHaCeRM8Z1c7gbIY0KTMvO0fG0Y2o70Vu907+d27ZDiY7+Vv5s4j3XryY33tmkGt2IihuG4yk4jJhZ7bD6G0bl59TT01NURZUnMwCg/ciJ24uc+AfkxO0pBgXV59AxYCtzcJZcHYDxkl+3F/n1D8ivm2uo8R8xDm48543IaWM/lp95fEbx98maeHYyJ1eEKuts9gYArS0Sq/7+/lE/ItmJJYd27949kFBER9tkFwCMdnmpxx577ExnYAycXLRoUdNnzm7U+KtPqEf7ecbn0K7JUdloHq5T9/7772/4/HhnhJmIRh5kiYHgcW4eyzm9lR7xHqo8K0VtZ8VEv49YzSdeo1VmIQCo6iw+MbPJaHPA6BQez03+Rr/byh3/VVA7G85gK4ONVsbsThMpOvhrRVswY/BJ/apr42mjhsxcpX756NrC/6ooJzOI9mn9I3L66GuJnDh+pizyj/6L+FyqXvALQOuRE7cXObGcuF1FXlx/P2+sMyUPRa4OwHjJr9uL/Fp+3aorAYTIj8si1vGon4G/fiWIdphcEapOEQBATeIWnXS1CVAkM8M1wCZaowrKMtEZrUhC2zk5Khup9Q2EwX6uViTt4y2OaNSwa9eCC2D0ajsDypVyJkqc6+P1YlUbAMamzBlj1r7RFoFOxCwoCk7HZ/HixWnFv6VWLXSv7yAvbdy4MSV2/U2DyDnGc3zWfjYZGr3P7ME/zdbKkxkA0F7kxO1FTiwnblf194Si37VZq6PK1QEYivy6vciv5detoFGxaTwXBRvjXaWhzK3rj8vJeO+TObkiVJ0iAIA60TFYOzAzGmLLly9v2iwdjQa0j6UBEe8j3sNQDcqqKzt1h6pkjX3Q6LPMSH5j5YsqNdKAyVU7G8BEzs5fLsMYDWNLTQOMTdnBHO2Coc6ljYpLM2a+aZSv7t+/f1QxYvujKGzlypUDgw06OjoG2jVR5DzWouIqq23jxftv933QqM2YlX80KmTMmukqQ6PV7+IGVTvObNaqkxkA0B7kxO1HTiwnbsecOPpBaweIlTlys8nVAagnv24/8mv5davm17Ft8Z3PGjxfXwQROfhEjqGbzMkVoR0oAgBoYPv27S9JkNasWdOUbYmkub5BVw7oH21C3ihWO4kO1OFm9G+UhA/X0B6pRrF16AKNlkecyHPDpk2bBs5r9csSAjByZefycB3YjQYWZHR6N1pKdaT5f9yIiZsw8bjrrrsGOmejfRMFq+WyrVFoHDdo6pdxbWf1197YBxnL9UYneivm/I1uOGUWKNfHalQQ3UyNvoetMBBoqkxmAEB7kBO3HzmxnLjdcuI4T9Svfh3f9VYaJCRXB6Akv24/8mv5dSvk14ONdcqcPb/R51w79qGqkytCu1AEADBIAlOfSJRVzc3QaGm30TYeIiFv1vZPlvjMhlt2aqIazdFAbtRwbvWENI6JVmxAQrupL95atWrVhM58VV/MBsDoxHk6cvDhblhMRBHoYDdeuru7R5Tzx42YuBZEMVhPT8/An5GTRhsn3lPkw/GIjuHbbrtt4OenwuCDRm2qctaq8czQFNfcVluKtlHbJLsYvH455UZtoWaKz7Veq87K1I6TGQDQHuTE7UdOLCdut5y4/lxTP/N+q5CrAxDk1+1Hfi2/buX8OnMcUKOxDRO58sVkTa4I7UIRAMAgGjW+6pcVnSyNBu83WmprMLHdkYC3WkOhGSZqtv5GcauwLFWrNZygXdWfszNnRajtfInrRXQ4TUR8gKkk8rg4dw+Vyw3WLhjvgIPBlrgdLq+Mmysx01CImzBDFcfGNsYsOvE+y1mc2l2810ar5MT7L2epiutodFxX/QbVYKufZaq/wTOSG4aTqdH3MD7rqn+2VZrMAIDqkxO3HzmxnLidcuK4r1N7f6NVCwCCXB2AIL9uP/Jr+XUr59eZn0+jgo/IxSfivU/W5IrQThQBAAyRwDVKZDZt2tSU5Kx+QGckVCMdwB2VwjfccEMx1U3kbP133nnnhMSdaK3WcIJ2VVsJP1HFQXF9iuvWcCuiADBxnd4ZRViD3ehZsmTJkNtSFjGPZHWs8np0xx13DPw9cuTyZk47i/0yVGF0FE/Hfli0aFGxfPnyyt6guf/++1/yXHb+0eqzMg32flttO9t5MgMApgY5cfXIifPIiZsnBiTWnn9auQCgJFcHYCTk19Ujv84jv87drskYPD8RKyFMxuSK0G4UAQCMoZKzSqsBROMhEi8zigxenZyxTFmj2Bs3bixaXbMbJDAV1C+FNxEN1TgHxetER1P20osANBaDDOplDDpoFHe4DvXaXH+45aRrxc2JMm5cR1p56dosUSDdaJnmRnlyoxs0VdhHjW4gxecbM09lPWLfDHWDphUMNjtRO2ulyQwAmBrkxNUkJ5YTV1l8jrXf8SoUAAS5OgAjIb+uJvm1/LqZBttP2WMGGsVrVBxShckVod1Ma/YGALSy1atXv2TwZjnr+2RXG8ZM/vUD+SMJHq7iOn6m0UoCU9FENZoHW+Kr1TueY5urVmEO7XDumYjGalwf4jw/kg4mAHI06phft27duOOOdmnmyPfLTub4mdHmoHENKW/ixJ+xZHO7i2Lq+Kzi/Y60g768QROPuObGjFat2sZqtNpX3Hy75ZZbJuw1W7EIMW5+1Ld3psJKaHEOqO/HKCczaNVjFoDqkhNXl5w4n5x44kVOWzujcHxXW/UYbESuDsBw5NfVJb/OJ79u/f2UPd5oMiZXhHakCABgCIMlFOVsy5OduEXjqrbhV87yP1SjKxobVgH4gbvuumtCGs1RFNLo2GnFRkmt+kpqYHLOPTGrQ6ayM2nv3r2pcQEY3GArg423CHSoIs3B2ia1q4ON5fWjo768IRPvK64pU2F2lXjf8Yi2XezD0cy2FPtp5cqVA7/XigV4jY6hqVgY3qg9NhWKoFtpMgMA2pucuPrkxO2vnXLi+F6uWbOmsgUAQa4OwFDk19Unv25/rZhfZ489GE0BRPYqCJMxuSK0o85mbwBAKxts2aRmLefUaDB/bQOsXtmgiobGVBf7YaJm62/UaVuFwouhjh0gR6OVQjIbq3Fuu+22286c5+PfGY9GMxYM9zsAU0mjzvuMzu5GRatD5axx/q29ORQ3CUar/ro01XLEuIZGx3JPT8+ZZZtH+llGzh/XYajKZAYAkElO3D7kxLS66F+NCZ3KftYqFgAEuToAQ5Fftw/5NZOpmQPls1dBmOjJFaFdWQkAqLSoHo7ZzKPjbyKWxxpqJvd4zcme6T0aC/GatQNKh+ocjMZU7A/VkY0bzbFfxvsZloUW9W644YailRm0C8079wxWYDYWZSdcXAsm8mZRnC+Ga2RHZ1ZGYRVAFdTPRhIyzoGN4g61elX9uX/VqlVjet3Ii8vcsBmrnrWCaBeUMzXVXmfjWh6fy2CzNkWbNH63lWZnatT+a/ZsRM3Q6D23+mpt7TiZAQDtS07cfuTE7addcuJYAaD8fla1ACDI1QEYivy6/civ208r5tdj/Y5myB73MJGTK0I7sxIAUFllBWyZBJTLY2V2lg2VsDSrU67R4PLBBn5GlWQVZqSfDI0atxkdxbFMa6O4zU70h7Nhw4ZmbwKTLM4FcY5ctGhRZR8xCD3ew2iWTmzFc4/GKkD17dq1a8Q3TUZjsLx+sJW9spZGrf29wVbQmooir9+yZcvAfu7v7x+YtalRGyLyrFYatNGoLZI9I08VNHrPrZCHxU28yG07OjoGctvBlnqfqMkMACCLnHhqkBNXW6vmxKO9l1HmzBNdACBXB6CZ5NdTg/y62loxvx4sx5yM71zmuKiJnlwR2pkiAKCyYgWARjIriIdKWps1yLvRoP5Gy6dFghRJXStVBzdTo87aiWo0b9y4sWhl0ZGd3XlNa4tzQZwzy+rpqj7K5SerNFNEow67zOtHdNBFB1H2o1HnxXC/YxUAYKpoNBtJxmwrg+VncQ4erBO5/joz1mtMffxG16+qK3Oh8V53Y9BJ3KSpN9n5SQxKGaxN3Gj1nql4k63Re272TYOpOpkBAO1HTlxNcmI5cSvkxKPNn8t7MBNdACBXB6CZ5NfVJL+WX7dKft3oPv1kFGlkvneTK8LYKQIAKmmoRDqzo2yopLVZyUZ0cta/djngv74wYLDq7ammHDxcb7wDVuM4bBR3uMKL+L3oTB6J+Gxj0H45g3s0vOLP+HfMgFNbhBB/b9T4qt0P8Tsjfe3xin0z2LaPtBAhYkRDM34+OuFj+6N4I95nxGq0okG8v/iZ+teM388ofsj8TCZ7qcFWX6FiJOL8V5UVTsriBQDaS6PZSOL6NN7rbKMVpkLkHY3Uz540ntev/93BloiustiPt956a0qsuPlSfwNmsJsjzdDo5uBUG1AyWN4/kYOGRmKqTmYAQPuRE1eTnFhO3Ao58UhFP395TE10AUCQqwPQTPLrapJfy69bJb9uNAFq9ufTKJfNHAsz0ZMrQjtTBABU0lAX+szB+YN1yDU70Wg0ALa2ARANsxh8XJWBss1oNMdnON5jpdEKDFFYMNzxEQPFB2tYl8pZZiJZj+T8lltuGejo7unpKR577LHijjvuKFavXn1mMHp8/hG3USIfP1MOim+0ckHsnxjIPtRjNMpig0j4o6M+GoSxjF1sf2x3/DueL9/fUIOkYz+UM/DEe4ztj+0tOyBqfzf+f7zHaGhHQysayfG6se/KmfDjNce6jG/mZ9IMsS9iWydi1vjJfOzdu7cyBU6DnXsAqLZGNysyVkNplKfFdWOwAtPMHGPJkiUTFrvVr81jFTMz1eckmfHHI3Lh+pyjXT/T0dwwaPaqRVN5MgMA2o+cuLrkxFNHK+bEozkXlPdQsgoA4t7BYBMkydUBaDb5dXXJr6eOVs6vG21H9ufTKJfNKoAwuSKMz7Rx/j5AUwzVGTbc4OrRGKzjr9mJXCT+9e8zBqSXS4TdddddAwl4s7ez3RvNsZ/rNZqZvj7RjsdQrx8NuRhoHsd5DHhudLxHMh2P+MxjkPxQBR/xeuVM8CGS59rGYuaxUm57uY0x8Lx2++O52I7Y3jVr1gz8/NKlSwc68gd7n3Fsxzbff//9DTsq4v9FrHifMRC/0QDx2E8xKL9cDSAG6UeRQKNl9SbjM2FqmGodHwBTuaO30SwrGStMRdHhYCayQ7Rdr2Gxz2JfZ3VMRz5Zm5+20n6L/L4+d858760u2hfZ39PxmuqTGQDQXuTE1SUnlhO3uviMyvssWQUA5aRCg+XdcnUAmk1+XV3ya/l1KxVp1H6HG21vtsxxRvXkyDByVgIAKqu84Mef5SDmwQYSj1UMOm5k48aNRTPFe6xPpCP5L4sWYtD0YNXbU1GjhHG8yXjEbNQIHm6/l42iwYoFIma5bfUD6AcTn/dQM6NHnNpHfVFEOVP/UI+RiPdWbnts91Dfxzh+77333jPvOQblN2rAxu/HPo2B9Y22PTrN43dDzMY/1H6IOLW/H4U0IxmoPxGfCVNDo2vI4sWLm7ItAOSIfLtRDjjejs5GK0xFG2eogsX63CnzGtPOM65kzpwUeWHtZx/Foq2iUZu10c3EDLVt0VbRqGC72fn5VJ/MAID2ISeuPjlxPjlx3n6MCX8yCwBC+dkMFk+uDkAzya+rT36dT349ejfccMOEHZeNPovMHLaVil2gihQBAJVVDraOStienp6Bwb3ZFaaDJUWtkMg1GrwcDbkyGW52oUKriMZko4RxIhrNIzku7rzzzoYJeOnWW289s32jOZ7je9Aqs/MMtvpCvXLW/PJzGsmA/PrPLV43CgGioGAklcDx+7X7KlYHGGwJ4Kp/JjSfxipA+2nUPohO+fHMSBJ5UOQk9YYrxNy/f3+RZSot4zuSPHU0mjHL0UhumEXbpH4gy0iLe0cr8vhNmzYVraJRwXbk8pkTBozVVJ7MAID2ISeuPjlxPjnx+JWT8cSf2ff7yu/zUO9frg5As8ivq09+nU9+PXr1423K1bAyNCr2GGzi07EwuSKMjyIAoLLKBGaiBtoONtN7xutlJFqNBpFH5WkMTm+0UsBUNdiyUeNNxhtVug43iD1+Jx7RGBis0V5u72i3r9mfeW2C36jxN5ja5QbjvY+lGjkalqPpBInCg9rti5l8hqoir+pnQvO1c2cWwFTVqDN/vNf7suCwVuRTZgKcGJmz34Tly5ef+fuSJUtG/Hv1HdijaSOWOcZwneD1M1bGe8/OT2K7I+54jtco6s3UqGC7VQp0p/pkBgC0Bzlx9cmJ5cStKFYAiM8mzjHZ3/2IOdw9BLk6AM0iv64++bX8uhXEeaN+TEuj1QsyzlORW5f5cwbjKmB8FAEAlRXJSyQVkQxkLsc5VMIWrznU8mjDKZPsjIQzkqr6jsGIH7Oaj2RG9ancaF61atW4445ldYGysT1UY6AcjD6WY6RZs8XEMVe7P2oH9o/kOK7txGjUeBrNcngjVf8ZDFVFXsXPhNbQzstaAkxVjWY7Gc/5PnKo+lWJIj+64447hv3d+tcdz8xQU02jWbDGqnY55tHcnKvvjB9NrjmSWSxDtJfrj4vsGxNlG2c8bdDMZZ1j39x9991nPTfaFb0mUpUnMwCAkpy4PciJ88iJxy9WAIh9EBP+TMTgxDhvDXdfSK4OQLPIr9uD/DqP/Hrs6j+L0Y6/Gey8UP/+sz9zRQAwPooAgEoPVIyEJRLMaMRkJtWDzUg+3qWsygZcVsI5WNKbWXFZdY0+x+hQzjZcgl82DOLnBvvZ2u9h/Oxov5fNWmqsdiaB+kH9I1Hb+V7feBjOWDseooCm9nfLVRra5TOhdeksA6iuyBUa5QLjmeWnUT5/7733VvZ6EfsoVoiKfDveW6u2MzM6vku1OeRoBqvU58yj6eQub96MJO+O46lWtJuzPpeyCH00K4E1Eu89a7asRt+pzM97Kk5mAAC15MTDkxPLicdiKuXEjbY33nvcf5uIGfHLwffDfT5ydQCaQX49PPm1/Hospmp+Hfut9jMcbBzMaNSPxSvz5kyt+r2GqlAEAAxZAVqFC23ZYInEq76ieSziPUcjol50QI63krO24zBjWyPhr2+sNXou87jIXjZrIsVnOZYZ+0eifh8P1wApGwZDVdhHzNq4K1euHFXDbKgCg4lSPzB+LPu2vigje7m8wdxwww3DLotYxc+E1lCF6+dotr1K536AiTJUjjLaQsay47Q+ZqxiVdXcId5L5EqxL+Lv8f6WLl1atKLo9B7LZzZUofdo8+D6HHg0HfFxnIz0BkgcT/WDTRq1d8fTvs2Y9SdjNbtGxfzRjm+1wtyqTWYAALXkxEOTE8uJx2Mq5cSlMieOHHkiCgBqB/THd3M4cnUAJpv8emjya/n1eEzF/LrRmKTxFLg2KpCNY2UyVLVwCZqiH6C/v3/Lli39cUqofyxbtqy/Cnbv3t2/cOHCgW1eu3Zt/969e8cUp6enZ+A91++HrVu3jnsb169f/5K427ZtG3fczZs3nxVz+/bt/RliHzY6JlasWNFfFTt27HjJ9sdxkiGOs9q48R0aTBw/w/3MYJ9n+XtjPaYHUxs/3kvWcT2W70r9sTZcjKzjMb4rIzk2Juszob3E9aSq59C4NjXa9jinAkxl9flf2V4aSz7VKE8dbR5fn6OMp+3W6Nw/Wo3aUSPNgSdD2V7MbBfU5pPRJh3vNo30GBhL3l1//I63jVseM2Np00Y+VJ8fxZ/RthiryM3r92erHHvD9WFk9DdE7ln//jP7BwCgJCcempxYTjxScuKzj514/xmP+A4O9j0cad+mXB2AySS/Hpr8Wn49UvLrxmOUxvvZ1H/GGWPc2mlcBbQKRQAwxcTFMxKVeETCGA2BwQoAykdc1CMxjJ8vf7cVB7/GNtUmdtFAGU1SHPuiUZI+lkGPsZ/jtWO/xXY06uCrTVwi4YrXGUsSH78znoZTqP1cI14kbkNtc1WOiUbH9ngGvA/ViB6s8VA20kaaoA5WfFE2suN14ngZy7FSK2ufjLUROdT2DNdwykr8G+3rRvt1sj4T2kurF1LV5gPlub+8Zg2VE8T3swrnf4CJ0Cg/jry57AQdabuh0TViLDlUq92QGer60Wqf31hvpA02kCM+i4z9PpLtKTvv4/XHW8A71g77so0z1vddf0Mm4pTtq7HcjGhUzF+FmzFVmMwAAOrJiYcmJx49OfHUzInr72tNxmM0x4tcHYDJIr8emvx69OTXUzO/HslnM9qxbxkTgo6EIgAYv9a4KgJNrSQe66MqFY2RmEWCVztosRR/jyS0PiGMRyQ0Y+3YG24Q5VCPsRQdlMnnWKpY62dDb6djotHxnlmZWpv0RmOstlEUfy+Pg9Emp42q9IcryBit0Tb8RpqMx7bE86N91DfIRrrt4038G21/sz4T2k+j42M8sw1M5LVyvI+JqPoHqMIAhbKQqswHh2s/1OcUkcePtc1RX/A6nhsyja4LozVUEXErFEvWbl9Z/DbWa3N8Zhk3dUJ9W3SoPLK8mTeemw31bdXR3lQpj7ux3owZ7IZM7XE4mti1n0UV85JWmswAAIYjJx6enHhs5MRTKyduNKPqZDzGsp1ydQAmkvx6ePLrsZFfT638ejQD+UfyOcf7n4wVAGpfr9F3XBEAjFzrjdgEJlR5oY5kNB7l0pgjeZS/UyayrS6SucGWBxvqEftovA2GMskd6X6u3a9j6QCMpH2sjbmyIVL7+bbLMVGf0NYP1M9Q26CJ+PGa9R3DY3nNRh3EQz3iNUfz+dcf82Mx1Az543lM1koA9bGGa7xM9GdC+2lUiNQqBSJlh8dYzv2Nzv9V7fgAGM8Ni9qlfWtz6kbnxMgJ6nPT8RaGNSp+bmasoQrMWuE60WgGpfJzi/c70nZY7fvMmPmn0YxCjfKF8sZDRsd3vNfa14x9M9wsPmWbM+PzHOyGTLltsT3xM0N9JrHf6o+5+J1WuPlX1ckMAGA4cuLRx5ATj4yceGrlxOOZRGusj/EcM3J1ACaK/Hr0MeTXIyO/nlr59Vi+i7G/6/PY2Df155TJev+tPLkiVEHrjdgESFZ2upWDs+uX5Irnyg472ks5U0t85uNZsnU4kQxH/PLYKosBMpLhwTqMB3uM9DUzigAazU4wGZ3YWZ33oX5Q/0iWMJuoz4T2Ex0FtcV3lnkGaK/CrvqZY2oLBssO5fi9+s72rBv/9cv6Zt6QGWuOFdtUvt+yczj+bIVrYFm8Vl+gWzurTfz/+Fxje6N9GI94T3HjpTb/yygcrxXbVN+5HvsxnovXLrcv/swsam5UOF+2j+N148/aYz+rTTXUDZn6/RHbF9sSn0N8HrHNjW5EtEt7vpmTGQDAcOTEI98mOfHoyYmnTk7cjCKAjAFEcnUAssmvR75N8uvRk19Pnfx6rMfDUI+yUGCytPLkilAFHfGfAgBoeTt37ix27Ngx8OeePXsa/szChQuLxx57bODPoXR0dJz5+9q1awfijlZsw8qVK896bu/evcWyZcuKiVS77StWrCh2796dEits27at2Lx5c1M+EwCgdS1atKg4cODAWc9t3769WL9+/Ut+9uabbz4rN4gcYNWqVcW6desG8oysnCBeI2KWIm5PT8+YYt14443F7bffPu78sJHIFyPe1q1bi2aKfRXvs9FnFuLzjX0Q73vfvn0Dj3K/Ll68eCDvjBjxXiYq343XjHw0jp1yG8rjZ6htH694vTvvvPMlrxvvM9579rEbx0Rt7hyx432P5DMpP4/Yttiu2CcT3f5ohnivZVujfO/lOSjeb+15ZaKOCwCoJyceOznxyMmJzzaVc+JWJVcHIIv8euzk1yMnvz7bVM+v4/3fddddA+ea2mMy3m884pjcuHHjwJ+TvV0bNmwYOAfF53HLLbcUW7ZsmdRtgCpTBAAAFRUJcDRc7r777rOeH6xBM9YigEi4I/mvT/Tj+eicqBVxIl5ViwAG61iZjM8EAGhNjQofQ9z8aGaRX+Rny5cvP+u5sXbxROdqbf4SnatZN1Ba5YYMrWOkN2QAgNYhJx4fOTH15MQAMLXJr8dHfk09+TUwlXU2ewMAgLMbw/UV/4OJhm0MWo9B8LWdAVG5PNIYIx3YvmbNmpc836gDIvN1J1pZ1VyrUUVzK34mAMDkiVyoXjm7XzNlzkRTnxetXr06NfaSJUvS4gEAMPnkxOOPLScGAKAkvx5/bPk1APyAIgAAaBExSDyq4Rs1+ocSA9dj4PlwA9wnQv2s/93d3UVV1O/ncvm5qn8mAECuRismTfTKRyNVX8A41nyjvlgxc6nXiN3sm1cAAIyPnHh85MQAANSSX4+P/BoA/hdFAABQgUb/cKJTIJY0K+3atauYDDFL/ni3vVnqt/WGG24Y8c+28mcCAORqdA1ft25d0QrqbwyN9YZM7e81Kowcq/JGT+YMUgAATD458djJiQEAqCe/Hjv5NQCcTREAALSY0c46P9iA/JEabvb+of5/DJyvrbIf67bXvoebb755zDMIjEbM8F9rqNed7M8EAGgNcaOiUb7RKrMybdy48ax/79mzZ9Qx6t9fbRFj1s2sVatWpcUEAGByyYnHR04MAEAt+fX4yK8B4GyKAACgBRv+Y2lML168+Mzfh6t8H83yeHv37h00XsS55ZZbzmrQj3XAfPxuDMxfvnx5WgHDYG6//faz/r1+/foh99lkfCYAQOtplNfEssWtstRwbEvtMspjWb2o/j3W3+QZj+3btw/kQK2yvwAAGD058fjIiQEAqCW/Hh/5NQCcTREAALSgW2+9dVxL6g1X+V47IH24we0xOH+oAexbtmw56/+PZib/+vccjfXRzAQQ2zaWwfm12xiveccdd4xo+ybyMwEAWk+jGxytMiNT6cYbbxxyGenRvMfI6Wpv8IxX3Oxptf0FAMDoyInHR04MAEAt+fX4yK8B4GyKAACgBcWM+KMd3F42pqPRO1zle321fe1g9Xp33XVXsW7duhG9dojtrp9pfzjxO7fddluxdevWYrQ2bNgw6k6L2iUIY7aAkcwUMNGfCQBQjVmZhsuLJlsUUJZ5Rrmy0mjU5m3btm1L267ImyLHrL1hBABA9ciJx05ODABAPfn12MmvAeClFAEAQIuKwe21g9WHEo3dsjE9koZ0/Wz7gw2+j06I2IbhZuePCv4Y8F52BkTDu1EHxmDbvmbNmmL9+vWjWgWgfN3RFALEPqrtdIgCgNHMFDCRnwkA0FriWt7out+Kq/vUrmo0mlWZogizFLlY5gxKsR3ZszwBADC55MTjIycGAKCW/Hp85NcA8FKKAACgBUXDNRqwK1euHHKW/hD/v5wdIAa1lwPjhxKD9WsH/sdg9fpZ7qMDIgbzb9myZUTbHA343bt3n3n92KbhOgSiE2D58uUDvxvbPlrxPqL4IAoO4vWG2lfxXspZAeL3Yluj46FVPhMAoLU0mt0orumtuLpP5DRlzhZ5yEhuykTuV/5c5DljycUGE9sQ+dlobg4BANB65MRjJycGAKCe/Hrs5NcA0Ni0QZ4HAJokGvn33nvvwJ8xaD0GyUcje/Xq1WcGoscA/V27dg0MgI/OgnguBrWPpuq9bLSXDeUY3B7PxetEIzpmr494g60S0Ehsx969ewcG90fc+DMKDG644YaBQfHxniJ2bGs8H/+O1xntCgD1r/nYY48NzNIf+ypixd/j+Xit6Gy49dZbz8yqEO9xNO9pMj8TAKB1xDW9XuasRdkiv1myZMmZHKx8rpHIj2IlphC5SuQsmSJfilxoPDke7au+oLa7u7tp2wIADE1OPHZyYoYiJwaAqUl+PXbya4Yivwamso7+/v7+Zm8E7SsGfMaAyJ6enkl/7XIAaySa8ffygh8DOGMprdi2SA5bsaIWmLoWLVo0MNi8duB4nL+iMR2V7bXnssWLFw90CsSA9/F0DpTnyzJ+DGaPBvRoVgEYTAyGv/POOwfOxdHQKmOX8UczE3+po6PjzN/rOxDideK9xLWn9r3EI/ZTFCOM9rzfjM8EAGiuyCmiQLLeWIoJm7HtkYtEjlLmXJHHRJ4Sz0VuFjla5C633HLLuPO9elHoGa8ZszyNJdejvcUxGAW1jQqJAYDWIiceOzkxQ5ETA8DUJL8eO/k1Q5FfA1OdIgAmLAHctGnTwJ8higAma7B9JJYx43P52iEGYpavX87UXM4IHcl0dgIKwMQZqggAAGAsaosh77///obLMpfK1YDKNmZZBNhqBeaNiiNri+Inoh1cdrbHPspc6pnqKgtmy76Y6IOpn5UpxHeonM2r/C7F3wGAySMnziEnpp6cGACmJvl1Dvk19eTXAGdTBECquKjGMlD1yetkFAHEa8fFOxLpcmBoXOgHm4k5ktPY1vj5WBEgElUAWp8iAAAgUyxjHG3D8VBc/gMxk1V0vJthh9oZusYq8vza1bgAgIkjJ84jJ6aWnBgApib5dR75NbXk1wAvNa3BczCqgfcxmD6qVmMwfe3s+5Mpig5i6anSSJaAiov6jh07BhLvSMCjKtWyUQAAAFNLbcF6/D1mWWqku7v7zN/LleXK3xms+HwqKWd+UqBJvdoZzIZTfs9qv2MAwMSTE+eQEzMYOTEATC3y6xzyawYjvwb4X6wEwKgtWrRo0AtjOYh+MlcCqK3yi9e49957R1S1F0ULUQBQFi5EAh1FAQC0NisBAAAAAAAAAAAAMJVZCYBRKwsAYsD9smXLilWrVg3Moh+D6OO5mFW/vghgspb5iRUARrpsT2xzfVEAAAAAAAAAAAAAAEArUwTAqLXK4hExg39tAcCWLVtGvBzWYAP+o8BholYsACCfJdsAAAAAAAAAAACYajqbvQEwVhs2bDjz91iRYOvWrSP+3cWLFzd8XgEAQLV0d3c3exMAAAAAAAAAAABgUikCoJJiBYB9+/ad+fdoCgDCihUrivXr15/13GhjADD57r777pesBBArwwAAAAAAAAAAAMBUMa3ZGwCjFYM9b7/99rNm768f0D8S27dvL3bu3DlQTLBq1aqBwgAAWkucp7dt2zYw2D/O17UFYKWVK1cOnMNjlZe4JkRRV6wQAwAAAAAAAAAAAO1IEQCVc+utt5717xtuuGHMsdauXZuwRQBMlBj8H7P/x+D+UP5ZrywQiJ+/5ZZbJnkrAQAAAAAAAAAAYPIoAqCSg0FrbdiwoWnbA8DEipVe+vv7m70ZAAAAAAAAAAAA0DIUAVDpVQCqOJv/zGt+Ii3WtGmLU+LMn3ZFkaX7+ANpsW5Y/FMpcR47mneqe7D382mx3jr97SlxPn/iU0WWd86+Pi3W1UsOp8V618XfS4nzyWcuLLI80jMvLda9x7+SEufk6f1FljnTL0uLdejwl1LidHROL7LMnvPKtFjHjn4zJc70WZcWWeZ0XZwW69aXn5sS55bvvFBkOXh0T1qsjs6ZabE6u+amxOnrfbHI0jntnLxYHTnX077+00WWYw/dmRaLavrjez+aFuvbB3tS4vzOJa8pskw7Z1FarGdndqXEOfgf/2uR5bn3/XharDcdz4nznw4+mROoKIotl7w2LdZ/7340LdbvfXpvSpxZLxwt0pzuTQv151ty2pFX7z9UZPnPR55Oi/XM0ZyD/ar5ee2Zbx48khbrvctenhLndx/4epHlT697Z1qsy07mFDgf3feNIkvv4bxj/fgPXZcW68LejpQ4z0/vLLJM+/zfp8U69x0556rL/uTPiizdv/t/psWiuk52fz8tVt/pkylxDu99qMhy4unH0mIVnTn59ZGvfavIctmvvD8t1v5//ruUOIvekHf/pueLeefhRW/+0bRYHYvOS4nT82JOmzSc7M35/oWFLzyfEufw1+4vssx71bVpsU58L6cN2DlzdpFlzpV5fdd9p06kxFmw/HVFlp5v5R0Lh3b9U0qcjs68nLFzVl5/8zmve3NarFM9Odf4uVe+qsjy4uMPp8WatmBJSpxDi3LuvYcrL78mLRbVdepgd1qsJ3ueSonz4om8e1DTp81Ii5W1XSuuXFlk2X84Jw8KC6bn3EPsnJ53nTnR8728WLPycqGF83LOxf/wnX8ssjxxMK+t/IZLX50Sp6sjL3+ZP3t+WqzFM3Nidc7IO9af7XkmLVZvf869jJNJfSZh9vS879+h4zl9xf/8VF7//DXn5Y1p/PrzT6TFWrNsVUqcK869sshy+mjeOL3PPrErJc6F5+SMNwrXXv3WtFjtJu+KAJOgfhWAFStWNG1bAAAAAAAAAAAAAAAmmyIAKuPAgQPFvn37znpu1aqcqioAAAAAAAAAAAAAgCqY1uwNgJHauXPnS55bvnz5oD8fBQNl0cCyZcsGHgAAAAAAAAAAAAAAVaYIgMrYsWPHS56rH9gfg/63bt1a3H777Q1jrF+/vti4cePAnwAAAAAAAAAAAAAAVdPZ7A2A8awEsHDhwjN/j4H/sTLArl27iu3btxd79+4t+vv7B/6Mf8fA/7vvvrvYsGFDsXLlymLPnj2T/A4AAAAAAAAAAAAAAMZHEQCVEbP811u8ePGZAoAbb7yx2LZtW7F79+6BAf/lKgHxZ/w7CgHi/0XhQBQARCHAbbfdNunvAwAAAAAAAAAAAABgrBQBUHkxoD8KAHbs2FFs3rx5yJ9dsWJFce+9957598033zzwuwAAAAAAAAAAAAAAVTCt2RsAI3HgwIFB/9+GDRuKLVu2FGvXrh1RrCgEiBUDysH/sYrA8uXLB2JMhtPf/07R9/wjY/rdzvOuKqad//L0bQIAgCr62z/96+Lv/vvfjOl3f/wX3138xL/4yfRtAgCAqvq9rR8qfv+2PxzT7/7Olt8u/t3NN6VvEwAAVNV/vHVr8ftbbxvT7/7OzVuKf3/LzenbBABAe7ESAJXQ3d3d8Pk777xz4P9t3bp1VPFixYBly5adtSJArCgAAAAAAAAAAAAAANDKFAFQCfv27Wv4fMzif8stt4wp5vr168/696ZNm8YUBwAAAAAAAAAAAABgsigCoNIOHDgwMKv/WGzcuPGsf8dKADt37kzaMgAAAAAAAAAAAACAfIoAqITFixc3fH7ZsmXFwoULxxRzxYoVL3lu69atY4oFAAAAAAAAAAAAADAZpk3Kq8AEaTSQfzSigCBWEyhNxkoA085/eVHEAwAAGJef+Bc/OfAAAADG79/dfNPAAwAAGL9/f8vNAw8AAJgoVgKgEgab7T9WAsheYWAyCgEAAAAAAAAAAAAAAMZCEQCV0Giwfli+fHl6ccGOHTvGFRMAAAAAAAAAAAAAYKIoAmgDMXN9R0fHuB9VXAlgsOKA8Thw4EB6TAAAAAAAAAAAAACADIoAqIxly5alx2xURNDd3Z3+OgAAAAAAAAAAAAAAGaalRIFJKgLYt2/fhL/ORK8EcPWsn0iL9Y0DH02Jc3LBuUWW/tOH02L95eEvpcR58/QfLrL85gUr0mI9eeh0Spx3TXtnkeXtl76QFut7x2akxfrzfZelxHn+2Mwiy/dP5q2gcrrvaEqcU0cfK7IcKp5Ii9Vf9BWt5sSp76XF6u/P+S4XRVdSnKJ4Xeer02J9IunS+5YZ5+UEKori7178Slqs/sR0OOs72DljUdGKZnVdkBKnM/FYhyvn5+WxS2bNTYnzz/1HiixvP/81abHmfPLPU+Jc+cF/X2T5wrPfSIs1Y27j1eNG6+cvurjIsuiy16bF+s3e1WmxfnLvf06J8/fvekWR5VdX/2xarP/7i3emxHnzyp8usvzrUy+mxXrLnf89Jc62H9tUZJkxLa/t9+mH702Js+GKJUWWA//+jrRY52++PiXOue9YX2TZf/j5tFinjub1qT3z8Y+nxPneu/P6TF798rx21m988RMpcZ79zd9MiQOlEz3PpcXqnJ5zfZh3Zd5379QLef1Bpw/2pMTp/4VfTIkzEKuvNy1W5/TpKXFOHszrb569/JVpsY49m9ePevSzf50S56Kf/tUiy5Env5UWa+7lV6fEOX0kL0841ZOXv8xZlnOOOfz1vP7KF/u+nhZr1iU5E6wdefqRIssTH/ufabHmnD8nJc78FXnt984589Ji9Z06mRbr2GM5n+H8q/P6J2acm9cHc3RBTr/Q3CcfLdJcfk1eLCprz3cfSou1aPaClDjdxw4WWc6b+9JJN8dqxZUri1Yz+9ixtFidcxa3XM4/+9xL0mIdTexfuv+x+1PiLJh1TpHlirRIRfHCkZyJaWdPzxv70tWZd+92ftK56lDiMZVp1vRZKXEumpPXf13MyDsWHnr2mylx9h7Ou9YcPZ2Xn71qSV7+2ZPUFz77YF5f1fnzL0yLdc2FOfcAX3hxf0ochqYIoE0Gx2/evLlodytWrCh27tw54bP2L1yY00kAAAAAAAAAAAAAAJBNEUCbFAFs27ataHfr1q0rbrvtttRZ+xsVEcT+BAAAAAAAAAAAAABoRZ3N3gAYqVWrVr3kub17944rZqMiguXLl48rJgAAAAAAAAAAAADARFEEQGUsXLiwWLFixVnP7du3L/111q5dmx4TAAAAAAAAAAAAACCDIgAqZePGjWf9e9euXeOKV19EsGzZsoEHAAAAAAAAAAAAAEArUgRApWzevPmsfx84cGDgMRaNVhG48cYbx7xtAAAAAAAAAAAAAAATTREAlbJw4cKXFALs3LlzTLHqfy9ib9myZVzbBwAAAAAAAAAAAAAwkRQBMCm6u7vTYm3dunVgwH5p27ZtY4pT/3u33HLLuLcNAAAAAAAAAAAAAGAiKQIg3f79+yc0fhQARCFA7Yz+o10N4O677y727Nlz5t9r1661CgAAAAAAAAAAAAAA0PIUAZCudnD9UM+Nx+bNmwcG7pc2bNhQHDhwYES/Gz+3adOms4oKtm/fnrp9AAAAAAAAAAAAAAATQREAaWKg/4033thwVv4YdH/77bcX+/btS3u9HTt2nCkEiIH9K1euHDZ+/P/4ubJgYNmyZcXu3bsHCgEAAAAAAAAAAAAAAFqdIgBG7eabby4WLVp05tHR0THwiMH1MdC/kRh0HwUCy5cvP/PztTHGulJAFAKsX7/+zAD/iH/bbbe9ZFWA+Hdsd/z/slAgCgiiACAKAQAAAAAAAAAAAAAAqmBaszeAaopB9eXs+eOZRb9+sP5YbN++vbj77rsHBvnHAP/4Mx4xuD+2LZ6rfZ14ftu2bWdWEQAAAAAAAAAAAAAAqApFAIza1q1bBx6tJFYDiMfOnTsHigLiz+7u7oECgCgEWLFixcCg/40bNw78HQAAAAAAAAAAAACgihQB0FZioL8Z/gEAAAAAAAAAAACAdtXZ7A0AAAAAAAAAAAAAAABGRhEAAAAAAAAAAAAAAABUxLRmbwBMNYuKWWmxOrpmp8TpK04VWV4/9xfTYj1SPJQS53R/keZb3fPSYk3ryNmwc+ecLLI8+MI5abEunHsiLdaCmadT4vzp93cUWWZMW5IW6/TpAylxOmfmbVPfif1psTK3qyXrIHtzzqFvnH5dkWXJzN60WP9w/PGUOEdPPV9kmTv3tWmxXjz6cFqsGXOvSonT359zzgu9J7+fFmvW9KtT4nz/wKdS4kB4+XlL02L93aNfTonzUHd3kWXNy9+aFuvLL7ssJc5D999TZLli3vy0WG+44vKUOJ9/7ItFllt3fy4t1ndfzLs2vP81OderC7qmF1kOfSNvv7//tT+WEufJ//afiyzbXnZBWqx3X57TJn3PX36kyPIXP/0v02K9ZXbOvlpz7YoizbXvTgv1mSd2pcRZczqvH+CpA8+kxbr4619LizX9h96UEmfukiuLLE/83ofTYv1ff/AfUuI8fecfF1mW/cZ/TItFdZ0+eigt1uwLrkiJ8/yJw0WWOZcsS4v1pXNz+jmOPvPNIstFS16eFqtj+oyUOHMuymuzTT9nUVqs4yePpcVa/Lq3pcTp7OoqsvSdOJoW6/DenPs0J76b08cYFr/1x9Ni9R7P2VdL3pK3TYcfeTAt1vGn96XEOX2wp8hywTtXp8Wacf4lKXH2f+YzRZYZ5+edq6Yvfi4tVseMnDb8kce+XmQ5tOsLabEWv+NdKXEOPf6dIs2bc7aJajt4PC+XPXbqeEqcGYl9ehctuCgt1umka/JTh54tssyenje2p7M3py/nu91PFVl6+/vSYu18bE9arI2zLkyJc2jXl4osF73mdWmx/vVze1Pi3Piqa4ss82fljRP6yuM5/Z/PHsm71/auC16VFqvnC3+TEufFH3tvkeXZ555Mi7X/WM516x+ey7v+HTmV11f1y/15AwhfsSjnvt3Th/LG0bz8vLz9/kLSd3DBrLxxlgzOSgAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVoQgAAAAAAAAAAAAAAAAqQhEAAAAAAAAAAAAAAABUhCIAAAAAAAAAAAAAAACoCEUAAAAAAAAAAAAAAABQEYoAAAAAAAAAAAAAAACgIhQBAAAAAAAAAAAAAABARSgCAAAAAAAAAAAAAACAilAEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKkIRAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqAhFAAAAAAAAAAAAAAAAUBGKAAAAAAAAAAAAAAAAoCKmNXsDYKr5wtE/T4t12TnvTonT0/9UkeUVc/vTYj1x9JyUOOd05W3TC6c60mI93P9QSpwTR18osvT1n06L9a7j70yL9czJnP3ee+y7RZbjMw6nxZo+46KUOCeP7S2ydHTNTovVfypvX2XpmnNBWqzzF/5USpzXLjlSZNn5Ql6d5/4j/5ASZ97c1xdZDh/Zkxarc/qitFgzunJize08r8iyP+laE471H8gJ1KkJQp7vPP9YWqx3v/yHUuIcffjzRZZnP/af0mK945felxLnK9//RJFl/ZKr0mK98e/+IiXOofvy2kbf/MN/lRbr4EP/lBbr+K5vpMQ5ffhYkWXer/9WWqxHDj2TEmfpz/5ikWXmN3amxTpvxqyUOB//+6eLLG87/l/TYv3KHz2eEuenP/S2IssfHPt+WqwtJ6enxPnq3K8XWf7nd/Jy641X5+X83z38fEqcdx0/XmQ5/w9vS4u19s7/OyXOX77xR1LiQOn40/vSYp0+ktOGPP+qFUWWp798Z1qsn/4Xv50S59vPfqvIMq1rTlqseW95V0qcR/Y/UWS58JEH0mJ1zVuYFuvFQ/tT4pw+2F1kmXVZXltr5uKcftS+E3nth47OrqLVdHf0pcWa+5o3p8X65r/+3ZQ4V97wpiLLRev+t7RYT975Rylxznn9q4ssc5blxcp0cv+zKXG+/qG8a+kV71yWFmveZVenxDn6+DdT4kBpRldOP0A4cjLnWnre3Jy+pTB/zoK0WIf25tzPuizpfBCO78/rP+uaOT8lzlMHcs7n2cfne+dekhbryT/7y5Q4J470FlmOP5t0j7Qoiq2vybn+fTLx+LzgnPNa7lyV6Td2fSot1tuvyBnb8y8Sz5/feu47abG+1p0z/uzgibxxer+wfElarO4TeX3Ff/5oTn/OC8fzzlX/YXVeX8eRk0dT4syePjMlDkOzEgAAAAAAAAAAAAAAAFSEIgAAAAAAAAAAAAAAAKgIRQAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVoQgAAAAAAAAAAAAAAAAqQhEAAAAAAAAAAAAAAABUhCIAAAAAAAAAAAAAAACoCEUAAAAAAAAAAAAAAABQEYoAAAAAAAAAAAAAAACgIhQBAAAAAAAAAAAAAABARSgCAAAAAAAAAAAAAACAilAEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKkIRAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqIhpzd4AmGr6Tx1Oi3Wk2J8S59jJp4osj3WsSIv1ry4/NyXOQ9/vLbIs6M87bXadnpESZ960K4os04tZabEumHsiLdaTJ3L2Vcf0uUWWzq5z0mKdPn0gJU5/b94+75p5flqsWTMvT4lz4tT3iyx9fcfSYl1eXJwS5/jp40WWo0XetWbe3NenxOkqcr7HYf681WmxXjy5Ly3Wid6c63J/0Vdk6Tt9MC1W1kfYOX1hTiAoiuK6pW9Mi9U1a05KnH+16meLLF1vydmm8OF//h8pcX7ttW8rshz4zN+mxfqbd/9MTpxXfLHI8rG9/5wW6/lpeXnC+y6/LCXO4je+s8jS0ZXXzpo+LeeC9f1P3llk+Zc/8/NpsR7vzmm//+JP5LX9/javmVVc/zvzU+LMXXZNkeXgA59Ji3XBu349Jc6sr/5TkeW2Nb+SFqvzZF6b9LuHP58SZ/vTDxZZfmxO3nX5U+vWp8Q59PBXUuJA6eGP3JcW6+U/d21KnP7evL7dhT90XVqsp/fnXJO3PfTZIsu7r3xVWqw39Ob05101P6ffLEy78Oq0WA89/bW0WFcvztnvc87P2efhwCN70mKd6H4uJc6xxx4psnTNnpcWq+9ETj/xyQd3F1kWvmtjWqxL35nzvZm+6Lwiy6nTJ9Nizb36tSlxjj3+nSLLqZ68+xi9R4+03LF+9Eh/kWXaggVpsZ67L6cNf2j314ssF//4L6fForqOnMy7H9nVkTPH67wZeW3bR57Lu76/7Mqcvpxn/+5PiywzL8rpRw0nk3KqV1/+iiLLnCN595NffDbv/Dn34pxcb+aRvH6qQ8/k9c/Puqg7Jc5n+vO26Ucuz2t3v/L85Slx3vmXnyiy3PzavLbW26/MGRP3B5/PO1e95+V590p/6VVvTolzvC+v//p/7M0ZgxGOnsrLZc+bk3NdfuZw3vfvA1/5QlqsP3jDD6XEOXg8r03D4KwEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKkIRAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqAhFAAAAAAAAAAAAAAAAUBGKAAAAAAAAAAAAAAAAoCIUAQAAAAAAAAAAAAAAQEUoAgAAAAAAAAAAAAAAgIpQBAAAAAAAAAAAAAAAABWhCAAAAAAAAAAAAAAAACpCEQAAAAAAAAAAAAAAAFSEIgAAAAAAAAAAAAAAAKgIRQAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVMa3ZGwBTTUfXzLRYC4sLU+Ic6HuwyNJX9KfFuvuJc1LifPP0vUWWjo7pabHmdF2QEmdR0nEQnjj5j2mx/vSFuWmxZnQuSInT33e6yNLX92JarP5Th1PizJz3iiLLwmkvS4t1rP9ASpy+U/uLLAvnvSkt1iWz+lLi/N2B7iLLs4c+mRarv+9kSpyLF/5M0YoOHfunvGAdOfW1p/r3Fq2Yd/T2n0iJ03cq55wAYf0nP5YW6ytfyrnOdJzOuS6Ef/ETV6TFuvnKVSlx5p63rMhy2YHetFiv2PFXKXF2/NSvFlk++8SutFjrn/huWqz5r8vJg2YsOLfI0t+bdyzMOJrTZnvuHW8vsvzvn7orLda0jo6UOI8fzGsbrblsdlqsi5fntGmuv+SqIstHL847731x35dT4jx49Jkiy9JvfT4t1urLXpMW64e/15MS54J1/1uR5fTRQ2mxPvSNv06J81tvfE9KHChd8faL0mJdeP0vpMT55ve+VWR52QV514eT9+9IibN7/7Eiy7VLXkiL9Y6r35YS53ufu7vIMufKV6bFuvTpp9NiFVedlxLm1NGcPuLs/LrvxNGUOOcktUPCvJe9Li3W9GkzUuIseH3OdyZzm0LH234iJc7R7z5aZDnynT1psabNW5gSZ8G1P1xk6U36zoTTB/PuGXz6//hiSpy33rC4yDJ9cV6/wqJr35ES58QzeW0tCItnz0+L1X0sp016svdUkWXRzLzxACd6c+5Hzn/dDxVZZiT2CR35as79yK8+83CR5eUPfC0t1qmeg2mxvvP5nD6hS1+RN7bnyg/enBbrti/n9AnddNW1RZYl85akxdr5aE7O8Wsvz8sT9uzPaytv/eonUuJsvvr8IstffCenzzn8SFK/+pvOz+tfuv6yvGvNnXvz+pjed80bUuL854fyPr/fvjbvGnjweF4fBRPPSgAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVoQgAAAAAAAAAAAAAAAAqQhEAAAAAAAAAAAAAAABUhCIAAAAAAAAAAAAAAACoCEUAAAAAAAAAAAAAAABQEYoAAAAAAAAAAAAAAACgIhQBAAAAAAAAAAAAAABARSgCAAAAAAAAAAAAAACAilAEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKkIRAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqAhFAAAAAAAAAAAAAAAAUBGKAAAAAAAAAAAAAAAAoCKmNXsDgLF76tSXUuJMm7a4yPJw3660WEePP5ISp6NjepFlxoyL0mJd0LE0JU5XYj3XnOmXpcU6fPSBtFhrF/5iSpwnznl1keXhY3+ZFqs/Kc6pE88kRSqK7r6TabF6ew+lxNl4/i8UWV6++EharE9+tyMlzrxiQZGla+aFabF6T3wvJc6zhz9dZJk37/VpsRYtfEdarBdPfzclzqnjOXHCefPenhbr+4fvS4kz75yVKXEgfPBbz6bFuuL//Hcpcf7yGzuKLG++7LVpsV72X/9nSpxfetOXiyxf+fmNabHed989KXGu+qVbiixv/aVXpsU63tuXFuvOJZekxDn67L4iy9eP70+L9TP/9ZMpcR679QNFlu2P5LRtw4Evfy0lzmW/8qtFlv/9qzvTYl39hZw+hb/uPV1kuWT+eWmx3rzsjSlxfu1zOf1B4R0XH0iL9a5r1qXF+vMP7k6J857r1hdZOvt602ItmjkrJc60o3ltWwiH976QFqv7gZw25MuuurZI82JOH1WYfe3bUuLcu3JtkeXIU99Ki3XqdE7f4OOXXVpkufrcvL75GYmxDu/5fEqcaQvy7tPMvijn3kN4oTOnLTLnybz2wzMf/3/SYp14Nue8d87r8+49XHBdXlv5hc/+VUqcc9/xU0WW00cPp8U68f2nUuIsvOYtRZb+xJzxVM/302IdS7rlM/fqq3ICxf3b6TPyYnV2pcSZdcWVKXGg1H0sL/9cvuTylsrzwlM9efemDyXtq8t6s+68F0XfgefTYu2enXM/+fDxF4ssX39tXv/1a7+Tl+u99r0598xf3Jt3fH51061psX76D3JyvedfzOvTu3JxXv7S25fTfrhgzrwiy3cO5/WfPfyrv5US59Cxg0UremL/kylx3nBJXvvoxZNH02L94svzhkrf9UjOmLh/tzpvvEpvf969xGOncvKFly3JG4fI4KwEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKkIRAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqAhFAAAAAAAAAAAAAAAAUBGKAAAAAAAAAAAAAAAAoCIUAQAAAAAAAAAAAAAAQEUoAgAAAAAAAAAAAAAAgIpQBAAAAAAAAAAAAAAAABWhCAAAAAAAAAAAAAAAACpCEQAAAAAAAAAAAAAAAFSEIgAAAAAAAAAAAAAAAKgIRQAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVoQgAAAAAAAAAAAAAAAAqYlqzNwCmnM4ZaaFOv/hYSpyOabOLLOfOuyYt1snpPSlxensPF1nmd12aFuvp/m+mxFnScWWR5ciJR9Nidc04Py1Wb39HSpyZiZe9vtN5x1V/38mUOJfMf3eRZfNls9JivfXc51PidBT7iiy3f3tZWqzHipzvzSuKlxdZ9vafTovV0ZVzjZiWeE6YVuQdnwde3JUWK+s9dnTNLbJ8/9COljtX9fWfSokDYe773pcW69i3d6fEWbbwoiLLh+7/dFqsr//Wr6bEee6DHy6y3HQ057wSvv5Czrnl+A9fUWS5ZeXb02K94qKr02L9mx0fTYnz2kVLiiwzu/Ly9If+/W+kxNn9xANFlu+ePz8t1u9cdF5KnBf/6q+KLA+ueGVarM9e3J8S5y17nyyyzF63Oi3Wsm3/JSXOivPz+pamdeS0t8OGe/4oLdZf/ENOrL986O+KLPc983harJedk3NemLYw55wApUs2/kRarBNP53xnjs3PyznmXnpVWqzTT34nJc53v/jZIsvFGzanxZo+Leda86blbyqyHHhkT1qs408+khZr4YqcvP/U4Zz7IaHv1Im0WPO6n0uJM/3ci4sss95xWVqsmRfktAGPnzxWZHnmb/8kLda57/iplDg9X95ZZJl9ZV4/+JJV61Li9Pf2Fq34/TvvDdenxXrPf8o5Rucuz7sPPPv8vD6Y/t6ceyIzz8+7Dwxhwcx5Ravp6uxKizVv5py0WCd7c/p3z7ny9UWWb3/vW2mxFs9ZkBJnway8Y+pPvpl3j/Ty1T+SFuuKJTnXhz2P/HORZcbP5PVfz5uR8725+oK89u0XHs9raz18YH9KnOXn5HxnwvuuyWuXfuKrn0qJ847lbyyyfLfn6bRY82edkxJnRlKfQrhs9uK0WI/sfyot1h9c98spcR57Pm8c1MGjR9JizZuRM07oq8/ljUN89VV535t2YyUAAAAAAAAAAAAAAACoCEUAAAAAAAAAAAAAAABQEYoAAAAAAAAAAAAAAACgIhQBAAAAAAAAAAAAAABARSgCAAAAAAAAAAAAAACAilAEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKkIRAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqAhFAAAAAAAAAAAAAAAAUBGKAAAAAAAAAAAAAAAAoCIUAQAAAAAAAAAAAAAAQEUoAgAAAAAAAAAAAAAAgIpQBAAAAAAAAAAAAAAAABWhCAAAAAAAAAAAAAAAACpCEQAAAAAAAAAAAAAAAFSEIgAAAAAAAAAAAAAAAKiIac3eAJhq5s6+Oi3Wkd49KXGWzXtPkWXv4TvTYs2YvTwlzrRpC4os3z+8My1WR9eclDhHeh8ssnROz9tXnR15l5h7j30mJU7v6YNFmr5TaaE6Zy5JifOyjouKLG8/71tpsV5z2TdS4nzmkTcWWb56tDct1tHe51LifK/rvCLLjOl5sU53zU6J01/0FVlO9h9Oi9V3Ku+80DnrspQ4s2ZdVWTpmNWVFqurY3pLfWcg/LeH8nKz977qrSlx/ueD9xVZ/uidm9JinTrSkxLnt954RZHl2sXz02LtfPjplDhznjxUZPnzb30pLdav//VfpsW654Gc93j+z88qsvT25eUJr/mT/29KnN7T/UWW//CWvO/NqxblXI8z9Sx7eVqsc/Y/mRJn+rkXFFke+O7X0mL92BU5/QD/Ze0vF1l+5e8+lhbruovOT4v1q3/zRylxPvgjG4osP/26H0+L9Q/f+ceUOCeee6LIMnP+4rRYVNe8pa8uWs3MxXnn9ANf++ei1Vz6c7/Zcjl/2N+f0/d56vTJIsui8y9Pi/XM//x4WqznrnpFSpzLDh4pssy5NK9vqX9RzvW9ty+vP3bm8WNpsbo6cvrOzpmTd2/l9CteX7Sarjlz02LNPPeStFidnTmfX/c3vlhkWfjqN6fFOt6T14963lt+MiXOwUdy7k2H48891XI5zOkjB1LiQGnezJx+gEzTu1qvbykcS8oVOrvy7ovNmp7X//m3e3elxFlz+TVFlp972WvSYh05eTQt1p89+MmUOK9anJdzZOrtz+kL//6h7xdZ7nvm8bRYP3llzpi4O76Z1yf7vWMvpsX6+Ve/LSXOd3ty7mllmz09Z2xIpiOdefdqXnNhXlv529/7dsu1lbs6E+eDT9qsZYsuzgnEkKwEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKkIRAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqAhFAAAAAAAAAAAAAAAAUBGKAAAAAAAAAAAAAAAAoCIUAQAAAAAAAAAAAAAAQEUoAgAAAAAAAAAAAAAAgIpQBAAAAAAAAAAAAAAAABWhCAAAAAAAAAAAAAAAACpCEQAAAAAAAAAAAAAAAFSEIgAAAAAAAAAAAAAAAKgIRQAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVoQgAAAAAAAAAAAAAAAAqoqO/v7+/2RsBU8ms1/x0Wqze499LiTP3nBVFlhcP70mLVfT3pYTpmDY7Jc4PguXVTnXNOD8nTmfe+1vR9fa0WE8Wz6bFOtD3VEqcd8+7tshy7HTesXC0tyslztxpvUWWBTNPpcV62cKjLbfPP/X0vLRY3+j9bEqc3t5jRZaurrzzwrxpV6TEOXD860WW/t4X02ItmftDabF6TnwtJU7vyeeLLNNnXZ4WqyPpGjh/2rIiy7O7fi8tFtX0qfv/Mi3W948eTInzb/4q73z3++96RVqsFRcuT4mz8e8/V2T53PoNabEuWnhxSpwbP7WtyHLTiuvSYl204KK0WNfc/KGUOI996ANFlpMHX0iL9fn9j6TE+aGZ5xZZ/u7QE2mxNrxybUqcrplziiyPfD9nn4cvPJWTT+07dKDI8ntrN6XFOpx0rSleyGtvn/h+Tns7zDz/srRYnzvweEqct85YUmTpvvdTabGOvPsnU+I81vNMkeVn33xDWiyq68DDX06L1dGZ09/VuzinDzXMPJ7X93Ki57mUOPOXv67I0r3nvrRY/X05/YzzX7GqyHL06UfTYvUePZwW68lzF6fEueiRbxdZOmfm9Q3OXX5NSpyjj3+zyLLwdT+SFuvQdxLvaSWZsfiCtFjT5pyTEqdz+swiy5G9X02LNW1BTq53/Ol9RZbO6TPSYhVJ19Iwb/lrUuIcevgrRZaj3/lOWqxz3/lTLff5zb8q754k1fXAt/4pLdaMrukpcXqT8rxsJ3tPtdR+Ci+74Kq0WF1J5/SvfTen7yxccE5eW+s7z+ddS9+87A0pcWbNyMuJP/utz6fFyjrWX3nBy4osXR15OUfP0Z6UOM+/mBMnc5+Hyxfm3Ku5YknOGIzwre/ltSUXzVnYcvt82Xl5Ywv+6dEvpsXKeo8XnpN3L+rIiZyxWeH5ozn3WM5LOqbCD7/unWmx2o2VAAAAAAAAAAAAAAAAoCIUAQAAAAAAAAAAAAAAQEUoAgAAAAAAAAAAAAAAgIpQBAAAAAAAAAAAAAAAABWhCAAAAAAAAAAAAAAAACpCEQAAAAAAAAAAAAAAAFSEIgAAAAAAAAAAAAAAAKgIRQAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVoQgAAAAAAAAAAAAAAAAqQhEAAAAAAAAAAAAAAABUhCIAAAAAAAAAAAAAAACoCEUAAAAAAAAAAAAAAABQEYoAAAAAAAAAAAAAAACgIhQBAAAAAAAAAAAAAABARUxr9gbAVNPZOTstVsecK3LidHQVaTrzYs2cc3VKnJPHnyqyzJh1WVqszmJ6SpxZXYuLLOfO6EuL9bKZedt18bw5KXHWXvB4keXrhxamxXrhRM6x8Lmn87bp3uNfTYt19aHXpcSZ15lXu3jpzLxjvfPkmpQ4u499rMhy6Tk/mxbrud6HU+L0Hf9ekaYzL4W9uP/yvFgzcmI9NuPrRZZjp/P2++lT3SlxXuzIOadD+PunHkmL9R9fszYlzsNv219ked35V6bFuuCc81LifHnFa4osHY/nfX7/dv/fp8T59H3PFXnuS4t0x/U3psXa8YFfSIlzvMjLp1Z/8u60WEf+24MpcW79L3n51PlzFqTFeuvdt6fEuXJeXj51/aUXp8X6L994IiXOb1+ztMhyy46cfR7ufuxgSpx3Xz6vyHLtkvPTYr15Rl6b7Vc+cX9KnOf+7c1Flsdm5b2//+uBf0iJ86G335ASB0qzzr0kLVb3l3Pys8Vv/NEiy4svPJMWq+/E0ZQ4z/zNnxRZeg8fSYt1xS/865Q4T76Q1x97yVUr0mK98MVPpsW69NmTKXH6Z+bdO7rgR34mLdbOb+a0a37kdT9SZOk9/mJarMWvf1tOoP4izfH9T6fFmr74wpQ4fS8eKrIsvva6tFjHTx1ruetfR+J90uMv5B0Lz/QdT4mz5PxLiyxzrnxlWqy5l1yVEufgt76SEgdKJ3tPpcWa0ZVzP/ng8byccd7MvPs9XUnnz+nTZhRZvvL4rpbrnz926kSRZc/T30iLdfR03nb91dc/kxLnHcvfWGQ5lvj+TvaeTolz6eK8sUuHjub0Wbbq+TPze5O1XQ88lTce5+IFF6TF+szenD7Zn3nV24ssp07ntLnDhrv+MS3WA6/MGRN38KFPF1k2fj5vbMidf/L+lvsuMzgrAQAAAAAAAAAAAAAAQEUoAgAAAAAAAAAAAAAAgIpQBAAAAAAAAAAAAAAAABWhCAAAAAAAAAAAAAAAACpCEQAAAAAAAAAAAAAAAFSEIgAAAAAAAAAAAAAAAKgIRQAAAAAAAAAAAAAAAFARigAAAAAAAAAAAAAAAKAiFAEAAAAAAAAAAAAAAEBFKAIAAAAAAAAAAAAAAICKUAQAAAAAAAAAAAAAAAAVoQgAAAAAAAAAAAAAAAAqQhEAAAAAAAAAAAAAAABUhCIAAAAAAAAAAAAAAACoCEUAAAAAAAAAAAAAAABQEYoAAAAAAAAAAAAAAACgIhQBAAAAAAAAAAAAAABARSgCAAAAAAAAAAAAAACAipjW7A2Aqab39MG0WP29L6bEefFUd5Gm91ReqL5jOYE68051MzsXp8U6p+O8lDiH+r9XZNl78mRarM6TeXVmx0/PTYnzrqeeKrL09+9LizVz2rkpceZ05B2fmb7e+8WUOAuLK1PihMtPXpwW62unP5sS54JzfrTI8sppecfC2oWrUuL8Q9e1RZYnTn8lLdbF0/OuEUtm5VwDnzkyv8hyuvNoWqzevhdS4hw78rWUOBD+XyvemRar/3jOd/jhA3nfu98+ciIt1otf/quUOH2XXl5kmbnibWmxfnfam1Pi/Mo1TxRZ/uHJvPPdnz2Q8/mFF47nHKO/cOKhIssbz5uZFmvZf3xHSpwrFpxfZLly1560WLe/fU1KnPMezjs+z7km71y8/pqcOJ0H8/o5lsx+JC3Wr3z1H1PiXPyany6yLP34X6TFmjVrb1qs/mkdKXFuue+/FVleSOwz+fLzOdf4z+79cpHl5y56WVosquvQt+5Pi9V3Iqdvt3PajCLL0Ufyrn+nD+b182eZvnhRWqzDT34rJc6CU3ltmtPT56XFWrxqbVqs6XPOSYnz2Ec/WGTpe2tvWqw3zr245c4vx5/MyznmXJWTgB7d980iy+wrX54W69izj6XEOfVC3n2oOcuvycvPPpPTVp550YVFlrnvyMvVDy1YkBbrnoc/nxJnzrTpRZY3zL4qLdare3Ny9Wnn5F1LIcyeltfn1duXc31fPCfv3HIycWxIV0fO2IJl5y0rsvzjE3n9nwtm5eSMMxLPwy8cP5wW67mjR9Ji/dDFOf0TX37iwSJLb39fWqzFs3OOhW8/m9NmC5f2dqXFmrs4p199xtG8Y72rs6vlzlWXLcobr7L3hbz7Wr/8qpy28vR5eTnVRa9+T1qsO668LC1WxzU547wOPpvXb/K1O34rLdZr/ssnUuLc/W9+KiUOQ7MSAAAAAAAAAAAAAAAAVIQiAAAAAAAAAAAAAAAAqAhFAA189KMfLT772c82ezMAAAAAAAAAAAAAAOAsigAa+OAHP1isWbOm6OrqKt773vcWDz30ULM3CQAAAAAAAAAAAAAAFAE08uijjxa7du0qfv3Xf734zGc+U6xYsaJ4wxveoBgAAAAAAAAAAAAAAICmUgQwiBj4v23btqK7u7v4+7//+6K3t3fgufe///3N3jQAAAAAAAAAAAAAAKYoRQAjsHbt2mL37t3FnXfeWXz84x8fWBUAAAAAAAAAAAAAAAAm27SiDd13333Fnj17ir179xb79u0rFi5cWKxevXpgJv9Vq1YV8+fPH1Pc9evXDxQErFy5srj++uuLT3/60+nbDgAAAAAAAAAAAAAAU6II4MEHHyw2bdo0UABQ7+677z7z9ygGiMH869atK6677rpRvUYUFOzYsaN42cteVtxzzz3Fz/zMz6RsOwAAAAAAAAAAAAAADKezaBMPPPDAwAz9UQDQ39//kv8fz5WP3bt3F7fddttAEUBXV1excePG4hOf+MSIX2vZsmUDxQYf+chHkt8FAAAAAAAAAAAAAABMgSKADRs2nBnkXz/ov3yuo6PjzKP2/8UqAfH7oykIeOc731ns2rVrwt8XAAAAAAAAAAAAAACUphVt4EMf+lCxb9++gb+vXbt2YED/4sWLi4ULFxYHDhwY+H/3339/sXPnzoF/l6IYoFQWCkRBQDzCjTfeWKxfv7647rrrXvKa5esBAAAAAAAAAAAAAMBkaYsigDvvvHNgQP+OHTsaDtiv9dhjjw0UA8TP1hYFNCoI2LZt28AjrFixoli2bNnAIwoAolAgCg4AAAAAAAAAAAAAAGCytEURQAzKH2zG/npLly4tNm3aNPAIDzzwwEARQQzqL2f3LwsCymKAsHv37mLPnj1nxYqVAgAAAAAAAAAAAAAAYLJ0Fm0gZvNft27dmH732muvLT74wQ8Wjz766MBA/5tuuqlYsGDBmQKAKAgoHyGej8fmzZuLn/3Zn019HwAAAAAAAAAAAAAA0PZFAAsXLkyJEwUBW7duLbq7uwcKAmK1gLIgoHwsW7as2L59e/HHf/zHKa8JAAAAAAAAAAAAAAAjNa1oAzEwf+/evakxoyBg27ZtA4+DBw8OFAYsXbo09TUAAAAAAAAAAAAAAGDKFQGsWrWq2LlzZ3HrrbdOSPxYDSAekGH6jPOLVtNZTM+LNSsv1snenpQ4HR1523ToyP1psd514S+mxJk9LWc1lPC1gzPSYn2994tpsXqOLUuJc+r4E0WWrsTv8ovHvpUSp3fmlUWWxV05+zw81/dgSpwlXecVWTqLjrRY0zvnpcSZlngunj/jdFqsmV29KXHeOC/v/R0/ck1arM+d+Ke0WK85/ZaUOId7nyqynEw87/X3nUyLBVlWffTjabH+P2+9NCXOwhl5C+71Hj2SFuv8H3tvSpz+3rxrzOnOrrRYV//av02J829/881Flp+/fGVarDv2fSkt1t8+tT8lzv/7J36pyPL7n7krLdZvdud8b+bPeLzIcuU7fyot1l8+tDMlzs+//keKLHfv+Zu0WL++6qdT4pw8J68f752L3poW6/TLfzglzqwZs4ss+973vrRYa+/+aFqsZx44kBLnD3773xRZtnzuT9NifegNr0mJ89Fv5/QnhJ/LO9SpsDnX5OVCs/Y/mxKn73ReW7Rjel7fxOyly1Pi9J3Ke3/T5i9Oi7Xr6HMpcX7oolcXWbq/8pm0WAtel3fSmz7nnJQ4My7I62++973/Ki3WG2/7lylxpi/Ke38d0/PuY8y+KGcCuP6+nD7UMOv8y9NiHX3q2ylxuhLz66N7v54W65zXr0iJ0zU7p48/zO7tS4v13775j2mx/nDzPTmBfub1OXGKovjV6/L6vV67OOe7PD3x+wfhZO+ptFgzunJy2SMnjxatqKsjp1/9u91599guO2dJWqyvPpczse1Viy8psrzpklelxVo0J2/Myp6nv5ESZ+mii4ss58/Py2UXTZ+bEuevvv25IsuiK3NyqrD32Zy+qmsve22R5eA//nVarNlvvr7l+ncvnpd3fB7e99WUOA/+/p8XWR578H+kxdr3/L60WJ/9+TtS4nzq8Zx+8PAHP/L5tFidT3W3VP7C0PJGJzTR5s2biz179hRPPJE3yAkAAAAAAAAAAAAAAFpNSxQB/OiP/mixcePG4g//8A+Lxx8f/UxrK1asKK688spiw4YNE7J9AAAAAAAAAAAAAADQClqiCGDHjh3F3XffXdx8883F8uXLiyVLlgwUBXz0ox8dcVHAtm3bil27dhX33JO0lB0AAAAAAAAAAAAAALSYligCWLZsWdHf33/m0dPTM1AUcOONN55VFPCJT3yiOHToUMMYa9euLW666aZi/fr1xWc/+9lJfw8AAAAAAAAAAAAAADAligAWLlw48GdHR8eZR6gvCtiwYUOxaNGi4qqrrire9773vaQoYOvWrcV11103UBCgEAAAAAAAAAAAAAAAgHbTMisBlGpXBBisKGDv3r3F7bffflZRwC233DIw8P8v/uIvik2bNg0UAnz4wx9u4rsCAAAAAAAAAAAAAIA2LAJYvHjxmb9v27Zt4LF58+Zi6dKlgxYF1D4fRQG33XbbwMD/KArYvXv3wPNbtmwp3vCGNxQPPfRQU98fAAAAAAAAAAAAAABkmFa0gIULF55ZESBm8Q/lnwcPHix27txZ7NixY+DPffv2nfm9coWAEIP+S3v27DlTKLBr165ixYoVA6sG3HDDDQOFAvPnz5/EdwcAAAAAAAAAAAAAAG1UBLB8+fIzRQD1FixYULznPe8ZeIymKKD8d7lawPbt2wceIYoCohhg9erVigIAAAAAAAAAAAAAAKiMligCWLx48VkrAgxltEUBjVYL2L1798BqAaUoPohigHXr1g0UCFx55ZWp7w8AAAAAAAAAAAAAANqmCCAG4A+2EsBwxrpSQFkQEPbu3Tvwc7fffvuZYoSyKCD+VBQAAAAAAAAAAAAAAEAraIkigBjI39fXlxZrvEUBPT09xd133z3wKIsCVq1adaYo4PWvf33KtgIAAAAAAAAAAAAAQOWKACbSWIsCagsDoiggfjYepQ0bNhQf//jHJ+19AAAAAAAAAAAAAABA2xcBjKYoYNeuXcWePXvO+vnBVgvYvn17ceDAgeLTn/70JG49AAAAAAAAAAAAAABT2ZQrAhhJUUAUA5QrBQxWFBAFAfEzAAAAAAAAAAAAAAAwWaZ8EUCjooA1a9YMPIYrCih/BgAAAAAAAAAAAAAAJoMigFEWBYR777134E9FAAAAAAAAAAAAAAAATCZFAGNg8D8AAAAAAAAAAAAAAM2gCAAm2ZVdb0iLdXHnnJQ4X+vbW2Q5cPJbabFOn3gmJc6M2cuLLNNnXJ4W67L5x1LiTO/sL7LsOHg4Lda0pOMzPH3471Li9Pfm7PPQd/qxtFgdRWdKnOPF40WWQ7PzPr/pnfNT4jzR/40iy/kdeeeFuZ3npcQ5VuR9/46cvDAt1n1Hn0yJs7RYWmR50+zFabEOn3prWqwvnXo4Jc7Mzrz31zsj77x3zvQrU+IcOPKllDgQfm3luWmxfviSV6TEefboA0WWP3oxJx8Od/zB/5MS53UrF6XEGYi1KC/fOHnpwpQ4u/e/UGT52a68dtbKC3LOweFtl70qJc6Rx/Nys+dXvzEt1u1P5uQuP74v7/PbtOxUWqxL5p6TEueC+RcUWb518GBarF/85EdT4nzhC/uLLO/8kZx8Pxw53ZcS53hvXj/AK+bPSov1Z+velRbrht6/TYnT39dbZPmzr+QdV3fveyQlzrXvyuungtBxJO+cfuKFnFy2c/rMIsviN74zLdaB4nRKnAsXXVJkOXEwL5ddNX16SpyOvrxrVt/x42mxTh3uSYt1IGm/dyTt87Dqd38+LdaBL+xMiXPpxt8ssjx3351psWaee3FKnI7OriLLrHPzzgszF+Xk/S8cy/vOLJmZc78gdM3M6Vc4dCzv+vf7X/qLtFgf+2Z3WqyZb1qWEufkhbOLLC9fkNfH9IVnc/oo3nH121LiQGnuzLlFO+vtz+nnCCd7c/rP9u5/osjy1OG8foCL5+Wc8753JO/aMHt6Xp/QMwe/lxbrwnlLUuK88sKriyyP7c8bh7H/SM5xdcXCvPEAzx1+Pi3Way95dUqcrhN57b+vXnx+WqzXncq59/7VZ/Lur7z24px9Hh7sPJES5+cuycvz9nzunrRYCxOPqyeez+nv+P3feWWR5eDDefeV1266puWuNQwuZ9QhAAAAAAAAAAAAAAAw4RQBAAAAAAAAAAAAAABARSgCAAAAAAAAAAAAAACAilAEAAAAAAAAAAAAAAAAFaEIAAAAAAAAAAAAAAAAKqIpRQB/+Id/WKxevbr4wAc+UDz++OPN2AQAAAAAAAAAAAAAAKicphQBfOQjHyl2795dbN26tVi+fPlAQcCHP/zh4tChQ83YHAAAAAAAAAAAAAAAqISmFAHcddddxZo1a4r+/v6BRxQEbNmypVi0aFFx/fXXF/fcc08zNgsAAAAAAAAAAAAAAFpaU4oAVqxYUezYsaPo6ekZWBUg/l0WBMTz69evL7q6uor3vve9xX333deMTQQAAAAAAAAAAAAAgJbTlCKA0oIFC4rNmzcXu3btKvbu3VvcdNNNxdKlS88UBGzfvr1Yt25dsWTJkuL9739/8eCDDzZzcwEAAAAAAAAAAAAAYOoWAdSKwf9bt24tHn300WL37t3Fpk2bBooEohggVgzYtm1bsXLlyuKqq64qPvCBDxSPP/54szcZAAAAAAAAAAAAAACmZhFArWuvvXZg0H93d3exY8eO4j3vec+Z1QFixYAoFli+fHmxevXq4mMf+1hx6NChZm8yAAAAAAAAAAAAAABMzSKAWmvWrCm2b99e9PX1FXfddVexdu3aMwUBsWLA5s2bi0WLFhXXX399cc899zR7cwEAAAAAAAAAAAAAYOoWAdRav3598ZnPfKbo6ekpPvjBDxYrVqw4UxAQKwbE/+/q6ire+973Fvfdd1+zNxcAAAAAAAAAAAAAAKZuEUBpwYIFxZYtW4pdu3YVe/fuLW666aZi6dKlZwoCYuWAdevWFUuWLCne//73Fw8++GCzNxkAAAAAAAAAAAAAAKZmEUCtGPy/devW4tFHHy12795dbNq0aaBIIIoBYsWAbdu2FStXriyuuuqq4gMf+EDx+OOPN3uTAQAAAAAAAAAAAABgahYB1Lr22msHBv13d3cXO3bsKN7znvecWR0gVgyIYoHly5cXq1evLj72sY8Vhw4davYmAwAAAAAAAAAAAADA1CwCqLVmzZpi+/btRV9fX/GRj3ykWLt27ZmCgFgxYPPmzcWiRYuK66+/vrjnnnuavbkAAAAAAAAAAAAAADCsacUUEAP+43Hw4MGBlQLuuuuuYs+ePQP/L1YMiEfYsGHDwM9dd911Td5i2tmTvQ+kxfpu3/SUOMdPfa/I0ne6Jy3WjNlXpsQ5fbq7yPL2uXnnhyMnj6TEeeLQnCLLC71fTIt14tRzabE6py9KidPbe6zIcs6CN6fFOnLwyylxpk0/t8hyoveFtFgrp61LifPd4vtFln3HPpkWa3rSfu/v7yuyfKXoSou1/9hXUuL0ze4tshw6dmlarF+4/HharDf3X5wS5x+ezjnnhX/qy7sGXtb/spQ4h2c+nhIHwubXvSMt1m98Lufa8PDn8nLrX16f870Lf3viYEqc/zwrL9843pd3bbjj53NyszcePllkmXn+ZWmxPv6Nz6XFunxuTvvh1+ZcVGR51cVvSIv1if1PpsTZ/PK8fOOfDzyRFmv748+kxHnLjj8osjy09Py0WDO7OlLi/N6Ga4osf/PUs2mx/tVrrk2J84df/UG/Zoafe8WqtFh7k75/ofuLOe2/ZUf/uMjy0Z9akRbrwnmLU+KcOzcnDpRefPzhtFgLXvWmlDjfPZLXH3RRMTMt1uE/3ZYSZ8nmm4osHV15t/y6juS0H5755MeLLDMvzcvP5l5yVVqs/qR2zamevGM905J3/GRKnBM9eW3lOctenRfrwmUpcZ4q8tqSn9idN3ndr79pY0qcefufLrJ0zM7r+3zx6UdS4jzbldc/kenqc3PuA4evXb4wJc6tb8y5dxt+5Q0b0mId78m5J9nz8JeKLEtWrU2LBWHZeTnXrH3P7yuy9J7Ku8c2f9Y5KXG6j+bkseGyc5akxTp2OidXWLoo515ktpO9p9JiHTt1IiXOPz+WMwYj27wZOf3zJ0/n7fMLzjkvLda0oznjoHq+njd26bo3/GharKw+ijdd/Joiy2OH89pav7t7d0qcbd/IG6Mw8xcuT4v1tQ/dnRbrN/7iF1LivOGf/rHIcuRTefei/uA9OfddnzyQd38lryeg/bTtSgCNLFiwoNiyZUuxa9euYu/evcVNN9008Fy5QkCsHLBu3bpiyZIlxfvf//7iwQcfbPYmAwAAAAAAAAAAAADA1CwCqLV06dJi69atRXd3d7F79+5i06ZNZwoCenp6BlYMWLlyZXHVVVcVH/7wh4vHHzdjKQAAAAAAAAAAAAAAzTVliwBqXXvttQOD/qMgIFYDWL9+/ZnVAWLFgFg9YPny5cXq1auLj33sY8WhQ4eavckAAAAAAAAAAAAAAExBigDqvOc97ynuuuuugdUAPvKRjxQrVqw4UxCwZ8+eYvPmzcWiRYuK66+/vrjnnnuavbkAAAAAAAAAAAAAAEwhigAGsWDBgoEB/7t27RooCPjgBz9YLF269ExBwI4dOwZWDOjq6ire+973Fvfdd1+zNxkAAAAAAAAAAAAAgDanCGCEBQFbtmwpHn300WLv3r3FTTfdNPBcWRCwffv2Yt26dcWSJUuK97///cWDDz7Y7E0GAAAAAAAAAAAAAKANKQIYpVgNYOvWrUV3d/fAagCbNm06UwwQKwZs27atWLlyZXHVVVcVH/7wh4vHH3+82ZsMAAAAAAAAAAAAAECbUAQwDmvWrBkY9N/X11fcddddxdq1a88UBMSKAbF6wPLly4vVq1cXH/vYx4pDhw41e5MBAAAAAAAAAAAAAKgwRQBJ1q9fX3zmM58ZWA3gIx/5SLFixYozBQF79uwpNm/eXCxatKi4/vrri3vuuafZmwsAAAAAAAAAAAAAQAUpAki2YMGCgQH/u3btGlgN4IMf/GCxdOnSMwUBO3bsGCgYOPfcc60MAAAAAAAAAAAAAADAqCgCmEAx+H/Lli3Fo48+Wuzevbu46aabBooEohigu7t7oFAAAAAAAAAAAAAAAABGatqIf5JxufbaawceW7duLe69996B56677rpmbxYAAAAAAAAAAAAAABWiCKAJ1qxZ0+xNAAAAAAAAAAAA4P/H3p3AV33W+eJ/srAvWaD7BqFoW60tAax11GobrI6jo21SnO0/iwOM3v/oLArif8bRO/eKQTvbnXsVHJ3rbNqC1dG5jpbQum8FCra1tW0CXekCSdgh2/m/fsdXuGxVAl+S8zt5v1+vNM0h+ZxfkifP+f5+5/meBwAghypH+gAAAAAAAAAAAAAAAICTowkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADIiepUxrZt25Y6OjpSQ0NDmjFjxpC+9gtf+EJ6//vfnxYsWJCWLVuWLrnkkjN2nIwusytfHpa1r+JASM5jlTtTlLMnvS4s66x0bkjOM9VPpChnTegJy9rfFzMF7+2L6+eqqKgKy0ppIC6qEJgVZN/Bh8OyKqonxORUjElRBgqH4rJSISTnZWOmpyiH0ivCss4tXBiS82TF1hSl8+CWsKxC3/6QnIFCb4pSVRE37z27f2xY1nmTYh4jXnFed4py8KnXhmWdO74vJOdl1deH5EDm6x0bwrJaZpwfkvPhK+Pmu7dd2hiWNf2DC0JyXrSlLUV5zzU3hWVV74o5p7n5J/+Ronxuan1Y1vvmvyEs65JpQ7s+8kIOPPd4ivKd9u+HZS3/4SMhOT/8td9IUZa0rQnLuve+XSE5Y8+flKJ85oY3hWW97s1/EZLz2z/45xTlDc9+NizrsaqYc7bPXnpVinJoasy1l8z/++1vhWX9ZsulITnvb7gmRRk4FHMdLvP/PbQxJOfPqqamMA1xdQf5NXnWy8KyenbtCMmZXhN3PWjfI5vDsqa//pdDcgZ6467B7Wn/cVjWwW0x1z7PftPbU5SuH8adi+zZ9kAqNdVTp4VljZlSG5ZVUXdWSM7BjvtTlLor4q7tPrfrmZCcSePi6utXXxJX633lx18LyXnFwRRm930/CMuqbbwuJOfcHU+nKH/ZtCgs68Pr/yEsq/UVrw7JuTTuYSvt2LAuLGv6vJjrXp0/vDOFmdcUl0VuDQz0h2U9tmNbSM6+Q/tSKerti3mOrX5iTSpFB3oPltxzpP2BazCqKuPWmfQXYv5u9h6Mu45TPyHu+suBoHPAnv6456Ii54ULz7ssJOfAo4+mKD0vnhuWtfGZn4Tk/I9nn0xRfvOyuHWIVUFTzDV/GlN7Zj7V1RGW9ddzLwjL+lZdzHn3V/fvSVG+8He/EpZVF3SOW6qPy+WmLHcC+Id/+Ic0e/bsNGvWrOIi/uz9u971riFlNDU1pZtuuil9/vOfLzYRvP3tb0979sT90QEAAAAAAAAAAAAAQBrtTQA33nhjWrx4cWpvb0+FQuHw26pVq9Jdd9110jk1NTWptbU1dXZ2pttuuy3deeedqba2Nt19991n9PgBAAAAAAAAAAAAAGBUNAHccsstqa2trbjgP1NRUVF8G9TRcWrbgzQ3NxebAa6//vriDgEaAQAAAAAAAAAAAAAAGAll0wRw7733prVr1xYbABYtWpTmzJlz3OfMmzfvtO5j3bp1xUaArClgz549p5UFAAAAAAAAAAAAAACjtglg2bJlae7cuen3f//3ix+vWbMmTZ06NRUKheLHS5cuTVdfffVp30/WCFBXV5daWlpOOwsAAAAAAAAAAAAAAIaiOpXJLgDr168vLtAf1NDQkLq6utLWrVtTfX19qqmpCbu/rKHgne98Z9q2bVuaMWNGWC4AAAAAAAAAAAAAAJT9TgCrVq0qvr/++uuP+7eZM2eGNgBkFi9eXMxcvXp1aC4AAAAAAAAAAAAAAJR9E8CGDRtSU1PTsN7nvHnz0saNG4f1Pjmxtra21NLSkubOnZvq6upSRUVFmjVrVlqwYEFauXJl6u7uHulDBAAAAAAAAAAAAAAIURZNAB0dHamhoWFY77OxsbF4v4ycbIH/4GL/rBEgGwPLly8v7gzR3NycOjs707Jly4qNAdnn+H0BAAAAAAAAAAAAAHlXncpA9krv2WLw4TRt2jSLykdI9nM/clH/0qVLi4v/a2trj/vcrDlgyZIlxffZGGltbS1+PgAAAAAAAAAAAABAHpXFTgDZ4u+dO3cO6322t7efcNE5Z9amTZvS3LlzDzcArFmzpriw/4V+F01NTcXfVfY+k+0MkDUFAAAAAAAAAAAAAADkUVk0ATQ0NBRf6X043X777cX7ZXh3fLjhhhuK7zOrVq1Kzc3NJ/W169atO/z7Wr16dVq5cuUZPVYAAAAAAAAAAAAAgDOhLJoAZs6cWXyF+D179gzL/a1fv764EF0TwPBqaWk53ADQ2NiYFi9ePKSvz5oGBmU7AgzuJgAAAAAAAAAAAAAAkBdl0QSwcOHCVCgU0qJFi4bl/pYsWZIqKiqK98vwyHZ6OHK3h+XLlw85o6mpqdg8cGRTAQAAAAAAAAAAAABAnpRFE0Bzc3Px/Zo1a9KnP/3pM3pf2cL/wVeQv+mmm87ofZGOeuX+QbW1tYd/50N1ZONGtntE9gYAAAAAAAAAAAAAkBdl0QSQyXYByHYDWLx48RlpBNi9e3dxAXnWaJDtApDdD8Pj2MX62Sv6n6pjmwdWrVp1WscGAAAAAAAAAAAAADCcyqYJYOXKlcVXiM9kC/Tf8IY3pMceeywk+4477kgzZ85Ma9euLX6c3U9ra2tINr/YsQv158+ff8pZDQ0NR328evXqU84CAAAAAAAAAAAAABhuZdMEUFNTkz760Y8WdwPIrFu3rrjgO2sGuOuuu4qv5D8U27ZtSx//+MfT7NmzU0tLS+rq6ipmZ7sAfOpTn0pTp049Q98Jx7r99tuP+rixsfG08o5tBBhs7gAAAAAAAAAAAAAAKHXVqYxkOwC0t7enj33sY8XF+tmi/awZIHsbXPydLSDP3k+bNu3wzgGZ7u7u4td2dHSkDRs2FD/ODDYVDOYtXbo03XTTTSP0HY4+2e9j8HfxQov4hyobA1nuoGx8NDc3p+HyfMVzYVlXVl0QkrP14IEUpavi0bCs7or/+3s6HVOqLkpR7t07EJa1L+0LyXm2/54UpbevqyT7zCoqx5ZUTrig4+o99ESKUlE5ISzrRz3/FJIzZlzc3/Jbp746LOtQX8xYP9RzYYrSM25PWNaBiphy8fKKl6QoN8/cEZY1Y9L+sKxVD14ckvNQf1yt0Dnwo7CsqgPjQ3IGUm+K8o9hSeRV3bi4x6sfPLc9JOeeX/+NFGXXwbj5vG/Nv4Tk/G7Lb6Yoj3U+HpY1dfyUkJzPLIg7N3y4+6mwrBXf/EpY1vzpMS9qsOyalhTlT7/2hbCsgc0xdcKB5oMpyncfiPtb/rubrgrJmV57etdWjlRZc15YVu8vx9SMXT/8Wooy/Y1x897XNn05JOfa+XFz1TNf/+ewrC9MnhSW9WTDy0JyCgP9Kcqdf/ivYVlv/8QtITlxV+FSijsjJc+qxk0MyxozuS4kp2vLN1OUqokxNWNm1z3fCckp9PelKNVT/u9zXqdr4uyXhuQcfDau5p98xdy4rIsvD8vqPxRzbWn3Q3HX+esuO/UdtY+19bn2kJzayqoUZeee58OyaqtirnftfuS+FGX8objn7N507ZtCcp78/N+nKFOuviYsq9AfU+v17Ii5JpTZ9o8rw7J+d9y4sKxJ02Pmqr0PP5Ci7PnJtrCssdPPD8mpbbwuJAcGPbMn7vmsmvGTQ3ImjIl57Mv09Mc931MVWCtEmTw27vxoQvW4kvuZR6qqiFsbMqF6fEnlZMZWjwnL6g+6VvWT5+OefxhbFff9de3rDMmZdPkVKcru+78flnX2JTFrVv7qDW9OUb77yPfCst57Zcy1gL/dHlfn3fnk0F74++f57StirlVlvvzID0NyJr78shTl0glx1712HIh5XqtmXNxzBoySJoBMa2trcdF49mr92cL9IxfyDy7y/0UGPz9zZMayZcvSihUrztixc7y2trbjbjvdJoD6+vpfeB8AAAAAAAAAAAAAAKUorhWvhKxatSrdfvvtxYX72Vu2kH/wbfC2n/d2os9fs2aNBoARMLiLQ6Qjd4DInExjCAAAAAAAAAAAAABAKSjLJoBMc3NzevTRR9PNN998eCF/5sgF/i/0lhn8miwn20Egy2H4HbtA/9gF/Kdi2rRpx922adOm084FAAAAAAAAAAAAADjTyrYJINPQ0FB8Bf9sEf+iRYtSTU3NSe0EkH3e4sWLi1+X7Sgwc+bMkf5WRq1jmwDq6+tPO/NEjQR2AwAAAAAAAAAAAAAA8qA6jQLZIv5Vq1YV37Zu3Zra2tqKC/y7u7tTZ2dncWF5tjB81qxZqampyaL/EpL9joaDJgAAAAAAAAAAAAAAIA9GRRPAkbIF/tmuAOSzAeBEr+I/VCfaTWDnzp2nnQsAAAAAAAAAAAAAcKZVnvF7gFOU7dIwXOwEAAAAAAAAAAAAAADkwajbCYB87wRQDnY9vT7t3n73KX3t1PNel2rOvyH8mAAAII/u+Mwd6Yv/+0un9LVv+523ppt+76bwYwIAgLz6y5UfT//9Y391Sl/7/73vT9KfL31v+DEBAEBefXbVv6Z/Xv25U/ra31r8a+m3l/xG+DEBAFBe7ARAyRrOnQDKteEAAAAAAAAAAAAAACgvmgAYdWpra0f6EAAAAAAAAAAAAAAATokmAAAAAAAAAAAAAAAAyInqNMps3rw5tbW1pZ07d6aOjo7U3d1dfGX4hoaGNG3atNTU1JSuvvrqkT5MzqDsdw4AAAAAAAAAAAAAkEfVo2Xh/4oVK9LatWtP6vOzpoCFCxempUuXphkzZpzx4+PE6uvrUzmqOf+G4hsAAHB6bvq9m4pvAADA6fvzpe8tvgEAAKfvt5f8RvENAADOlMpU5ov/b7zxxjR37txiA0ChUDipt66urrRq1ao0a9as9K53vSvt3r17pL8VAAAAAAAAAAAAAAAo3yaAj33sY8XF/21tbYcX91dUVJz02+DXZM0ADQ0N6e677x7pb4mUUnd39xnJzXZ/AAAAAAAAAAAAAAAodWXZBJC9+v/73//+4xb/Z05mJ4DMkc0AnZ2dqampKd16660j/J2NLmdqYX72+zxW1ugBAAAAAAAAAAAAAFDqqlOZWbhwYVq3bl3x/49c+D+4qHzevHmpsbExTZs2rfhxfX19cVF49grzO3fuTJs2bSruHjDoyIylS5cWv+Yd73jHiHxvo81wLszPxgMAAAAAAAAAAAAAQKkrqyaA5cuXpzVr1hy1cD9btL948eJic8CcOXNOOuvee+9Nn/zkJ9OnPvWp4seDuwJkWdni9Ne97nVn7Pvg/8p+f1mDxs97Ff+hOjLvyPsBAAAAAAAAAAAAACh1ZdMEsHXr1tTa2np4sX62qDtrCnjf+953SnlZw8CqVauKb8uWLUsf+9jHDmcvWbIkPfzww+HfA8fLdmo4ctH+iRbwD1W248Oxsh0ihsvT3V8My7qw9l0hORPHXZKiXDf25JttfpFxVT/bxeN03dzwTIqyt29XWNa82u0hORu6X5Si/PDZqWFZD+6aEJb1UHowJKer59kUpdATNxYqxkwJySn07gvJKWZV9cRl9R8Kyenpi3vsXdMT8/eXqZ3YGJLzmrFxf8vP9UwMyzpv3PUhOa8+L+5v5rIpe8KyasccCMuqqoh53OoqPJGi7Nu3JSyrauxZITl9B54MyYHM3z7QEZa17jVvCMlZdPfaFOWTl10TlrX52zF10Mt+c1KKMn7M+LCsB7b/NCTnly68KkW58RvfCctqmRHXuP57h8aE5PTt352i/OHlF4Vlvf/53pCc82rPT1EeW/KbYVl/vuVrITlvnHRhivLr//GZsKwJj5/+dZ/MZ/u7UpTv/PuqsKwf/eW3Q3I+eMN9Kco/LY6p9zPzquPmqh9t/0lIzl88+XyK8v7/2RyWdc05l4fkNPzZX6Uo2z/9xrAs8qtqfNz1hOe+FXMdvH5eU4rS+cOvh2X1PBf3WBOl0Bt3Pa96Sl1IzsGn2lOU8bOvDsvqP7Q/LGv7l/4xJGfceXH1557HHwrLOu/cmOePdj304xRl4IlHwrIqXhfz+D4Q+Pc37eUx1ycyT3bGXGc8+41vT1G6U19Y1n3Px1wXelnjdSlK3664x4fdm2OudWT698dcB5/W9OYUpWZ+3M9995bvheRUvCru729yWBJ5NnlcXH296+DekJzn98XNU2dNiqkZM2PGxvysxlbFXPvMXH7BS8Ky/vFHa0JyXnrWjBSlbkJNWNY5U88Jy6qqrArJeWznYylKT39vXFZQzqsuvCIoKaVLx8SNhapxMY+AO3bEre157qqY9RyZD33/myE5b30ubnxef8nLwrL29sScK//GZa9IUa6ojTv/a/3x1rCsF9fG1Nfzp8X9/a3+6dNhWbe+Iubv5vyauMcHXlhlKhPZwvxMtki/sbGx2BRwqg0Ax8qaCx599NE0Y8bPiqn29vZ06623hmTz82W/y2gnaiTIdncAAAAAAAAAAAAAACh1ZdEEkC34b2trK75Sf0tLS9qwYUOqqYnrkhlcJL5x48biDgFZo8FHPvKR0HxObP78+cfddrq7AXR2dh73u812jgAAAAAAAAAAAAAAKHVl0QSwdu3aw68af9ttt52x+8kWiq9fv77YYJAtRL/rrrvO2H3xM01Nx2/129Fxels7Hvv1dgEAAAAAAAAAAAAAAPKiLJoA1q1bV9wF4FOf+tQZv6+sEWDNmjXF3QCy95xZWWPHsbKdHiKbALLdIwAAAAAAAAAAAAAA8qAsmgCyRd3ZYvGrr7562F6dPnv1+NNdjM7JaW5uPurj9vb2U87KdnDI3o50yy23nHIeAAAAAAAAAAAAAMBwKpsmgHnz5g3rfd58883HvaI8Z8by5cuP+ritre2Us4792qzBINvdAQAAAAAAAAAAAAAgD8qiCSBbxD3cC7kvvfTS415RnjMj2+Uhexu0adOmU85at27dUR8vWbLktI4NAAAAAAAAAAAAAGA4lUUTQH19/YgsyG9oaBj2+xytjt0NYPXq1aeUc+TXZY0FTU1Np31sAAAAAAAAAAAAAADDpSyaALLF3G1tbcN6n+3t7ZoAhlFzc/NRuwG0trYOOWPlypVHfbxmzZqQYwMAAAAAAAAAAAAAGC5l0QRwyy23pI6OjvTYY48N232uXbv2qEXpv8jmzZvTXXfddUaPqdxli/Zra2uL/5/9vo9d1P/zZDtFLFu27KgmAk0cAAAAAAAAAAAAAEDeVJbLq8TX1NQctcj7TPrCF76Qtm7dmpYvX37SX3P99den17/+9Wf0uMpdtmh//fr1hz/Oft9ZM8bJNADccMMNRzUALF269IwdJwAAAAAAAAAAAADAmVIWTQCZj370o8VXir/77rvP6P3s2rUrLVq0qNh4MHXq1CF9bdaowOnJdl/YuHHj4Vfxb2lp+bk7AmzatCnNnTu3+D6jAQAAAAAAAAAAAAAAyLOyaQJYvHhxuvrqq4uL8x977LEzdj/ZK8rX19enT33qU0P6uuzV6IlrBGhvby8u5q+trS3uCFBXV5eWLFmSVq9eXXzLbssW/2dvHR0dxXEx+DUAAAAAAAAAAAAAAHlVNk0AmfXr1xcXhWevEh+9I8C2bdvS7Nmz09atW1NbW9uQdgG49957Q4+FdPhV/bu6uoo7QDQ1NaUNGzYUF/8PNgNkskX/2c4B2ecM7h4AAAAAAAAAAAAAAJBX1akM7N69u/i+srIyrV27NrW0tBQXhWeLwbNXgM9euf9UZa8if9tttxVzM9li8uxV/Tdv3vwLv7azs7P4udnCdM6c7HecvQEAAAAAAAAAAAAAlLuyaALIXv2/oqLiqNsKhUJatWpV8S1ClpfdR9ZgcCpfCwAAAAAAAAAAAAAAp6sylYGGhobiQvsj37IF+8fedjpvg00Gp/O1AAAAAAAAAAAAAABwOsp2J4DMmVh8b0E/peTenv8MyXnR2BtSlPFVA2FZF049EJJzde2TKUp/oSosa8q4vSE5P/zpi1OUC6ccDMt688XPhWX9yyOzQ3L+vacjRenv7QzLqqicEJIzkLpSlIqB/lRyCnHzS2XVlLCsvb2Ph+T8IE1KUV4z9kVhWY/09IbkfHf75BTl8V0Tw7Iumro/LOv5vpjdn/YdeCiF6Y/5/WUG+veFZUGU910ZN99NuDCm3njo7pgaPVPz4vlhWX/55u+F5PR/+Z9TlBfXjA3L+o+tMXPUT3/1nBTlrubfDMsa37UzLKun89mQnF1bvpOivGHv7rCs66fE1LHf/52lKco1n1kRlrX0mreE5Gx85qcpyo3nnxWW9cMrYs5Jd/f0pCh/dOWcsKy9/3JZSM4bLv2lFGXXQ/eEZV235a6wrP/1qleG5Fw8pT5F+eEzcdcUrpv9qpCcz/3hG0NyYNCuhzeFZVWOi7neVT0x7hrOmOnnhmXN/OO3heT0B16Dqx6I25W681BMfTaw7cEU5VDH/WFZu5+Le86gYkzMU609O+Kup/ft+kZYVv/+mOdp9m99JkU5+y2/HJa1b2vMuBpTMy1F2b89ruaYfvaFITljquLO3ycFfn9XVU0NyTm46ZspSv+ePWFZM5d9KCyrsudQSM5Ab0xOdFb15JixMObJuPGZLro8LovcemhHzHOImSljY+rrcyfHnSdXVcatnbj03Jhr/d17457Db3sw7jpH96GYa17TJ8X9/iLPRZ7siquvx48ZH5IzdXzMY0Nmx7646/NRJo2Ne778vn0xzxlkLtpwd0hO/bU3pij/c8vXwrI+fu11ITnn18RdnxhTPbbk5vWzp56doqzbtiUs68/nxDwXnNnTEzOvHwqci29/w6+EZX3viftCcv7t0QdSlP89a15YVrkpiyaA+vr6o179HwAAAAAAAAAAAAAAylHZ7AQwqLGxMbW2tqaGhoZic8BI6uzsTF1dXWnx4sVp06a4V9ABAAAAAAAAAAAAAGB0KosmgGzB/6C77rorTZ0at6XP6aipqUkzZ85Mt99+e7r00ktH+nAAAAAAAAAAAAAAAMi5ylQGpk2bdrgZoFQaAF6oSQEAAAAAAAAAAAAAAEZ1E0Btbe1R70tRKR8bAAAAAAAAAAAAAAD5UJ3KQH19/VHvS1GhUEi7du0a6cMAAAAAAAAAAAAAACDHyqIJ4Oabb07t7e0l3QSwadOmkT4EAAAAAAAAAAAAAAByriyaADIzZ85MpazUjw8AAAAAAAAAAAAAgNJXOdIHAAAAAAAAAAAAAAAAnBxNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICdKpgngne98Z/rABz6Q8mD58uXpXe9610gfBgAAAAAAAAAAAAAAo0zJNAGsWrUqtba2pjzIjjV7AwAAAAAAAAAAAACAUdkEkDe1tbUjfQgAAAAAAAAAAAAAAIwymgBOQXd390gfAgAAAAAAAAAAAAAAo1DJNQHs3r07lbJdu3aN9CEAAAAAAAAAAAAAADBKlVwTwPr161Mpa2trG+lDAAAAAAAAAAAAAABglKpOJeb3f//3U0dHR5ozZ04qNZs2bUorVqwY6cMAAAAAAAAAAAAAAGCUqigUCoVUAiorK1NFRUXKDid7X6oGf1x1dXVp586dI3045NDYl9wYllVVXRuSUxg4lKJUVU0Ky7qy+oaQnAcHfpSi3FwT16C0ZXfMZiz37f98ilIYOBiW9Wvn/nZYVn8h5nGhfnxPivKPz9+TSs24yvqwrN27vxeWVSj0heRUVMT1Lo6d9KKwrEKhNyRnUvWFKcrymeeGZX1+a01Izv6KuL+/ORPHhGXds/9AWNbWgzE7Rg0cei6V2t9fpnLctJCcgUNxNXTfoxvCssinc975x2FZNZdPDcm57fULUpTHu58Jy5qz9YmQnOqauhSl9qpXh2XdvO7fQnL++fL5KcrBp7aGZd130XlhWWOrYh5HX3neS1KUp9f8Q1jWH9WMD8n5i/lx4/PCugvCsiaPmxySM2Yg7nLgdx7fFJb1qkuvDck57yMrU5Tt731PWNbmZx8KyXlox+MhOZm+wkBYVtvT28Oy9vbGHNcdb31XivLUmk+EZX3hopjz97e++JUpyqwZV4VlkV+7djwVljVlYsz1hK6f/CBFqZ4ccz09s3tLzLWzceddlKIcfGpbWNY5b4q5ttv1w6+lKH27OsOyxl0ws+TG1YFtMXVCpufZuHPJi389phba1b4lRakcMy4sq//Q/pCcnh1xddCYurPDsnp3xhzXvtlx53+Ttz0SljV2Wsy58tia6akUjauLu85fGOgPyem67zspSuf69WFZtYv/MCSnattPU5Szrn1TWBb5ddHHPxiWdeu1l4fkvOTshhRlTNB1xsz0PXtDcvr370lRpl11XVjWl7Z8NSTntbNekaJseGJzWNZz+3eFZU0ZMyEk56rzL0uldk0980T30yE5E6rjauJdB2P+/jJVlTHroM6viauDuvZ3h2U1TI85l3xg+4MpyvRJceuE9vXEnB9VVcSMg8x/+VbMGozMNdPj1jTu6IlZ//Jbs1+WojwXONY/83BHSM4rz5qSonz4zX8UllVuSm4ngMFGgFJV6scHAAAAAAAAAAAAAED5KrkmgEwp7wQAAAAAAAAAAAAAAAAjpeSaAEr5VfY1JwAAAAAAAAAAAAAAMJJKrglgwYIFqaamJpWa7u7u1NHRUXwDAAAAAAAAAAAAAIBR3QRw++23p2XLlqV169allpaWtGTJknT99denUpMd48c+9rGRPgwAAAAAAAAAAAAAAEahylQimpubU3t7e9q4cWOqq6tLTU1Nadq0aekDH/hAeuyxx1Kp+IM/+IORPgQAAAAAAAAAAAAAAEapkmkCGDRnzpz0yU9+Mg0MDKQVK1akO++8MzU0NKQbb7wxffGLXxzpw0szZ84c6UMAAAAAAAAAAAAAAGCUKrkmgCMtXrw4bdiwIT3yyCPp6quvTu94xzuKuwO8853vTFu2bBnpwwMAAAAAAAAAAAAAgGFV0k0Ag7KdAFpbW1NnZ2datWpVam9vL+4YMH/+/PTpT3867d69e1iPp7a2NnV3dw/rfQIAAAAAAAAAAAAAQC6aAI7U3Nyc7rzzztTV1ZVaWlrSihUrUl1dXVq4cGG6++67h+UYCoVCsREAAAAAAAAAAAAAAACGU+6aAAbV1NSkpUuXpkcffTR9/etfLy7Mv+GGG9Ls2bPTrbfeekZ3B8gaEHbu3HnG8gEAAAAAAAAAAAAAoKyaAI7U1NSUbr/99uLi/Pe9733pc5/7XHF3gBtvvDF98YtfHOnDAwAAAAAAAAAAAACAEGXRBHDk7gCLFy9OGzZsSI888kiaMWNGesc73pGmTZuWPvCBD6THHntspA8RAAAAAAAAAAAAAABOWVk1ARypoaEhrVq1KnV2dhbfZ40BM2fOTPPnz0+f/vSnR/rwAAAAAAAAAAAAAABgyMq2CeBIzc3N6c477yw2BFx//fXpfe97X6qqqkrvfOc705YtW0b68AAAAAAAAAAAAAAA4KSMiiaAQbW1tam1tbXYDPD1r3897dy5M82ZMyfNnj073XrrrWn37t0jfYgAAAAAAAAAAAAAAPCCRlUTwJGamprS7bffnrq6uoo7A3ziE59IdXV1aeHChenuu+8e6cMDAAAAAAAAAAAAAIDjjNomgEE1NTVp8eLF6dFHH0333HNPsRHghhtuSNOmTUsf+MAH0rZt20b6EAEAAAAAAAAAAAAAoKj6Z+/INDY2pk9+8pPFt7Vr16aPfvSjqbW1Nc2dOzctX748ve1tbxvpQ6Qc9B8Mi+rrezokp3rcuSnKQKEvLOu+vvUhOa8euyBFmT5hT1hW154DITkVVZNSlIHeXWFZn3vms2FZ4ydeFpLTUvXyFOW6sa8Ny/r6zr8PyTlUNS5FKQT+LZfiMfUcaA/LqhwzLSSn++APUpQfPfPbYVlzantDcr69ayBFqaoshGVNLUwMy+o/GPO4XFGifbqFQ10jfQhwnD/51UvDsurGjg/JueRQ3Hx35Uvj6tj/9Tt/FJLzT08/kKJ8+V/7w7Le/ZIrQ3L+evuDKcp7zp4VlvXBjfeGZX37pneE5Dzc9XiK8s0rLg7L+t7XHg3J2XJJR4pS8T/+JSzrot94c0jO+HMuSlH29sSc22be8/VPheT8z1+JmRMyfft3h2VteTZmXH3v+edSlKbzLwzL+s7Tcde8/t+XnhOS8+tf+USK8u7588Oy/nrFF0JyHrwp7jrOP8y4KiyL/Co892RY1u4Uk3Xg8UdSlDH1Z4Vl7fjO/SE5/Yd+nKJMm3dJWFZv5zMhOZPnXp+iDOzcHpY1ftoFYVk7fvDVkJxx58X9/qZd+8thWc/tChoLU+pSlL2PbA7LGnt2TC1UPbkmRRlXH1MHZWpe1BiTsyfuumDX/r1hWdUXTQ3JmTA9bk7o2dsdlrVj7/NhWXVjYp5LrL/quhRlTE3McyuZLc/G1AuN088PyYFBb7ok7nn8l5zdEJJTWVmVokweF/f9df3HHanUTJkVd578UNezMUHtcc8nX1wTV3OMrRoTlrXx2ZgX651ZFzen7+3ZH5Y1O+h5g+3dcedHj+1+Nu55/IqY57kP9B5KUXr6Y9Y7ZKZPiqlfZtTHXZ8fUz02LGtsUNYTXTHrJjJ/eMXssKwnAmv1SdUxj6d/ee/GFOWltTHPdWdeedaUkJzZtXE1Py+sNFcYlYDm5ub0qU99Ks2ZMydt2LCh+HFVVVV617velTZvjru4BAAAAAAAAAAAAAAAJ0sTwDF2796dPv7xj6fZs2enefPmpXvv/dmr7RUKheLbqlWrijsDvP3tbx/pQwUAAAAAAAAAAAAAYJSpHukDKBV33HFHcYF/W1tb8eNswf+gioqKw/8/ePuR/w4AAAAAAAAAAAAAAMNhVDcBbNu2rbjwf/Xq1am7u/uoxf0nWvifWbx4cVqyZEmaM2fOCBwxAAAAAAAAAAAAAACj2ahsAviHf/iH4uL/TZs2ndSr/jc1NRUX/t98880jcLQAAAAAAAAAAAAAADDKmgA2b958+FX/T2bhf21t7eFX/Z85c+YIHDEAAAAAAAAAAAAAAIyiJoDdu3cXF/1ni/87OjpOavF/c3NzceH/DTfcMAJHDAAAAAAAAAAAAAAAo6wJ4K677iou/F+7du1JLfxvaGgoLvzPXvm/pqZmBI4YAAAAAAAAAAAAAABGURPAtm3bigv/s1f+7+7uPmqR/4kW/meyRf/Z4v85c+aMwBEDAAAAAAAAAAAAAMAoawK444470ooVK9KmTZtO6lX/Gxsbiwv/Fy1aNAJHCwAAAAAAAAAAAAAAo6wJYPPmzYdf9f9kFv7X1tYeftX/mTNnjsARAwAAAAAAAAAAAADAKGoC2L17d3HRf7b4v6Oj46QW/zc1NaVly5alG264YQSOGAAAAAAAAAAAAAAARlkTwF133VVc+L927dqTWvjf0NBQfMX/7JX/a2pqzlhDQmbq1KlnJB8AAAAAAAAAAAAAAHLTBLBt27biwv/slf+7u7uPWuR/ooX/mWzRf7b4f86cOWf8+Gpra1NlZWXq6+s74/cFAAAAAAAAAAAAAAAl2QRwxx13FBf/t7W1ndSr/jc2NhYX/i9atGjYj/VM7TIAAAAAAAAAAAAAAAAl3wQwf/78tGnTpl/4qv/Zq/APvur/zJkzh/04t27dOuz3CQAAAAAAAAAAAAAAJdUEsHHjxuKi/2yx/4kW/zc1NRUX/t98880jeJQprV27dkTvHwAAAAAAAAAAAACA0atkmgAGDTYCZBoaGooL/7NX/q+pqUmlYMWKFSN9CORcof9QXFjlmJCYvkNPpyjjJs4Oy+rr6w7J6R4YSFEe7Z4UlvVc/8aQnInjLklRCmMvDMvat3dzWFZP77MhOf+y/d9SlAkTLw/LqkiVITlTJs9LUXbv+m4qNVXjzw3LGjNmelhWT8/2mKCB3piclNIXnv9sWNbYCTE7L/UefCxFmZ5+NyzrwYFvp1JTSHGPW5EqqifEBBX6YnIgpXTrvc+EZT3znmUhOX0H96coz9wZV7s0/9V1ITl/8IrWFGXxuk+HZd1aEVMT/13n3hSl4porw7JqH94SlvX1t/9ZSM4r/3tLivLWnQfDsqa++SUhOZdNvzhFmXNr3M+qt68nJKd/T1eK8u374+q8rz0RM4fWjI05h8y8/MK48fmWy2Pm4psmPZqi7D0v7jrAn/fGjM/M3zzwREjOOy8/P0W5auJZYVlf+uCvh+Tcurn0zt3Jt6kzYh5HM09/7Z9DcirHjE1RDm2PmVsyZ133spCcsefG1Rx1V74qLOu5b8S8IFbddW9LUSonTg3LqqiKe3r0yTtiri2dt+CqFGXPffeEZdVduyAkp2+gP0WpeekrU6k58NzjYVljp8Zdu96x5/mQnOmT4+qgcWfH1Z8Htm8Nydn7SNzzWWMDv7+p58Q9Rjx3IOY513PHjEtR9nc8EJZ15QUNITmF/ri5CjIPdMetDambWBuSs+vgnhRl76F9YVkT3vYbITnnTj0nRdny1H1hWS+bfkFITn/g2peOrrh1QrXj49bRzD1nRkjOFefHnd927e8MyzrYE3Ot8UBf4NqzEtTTH7d2YvLYiWFZ//FwzLW4cwLPb2fWxV3/fH5fzFg/a1J9inJJ9Zi4rNq4NUf3P78tJOf1VVUpyr6+uHUYdePGh+T8yXceTlF+89VhUWWn5JoAMi0tLWn58uXp6quvTqVi8+bNadGiRam7O+YEGQAAAAAAAAAAAAAAct8EUFtbmzo6OooL7ktBtui/s7Pz8OL/I3cqAAAAAAAAAAAAAACA4VSZSkxXV1dqb28vvs8W24/0W01NzVEfAwAAAAAAAAAAAADASCm5nQBaWlrSbbfdlkrNpk2birsT3HvvvSN9KAAAAAAAAAAAAAAAjFIltxNAa2trKkWNjY1p48aNqba2dqQPBQAAAAAAAAAAAACAUarkmgBmzJiRStn73//+kT4EAAAAAAAAAAAAAABGqZJrAih1LS0tI30IAAAAAAAAAAAAAACMUpoAhmjmzJkjfQgAAAAAAAAAAAAAAIxSJdUEUFtbm/Kiu7t7pA8BAAAAAAAAAAAAAIBRpjqViK6urpQXeTpWAAAAAAAAAAAAAADKR8k0AdTU1KS8yNOxAgAAAAAAAAAAAABQPipH+gAAAAAAAAAAAAAAAICTowkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATlSP9AHAaFMxZkpYVmXVpJCc/oPPpCgDA4fCsqqCvr8dqStFefjQ42FZ/f37QnIKhd4UZXL1JWFZ+yoqwrJmjn99SM7jvd9PUd5ed1VY1pcq60NyOvd8O5WzQv+BsKy+it1hWan/YEjMmIkzU5Teg3FzVUr9qdT8ND0cltXbF/cYUVERVFpXBPbpVlSl0qMPmTh/dNXZYVlr7/1KSM5D3c+nKH+9aXtY1g9/ryUk564Hvp6ijK+Mmw9+54EfhORMro47po4d28Ky/v2mPwjL2tbx4ZCcy2+/O0UZd/7EsKxHX/OWkJzKSVNTlLsf+mZY1lmT6kJyan7wnRTlRRdNC8va/IZXheTsnDg+Ren5zKfDsnb/+i0hOTOnxIyDTP2huGsKb7+oMSzr0r+PGaMX7tubojxxSdx1gMsmnhWS866XzAvJgUF7n3okLGvyZTFzQv/+PSlK7aVxf8cHHt0SklM9uTZFKfT3hWWdc8PCkJzKyrjrEvsDz7V2t8f8/jJ1L46phZ69Mm58NkyPu8546KGNITljp5+folRPjKvVB3pjntPq27UzRameHXd+VHn/d0Ny9p19UYrS9Z27wrKm3fCmmKCBuGvgh57qCMs6sO2hsKzOb20OyelpiKljM3XXxTz3lzkY9HPvP7g/JAcGffK1N4Zl7dgb81jTXxhI5ezRHXHz8NTxcWt7ntodU8teMDVuHu7pj7sm9EjnU2FZCy59RUjOd9q/l6I83Pl0WNZLz4pZk7PrYNw1r4nV48Ky+oLqqj09cWtDIue9q86ekUrNhXUXhGVteibmutCsaZeU5Fy171DMOr3MWy5/bUk9vmc2Pv1gWNZLzoq5rnDLS14XksPPZwUOAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMiJikKhUBjpg4DRZNxLfjksa+DQjpCcijFTUpTJE18alrVn76aQnIrKsSnOQFhSRdWkkJxxY85LUSoqqsKyDvU+E5Y10LcrJqiiOiYnpXT2xFeHZR0q7AnJ2dv3eIrS3/NcWNZAb8z3VzluWopS6NsblpX6e0NiCoHzSymK/P1VVsbMn5m+A3F/N1GPNxXVcd9f1Zj6sKyB/gMhOf0Hn05R+h7dEJZFPv3NnZ8My/rmszG19f+sjavNUlVcbTam7qyQnMpxE1OUigtnhWVVVcb8rHYf2J2i1PXHXW7p2x9TT2XGnt8QkrPuoW+mKH/yg/vCst7eUBuS8/vPxNWLhd6YejHz2YtjHtvn/u3mFOVXvvz3YVn7D8b83McGvu7J5qXLw7LeMvv8kJzv18Vd57jrRReGZf35Z2Ou42R+/S0zQnLGVcWNhaUvirsO8GRVf0jOn/1gXYryxd/6s7As8mtPe9xj8qTzZobkPPYvf51K8TF5zPTpITkVgfPUhBmXhWUV+vtCciqq4q7H9nbFXa+MVDluQkjOpBlXpCiFyTVhWWMGYs5rnlu/JkWpmhh37Wz8NQtCcvbd/aUUZfpr3hKWdXDHUyE5vbt2pii7vv+dsKyzf/c9ITnd/+dfU5S6V8aMqcz+yXHP39ZWjQ/JqZ4Qd0w7fvB/wrIqJ0wOyZky62UpyoTzYs5pyLcHHvlhWFbn/pjny2dNvyRF6drfHZbVE/R8a/9AzPl2ZtK4uJpjIPC4okT+rPoLA2X9/UU9/xA51g/0HgzJ+VnWobCs7kP7QnJ6gs5JM1WVcefdl0w9JySnfmJNSY71S6bFPEZ8uyPu8e/ys+OeS9wXND4zj3Y+GZLzyhmNKcr2XXHr9K66+OqQnG89/O0U5bVXvzEsq9zYCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAcqJ6pA8ARpuBvl1hWYU0EJPTG3dMu3d9Nyxr3OQrQnJ6DmxNUSZMvCws68C+B0Jy9h98JkWpHFMTllU1pj4sKxVixnpF1bgUZcehTWFZV497S0jOQ1X7UpS9ve2p1FRVTQ3LKlROCMsa6I/5uVdWxo3Pgd6usKyK6skxORVjUpSB3p1hWWMnzQ7LqqiI6a+dWHV+itJbiJsX9h3cEpYFUc6ZOCUs65JJe0Jy7j//rBTlVbOuDcv60bYNITmvOD9w3hw/MSxr78Mxtdn3Dz2fory5Ie7396UnNoZlPftEzM/qndc0pyiPvOwNYVk7t3wzJKd/0t4UpXJcXO35zkMHQnIG3hM3f97/Z+8Ny7riw60hOZVVVSnKtD97d1jW+x/+fkhOoT3uOsBvz7spLOuGhvlhWY2f+VxIzi0viTuPnHJx3DWh//jWZ0NyasbGjXXIFAb6wrL2PvVISM6Y+roUZeDgwbCsCTNeFJLT2xVXf/bt7Q7L6u2MOa6pV74iRenZsT0sa+oVLw/Lqp4Y81izpz3uukvf3rjnfPqCxmhhoD+Vot6f/CgkZ9x5F6Uoz3zln8Oyxl88IySnIrC+rnvN9WFZ1ftjztv698ad/x189omwrOrOsWFZFbOuCsnpOxBz/SzaxAsvLak5Hc6Ex3Y/m0pNT39vWNaM+gtTOX9/Y6piniftDTymqsq4x/f+/pj1HJE/96qg520z48eMD8uKOq7I729s0PjMVFXGHFf3wbjnuM+bPC0sq35izJqqysC/v0gPbH8wJKenv68k5+LIv+VHdsWcK1++P+5aTuS8sOXxzSE5G5/dlqK8Niyp/NgJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkRPVIHwAw8qbVvj4sq2vvd8OyBgqHopKCclLqDzumlCZOfllIzqHeZ1KUispxYVl9B58Oy6qonhiSU+jfl6JUjzs/LOuKKb0hOTv2zEpR9o95MCxroHdPSE7fwadSlIrqSWFZaaAnJifw76+iIq7Eu3hCzGPEEwfWpygVVXG/v6rKmPklM7ayJiRnIPWnKPv2bg7LKgSN9Qp9yARa2PirYVnXfWNtSM66vV0pyvbuuHrq2oZrQnL2bb0/RVm48ZthWT+5a3tIzv6G2hRlxXk/Dcv65QtiHmMyf3TNW0NyPnj3P6Uo//aR74RlbV3/6ZCcgz0HUpSGj/5tWNYDf7o4JKfy/h+lKD/4lflhWQ29MT/3A/dvTFG+sueJsKyZU6eH5PTd+PIU5b4n7wvLuqT+4rCsp5YsCslpeOO7U5Rrzz43LGtcZVVIzo0XxP3MIbOvPa7W23tfzPxSNXF8ilJdXxeW1dv1fEhO//69Kcq0l98YlvXE7pj6+tCEqSnKWa96S1hWz64dYVm7H9kUklPz4ria6odPxF0PevG4CSE5AwfixvqEOdeFZR36SUxdfGh7XM04/YaYc7bM/idizksPPbktRZk8++qwrIM7Yq6bTL5yTooytv6csKz+/THPrWSeXff5kJyOyy9LUa6cdl5YVkVQfb1/e0eKUlNTH5ZFfj3eHVNTZV51ScxcVTcxriZ+6NmHw7Ke3RNTX8+ovyhF6emPeQ4/c7D3YEhOfyFu7UupGls1puR+fzv2doZlTRgTsyZgwpi4c+VIM+ouLKm/mWiVQTVH5O9vx96dYVlXX3RVSM6aLV9NUd79zf8My7pkcsz8ktnVE7Om4/kDcc+VRnr9xbNDcq49PyaHn88KHAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE9UjfQAw6hQKqdTs7L4zlaJC39aYnDSQohza+5O4rFTeKsfWxYUN9IXETJk4J0WpqhgTlvXwnrEhOeenaSnMpF8Ji3ry0HdDcqqqJqQovYeeCcsqFGLmmELvrpCcYlb/gbCsbd2fS6Vm7KTZYVkTqqaHZfUW9ofk7N27KYWpqIrLghLU8MmPhWXNPzvm8fiK/kkpyoSn4mrPN375jpCcb7X8Voqy8pWvC8v6wSUPheR85pGnUpSvzIp7vBp/waywrMrd3SE5//3Vv56iPPsncWdH22//REjO3sCxUHn7w2FZU/+4IiSn96IXpSh7HrsnLKu6L+bcr29XZ4rya+Pj6sWna89Npeav7v1WWNbsqZPDst7RNz4k5+o/mp+i/PrVb06lpm//7pE+BMrM9GvfFJY1pu6skJz9HQ+mKJXjYuaWzKRZLw3J2fvIlhRlT8ePw7LOPfuikJwJU2LGQeapr3wmLKu6Ju7adWGgPySn+/6Ya6iZa176S2FZT61dFZJzaPuOFOXH9XE1x5X794bkVIyJe76gEPR8SKZ/T9w15yid3/lqWNaEWZeH5Az09oTkFLOmnxeWVTPhsrCsQ9sfC8m59sKrU5Tn1q8Jyzr4xCMhOYX+mDk9U3PZvLAs8uul5744LOuCaTH12c49z6coDdNnhGXtO7QvJKd/IG5tSLnrD6pjo1VVlt5zm3t7Yp4Dzsy9JGbNypOdT6Qouw7uKbnf39lTz05RnuyKu9bfeSCmvn5wZ9wxzaqN+1ltfb4jJOflF74kRTnUH3d+9MXHnw7Lajov5nmDidVx55Jjq+Lmz7FVMcc1++y45zd5YXYCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5UT3SBwCjTdW4c8OyCgMHg3IOheQUs3r3hGVVjK0JySn0dIXkMDQDgT/3isqxITkDqTdFuThdFpZ12dSYv8H/Z9bjKcp3d04Py1r3xFtCcgYKKUxfdVzYxt6vheTMGXNjivKTgQ1hWfOqXh6Sc/7EnhRly76BsKxnUtzfzf5Dj8UEDfTHdfyOqwvL6u8/EJJTOS5ufoEHf+13w7Iu/9w/huR86JqmFOW8/XF1+lfP2RaS8/ytt6Yo573xtWFZb94VU+dtrB+Xopz9SzE1UOZbD387LOtf7t8SkvOXUy9IUf7xzf8lLOvJNf8rJOecP3lfijL+rJj5JVM9YUpIzt72H6co93V3h2V964lNITmfeD6oLsvq9PqpYVmf+tOvhOR8+r/enKI8sb8vLOtj0+PqvLNfFzOHfjJoTsh86JufDcv6zZe8OiSn4ayGkBwY9Px3vxyWNe3lMdc5enY+k6IcePTRsKydO/4jJOfBO9pTlEtfGzcPjz1nWkjOOW/4tRRl7Dnnh2VNvOjFYVlja2J+7s9/4wspyo4ffDUs68Djz4bk1L5yXopy3SXzw7Ke+sEnQnIK/XHXK6uvias/J8yIeR6jZtZVKUrv/rjnEf/PIzHnym95+RtSlB9tuycsa8a2uPOaMdNjnp/e/qXPpCjnvuW3w7L2br0/JKf/wN6QHBh0oDfmeZXMR78Rc33pv7z8phSla3/ceoD7n3k4lZqLa+LW9lwy7ZKQnMd2xj029BTi1k5MqI67rl5VWRWSc6A3Zj1V5qpndoZl7b5wV0jOpee+KEW5pC/uefyfbn8oJGfHvs4UpW5CzNqzzOO7Ys6PVj/8ZIryjZY3hmV99aFvhORUVcS9LvmvVsb9/v6596mwrO3794fkXDhpUopyzsS4c8ma8THPRe3YGzd/nnXOzLCscmMnAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADIieqRPgAYfQZSqSkM9MRlBX5/hZ6usCxyrqIiJKam4vwU5dJxVWFZz+8fE5Lzb1svSlFu73ooLGvfoW+E5BT694TkRM97FVUTQ3K2VKxPUWZW/1JY1lf/5rMhOf1TYsZ55l3vvjksq33vi8Kyto2fFJKza+wTKcrkynPCsp47+J8hOYXUH5IDmb3bHgjL6u0vhOT8dMdjKcqLX3pjWNZXvnxnSM6rf+XlKcq3n+0Iy3r1OeeG5Lx1Yty8GemqqqlhWXtnxDz2TX/xa0NyMg9+6P1hWfe/9VUxQY98L+6YfmdJWNa5/+NvQ3J+72X1KcqX790VlnV5TUwdNKc+7m/m3TOvCct6862NITmPLvp0ijLl92eFZRX64+q8C98VMy8cmlWbomyZckFY1uadj4fkzJwS8/hXNDVuXiC/+vfsDss6GHSdeOKMy1OUvs4dYVnf/0TMucjH7vtJivIff/pHYVlRP/f927emKIXeuOt5e37yo7CsSbOvCsmprombhzu/GVfLXvonHwzJOdT1bIry7LrPh2Wd/aa3h+Qc6oz7/n66Z3tY1lWzrg7J6dnbnaJ0bmgLy3rDVa8Oyfnx+9+bonS8/TVhWY3XxF0Xat/1VEjOeW/5rRTluTvj/panNsaMhb69cee3kLmwPu652/e+YmFIzp2PfidFeXZ/3N/MN7bHPP6dM35cirLhvvvDsj5+7XUhOXUT465znD317FSKuvbH1B39A3Frl/a+ZE5Y1oUDMWtfvvLjr6Uoh/p7w7KePRCzpmPHgf0pyi2XXRuWdVbQ3+DcaeNTlOr9e8Oymqpivr833vjhFGX2j/4qLOs/Xxb0/FFKacV3PheSc/XZl6QoG5/dFpZ1cU3M86UHew+G5PDz2QkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAORE9UgfAIw2Y6qnhWUd3PtASE5F9YQUpdAfFpUqgvqUCmkgRakcWxeWVVExJpWagb49YVkVlXEPMZMnviwkpzcdTFHuOhjz95c5q2JGSM6eXVNTlEP9XWFZ/QefTuWs0H8oJOdQT9zPfGrtDWFZ+2fHzHsH6+Iea/b3xc0vP00Ph2V17b8nJKeiclyK0lcdN69PmHJVSE5/YX9IDmTa+rvDsg7s7AnJeek5l6Yoz+1+Jiyr+p83hORcdfOCFOXms68Iy/pp0NxySf1FqRRt/eT/Dsv62vWzQ3Jm1l2QotS9MqbezzRf+caQnIrKqhSlP/BEuWJXzFz1opraFOUn7/nVsKw/vvv2kJy/PmdWivJQ66qwrKs++sGQnJf8e2uKcu03vhCWteXv1odlbfr0n4Xk/Lfv3ZGijJ1+bljWolV3h+RUXrY5RXnqff81LIv8qml8dVjW/dsfDMm5PMVdTxh7zvlhWU9+cFJIzu0dl6QovZ07wrJSzOXKlAbi6qBCf1zW/ocfCcua/ktvDsnp2xt3fjtxVlytvuunMde7+vfvTVHGTj8nLOvAhJg5prA/7hrcxQMTw7J6+2LOH3Z+/6spyr4H467Hjqk7KyTnZR/9eIrS8MRDYVmdG9rCsi5+8dyQnKre3hRlT3/c87cH62Kef598btzjMkTOw5mx4yaH5Jw7OW69Sv9A3N9xw+RdITmP7T+Qonzk5a8My3p+X8zzwHUT467p9fbFzenjx44Py5pVd3EqNQd749aZbN7XGZJTMz7mnDRTP6EmLGta0FiPNH5M3Pjc27M9JOeG8+Oei3r+zrVhWdu+9mhIztfWxV1n7OmIOabM3qeeCst6VyHmb/Dzz25LUWrHxY31nv6Yx4iawL8/XpidAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATlQUCoXCSB8EjCZT5rwjLGtq1YUhORWpKkV5bt/dYVmV1TUhOf0Hn0lhKuN+VhXVk2OCCgMxOSmlCeNnhWX19O0My5o6dnZITmXgWB+TxodlvW1azFjftmtSirL+0DfDsg7uuT8kp3JMzM8pU1E1ISwrao45v/ZtKcoz+9rCsv7bFW8OyRlfFTdXvffHXwnLqhp7dlxWVczfYM/Bx1KUsye9Lixrz8DTITnjKuP+lp/b0BqWRT5t+Enc49WVF14ZkvOTp3+Solx18dVhWV/a8tWQnKvOe3GK0rW/Oyzr8V3PhuScNbE2RZkwZlxY1nmP/DQsq9DfH5LTN+/VKUrdxLqwrCv+5CMhOR95x8tTlGcO7A3L+ps1MWPhFa+Nq4HuuWNrWFYaE3POduDCuHrjT5suDst6+sCBkJz/fGJfivLKc+Lmqif294Vl/fR7O0JyPvwbV6Uob7n8urCslv/4t5CcO146N0U569o3hWWRX133fTcsq7fruZCcgd6eFGX/Qw+EZdW/LuZvZn97zHWzzLjzLgnLqp4cUxdXT5ySovTt3xOW9cwdMfNwpmrc2JCcyVfPSVEqquKug++6uCEk59z+ihSld9fOkhvrB55qT1GqXhp3LtK1ryskZ8KYuOvp06vjssZMjjmX3LH3+RRl8rjJcc89DMScv2ee3rU9JOeiqokpyoHtceeS066KqdWfWX9binL+m+PWBJBfux7aEJb19Z2PhOScPSnu+mf/QNxzf88FXStuqDs/laL7n98WkvO2K25IUXr64861evt6w7LqCzGvZ7wn6DpjZveB3WFZXQd2heRMHhv3mDx1/NSwrLpJMfXZ7qCfU6anP258/s2G/wzJWXTla1KU2dNmhmWd+9FbQ3Kq98X9zO+afDAsq3b+FWFZ3ztvWkjOez7z/RTlqf8R8/xY5p6t94TkzJ85P0WpnBh3rlVu7AQAAAAAAAAAAAAAAAA5oQkAAAAAAAAAAAAAAAByQhMAAAAAAAAAAAAAAADkhCYAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADlRPdIHAKPNwf0Ph2X1j98fkjNlzMwU5TWTfzss66HC4yE5zw18N4UpDIRFVVZOCskpFPpSlEsr5oZl/erMvWFZbz7/iZCce3edk0rRv3fEjIWf9u1JUQ7uuT+VmoHeXXFhkVlBntl7Z1hW5Lywq6cqJOdHO2tSlDHjLwnLGhg4EJbV378vJKfQG5MT7eChmMfliyb8SkgOZK6++OqwrMd2bAvJaf7auhSl+8kvh2VtfPf/E5LzNxv+M0X5qze8MyzroY1fDMn59lM/TVF+J00Jy2p6/OmwrO//2qKQnL/89udTlGWvvCksa/Z1MTX/L90bNxZes3l3WNaNb7wgJOfvF/xuijL+rRPCsrZ/9bMhOe/uifuZ/85Vrw/L+sHjW0Jy3jv/ihTl2T3Ph2V9tSPm+8t8sGtrSM6eiXHnIU/+xUfDsv5+Ysx5Vt3b3xOSA4Oqxk8My6q+4NKQnIq6s1KUqXOvD8vqvGttSM6Y+rjvb89994RlTW38pZCcyjHjUpQdd34pLKvhv/xZWNaO7/+fkJzaK2N+5pk97XGPyTNqLwzJefwf/ypFufh3/yQs6+l//3RITl9n3PXmsdtjng/JjNkfc+3zgt/84xSl+5FNYVl9+2OeE6ncHlN7Zvrq456Hmnhu3PO36bP/FBJTuSSu/hw4FHdtfts/rgzJmXjZS0JyYNCkC2eHZd0UlPW1n6xPUWZNuziVmqnj467JThgzPiyrYfqMkJxxB+Pmzn99+JthWVMD6/4Fl74iJGfTEz9OUe55NuY50swtl10bkvPicy9LUQ72xo2rgZ3bQ3Lqa+LOlZ8fiFtHc2X99JCcx7tjfk6Z5/d1hmV94x2/GpJTN7EulaLN2x8My/rVy14bkvO635+aomzatjEsq/HCq0Jyevt6UpS4R5ryYycAAAAAAAAAAAAAAADICU0AAAAAAAAAAAAAAACQE5oAAAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAABATmgCAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAAAOaEJgBALFixIdXV1I3LfHR0dadmyZcVjmDVrVqqoqCi+ZceT3bZy5crU3d09IscGAAAAAAAAAAAAABCpOjSNUWfTpk1p0aJFxfeZbLF9bW3tsNz32rVr04oVKw7fd6apqSk1NjYePpYNGzaktra2YpNAa2trWrp06bAcGwAAAAAAAAAAAADAmaAJgNN69f1sIf5I3PeSJUuKi/sz2aL/bIF/1gBwIlmTQHas2Vt7e3tatWrVMB8xAAAAAAAAAAAAAEAMTQCc9ML7bDH9PffcU1x8f+Sr7w+nrOmgpaXl8Mdr1qxJzc3NP/drsiaBdevWFZsAVq5cmRYsWPALvwYAAAAAAAAAAAAAoBRpAuAF1dXVpe7u7hP+2+Ai+uHcCWD16tXFHQAytbW1af369cUF/r9I1rSQNQAMNi5kOwFoAgAAAAAAAAAAAAAA8kgTAC9osAEgW3Df0NCQ5s2bV3wV/aampuJt2avqD1cTwJENAIM7AJxMA0AmO+ZjmwIAAAAAAAAAAAAAAPJIEwAvqFAopFKQvYL/kQ0AS5cuLTYinIwXWvCfNThkjQwAAAAAAAAAAAAAAHmiCYCS19LScvj/sx0JWltbT/pr6+vrT3h7qTYA9O947LjbqqZfMiLHAvBCBjqfPu62yvrzR+RYAE7kQx/60EndRvn7rx9ZcdxtH/zA8hE5FoAT2bP5R8fdNuXql4/IsQC8EPU1g1b83SePu235u/9gRI4F4ET+svVjx93258veNyLHAvBC1NdkXLsG8uAjrR8/7rYPLHvviBwLwAv50CivrzUBUNKyHQA6OjoOfzyUBoBMY2Njam5uTmvXrj3ljOFU6Hzi+Bs1AQAlptC1/fgbNQEAJeTDH/7wqD7J4//6yxXH1/6eSAFKyd4t9xx3myYAoNSorxn00b9ffdxtmgCAUvLfVh6/SEkTAFBq1NdkXLsG8mDFyluPu00TAFBqPjzK62tNAJSsTZs2pdWrVx/16v3Zgv6hWrNmTWprays2E8ybN6/YGAAAAAAAAAAAAAAAkEeaAChZK1Ycvf3ZLbfccspZTU1NAUcEAAAAAAAAAAAAADCyKkf4/uGEuru709q1a4+6raWlZcSOBwAAAAAAAAAAAACgFFQUCoXCSB8E+bRy5cq0bNmyo27r6upKtbW1p52d5Wb5RxoNQ7WiouK420bD9w3ki7kKKHXmKQYZC0CpM08BeWCuYpCxAJQ68xSQB+YqMsYBkAfmKiAPKkb5XGUnAErSsbsANDY2jtixAAAAAAAAAAAAAACUCk0AlJzu7u7U0dFx1G3z5s0bseMBAAAAAAAAAAAAACgV1SN9AHCstra2426bNWvWC35+1jAw2DTQ0NBQfAMAAAAAAAAAAAAAKEeaACg569atO+62Yxf2Z4v+W1tb0+rVq0+Y0dzcnBYuXFh8DwAAAAAAAAAAAABQLipH+gDgZHYCqK2tPfz/2cL/bGeADRs2pDVr1qT29vZUKBSK77OPs4X/a9euTS0tLWnu3Llp06ZNw/wdAAAAAAAAAAAAAACcGZoAKDnZq/wfq76+/nADwJIlS9KqVavSxo0biwv+B3cJyN5nH2eNANm/ZY0DWQNA1giwcuXKYf8+AAAAAAAAAAAAAACiaQIgN7IF/VkDwLp169LixYt/7uc2Njam9evXH/542bJlxa8FAAAAAAAAAAAAAMgzTQCUlO7u7hf8t5aWlrR06dLU1NR0UllZI0C2Y8CgbBeBUtgR4EMf+lCqqKg44duJHPnv2dcCAAC/uLb+RfW12hoAAI6mvgYAgDjWhgAAcKZpAqCkdHZ2nvD22267rfhvra2tQ8rLdgxoaGg4akeAbEcBAAAAAAAAAAAAAIA8qh7pA4AjdXR0nPD27FX8ly9ffkqZzc3NR+0AsGjRorRx48ZTPkaA0e4v/uIvRvoQAH4u8xQAeeExC8gDcxUAeeExC8gDcxUAeeExC8iDvxjlc5UmAHKhu7u7+Kr+p2LhwoVHNQFkOwG0tbWlpqamwCMEGD1sPwmUOvMUAHnhMQvIA3MVAHnhMQvIA3MVAHnhMQvIgw+N8rmqcqQPAI5UX19/wtsbGhpSbW3tKWU2NjYed1tra+spZQEAAAAAAAAAAAAAjKSKQqFQGNEjILeyV9dftmzZUbd1dXWd8mL9wVfpnzt37nG3Nzc3pzVr1pxybl1dXXE3gSMZ+gAAAAAAAAAAAABA3tgJgJLyQg0E2U4A0TsMtLW1nVYmAAAAAAAAAAAAAMBw0wRASTnRYv3MrFmzwpsL1q1bd1qZAAAAAAAAAAAAAADDTRMAudgJ4IWaA05Hd3d3eCYAAAAAAAAAAAAAwJmkCYCS09DQEJ55oiaCzs7O8PsBAAAAAAAAAAAAADiTNAEwKpoATsROAAAAAAAAAAAAAABA3mgCoOQ0NjYOy6v219bWhmcCAAAAAAAAAAAAAJxJmgAoOQsWLAh/1f4TNREM144DAAAAAAAAAAAAAABRNAFQcubNm3fcbe3t7aeVeaImglmzZp1WJgAAAAAAAAAAAADAcNMEQMmpra1NjY2NR93W0dERfj9NTU3hmQAAAAAAAAAAAAAAZ5ImAErSwoULj/p4w4YNp5V3bBNBQ0ND8Q0AAAAAAAAAAAAAIE80AVCSFi9efNTH3d3dxbdTcaJdBJYsWXLKxwYAAAAAAAAAAAAAMFI0AVCSamtrj2sEaGtrO6WsY78uy166dOlpHR8AAAAAAAAAAAAAwEjQBECozs7OsKzW1tbigv1Bq1atOqWcY79u+fLlp31sAAAAAAAAAAAAAAAjQRMAp2znzp1nND9rAMgaAY58Rf+h7gawdu3atGnTpsMfNzU12QUAAAAAAAAAAAAAAMgtTQCcsiMX1/+8207H4sWLiwv3B7W0tKTu7u6T+trs8xYtWnRUU8GaNWtCjw8AAAAAAAAAAAAAYDhpAmDIsoX+S5YsOeGr8meL7levXp06OjrC7m/dunWHGwGyhf1z5879hfnZv2efN9gw0NDQkDZu3FhsBAAAAAAAAAAAAAAAyKuKQqFQGOmDoDQtW7asuKB/0Mm+Av+xjlx4v379+tTY2HhKOdkuAGvXrj38cWtra3GngCPzs2NcsWJFWrly5eHbsgaCbAcADQAAAAAAAAAAAAAAQN5pAuDnNgFki+kjFs8PNhBkr8Z/qk0AmawJIDuuI3cCyF7lPzvG7LYjGxWy21etWnV4FwEAAAAAAAAAAAAAgLyrHOkDoHRlr7Sf9Yh0dXWd9luWk72dTgNAprm5ObW3t6d169YVdwHIFvp3dnamTZs2Ff89y1+6dGmx2SD7vLw0ACxYsCDV1dWNyH1nzRNZY0V2DLNmzUoVFRXFt+x4stuyRpBT3QUCyL+2trbiTixz584tzgvZ/JDNFeYHIJp6iCjGElDK1NfAcFAPEcl4AkqZ+hoYDuohIhlPQClTXwPDQT0Uy04AMIKy5oVFixYdbmLIGiYidl442V0VVqxYcfi+M1nTxOD9Z5PZhg0bDk9qWVNI1mABjA5ZUZPtppIVP9m8kM0P8+fPL/5/1mSVnfwNzh/Zv2WfmzVmAQyVeogoxhJQytTXwHBQDxHJeAJKmfoaGA7qISIZT0ApU18Dw0E9dIZkTQDA8Gpvby80NzdnDThHvXV1dQ3LfTc1NR2+z8bGxsK6dete8PM3btx4+PMXL158xo8PGFnZHNHQ0HB4jli6dOkLzk3Z3HHk57a2tg778QL5pR4iirEElDL1NTAc1ENEMp6AUqa+BoaDeohIxhNQytTXwHBQD51ZmgBgGGSTyZo1a4rFUjaRHDuhDdfElh3DkfeXfXyysmMf6tcA+ZIVMrW1tUOeI44slvJSAAHDTz1EFGMJyAv1NXCmqIeIZDwBeaG+Bs4U9RCRjCcgL9TXwJmiHhpemgDgDDmyUDr2LetsGu7uplWrVh2+n+zYsmLuZGSdT0dOxlkxB5SfbP45ct7K5oyh0PENnIh6iCjGEpA36msgmnqISMYTkDfqayCaeohIxhOQN+prIJp6aORUZP9JQLiKiori+9ra2tTQ0JDmzZuXFixYkJqamoq3rVy5Mi1btuyor+nq6ir+W7TVq1enJUuWHP543bp1xeMYyvdxJNMGlJ9sfmprayv+f2NjY9q4ceOQvj772ixjUHt7e3HuA0Y39RBRjCUgb9TXQDT1EJGMJyBv1NdANPUQkYwnIG/U10A09dDIqR7B+4ayVip//Js2bTpqUlu6dOlJT2qDBd+xuru7z8gEDIyM7G/9yL/35cuXDzkjm1eyk8Nszsm0tLQM+UQRKD/qIaIYS0CeqK+BM0E9RCTjCcgT9TVwJqiHiGQ8AXmivgbOBPXQyKkcwfsGhkFWaA3KuqxaW1tP+mvr6+tPeHspT2rA0B3ZaZn9fTc3N59SzsKFC48qqgZP+ABGmnqIKMYScDLU10A5Uw8RyXgCTob6Gihn6iEiGU/AyVBfA+WsZRTWQ5oAoIxlXU0dHR2HPx7KpJbJujaPLfaGmgGUtmNPxk62+/FEjp0vVq1adVrHBhBBPUQUYwk4GeproJyph4hkPAEnQ30NlDP1EJGMJ+BkqK+BcrZklNZD1SN9AMCZkRVtq1evPu3uzTVr1hS3OskmyHnz5hUnO6B8HHsiNn/+/FPOyjooj5TNQU70gJGkHiKKsQScLPU1UK7UQ0QynoCTpb4GypV6iEjGE3Cy1NdAudo0iushTQBQplasWHHUx7fccsspZ51O5ydQ2m6//fajPj7d4iU70Tuyq3Lt2rWnvH0cwOlSDxHFWAJOlvoaKFfqISIZT8DJUl8D5Uo9RCTjCThZ6mugXK0YxfVQ5UgfABCvu7u7WFgdqaWlZcSOByhN2clYNl/8vG7toTr2JHHdunWnlQdwqtRDRDGWgJOlvgbKlXqISMYTcLLU10C5Ug8RyXgCTpb6GihX3aO8HtIEAKOgsymPHUrAmZdtX3Ss0z3Jq6+v/4X3ATAc1ENEMZaAk6W+BsqVeohIxhNwstTXQLlSDxHJeAJOlvoaKFcrRnk9pAkAytCxnU2nu30TUJ7ORBd2bW3tUR8fufUbwHBSDxHFWAJOlvoaKFfqISIZT8DJUl8D5Uo9RCTjCThZ6mugXK0d5fWQJgAow+1Nji2q5s2bN2LHA5SuY+eKY0/QTsW0adOOu23Tpk2nnQswFOohohhLwFCor4FypB4ikvEEDIX6GihH6iEiGU/AUKivgXLUrR5K1SN9AECsE22tNGvWrBf8/GwSHJwIs22eTnerJyA/ji2Cjt2q7VSc6EQxu5/R1mUJjCz1EFGMJWAo1NdAOVIPEcl4AoZCfQ2UI/UQkYwnYCjU10A5alMPaQKA0bB907GTVTaRtba2ptWrV58wo7m5OS1cuLD4HijvbsjhYMs3YLiph4hiLAFDob4GypF6iEjGEzAU6mugHKmHiGQ8AUOhvgbK0Tr1UKoc6QMAznx305Gdl9lklnU7bdiwIa1Zsya1t7enQqFQfJ99nE1ma9euTS0tLWnu3Lm2aYJRdIIXsd3bibrFd+7cedq5AEOhHiKKsQScLPU1UK7UQ0QynoCTpb4GypV6iEjGE3Cy1NdAuWpTD2kCgHJzoo7KwaIrm9SWLFmSVq1alTZu3FicxAY7n7L32cfZ5Jb9WzYZZpNaNrmtXLly2L8P4Mzq7OwctvvS6Q0MN/UQUYwl4GSpr4FypR4ikvEEnCz1NVCu1ENEMp6Ak6W+BspVh3pIEwCMFtkklU1q2RYoixcv/rmf29jYmNavX3/442XLlhW/Figfw7XVG0ApUQ8RxVgCjqW+BkYb9RCRjCfgWOprYLRRDxHJeAKOpb4GRptNo6ge0gQAo6Roy7YsWbp0aWpqajqprGxyy7qgBmWdUXnrcgJKo9PbCSUwnNRDRDGWgKFQXwPlSD1EJOMJGAr1NVCO1ENEMp6AoVBfA+VIPfQzmgBgFBRtt912W/HfWltbh5SXdUENboEy2OWUdUkBvJBseySAkaQeIoqxBJQC9TUwktRDRDKegFKgvgZGknqISMYTUArU18BIUg/9jCYAKCMdHR0nvD3rTFq+fPkpZTY3Nx/18aJFi04pBwBgOKiHiGIsAQCjnXqISMYTADDaqYeIZDwBAKOdeuhnNAHAKNn6JOtUOhULFy486uOsu6mtrS3oyIByY2s3oFSph4hiLAHDSX0NlCL1EJGMJ2A4qa+BUqQeIpLxBAwn9TVQirpHWT2kCQDKSH19/Qlvz7YpOdUtmBobG4+7bahbpQD5mS8A8k49RBRjCRgK9TVQjtRDRDKegKFQXwPlSD1EJOMJGAr1NVCO1EM/owkARoETTU5DceykWOrdTQAAx1IPEcVYAgBGO/UQkYwnAGC0Uw8RyXgCAEa7xlFWD2kCgDLyQh1MWXdTdNdUqU9uQOls1Xaq3ZUAp0I9RBRjCThd6msg79RDRDKegNOlvgbyTj1EJOMJOF3qayDv1EM/owkARsEWJ7NmzQqfMNetW3damcDIOlMnXp2dneHFFcBQqIeIYiwBQ6G+BsqReohIxhMwFOproByph4hkPAFDob4GypF66Gc0ATBqZN04FRUVp/2Wx6LthSa8UuwIBYbHcJ54TZs2bdjuC0A9NDzU1rFG81iCcqG+BsqRemj4qK9jjfbxBOVAfQ2UI/XQ8FFfxxrt4wnKgfoaKEfqoZ/RBABl5kwUbieaGE/UzQnkuxiK+Ls+UdFjuzdguKmHiGIsAUOhvgbKkXqISMYTMBTqa6AcqYeIZDwBQ6G+BspRg3pIEwCUm+Hq3izl7ibg1IqWiL/rnTt3HnfbvHnzTjsXYCjUQ0QxloChUF8D5Ug9RCTjCRgK9TVQjtRDRDKegKFQXwPlqEE9lKpH+gBgOP/gFy9enMpdY2NjcXu7M92JpHMTymO+6OjoOONFz3BuLQeQUQ+deWrrWKN5LEE5UV8D5Ug9NDzU17FG+3iCcqG+BsqRemh4qK9jjfbxBOVCfQ2Uo0b1kCYARo+syFi1alUqdwsWLEgrV64M7UQ60cSoaIP8mz9/flq7du1x88XpFC7HzhfZXFHKhRBQntRDZ57a+tQZS1C+1NdAOVIPDQ/19akznqB8qa+BcqQeGh7q61NnPEH5Ul8D5WiBeihVjvQBALFOtK1Se3v7aWWeaGKcNWvWaWUCI6+pqem420638/vYry/lIggoX+ohohhLwFCor4FypB4ikvEEDIX6GihH6iEiGU/AUKivgXI0Tz2kCQDKTdZRmW1zcqTo7ZxeqDgE8uXYuSKzYcOG08o8dr5paWk5rTyAU6EeIoqxBAyF+hooR+ohIhlPwFCor4FypB4ikvEEDIX6GihHteohTQBQjhYuXHhGi7asc1P3JpSH5ubmsG7IrBPy2G7IW2655ZTzAE6HeogoxhIwFOproByph4hkPAFDob4GypF6iEjGEzAU6mugHC0c5fWQJgAoQ4sXL/6FhdfJOlFn1JIlS0752IDSsnz58qM+bmtrO+WsY782O4HMOi4BRoJ6iCjGEjAU6mugHKmHiGQ8AUOhvgbKkXqISMYTMBTqa6AcLR7l9ZAmAChDWVF17OR2qoXbsV+XZS9duvS0jg8oHdmWSEdui7Rp06ZTzlq3bl2uiiCgvKmHiGIsAUOhvgbKkXqISMYTMBTqa6AcqYeIZDwBQ6G+BspR7SivhzQBQAnp7OwMy2ptbT2qw3LVqlWnlHPs1x3bFQrk37F/16tXrz6lnCO/LjtxbGpqOu1jA0Yf9RBRjCVgpKivgVKhHiKS8QSMFPU1UCrUQ0QynoCRor4GSoV6KIYmABghO3fuPKP52aSWTW5HdikNtcNp7dq1R3V9ZgVbqXc2AUOXbct2ZLf3kXPHyVq5cuVRH69Zsybk2IDyph4iirEElBL1NTAS1ENEMp6AUqK+BkaCeohIxhNQStTXwEhQD505mgBghJxoS6XT2WbpRLJtTo7stGxpaUnd3d0n9bXZ5y1atOioiVLRBuUr+/se7Ijs6Og47qTtF80Xy5YtO/xxVlQ1NDSckeMEyot6iCjGElBq1NfAcFMPEcl4AkqN+hoYbuohIhlPQKlRXwPDTT105mgCgGGWTV5Lliw5YadRNpFk2yVlBVaUdevWHZ7csslq7ty5vzA/+/fs8wYnwaxY27hx41FbpgDlJfs7X79+/eGPs5O2rMPxF8nmiRtuuOGoE7w8dEECI0s9RBRjCShV6mtguKiHiGQ8AaVKfQ0MF/UQkYwnoFSpr4Hhoh4aBgXgjFi6dGmhtrb28Fv253Yqb0dmbNy48ZSPp7m5+ajc1tbWQldX11Gfk32cHfeRn9fU1HTc5wHlK5tnGhoajporIj4XGJ3UQ0QxloC8Ul8DUdRDRDKegLxSXwNR1ENEMp6AvFJfA1HUQyOnIvvPcDQbwGiTdUlm2yVFdAQNdhllHUaNjY2nnJN1bWbHdWR3U9a5lB1jdtuR259kt69ateqoLVKA0SObK7Juy2xeyOaIW265pdj1mGlvby92aA5uy9Tc3GyLN+CE1ENEMZaAvFNfA6dLPUQk4wnIO/U1cLrUQ0QynoC8U18Dp0s9NHI0AcAolBVna9asKb7v7Ow8XMRlk1k2kS1cuPC0JlCgfGQF0W233VYsfgYLIPMFUA7UQ0QxloChUF8D5Ug9RCTjCRgK9TVQjtRDRDKegKFQXwPlqK3M6yFNAAAAAAAAAAAAAAAAkBOVI30AAAAAAAAAAAAAAADAydEEAAAAAAAAAAAAAAAAOaEJAAAAAAAAAAAAAAAAckITAAAAAAAAAAAAAAAA5IQmAAAAAAAAAAAAAAAAyAlNAAAAAAAAAAAAAAAAkBOaAAAAAAAAAAAAAAAAICc0AQAAAAAAAAAAAAAAQE5oAgAAAAAAAAAAAAAAgJzQBAAAAAAAAAAAAAAAADmhCQAAAAAAAAAAAAAAAHJCEwAAAAAAAAAAAAAAAOSEJgAAAAAAAAAAAAAAAMgJTQAAAAAAAAAAAAAAAJATmgAAAAAAAAAAAAAAACAnNAEAAAAAAAAAAAAAAEBOaAIAAAAAAAAAAAAAAICc0AQAAAAAAAAAwP/f3t38yLH2/UHvmeOwDH7R8wixCLpnYBekMLYXWSAWx/MfjG3EAsHCYxYRS1v+Cw72GgXsowRQCJJnvGU1PhJiezxOSIAoisb3AiHEnXjshyjw5Ml9POjXnqunqrr6rap6ul4+H8me6e7qqqu6+uV7TV+/ugAAAADoCEUAAAAAAAAAAAAAAADQEYoAAAAAAAAAAAAAAACgIxQBAAAAAAAAAAAAAABARygCAAAAAAAAAAAAAACAjlAEAAAAAAAAAAAAAAAAHaEIAAAAAAAAAAAAAAAAOkIRAAAAAAAAAAAAAAAAdIQiAAAAAAAAAAAAAAAA6AhFAAAAAAAAAAAAAAAA0BGKAAAAAAAAAAAAAAAAoCMUAQAAg/Tx48fR7u7u6NWrV5tuCgAAdJ58DQAAzZCtAQCgOfI10GdbFxcXF5tuBADAddvf3x+9f/9+tLe3Nzo9Pd10cwAAoNPkawAAaIZsDQAAzZGvgT4zEwAAMDhfv34dd/LCgwcPNt0cAADoNPkaAACaIVsDAEBz5Gug7xQBAACDc3R0NPn96dOnG20LAAB0nXwNAADNkK0BAKA58jXQdzc23QAAgOv2+vXr8c+Y7m1nZ6dWxfj5+fno7OxsfDl+//Tp0/j3+BmV5CcnJw23HgAA2kW+BgCAZsjWAADQHPka6DtFAAC0WgTmW7duLb18BPfT09PRdXv37t3o4cOHSy9/eHg46WxwvaID9vHjx/Hvjx8/rryeZZ6XN2/erLx+AIB1kK9pmnwNAAyVbE3TZGsAYMjka5omXwNDsL3pBgBAk2E5Anx0uq7b8+fPV1peB2Bzsh3s6HBX9ezZs9HBwcG4ontWxfj9+/crrx8AYF3ka5okXwMAQyZb0yTZGgAYOvmaJsnXwBBsXVxcXGy6EQCwarVudKyiQxcdpqgIz7ruabaic3n37t3xdmMKsKxo388//zy+TeeuHXZ3d9cyHdubN29GT58+zV0XU8FVnVIOAOC6yNfUIV8DAFyRralDtgYAyJOvqUO+BobATAAAdE4E5+Pj43HHKX6Pitus6GxFkL/O6uFoQ1lH7sWLFzNv4/pFpzw9N4qdsqal5ycAQNvJ11QlXwMA5MnWVCVbAwBMk6+pSr4GhkIRAACddfv27Ulnat60XutWVuWb7O3tXVs7WCz7vCj+gaCu09PT3OWoJgcA6BL5mlXJ1wAA5WRrViVbAwDMJl+zKvkaGApFAAB0Vqqgjs5Usao2Ol/XIbYT7RDqu+Ho6GgtnbxQnO5vf3+/8W0AAKyTfM2q5GsAgHKyNauSrQEAZpOvWZV8DQyFIgAAeqFYbf3169ep4L2u6uHDw8O1b4f64vkQz4t1TPcW6y1OM6jzDwB0mXzNIvI1AMByZGsWka0BAJYnX7OIfA0MiSIAAHqhrLO17mnfIth//Pix8U4D65GeD+uozi/+USG2UTwDAQBAl8jXLCJfAwAsR7ZmEdkaAGB58jWLyNfAkCgCAKAXysL7u3fvJtW96+o4xDYF+m6I50N49OhR4+s+OTnJXVbpDQB0nXzNIvI1AMByZGsWka0BAJYnX7OIfA0MiSIAAHqjrOr6zZs3a9terFuld7c6eWEdx6xY7f348ePGtwEAcN3ka2aRrwEAViNbM4tsDQCwOvmaWeRrYGgUAQDQGwcHB+Oq7+uY9i11HGKbtF96HkRl/t7eXqPrjjMKxPR/Waq9AYA+kK+ZRb4GAFiNbM0ssjUAwOrka2aRr4GhUQQAQK8cHh7mLkcA//jx41o6DuuYOozmRUcsVWOvo2NerPSOzmTxDw4AAF0lX1MkXwMAVCNbUyRbAwBUJ19TJF8DQ6QIAIBeKZvOq+mK79RxMN1bN2Sn/VvHMTs5OcldVukNAPSJfE2RfA0AUI1sTZFsDQBQnXxNkXwNDJEiAAB6pWxKr2zQb0KsL7bR9NRhrMfbt2/HP+N4xfNj3dXe+/v7jW8DAGBT5GuK5GsAgGpka4pkawCA6uRriuRrYIgUAQDQO2UVve/evWts/VE9rtK7G7JT/q3jmEXlf2wjS7U3ANA38jWJfA0AUI9sTSJbAwDUJ1+TyNfAUN3YdAMAoGmHh4dTof6nn34aHRwcNFLZG8H+0aNHo3WIDun5+fm4A/H58+fxtuL3dF1c/vLly+jmzZtT94uq5ujUpGWjsjn+RfVx7Ps6Kp3L2h/tiHamtkdbY9v37t0bH5frrJLPTve3jmNWrPSO/Swemzgm0Y4PHz5MPSaPHz8ePXv2rPF2AQA0Sb6WrxP5GgCgHtlatk5kawCA+uRr+TqRr4GhUgQAQG87e9mp3iJsR8iu29mJwB6dpmKYb0K07+HDhyvdJ/bx+fPnk45dVBpH2+JydCyiIxL/Ypm4LdrfdIcvthXrzz7e0ZmLY3Dnzp3R2dnZeN/i9vgX7Xj58uW1dPhSlX96XJp2cnKSu5z9Y0I87tGxjX2PfY027O7uTu4XbUudwOPjY1MIAgCtJl/L10G+BgCoT7aWrYNsDQDQDPlavg7yNTBYFwDQUXt7e+N/ZU5PTy/iYy7779mzZ7W29+XLl/F6Tk5OSm8/ODiY2uasZWet/8GDB+N92tnZmVpX+hfLxb9YLi7Hds/OzmY+Dmm5ph6HrNevX1/cvHlzsu5oS7Rtlng8su1ep+xz4Pj4eC3bKB6ndLzjMY7Lsa+zjk0sm71vtBcAYJPka/l6HvkaAGB5srVsPY9sDQCwGvlavp5HvgaGTBEAAL3s6JWF8OiQ1O3UxDpnqdvRK8p25oodgmhH7M+y6y+2rYlOVurMpH/x+Cwrlo37RMd2XQ4PDydtW4fU8S92wmOflu1cpmVTpxAAYJPka/l6HvkaAGB5srVsPY9sDQCwGvlavp5HvgaGbHvTMxEAwLrEdFvFqcliGq6qYmqu4jrXKaYoi6nRimJauJhG7PT0dDyN2DKKU4rFdGP7+/uV2xaPw6tXr3KPTUzxtqxYNu4TxyM7VVyTjo6OpqZha1LxuRSPb0x9F9fHlG7LbDc7xV9M/1bn+QkAsG7y9RX5unnyNQAwJLL1Fdm6ebI1ADA08vUV+bp58jXQZooAAOitso5HdC6qiI5VBPFVOjNN2NnZKW1LdCTKbpvnl19+GXcek+hUZDtry4pOYrZzFp3NVR6XaP/du3cnneayzmxdsW/RsQ/r6pzHMciK50c8LnH9sh3w27dvT60DAKCt5Os8+bpZ8jUAMCSydZ5s3SzZGgAYGvk6T75ulnwNtJkiAAB6Kzo1xcAdnZTUAVhFdEZiXdmO0nUodgRCdKqW7UhkRdtfvHiRuy6qk1fpXEQnLVuhXKXzHJ287DZjnfGvSalNZc+BppRVZqfnybKKz6ezs7NG2gYAsA7ydZ583Sz5GgAYEtk6T7ZulmwNAAyNfJ0nXzdLvgbaTBEAAL0WHZmiKlOMxfRh1znd2zzFjtYqnj17NtW5KHuMZikuG52aVarOo0NX1tFuuqMXHfrw6NGj0TrEPhTbHFO+xeO76nrW+TgAADRNvs6Tr5shXwMAQyRb58nWzZCtAYChkq/z5OtmyNdA2ykCAKDXyiq0V61OTp2Gg4ODURuUVYCvojg9W1QtL1PxHZ2Q9FhU6STOa/uq09fNk+3Ir6tzXlbp/fPPP6+8nmLH7rrPJgAAsCr5epp8XZ98DQAMkWw9TbauT7YGAIZKvp4mX9cnXwNtpwgAgN4rdmwiXK8yzVl0DIvr6LLHjx9PXffTTz8tvF9MZ1Z07969lbYdHZliRXQ8tk129I6Pj8c/Y51Rgb0OJycnucvxR4Aq2/r1119zl+/fv1+7bQAA6yZf58nX9cnXAMBQydZ5snV9sjUAMGTydZ58XZ98DbSdIgAAeq+s4nfZiu+Ykisqe9sy3VsTokNSrCouVnHPmvYuKzpSVaqTo8N4eno6PgbRYVq1+n6Z47Xu6vxitXdZ57nKetbVMQUAaJJ8nSdf1ydfAwBDJVvnydb1ydYAwJDJ13nydX3yNdB2igAA6L2yqt/stGDzRBV03LfJauQ2KKvSnlcBHxXy0YlqqlMS940q75iSr0nXMd1bPA7Fqdqq7EfZY7pq9TwAwCbI19Pk6+rkawBgyGTrabJ1dbI1ADB08vU0+bo6+RroAkUAAAxCWehfprMXy/Sp0nteJ61YebzotjZ2ft++fTv+uc7OeVmFdpWq96bWAwCwCfJ1nnxdnXwNAAydbJ0nW1cnWwMAyNdF8nV18jXQBYoAABiEqCwuWjTVWATxqMYtu2/X3blzZ+q6z58/z1z+7OxsqXVsUlRPp4r1dXbOY5q6rKoV602tBwBgE+TrPPm6OvkaABg62TpPtq5OtgYAkK+L5Ovq5GugCxQBADAYxQ5bdAqKU3cVO4J97OSFsqrieY9FcWqyWevYpGzH/dGjR2vbTrFK+/79+42sZ39/v1a7AACum3x9Rb6uTr4GAJCts2Tr6mRrAIDv5Osr8nV18jXQBYoAABiMsgrgWRXf0bF59+5dL6d7C7dv316qM5ecn5+P2i5N4RdV0+vqhMZjVOwQV6nSjj8yFB9v1d4AQNfI11fk62rkawCA72TrK7J1NbI1AMAV+fqKfF2NfA10hSIAAAZjb29vtLOzU9o5KDo6OhovG/fpo7KO27zOUVnHsE2yHad1ds6LFdrxHKnSqXz79m3u8sHBQe22AQBcN/n6inxdjXwNAPCdbH1Ftq5GtgYAuCJfX5Gvq5Gvga5QBADAoBQ7Aamqu+jly5e9rfSeVdld7ARnlXVm5lWHX7ds1f46O00nJyeNVGgXn3OPHz+u1S4AgE2Rr7+Tr6uRrwEArsjW38nW1cjWAAB58vV38nU18jXQFYoAABiUw8PDhdO+ReVwTOtVtmxffP78eeq6O3fuzFx+d3d36rqzs7NRW0R1/nVUTX/48CF3eX9/f+V1pOdXlmpvAKCr5Ovv5Otq5GsAgCuy9XeydTWyNQBAnnz9nXxdjXwNdIUiAAAGJaqWi6E6pvHKVi5Hxy+WqTKVV1dEZ6NoXuVy2W3FzsqmROX0dUz3FtsoPm5VpgQ03RsA0Cfy9Xfy9erkawCAPNn6O9l6dbI1AMA0+fo7+Xp18jXQJYoAABicss7Amzdvcr/3ebq31LnNik7tvE5LTAdX7PgWK583JXWcon1Vp2BbRnF/Y3vzpsmbJftcWzTdW1TZF5cHAGgb+Vq+rkK+BgCYJlvL1lXI1gAA5eRr+boK+RroEkUAAAxOdAaKnZY07VtUDq+7w9DGSu9Hjx4tvF9xmah+bqLiO9YTj3vd+y6zD3WcnJzkLld5jsRjnz2zwLxq7zQ1XJXOJADAdZKv5esq5GsAgGmytWxdhWwNAFBOvpavq5CvgS5RBADAIB0eHuYuR6COYP3TTz9N3dY3qVOb9fz584X3K1umagctKx7zZbZf5ujoaPL7uiv0ixXy+/v7tR/7ec+1tGyf/+gAAPSHfJ0nXy8mXwMAlJOt82TrxWRrAIDZ5Os8+Xox+RroEkUAAHRasXJ2WWWdgidPnow7e22f7q1uhXVxCrHobCxTURzLFCuTyzqNVdpTtTOTth9tmzdlXRPPs2KVfJU2Zzum4eHDh3OXnVUJDgCwLvL16uTr1cnXAMAQyNark61XJ1sDAEMhX69Ovl6dfA10jSIAADorOjzn5+eV7hsdg2JQjyAfnYW2T7H19u3byvctVlXH9HYvX75c+v7FZeMY1Kn4jvtGJ6pKtXe287XuzvmHDx+mHrdVnyfR3uIfJmZ1FqOyPJZ98eJFhdYCAFQjX69Ovq5Gvv4fKC0AAE6ISURBVAYA+k62Xp1sXY1sDQAMgXy9Ovm6Gvka6BpFAAB0UgT8FJyLVbjLKusc1AnWVSvPq3SOqlR8x31evXqVu+74+HjcaVlWdG7iPsUq+ar7HveNiuYqnets1fq6q6JPTk5yl+/du7fyOop/lJhXnR4d37h9nRXsAABZ8rV8LV8DADRDtpatZWsAgObI1/K1fA0wmyIAADopOghlv6+irHNQp8NQ1vmq2gldZH9/f6XloyNWvE9UbleZtiweo2fPnuXWXeUYRHvivj///POoznRv11GhH9XXdR7/UGzjrDZHRz6eN1UfFwCAKuRr+Vq+BgBohmwtW8vWAADNka/la/kaYDZFAAB0RqpWvnXrVq4DFb/HdXHbqlXQh4eHpb+v2q6ozi3b9k8//TSZ1qwpUW0dlcN3795dar2xzI8//phrX3SSsp21VUUnMXv/2MeHDx8uff/oKEXnKaqoV6k2T2Jf0v6se7q3sg57lQ5ysXNX1tFLneZ4Lqr0BgDWTb7+Tr6WrwEA6pKtv5OtZWsAgCbI19/J1/I1wEIXANBiX758uYiPqyr/4r6LnJ6eTpaP35dx8+bN8b8qbUr3ffbsWeX9j3aenZ1d7OzsjNd1fHw88/4nJye5tsZ94rqmxLZXWf/r168n7a7Tjnj8VjnOdUQ7i8egzuOV1nFwcJC7LR3Tvb29BloNAFBOvpavy8jXAACrk61l6zKyNQBANfK1fF1GvgaY78biMgEA2LxVK4KXra6Oito0zdsq1bWx/ipVyum+dau/o1L49PR0XBkcVdZxOfZjd3d3fPvZ2dm4AjtVREdbX7x4UavCu0xsMyqfo9r9zZs34+1FJXds79GjR+P2fP78eVwt/eHDh/F+x/LR9qqPX4hthVhXnfVUUWdawLhvVHJH++P4xBkK4thF1XtcF/sTvwMArJt8nSdfy9cAAFXJ1nmytWwNAFCHfJ0nX8vXAPNsRSXA3CUAgI2JjlFMZ5cVnaRspzSWianlojOVpkKLzk90IO7duzfuCFadomxV0Xl5+/btpB3RtmhH/Is2x/RsZVOdrSKmiovOZJr+rk7Ha9Up6prqiMXjFNPuRec3xHGKx+Y69gUAYMjk62nyNQAAVcjW02RrAACqkq+nydcAiykCAICOd/SGJjpEqdpbjAEAYBXy9TT5GgCAKmTrabI1AABVydfT5GuAxbaXWAYAoDVSJ09lNAAA1CdfAwBAM2RrAABojnwNsJgiAACgM2KqtGzVNwAAUJ18DQAAzZCtAQCgOfI1wHIUAQAAnfH69evxz5s3b44ePHiw6eYAAECnydcAANAM2RoAAJojXwMsRxEAANAJX79+Hb1//378+6NHjzbdHAAA6DT5GgAAmiFbAwBAc+RrgOUpAgAAOuHo6Gjyu+neAACgHvkaAACaIVsDAEBz5GuA5SkCAAA6Nd3bzs7OaG9vb9PNAQCATpOvAQCgGbI1AAA0R74GWJ4iAABosfPz86Wu67tPnz6NPn78OP5dpTcAAFXJ19/J1wAA1CVbfydbAwDQBPn6O/kaYDWKAACgxb5+/brUdX337t27ye8HBwcbbQsAAN0lX38nXwMAUJds/Z1sDQBAE+Tr7+RrgNUoAgCAFlc4P3nyZOr658+fTyqfhzbdW0z1FlO+AQDAquTrK/I1AAB1yNZXZGsAAOqSr6/I1wCrubHi8gDAGjt2d+/eXVjRnV3u5s2b45+//PLLuBPUR9GpjX0OpnsDAGBZ8nU5+RoAgFXJ1uVkawAAqpCvy8nXAKtTBAAALRIdvOi8pQ7csvc5Pz8f9dXbt28nvz969GijbQEAoFvk62nyNQAAVcjW02RrAACqkq+nydcAq9u6uLi4qHA/AIBrcevWrXFn9sGDB6OTk5NNNwcAADpNvgYAgGbI1gAA0Bz5GmB12xXuAwBwLd6/fz+Z/s50bwAAUI98DQAAzZCtAQCgOfI1QDWKAACA1osp8A4ODjbdDAAA6AX5GgAAmiFbAwBAc+RrgNVsXVxcXKx4HwCAa634vnfv3rizBwAA1CNfAwBAM2RrAABojnwNsDpFAAAAAAAAAAAAAAAA0BHbm24AAAAAAAAAAAAAAACwHEUAAAAAAAAAAAAAAADQEYoAAAAAAAAAAAAAAACgIxQBAAAAAAAAAAAAAABARygCAAAAAAAAAAAAAACAjlAEAAAAAAAAAAAAAAAAHaEIAAAAAAAAAAAAAAAAOkIRAAAAAAAAAAAAAAAAdIQiAAAAAAAAAAAAAAAA6AhFAAAAAAAAAAAAAAAA0BGKAAAAAAAAAAAAAAAAoCMUAQAAAAAAAAAAAAAAQEcoAgAAAAAAAAAAAAAAgI64sekGwBB8+/Zt9Pnz5003AwBgkO7cuTPa3lb/3BeyNQDAZsnX/SJfAwBslnzdL/I1AMBm3RlYvlYEANcgOnl/+qd/uulmAAAM0h/+8IfRn/zJn2y6GTREtgYA2Cz5ul/kawCAzZKv+0W+BgDYrD8MLF8Pp9wBAAAAAAAAAAAAAAA6ThEAAAAAAAAAAAAAAAB0hCIAAAAAAAAAAAAAAADoiBubbgAM1Q9/5a+ORj/cKNTifP99a+vyuq2tqdtG6bbM71ult23Nvm30Q347uXVdbnPr+zLZdaTlty7vn27NrTOzP1tb09dtT9ZVdlv+urJ1pWVy67r8WX5but/Vun642Jq6Lv1e/Pn9963Czys/XF6XDlX+aF4unzmM6fa0/Nbo4uq2wjq2tmbfltvmZP3Ty6f15+93eV1JGybtymw7rX778rrs03Ky/pL7le1HWlnZbZPtjMq2U9yv7A7l25e9/eq4TO/j3P3Prj7td6ENpfs/537L7+P0/YptnXcMFrVral0lbS59vhQul+1H7rEsPPfyz/W07YsV97Hsfouvyz/P8teVPzem11m2fHrNbW19y92vbDvlj9v0+ifXXa4zt+2SdW2Nvs08jqPtsu1cLl+yrtFk25e3Xd4/91jk1pV2aPa6JuvI3m/yBCtbvtCW3Przl3M7vlV2v+L2ci/C/OWy6+bdlrnu8iOl7OM8c7nsg+Dy/vkX7/TyabnSD5qt5W8rWX/utrQ/JW8cV9ddXXm131MfRpPlLkpuS9ucun9m+Xy70roKj0Nuv/PbO/9n/3L07/+1/zHzYDAEt/6Nvz7avvGvjX/fyr3mUlabfp1Mlit7Hk+e99tLLX+1/tmvia05t+W3XegLlLar7HW/PfM1N3W/stdoyeuxbDul7wmF12H567jw3pBZb/69cN4+Xt6UjmvJ8cw/XPnlfsjcmB6uH7amb0vX3bi8Ll3+vtzlbZl9vDFZ1/frbmSWT8stc7/sdZP7ZW+brP9yX7fn3bY987bs/qb+zA+ZB/PG5X3T4/dDbl3bU+1K20rrSMtkr9tO98s9zum6yz5b9n6X67yR7ZdN2vXDVLvSOlK7ti8v57aT6eMWt5ldV7pvabtKtp2Wv3ocyrYzfb+Ly8f+4ttvuZ/Z379lr/stv9zFtz9mlv+WW2aUuy0tf5UvL367vD3d9lvmtos/lm5v7HK58jandWa3k9pT+Jlr8+XyJfs6uphe12Q/0jKZdVyk5bP7M/XYZG+7mHpsJvctue1qXem2q+w5ue4ie116vOYtn7Z7ddu3yfL5Zb83K39b9vf0EJbdlraT1p19KLLLp+smt12UbKfwc9Z1V9ssWX7ebWnbhcvff//+usnsxtU6LjdYup3Ln5mHcnJddv9/S+soXT5/W7o8Xu6ytWlVudvS/Uazrytf17fcstnr8uu6XK7ktm+Xt12t62pnJ8tfzL7fb6PvT6o/Xvxx9A//xT+4ejAYbr4uzb+Xl8sy65x8PW/5ybqbyNeZz966+bos4071fxvI19l11c7Xub8JFLZdkqXn5euUDbPLpWyXfZjr5uuUh8vydT7PLpHLM+sq5uvc/Wrm69y+1szX2e0U83V2nXXzdXY7dfN1WjbfrrSd2Rk8v47p5Yv5Or+devl6kg1L8nU+Ny/O15NsXZKvU7ZuIl9n21w3X+f3P5+v832Dmvk6c7+6+TrXrkK+zubluvk6l41r5uvSjFuSQZfJ19lcXrytNBtXzNf5LF0vX+dybGH5bP6tm6/zeblevi7Ny5N1Xt1WN1//xbe/GP1v/+//evXgMQi3/s2/Ptrebihf5/JvzXydy3izb1sqX5fm8tH0/Wrm69K/JVfN12W3bS9eZ/k+zs7X2eNTN19ns3QxX6eM3ES+Lr1fxXxdftv2zNvm5euUrcvydf7v0vXydfa2uvk6m2OL+Tq3nZr5Ov936Xr5OmXrsqyazax183U+/9bM17m8OPtv6cvk63yb8/k6d7+a+br8samWr/PrmpeX6+XrbP6tm69zObuQr3N/Z66Zr+fdr3T5ebdl2zW1zNXrZpl8ndvOVF6e3v+q+Trl4fF1hbasmq/z68rn63S5iXydls0uJ1/PpwgANuWHG6OtH/5SYXTiZSftqjdQowhgu2IRwPaKRQDptmWLAH5YoghgeuD+/CKA2bdtlxYBpNuy285f98PcIoDpTsd2xSKA7IDi5YoAlhvMftUPvahUBLC9piKAYl94+WKDwm25/Wm+CKDs8bpqw5z9L7lffl3NFAHMa8OidhUHuJc+NyoWAeQf53pFAGUD6psoAigOwC9t87wigNKB/qsWAXxbWASQ1rl0EUDJulYtArgqQCgpAijctmg7SxUBlC5fsQig9H6F7eWWT+3K3Hb1ZM1fLrstc135APziuso+CC7vn3/xzly+kSKA7cW3zRvcmx9YPFr4R9fS+022Pb2vqw5umFUEwDBtb/+l0fYPc4oAyr5YmfPlydVt28stP2+w0XbFIoC5g6eWuF/Z63DFIoB5r+O5RQDbDRQBlAbsrcWDlHIPff66eUUA6QuT78vlr8t/sXL5c87A/bIvQ5a5X3abZQP3i7dl92d6INKiIoD8lyxlg5R+mDtIafoLj7IvYq4GCOW/rMhfV/KFx6R9JV9czB2kVPbFSsl1k+VnD+ovLpO7bsXli8vkBynlB93nBynN/lIj+2XI1XUlBQIlg42miwCmBxuVD1IqtqFskNLswoXcwP1iAULZIKXSdeW/RMmuo/wLnzmDlEq/bMn/BT7/ZUhxkNLsL1by6y+7rfBlyLKDlAq3ZX//Vlhndnevvii5mHnbwi81lvjyZN51qxYBlH5RMqcIYPJlw5ztlA1Synw3s1QRQNkXK1dfdOQv52+bfV3+y5D8lya5dS1VBJBZ1wpFAGVfrEz+bpZ5TBl4vp6TpRcVARTz9eqDlCrm65L7Vc3XpQORViwCWCZflw5SqpqvSx/LwuUl83V2kNL2EoOUqubrelm6eL/Zebnstqr5uuy2qvm6LC9f3b8sS1fL17k8WzNf52+bPah/mXw9b/ncIKWa+bp0kNJlRs7n5sX5unyQ0nK5fJV8Xdbmqvl66UFKNfN1dl118/XSg5Rq5uv8IKV6+XruoP46WXqFQUplyy1bBFA3Xy87SKluvi4bpFQ1X5cPUprO0nXzdXbAE8MRBQBN5ev8bTXz9by/ly+Zy+cXAcy+X9V8XZaXK+frubddNaFuvs4VAdTM17mB/oV8PS9Ll123+t+4q+Xr8oH+2wtvy11X+rfn4rqWy8vL5OuyIoCq+Xpuli7bTsV8nf/7d718nS8CmP334rr5et79Vs7XpesqKwJYnK/zbc7n67Ligar5emERwAr5ujxL5/N2E/l6YRHACvm6/G/P0xm0br5e+e/YF1X/xn31ulkmX5f/jbvktpr5Op+X6+XreUUAufxbM1+XZWn5er7s1+kAAAAAAAAAAAAAAECLKQIAAAAAAAAAAAAAAICOUAQAAAAAAAAAAAAAAAAdoQgAAAAAAAAAAAAAAAA6QhEAAAAAAAAAAAAAAAB0hCIAAAAAAAAAAAAAAADoCEUAAAAAAAAAAAAAAADQEYoAAAAAAAAAAAAAAACgIxQBAAAAAAAAAAAAAABARygCAAAAAAAAAAAAAACAjlAEAAAAAAAAAAAAAAAAHXFj0w2Aofrt/P8a3fiTv7LpZgCsxd/5+D+Nf25dXo6f//Hef7DRNgHAuvw//8f/Psp/8G2N/vK/9Vc32STotb/1N/+70dZWesGNRttb26PDv/GfbrRN0Gd/95/8vdHFxfff08//8Hf/3kbbBLBOf/aPPo4z/djlz7/8797bbKOA1vsv/ubfGv+8+Pbt+xUX30bP/7P/ZLONAoCG/NnZP7jKyGFrNPrX/52/tskmQae8+S//m8nftLcvf/6N//xww62C7vg7//jvTX5Pf6P+j/5tf6OGoAgANuXP/u/RSBEA0FN/9+//z1PXKQIAoK/++f/5j6auUwQA6/O3/+u/M3WdIgBYn//h7H+Zuk4RANBn//wf//2p6xQBAIu8/K/+9tR1igAA6It//ukfTl2nCACW9/Pf/G+nrlMEAMv77//J9N+oFQHAd9uXPwEAAAAAAAAAAAAAgJZTBAAAAAAAAAAAAAAAAB2hCAAAAAAAAAAAAAAAADpCEQAAAAAAAAAAAAAAAHSEIgAAAAAAAAAAAAAAAOgIRQAAAAAAAAAAAAAAANARigAAAAAAAAAAAAAAAKAjFAEAAAAAAAAAAAAAAEBHKAIAAAAAAAAAAAAAAICOUAQAAAAAAAAAAAAAAAAdcWPTDYAhu/jtXxVqcS5/30o/t2bflvu97Lat2beNfpizrsv7bV0uU7qO7G3fl7+4vG4rsz9bW9PXpXWV35a/7qJkXWk72duvlp++7dvldduZdV1cbE1dl35PP7/lbtsq/Lzy7fK69HDn9/Ry+cxhnDzK6WEeXVzdVljH1tbs23LbnKx/evm0/vz9Lq8racOkXZltT55Jl9dln5aT9Zfcr2w/0srKbrt6xpZtp7hf2R3Kty97+9Vxmd7HufufXX3a70IbSvd/zv2W38fp+xXbOu8YLGrX1LpK2lz6fClcLtuP7GNZ5uv/9y8K+3ix4j6W3W/xdfnnWf668ufG9DrLlk+vua2tb7n7lW2n/HGbXv/kust15rZdsq6t0beZx3G0Xbady+VL1jWabPvytsv75x6L3LrSDs1e12Qd2ftNnmBlyxfaklt//nJux7fK7lfcXu5FmL9cdt282zLXXX6klH6cX10u+yC4vH/+xTu9fFqu9INma/nbStafuy3tT8kbx9V1V1de7ffUh9FkuYuS29I2p+6fWT7frrSuwuOQ2+/89s7/2b/MPBAMxbdv/2o0+u0yl02eYFdPtq1v06+TreJzNPdaTc/77eWWL/Hbv/rzyztetmHO6yW/7UJfoLRdZa/77Zmvuan7lb1GS16PZdspfU8ovA7LX8eF94bMevPvhfP28fKmy+Xz3ZnSQHa5/nxbcteVvR9NvV9m9z8tM72ub5fXpadb9rrfLpf5LXO/dN0fM9fduLzuxuV1P2Rvu/w9/dzennfb9szbxuu9vO8Plw/AD5kH88blfbdTG3Lr2p5qV9pWWkdaJnvddrpfps3pth+2L/ts2ftdrvNGtl82aVe2P3rly/nXSbu2L9eZ207mfsVtZvcx3be0XZfrKFv+6nEo2870/S5SX/rbb7mf2d+/Za/7Lb/cxbc/Zpb/lltmlLstLX+VLy9+u7w93fZb5raLP5Zub+xyufI2p3Vmt5PaU/iZa/Pl8iX7OrqYXtdkP9IymXVcpOWz+zP12GRvu5h6bCb3Lbntal3ptqvsObnuIntderzmLZ+2e3Xbt8ny+WW/Nyt/W/b39BCW3Za2k9adfSiyy6frJrfN6eL92V/8+cz75bc5fdu3ebelbRcuf//98n02067JOi43WLqdy5+Zh3JyXXb/f0vrKF0+f1u6PF7usrVpVbnb0v1Gs68rX9e33LLZ6/Lrulyu5LZvl7ddretqZyfLX8y+32+j70+qP16+LzAspfk6E4qK+XqSxZbM1/OW3yrJkmUZeql8nfnsXTlfF/z25//fzPvlM269fJ1dV+18nfubQGHbJVl6br4uyb/FPnsT+Tq7rmK+TpeXzdcpW5fl62w2rpuvcxm3Zr7ObqeYr7PrrJuvs9spy6ppHcvk67Rsvl1pO7MzeH4d08sX83V+O/Xy9SQbluTrfG5enK8n2XqGf/blayP5Otvmuvk6v//5fJ3vG9TM15n71c3XuXYV8nU2L9fN17lsXDNfl2bckgw6LxOX5fLibaXZuGK+zmfpevk6l2MLy2fzb918nc/L9fJ1aV6erPPqNvmaKr59+4vJ77XzdS7/1szXmdum8nXZ/Qp++5d/PjezX2XPTDCbk3GXydelf0uumq/LbisZmFE3X+eOT818nc3Sxeuy96ubr9PlJvJ1+W3bM2+bl69Tti7L1/m/S9fL19nb6ubrbI4tOj//kmlfvXyd/7t0vXydsnVZVs1m1rr5Op9/S/J14e/X6W/X2XVN1pHLi7P/lr5Mvs63OZ+vc/erma/LH5tq+Tq/rnl5uV6+zubfuvk6l7ML+Tr3d+bM77P+Rj0vX8/L5aXLz7st266pZa5eN8vk69x2pvJyZjs183XKw+PrCm1ZNV/n15XP1+lyE/k6LZtdTr6eb+si++0UsBb/9J/+09Gf/umfbroZAACD9Ic//GH0J3/yJ5tuBg2RrQEANku+7hf5GgBgs+TrfpGvAQA26w8Dy9dzzmsCAAAAAAAAAAAAAAC0iSIAAAAAAAAAAAAAAADoCEUAAAAAAAAAAAAAAADQEVsXFxcXm24E9N23b99Gnz9/3nQzAAAG6c6dO6PtbfXPfSFbAwBslnzdL/I1AMBmydf9Il8DAGzWnYHla0UAAAAAAAAAAAAAAADQEcMpdwAAAAAAAAAAAAAAgI5TBAAAAAAAAAAAAAAAAB2hCAAAAAAAAAAAAAAAADpCEQAAAAAAAAAAAAAAAHSEIgAAAAAAAAAAAAAAAOgIRQAAAAAAAAAAAAAAANARigAAAAAAAAAAAAAAAKAjFAEAAAAAAAAAAAAAAEBHKAIAAAAAAAAAAAAAAICOUAQAAAAAAAAAAAAAAAAdoQgAAAAAAAAAAAAAAAA6QhEAAAAAAAAAAAAAAAB0hCIAAAAAAAAAAAAAAADoCEUAAAAAAAAAAAAAAADQEYoAAAAAAAAAAAAAAACgIxQBAAAAAAAAAAAAAABARygCAAAAAAAAAAAAAACAjlAEAAAAAAAAAAAAAAAAHaEIANbg/fv3o4cPH47u3r07unXr1mhra2u0u7s72t/fH7169Wr09evXTTcRAAA6pU8Zuw370oY2lIntR3vo9nHs6r5oA0M6Pm3Ylza0oYzPIuiOtr6PtH1fPn36NN7G8+fPx79XEe2JdkV7nz592ljbIHht968NAAyPzMnQyWCwmM8KaMbWxcXFRUPrgsGLD5XXr1+PP5hu3rw5evDgwej+/fvj38/OzsYh7+PHj+Nl47ZYdmdnZ9PNBmhEdFg/fPgw+vLly6abAkCP9Cljt2Ff2tCGMrHNJ0+eTLYdeSLaRLeOY1f3RRsY0vFpw760oQ1lfBZBd7T1faQr+xLrjL/jJbG+WHd8YX7v3r3x5eL7X7Qv2vHrr7/m2hROT09He3t7tdoEwWt7GJkLgGGQORkqGQyW57MCGhJFAEA9Z2dnFzs7O1FQM/737Nmziy9fvpQue3Jyklv25cuX195egCadnp5e7O3tTd7XZr3/AcBQM3Yb9qUNbZjVroODg8m25IluHseu7os2MKTj04Z9aUMbZrXLZxF0Q1vfR7q2L7G+4nte1X/Hx8e12gLBa3sYmQuAYZE5GRoZDFbnswKaoQgAGhj8evPmzZU/VB48eDC5z+Hh4drbCdA0AyUAWJc+Zew27Esb2pDND7H9+AN4tohQnujWcezDvmgDQzo+bdiXNrQh8VkE3dSm95Gu70sTX7JH+2M90PXXQ9/2pQ1tAIAgczIkMhhU47MCmqEIAGqILwOzQe7169cr3V9lJ9AlBkoAcB36lLHbsC9taEN2+8V/UVCoqLAbx7FP+6INDOn4tGFf2tAGn0XQbW14H+nTvtT9kj3eM71H0pfXQ5/2pQ1tAIBE5mQoZDCozmcFNEMRANSQrcqMAbF1P8xigC1AmxgoAcB161PGbsO+tKEN6b6RK6INcUabKCxMmSH+sC1PtP849mlftIEhHZ827Esb2uCzCLqtDe8jfdqXql+yR9vjDJfQp9dDn/alDW0AgETmZChkMKjOZwU0QxEANPRBtOx0TkXZs2lXCYQA62SgBADXqU8Zuw370oY2LEOe6Mdx7Mq+aANDOj5t2Jc2tGEZPougvbryPtKlfUntiNk+4/f4GV+gZ08GEr/HGSnjBCBxJkvvifT19dCXfWlDGwAgS+ZkCGQwqMdnBTRjewRU8vz588nvN2/eHB0cHFRaz+PHjye/f/z4cfwPoC0uCwZHX758GZ2eno5ev349fr+L9z0AaFqfMnYb9qUNbaC+Ph3HNuyLNjCk49OGfWlDG4Bu69P7SNv25c6dO6MHDx6MXr58OTo5ORn//S/7t8Czs7PR8fHx6PDw0N8C6f3roev70oY2AEAZmZM+k8GgGT4roB5FAFBBMXTFB1FVxRAYA2wBAGBo+pSx27AvbWgD9fXpOLZhX7SBIR2fNuxLG9oAdFuf3kf6tC9QV59eD23Ylza0AQBgaGQwANpCEQBUUAxc9+/fr7yunZ2d3OU3b95UXhcAAHRVnzJ2G/alDW2gvj4dxzbsizYwpOPThn1pQxuAbuvT+0if9gXq6tProQ370oY2AAAMjQwGQFsoAoAKjo6Ocpf39vZqra8Y6N69e1drfQAA0DV9ytht2Jc2tIH6+nQc27Av2sCQjk8b9qUNbQC6rU/vI33aF6irT6+HNuxLG9oAADA0MhgAbaEIAFb06dOn0devX+eGsVUVw+DJyUmt9QEAQJf0KWO3YV/a0Abq69NxbMO+aAOL9On4tGFf2tAGoNv69D7Sp32Buvr0emjDvrShDQAAQyODAdAmigBgRe/fv5+6rm6Yu3379sJtAABAX/UpY7dhX9rQBurr03Fsw75oA4v06fi0YV/a0Aag2/r0PtKnfYG6+vR6aMO+tKENAABDI4MB0CaKAGBF66i2vHnz5lTVKAAADEWfMnYb9qUNbaC+Ph3HNuyLNrBIn45PG/alDW0Auq1P7yN92heoq0+vhzbsSxvaAAAwNDIYAG2iCABWVAxaxSBWxZ07d6au+/jxY+31AgBAF/QpY7dhX9rQBurr03Fsw75oA4v06fi0YV/a0Aag2/r0PtKnfYG6+vR6aMO+tKENAABDI4MB0CaKAKBmmCtOyVRFWSBU1QkAwFD0KWO3YV/a0Abq69NxbMO+aAOL9On4tGFf2tAGoNv69D7Sp32Buvr0emjDvrShDQAAQyODAdAmigBgRV+/fr2W7QhzAAAMRZ8ydhv2pQ1toL4+Hcc27Is2sEifjk8b9qUNbQC6rU/vI13Zl2jnq1evRvv7+6Pd3d3R1tbW6NatW6O7d++OHj58OHr//n1jbWW4uvJ66Mq+tKENALAKmZM+kMFgvXxWwGoUAUDNINfEtE5lVaGfP3+uvV4AAGi7PmXsNuxLG9pAfX06jm3YF21gkT4dnzbsSxvaAHRbn95HurAvMbAkvkSPL9SfP38+bt/Tp09Hx8fHo5cvX47u3bs3evfu3fjL91jmzZs3tdvPMHXh9dClfWlDGwBgWTInfSGDwfr4rIBqblS8HwzS+fn5tW1LRScAAEPQp4zdhn1pQxuor0/HsQ37og0s0qfj04Z9aUMbgG7r0/tI2/clvjyPL9jji/X4Uv3g4KB0ufjyPZb7+PHj5Av4+NfEYBeGo+2vh67tSxvaAADLkDnpExkM1sNnBVRnJgBo4ZROAAAwFH3K2G3Ylza0gfr6dBzbsC/awJCOTxv2pQ1tALqtT+8jbd6X169fj784Pzw8HH358mXmF+xhZ2dndHp6Otrb2xtffv/+/ejHH39s9f7RPn16vrRhX9rQBgBYROakbzwfoXk+K6AeRQDQ0opOH04AAAxBnzJ2G/alDW2gvj4dxzbsizawSJ+OTxv2pQ1tALqtT+8jbd6XOKtkfMEeX7YvK86ul8RZ9+KLdujD66GL+9KGNgDAIjInfSODQfN8VkA9igCgBUxJAwAAzepTxm7DvrShDdTXp+PYhn3RBoZ0fNqwL21oA9BtfXofaWJfHjx4sNIX7OmMey9fvsx90f78+fPabYE6vLb71wYA+kPmhOXIYAyZzwqoRxEAAAAAAAAADOjL9ZOTk0r3j7PzZb169Wp81j4AAEhkTgAW8VkBzVAEAC1gCicAAGhWnzJ2G/alDW2gvj4dxzbsizYwpOPThn1pQxuAbuvT+0jdfSl+Ub7qGSr39vZy1znbHpvktd2/NgDQDzInLE8GY6h8VkB9igBgBbdv3950EwAAoFf6lLHbsC9taAP19ek4tmFftIEhHZ827Esb2gB0W5/eR/q0L1n37t3LXX737p1BKwzq9dCGfWlDGwBgnWRO2kgGg3bxWQGKAAAAAAAAAIAl3b17d+q6o6OjjbQFAIB+kjkBWMRnBSgCgNrWVT0WU9YAAMA8Hz9+HO3u7o62trZa9+/WrVujp0+fjoaesduwL21oA/X16Ti2YV+0gSEdnzbsSxvaAEOhj7Caob4vr+PslycnJ9e2ffqjD6+HNu1LG9oAwOr6muHrkjnpChkMNsdnBSgCgFYErPPz86nrdnZ21rItAAD648OHD6NPnz6N2vpHzzdv3gwqY7dhX9rQBurr03Fsw75oA4v06fi0YV/a0AYYMn2E2Yb6vnxd+/X+/ftr2z7d1KfXQxv2pQ1tAKAZfcjw6yBz0kYyGLSLzwoYjW5sugHQJdcZsO7cuXNt2wIAoJsePXo0Ojs7G/8hvuwPhJs+88L+/v6gMnYb9qUNbaC+Ph3HNuyLNrBIn45PG/alDW2AIdNHWM0Q3pev60x76zr7Jf3Rp9dDG/alDW0AoBl9yPDr2naRzMmmyWDQLj4rQBEAVKogy35YNNEJK/vwMa0TAACLRGZ8+fLlqOv6lLHbsC9taAP19ek4tmFftIFF+nR82rAvbWgDDJU+wmxDfl++LnEGW2erZCivhzbsSxvaAEB9fcnw10XmZNNkMGg/nxUMyfamGwBdryBronrs8+fPU9fdu3ev9noBAKAL+pSx27AvbWgD9fXpOLZhX7SBRfp0fNqwL21oA9BtfXofacu+vHr1anTr1q3R1tbW6OHDh7XaMWswirPt0ZXXQ1/2pQ1tAIAsmZMhkMGgHp8V0CxFALCivb29xtdZ9sGjGg0AgKHoU8Zuw760oQ3U16fj2IZ90QYW6dPxacO+tKENQLf16X2kDfvy7t270fPnzyf3i8vxRXuT21/UBmjL66FP+9KGNgBAInMyFDIYVOezApqnCABWdP/+/carx4pTQ8UHkWmdAAAYij5l7DbsSxvaQH19Oo5t2BdtYJE+HZ827Esb2gB0W5/eR9qwL2/fvp267v3796OmeV+mC6+HPu1LG9oAAInMyVDIYFCdzwponiIAWNGDBw+mrvv06VOtdRbvrxoNAIAh6VPGbsO+tKEN1Nen49iGfdEGFunT8WnDvrShDUC39el9pA37UndAyqLtB1+w05XXQ5/2pQ1tAIBE5mQoZDCozmcFNE8RADQwrdOHDx8a/UCqM80NAAB0TZ8ydhv2pQ1toL4+Hcc27Is2sEifjk8b9qUNbQC6rU/vI23Yl7IBJIeHh42dpTI8evSo8voYjja8Hvq0L21oAwAkMidDIYNBdT4roHmKAKCCg4OD3OWzs7NaFW7FKjcfRgAADE2fMnYb9qUNbaC+Ph3HNuyLNjCk49OGfWlDG4Bu69P7yKb3ZXd3dzJYJf49e/Zs9Pr168ptOD09nbpuf3+/8voYlk2/Hvq2L21oAwAEmZMhkcGgGp8V0DxFAFDBixcvcpffv39feV3F+0ZQNC0NAABD06eM3YZ9aUMbqK9Px7EN+6INDOn4tGFf2tAGoNv69D6y6X158ODB+OfTp0/HX5C/fPmy8vbL2hDbLw6Cgba+Hvq2L21oAwAEmZMhkcGgGp8V0DxFAFBBqkZLPn78WHldJycnucvxIQcAAEPTtowdZ1159+7d+F/xDCxd2Jc2tIH62nYcvS760Qa6c3y85uq3Aei2tr2PdPl9Oba9s7NT6+x6yadPn8b/sup+ac+wbPr10KfXdlvaAABB5mRIZDCoxmcFrMEFUMnx8fFFvITSv9evX1daT3Yde3t7jbcTYJ1evnyZex+Lf1++fNl0swDoqLZk7NPT04ubN29O1hG/x3Vd25c2tKFqnjg7O2t8O13VluPoddGvNtD+4+M111wbluGzCNqrLe8jfXhfTtuPn3UcHBzk2rCzs1NrfQzTpl8PfXptt6UNABBkToZEBoNqfFZAsxQBQA0Rvup8kBS/YPTlItA1BkoA0MeMnR0AkB0I0MV9aUMbFnn27Jk80YHj6HXRvzbQ7uPjNddsGxbxWQTt1ob3kb68L6ftrzrIOYn7eb+kKZt+PfTptd2WNgBAkDkZEhkMqvFZAc1RBAA1xIdH9g+EEc6WFWfKzn4QrXJfgLYwUAKAvmXs2H7xs63qZ9ym96UtbVjkwYMHU4913bN/9M2mj6PXRT/bQHuPj9dc821YxGcRtNum30f69L6c3ZdVv2iP7RcHTHuvpI42vR66/tpuSxsAIMicDIkMBtX4rIDmKAKAmoqVZct8qMSHUbYaVJADuspACQD6lrGLf3TN/ovburQvbWrDrHYdHh6WPtbxx7uYOldx4RWvi/69LtrQBmbzmhvG891nEXSH9+Xm3hNPTk5WXk+0ufgFe6wH6vLaHkbmAmB4ZE6GRAaDanxWQDMUAUAD4gMmpnVa5oNplWUB2spACQD6nLEPDg6mPt/iui73FzbZhpg5KPJB+jdrkMWif9l1VJ0etOu8LvrzumhTG5jNa64/z3efRdAP3pebe1/OfmkeP2OdZYOeY7nivkdb/N2PJnlt9ydzAUCWzMmQyGBQjc8KqG8r/hsBjXj+/PnozZs3o69fv45u3rw5evTo0eju3bvj287Ozkbv378fffz4cXz54OBg9PLly9HOzs6GWw2w+H0tife3KuI9Mfnll19Ge3t7jbQPgP7bVMZ++vTp6OjoaPz74eHheL196C9sog2xzVevXuXyQFUpi5yeng46T3hddP910cY2MJvXXPef7z6LoF+8Lzf3vpzeH5Now+3bt8e/f/r0Kbds3Bbbj32HdfDa7n7mAoAyMidDIoNBNT4roDpFALAG7969G719+3b8IRT/UriL4PbgwYPR48ePfUkIdIKBEgC0RZ8ydhv2pQ1toL4+Hcc27Is2MKTj04Z9aUMbgG7r0/vIJvclthUDoI+Pj8fbPj8/H18X2442dO2xpPu8tvvXBgCQORkaGQxW57MCqlEEAAAAAAAAAAAAAAAAHbG96QYAAAAAAAAAAAAAAADLUQQAAAAAAAAAAAAAAAAdoQgAAAAAAAAAAAAAAAA6QhEAAAAAAAAAAAAAAAB0hCIAAAAAAAAAAAAAAADoCEUAAAAAAAAAAAAAAADQEYoAAAAAAAAAAAAAAACgIxQBAAAAAAAAAAAAAABARygCAAAAAAAAAAAAAACAjlAEAAAAAAAAAAAAAAAAHaEIAAAAAAAAAAAAAAAAOkIRAAAAAAAAAAAAAAAAdIQiAAAAAAAAAAAAAAAA6AhFAAAAAAAAAAAAAAAA0BGKAAAAAAAAAAAAAAAAoCMUAQAAAAAAAAAAAAAAQEcoAgAAAAAAAAAAAAAAgI5QBAAAAAAAAAAAAAAAAB2hCAAAAAAAAAAAAAAAADpCEQAAAAAAAAAAAAAAAHSEIgAAAAAAAAAAAAAAAOgIRQAAAAAAAAAAAAAAANARigAAAAAAAAAAAAAAAKAjFAEAAAAAAAAAAAAAAEBHKAIAAAAAAAAAAAAAAICOUAQAAAAAAAAAAAAAAAAdoQgAAAAAAAAAAAAAAAA6QhEAAAAAAAAAAAAAAAB0hCIAABiQT58+je7evTt69erVpptCT338+HG0u7s7ev/+/aabAgAAAAAAAAAA0EuKAABgQIOzowDg69evo8PDw003h57a29sb7ezsjPb390dv3rzZdHMAAAAAAAAAAAB6Z+vi4uJi040AAK6nAODmzZuj3//+9+OfsE7xfIvn3cuXL0fPnj3bdHMAAAAAAAAAAAB6QxEAAAykACCcnp6Oz9QORTFDxNHR0ej4+Hj04cOH8eUQBSNxZv/4d//+/dGDBw+Weg7F/eN59+nTp9Hr16/NPgEAAAAAAAAAANAQRQAALR64HYNn49/nz5/HA2rPz8/Hl9PvcYZtA2uZJ54vMRA7njMnJyfjAdxQ9O7du9GTJ08mA/+XcXBwMPr555/nzirh+QcAAAAAAAAAANA8RQAALRUDZ6MQYB5n12aR3d3d8UDseJ7E8wWK3r9/P9rf3x8P6n/x4sX4LP8xaD+eN2/fvh29evWq1ntQFBg8fPhwXCwQM1HEjAIAAAAAAAAAAABUt13jvgCsUZwxOwblxoDceWfahlmePn06Hsgdg66bLACIQeOx7ihUuXXr1mhra2v8MwoOYrD3mzdvxtulG+KYxUD+4+Pj8ftNiPec+D1mG/ny5cvo2bNnpfddZkB/vI/FvygsiG0BAAAAAAAAAABQj5kAADri+fPnU2fkNhMAi87uHk5OTsZFJXXFGd2fPHkyHsy9jNhmPG+b2Dbrkc7SHwP9FxUbxXGP43l0dDT+PQoDokhgGbH87373u5XvBwAAAAAAAAAAwDQzAQB0hEGzrCLO1B/iDOxNDMKPgoIYLB6DuKPw5PT0dBR1hOnf2dnZ+DmaPTN8KkRI96N90owNy8w2EstE4VEUDMQxX+U9Ke6blo9ipo8fP9ZoNQAAAAAAAAAAwLApAgDokOwAa5glBlmnwd11i0di8P7du3fHA/qjmCAG+8dA8L29vannZpzhPW6Pn8Wzzcc6Uptojzhe4ToG5UfxSCo2iBklAAAAAAAAAAAAqEYRAECHLHO2boYtBto/f/58MgtA3cKRH3/8cTxAPAZwn5ycLLW+KDyIQoFiu6IQwIwA7fT27dtr2U4qSonnVBSHAAAAAAAAAAAAsDpFAADQI6kAoIlZAGJdMVg7ZgAoDupfJIoGijMCpFkFuibafR1nyt+E3d3dyewR11GgYTYAAAAAAAAAAACA+hQBAEBPxCDudHb1GLhfZxaAOHN/DAyPdcQMAFVEEUKxDWm9XRKzIUTxwvv370d9s7e3N/n9p59+upZtRiFAer6+efPmWrYJAAAAAAAAAADQJ4oAAKAnsoO4nz59WmtdaRaB7MwCVZTdP9p5HWedb0oULoQ+zgYQxSJJFGekfV2n7HOz7mwVAAAAAAAAAAAAQ6QIAAB6IntW9YODg0bWlc7aXlXZ/aMA4OjoaNQVXSpYqFsIULd4ZBkxO0SagSCKDvo4wwIAAAAAAAAAAMA6KQIAgB6IQftpsHrdgftpUHYMDm/i7PdpwHfW8fFx7fXSjOzA/zj22WKS69im2QAAAAAAAAAAAABWowgAAHrg9evXk9/39/drrevk5GQyIPzu3bujra2tWgPDs2eaT5z9vT1i1oibN2/mBujHGfrXKfuciOdC32dbAAAAAAAAAAAAaJIiAADouBhAnT1jf9mg+1WUDQCvMzB8d3e3VntYv+LsEXULSRbZ2dkZ/0uOjo7Wuj0AgCZE8WLkpFu3bo3/xe/v3r1beL8oqE33iwLbyMcPHz5UGAsAwKDJ1wAA0AzZGmC4FAEAQMdlB1Dv7e3lzupexayzslft6N2+fbv0+nWfbZ7lvXjxYurYROHHOmWLVY6Pj9e6LQCAuuILk1Qo+fLly3ERZeTj+EJkVgFl3B5fmkSuiowemStm8IoclNYX9zcrEgAAQyNfAwBAM2RrgGG7sekGAEAdcQb86KCcnZ2Nzs/PR/fv3x89e/ZsNCQnJyeNzQIQZhURzBrMT/fFMY8/BkSlfxK/3717d2qWgKbEHw7S9j58+LCWbQAANCEKJOMLj8hF8UVI1qtXr8b9kfiyJHtbXI6sE/eJL16KGTt9iRJfqESf5vT0tHYxLwAAdIF8DQAAzZCtATATAABjEeAjyMeg3+xUXxHwnz9/Pg736xLrjm1ktx0/43JcX3bG+OisxO3xLzosUQAQ0nqGJDuNWxRB1FV2Bvjo1FUtMEjHpkhRQbtEB7/subCuGRti1ookziBgZggAoK0iE+3s7Ex9iZI9i1J8aZLyTPSr4nIU68Z9yr4gOTg4mBQvpy9qAABgCORrAABohmwNgCIAgAGLgbfRKYhB9xHcYzB+DPSOwcDHx8eTweBRIRwD66MoIAbfNyW2F52PWHdsI9qTqo0fPXo0vhzXp2KE1DGJdsXl6MxE1XHMAhDtTYPKY73ZgfF9VizOyA6sriqeA/F4xuObLv/yyy+Vq7vj+JRRLd4e8dr66aefSm9bV6c+nl/Z50CT7y0AAE3mpMgpUWy8qKg1vjRJZ0iKfsqiItps8W1sQx4CAKDv5GsAAGiGbA1AuOFhABimqO5NwT1VBpcF/ajwjcH40XGI+8Tg+zRIvM4g7uz2Q6wvKopnLRediigGiEHuMfA9KpOL7c12PIZyVvFiZysN3K8rjkXZ8aiibBaJqrMK0Kz0R4F0jOK4FJ9TcVuaDrBp9+7dm2wvXtPr2AYAQB3pDEpRpLxIFDCnXLNMcW5k9/iX+i5RDC0nAwDQZ/I1AAA0Q7YGIJgJAGCAYlB9GoAfA73jTO3zAnsM9o8ORHQIQgza/d3vfld5oH2xACDWO2vAeQwKzk5dFgOSZxUsZNfZ1AD2tsueZb+JWQDWoawqPDv9HNcvXrtxDOJfvKbidRbPpXgtpqn9ssrOHtCEbNFKWbEIAMCmxZmRom9RVgBd1h+KLLXKlyHZPBS5OQqwAQCgr+RrAABohmwNQFAEADAwMcVXDMJPg8bjDPzLig5BKgSIgH/37t2VB+7G8tnB+jH4eFFHI5bJDnCPAcllHYzotMRA5ouLi8bOiN92Hz58mPzexn1Oz7WisoHmXN8fA2JWjeioxx8EYrq/KKxJz58XL15M3Sdeb+nsAE2Kdgxt9g4AoDsin6TiyTK//vpr7nLkqTgj0iqKGd60ygAA9JV8DQAAzZCtAUgUAQAMSAzijQHAyS+//LLyOmLAfhrAHQODo6hglYrfJ0+eVDrDeLZwILZXXE+bB8KvU3bgdBv3vawjqQBgc+L1Fq/ZEIU1v//976dmkIjCgCi8KXr79m3j7Sk+ZxUCAABtkr7UmDWdcrEgOttnqar45QwAAPSFfA0AAM2QrQFIFAEADESE/OyA+xiIXTYt2DKyZwqPQbuzBuSXdUSynY3Y/rID14uzBUQxw9AHDEcxRLYAI3tW9TaIY108RlUqzGlGvP7T2fzjOMQMALPeA8qKc8qOZ12KAACANotZ0CKvzMpMxTMfxdTLqzo/P6+Uh6I/FGd5ij7A1tbW6NatW+PLMROXaZkBAGgj+RoAAJohWwOQKAIAGIh09u+ygfyrKp4pPEL8MlN/HR8f5y6vcub6smWzsxoMUbGTdfv27VGblBWHFJ8DXI/oUKcCgPRHgUWvt+IMAeuY4k8RAADQZpFNZn05UjyT0ioFzsVtZC36EiTyWHxpEv27yGuR6758+TIu8IzLcUanuD3yHwAAtIl8DQAAzZCtAUgUAQAMQPGs+XFW/aqzAMwqKig7c3jRhw8fcpdX7WgUByUPfbqxYuV1lY7bukTHrdi5jAKAsoHlrFd0trPT+71+/Xqp50pZodDZ2VmjbSu+DzW9fgCAOuLLiVmzWBWLI+/du1dpG2VfyMzL2HHGpJSbom3pbE9pxq34UiV+j/zXxBTPAADQFPkaAACaIVsDkCgCABiAn376KXe5iYHYUUhQ7AAsOkt402f5HvpZw9s6VVq0q9hpi05dlSnmqC9bsBOd6uwsHqu8xq/jNdfW5zQAQFFxZqX0BccqyrLVrNm9soWdUVw7q6gzvlRJbYsvXpxVCQCALpCvAQCgGbI1wLAoAgDouQjnxQrdKiG/TDG8R6Bnc+rO7tCU4iwRUQDw7NmzjbVnyKKznR1YP+tsAGXKpgVcdxFAcXYLAIC2KhZAlxVQLlLsp4Xd3d25GTsKuhdtK1v4WcyDAADQRvI1AAA0Q7YGGBZFAAA9V3Z2/lkVuqsqDhBeNBNA1WnGlt3+0LRxwPTz589zzwMFAJsTA/az1fPxell1NobirCHr6IS3pXgFAKDOFyBVZlsrnpFpVh/n1atXkxy27DTJ2eUiowMAQFvJ1wAA0AzZGmB4FAEA9Nyy4byJwbsx6HjemcKL2y3rgMxTXPf9+/dHQ1YckN1UcUdVMeA8OnmbLACI50hUoG9tbTX2L9sBbWqdt27dWroTXFXxrP9Vtld8Tq17wL5KfwBgKGdSCh8+fJi6rmxdr1+/Xnlb2S92TKsMAECbydcAANAM2RpgeBQBAPRc2aD8pgbylg06n1cEUByEPG/ZZQYIr3pWc9YnCjqyxzc6e5uYASDaserzahPiubxo5oy66y92mNO0eqsovleso9Bk08UrAAB1C6339/cr5bViUXQUTRfzVzHfrlLQnV323bt3K7cRAACug3wNAADNkK0BhufGphsAwHpd94DoeWfyjoreCPPZNsVA6GUqgosDpqMAoKkZDfri/Px87WdqLxPH88cff5xcPj4+3liBRmw3tt/k8z5NQRfP0yqd5DJxnKpW3S/j6Ogodzm21cRzYx3Pr3jernP9AABNK/ZNqkynXFYQWpahs8utmpWyfa/48kcRNQAAbSRfAwBAM2RrgOFRBADQc/MG5a9DdkBvmRigfffu3dwZ45cZDP3y5cu5l5sQnYwY5B0djCbWHxXLsX+x3vgXHZ979+6NHj58OHr06FHtAc9tGDAdz684nul5Fh20dQ5uX0bTHcRUBBDPjU3MbrCpCv+y94/79++P1smsAABA2xXPgBSq5N+3b99OXff48eOp63799dfKWSnbX1jnLFQAAFCVfA0AAM2QrQGGaXvTDQBgWKLSODuQOgbKl3VGsmKZbPCPAc5NzwLw5s2b0e7u7mTAfh3R1lu3bo0H+8f+Rnu/fPkyOj09HV9++vTp+PbYZh3FjtR1F3xkCwCikxb7t+kCAMo7ylWPS7Gop8qZAhbJPm/bUNgCALDuMynNWk/ZurJ9pVX7QNn+wnXPEAcAAMuQrwEAoBmyNcAwKQIA6LmysN3UYPGys/4vE+6LZyX/8ccfZ1b3xkD5GEyfNHWm+ehIRHFBDMjf2toa/2xCtDft39nZ2XhGgXhMYnBz/IzLURAQv8c2m9ruJsRxSzMcpAIHNi9e38XXeNVjUyzQiZksAACGrDjjUpW+SfR9inlt1kxkdb4AKRZYXnfRMAAALCJfAwBAM2RrgGFSBADQc2Vn1i4bvF9FWRBfZpqvGPh+eHg47oTE4ORYTwycj7PKP3/+fDyQPn7GmfnTIPnooMSg+roFALHOGPQfP6O44OjoaDwzQRMzC0SHKLX3+Ph45jrjmKQOWOxr1RkBiutv6rguI45XDBCPNvz+979vfGYGqit2tuscm+y6UjFLk4rvIXfu3Gl0/QAATfvw4cPcAudlvH79Onc5ctYy/Zy6Wew6+wsAALAM+RoAAJohWwMMkyIAgJ4rC+TrnAlg0RnHY6B8DCyOQf7RtjiDfPyLooBo16tXr8YD6WNgfHQUYoB+3B6D5psYaB7bjY5LrC/OyB//onK5icHNacaCeAwWdYRiX2KfQ+xvlWNSfDyua5q02M84jrH9ODarPnYxA0MUYpjWbT2Kr8umZgFYx6wVxbYqJgEA2izyUTG3rzpTUtw/8nBWFBBfB2dTAgCgTeRrAABohmwNMFw3Nt0AANYrqntjYH2xArjqwOCs4iDuZSqAU+VwdrBvtKVYUbwuaeB90+IxTh2TZQdLp2KHbHHCKoqD72OmhHWLNkfHL47ZL7/8Uql44tdffx3/NOD7eiwzO0eZKPTIOjg4GLV51gIAgOs+k1Jk4VXzcOT+rCh6ntU3a/qLD2dTAgCgTeRrAABohmwNMFxmAgDoubKB+XH29iYG7xaDfToT/qIK5CbOut822QH8yxRDhGyHKRUDrCo7aHrd1dFR6BDtrFMAkJ4DBntf36D/qsfp7du3k9/jmK/jmBWfs00UJwEArEvMJlbMMqtk8OhDZXN/5KuYley6vvhwNiUAANpEvgYAgGbI1gDDpQgAYACiQnfeGb6rDuQuDjRe5iz70RlYtcPRdvFYZM9ovspg6eyyxanVVr1/8azqTYoOX1R+xyDtKCKpU8jR1EwUlGtisH48l7Kv8Xkd/LrbSRSGAABtV9aPOjo6Wvr+2RnDIk8vKs7uU58JAACK5GsAAGiGbA0wXIoAAAbgxYsXcwf41j3zfdk2Fp2lfJUOR5c6VKsOjs8OfC5WZy8jO5i+OMVbk/sXnb6Y4aDuLBJpBgkDvtcnnoN1i0Oyr+94ji07u8Wqfv3118nvnhMAQJuVzYQWuavYL5ol8nTqN6QvURb1HZqeQa2PM7IBANBN8jUAADRDtgYYNkUAAAMQgbl4Ju9lA3+Z6EBkB77H4N3ibAOzpIG+cVb5vlQHZwcypyKHKp2ZKjM07O/vT35fxwwLUSwS2zg4OKhUpFCUnof3799voHXMEscrqVLwk53q7+effx6tS7ZtZocAANqsmNUjx0dOijyzaEavV69eTfJV9Id++eWXjRRArtpXAQCAdZGvAQCgGbI1wLDd2HQDAKhulQHfMUg/BqunkB9BPip6qwy8ffLkSe7yKoPDY3vRCYm23717dzwoPM4y3uXK3uxA5lU7RNnOTJUzthfP0B6zATR11vZoz48//jj+PY5XtuBgFefn5+P7Z/fPWd/XK2bmiA57tvJ/2ddYtkAn3jfWOTg/+5yo+vwCALgOxT7Po0ePxoWX8e/hw4fjsyMVc1NkqrgtfQkTy8aXL8vmsuIXH3ULfrvc5wIAoF/kawAAaIZsDTBsigAAOqQ4SPzz588r3f/4+Hg88D4NWo8B3r///e9XCtQxsDhbLRzrXGVAd3FwcnQsFon2RScifsa24izy0UlparB7XVUG7yfFx36VwdpJPBbpmMbPJh6XVKSROmtVZimYx1nf1yueQzGAP73WYmD/MrN/xPMn3SeOUXEGkSYVZyhoy+sZAKBMMQ+nAsboD8XvkZ3ji5J0fXyxcnR0NM7T0YeJXJWdrek6vvgofvHibEoAALSFfA0AAM2QrQGGbXvTDQBguQCcPTv3rAH5y4hAnwbbxvqiEGDZqtzYXrQjW1FcpTOw6sDidBb5NF1ZtCE6KLdu3Sp9XDapbmcnzpq/quzg6ZjtoekCgKaZBeB6xOssFVvEzB+LCjnS+0F2qr91yrZHAQAA0GZpZqWsbH6JflF8oZL6bTHjWszQFWdcitvOzs5W7jeV9S9W7SsUl3c2JQAA2kC+BgCAZsjWACgCAGipNMh9a2tr/DOdnbsozqQfy6TlYrDvIhHm4yzhIQbW/+53v5t7v1gm2pMKAGKAcLaYYFWx7bT9OqKjEo/LsvvdBVUG3qeK7bBqUUiZJ0+e1JrdYBFFANcnBvKnQoB4nsx6fsRrPBV+xPLx+l53Rzs7LeEyM4IAAGxKsZgy8mwxK8UXJZFvvnz5Mrq4uBjnqZiJqW6x47179yr3FbKZXgYHAKAt5GsAAGiGbA3AjU03AIDZla8RlFcZiBvLLxuu4yzhUeUbA/tjYHD8Hv+iAxAh+86dO+Oq3+g0pACezuJ/eHhYeb9iXbGONGg/tlXWEUn7k73fvIHp0fZYvoniglU0fbb8qjMBxOOX2hIDutPA7yrWPbNCnbaxmnheRCc+XudRMBOD7ePxj+fM7u7u+FhHhz/9cSBeP6vO1FGVmQAAgK7IFi9ed3aJQs6Um1btK2RzvQwOAEBbyNcAANAM2RoARQAALRUDd9ctBt+nqb+Ojo7Gv8cA8gjqcV0anB8Dgx8/flw7fMfA/xisH2Jdsb1Vq3qjECDaGJ2Z4tn/Y6BzKmK4LlUG7a9jAH4UZqTZIt6+fVvrWBU7inRfDOx/8eLF+DWTXjvpNR7/UnHPdU2zly0AiOeq6n4AoEtnU8rOxLVu2S9t6pxN6TrbDAAA88jXAADQDNkagO1NNwCAzYuBvzEAOAYHx9n/0zRg8XsUI8QA4boFADFAPxUARGcg1ltl4G/cJwb6x/Rk0cb4PSvOdH6d1n3W/GWlxzbEzA5QlAp6slP9xWs8Lsf111UAEKIAKIniBACAtoovI4qZ/zrPplQsmIyC6GUU2/zo0aPG2wYAAKuSrwEAoBmyNQBBEQAAaxdhP52lPgYaN3mm+RhMHAUM2W1lq4bXremB01XXF52rVKiRZkuAtkqzeMTzvVjIAwDQ5jMppdnSNlXwW2zPLNnlIm9dd5sBAKCMfA0AAM2QrQEIigAAWLsnT56s9azfMStAVpfPhH/79u3K980+tsXHhOpSp1PnsxnZ16dZAACAtisWMF/nmZSS7KxNy+b8t2/fTn6Pmd0AAKAN5GsAAGiGbA1AUAQAwFrFVF7Zs9Kv66zf6Sz44ezsbLSpQfvFqctWVWegebZKOp1pnfpi+rl4XDfRae6jn376afJ7dhYPAIA2Kp69aH9/fyPt+OWXXyazfi3K+tHmVHgZX6Jkp2QGAIBNkq8BAKAZsjUAQREAAGt1fn7e2Jnu57l3797Mba5T3bPDF4sG6j4+P//88+R3hQDNiIr1L1++6IA2IAqCUlFQFACYXQEAaLP40qKY1zdVGBpFz+msSDHFcrbQutjmhw8fTvJWnIkJAADaQL4GAIBmyNYAJIoAAFir4qD2CPbrkF3v/fv3R9cpO5B51QKE4vJ1B0XHbABpsPrz589rrQualp6T8Tw3tR8A0LUzKUXO3mQRY3wpElM8Rxvu3r2b+0Il+kOvXr0a7e7ujr/8iULWZadfBgCA6yBfAwBAM2RrABJFAACsVYT8qPxN3r592/g2oqOQ7eRcd4VzdhaCYrX1KsULTZ1p/vj4eNKW6ExBG0QnP71OY8YKswAAAG3PLsWi2ijgXVdR87KirxOzVMWXJNGWH3/8cbS1tTX+YiX6WlFoGbfHmZQAAKAt5GsAAGiGbA1A1tbFxcVF7hoAaFgM/N3f359cPjs7a2zAe4gpw969ezfpWESF8aqi45EqkeNs+mkg/TJioH32DOfRcVlWVDunztiq250nKqvfvHmzcntgXdJrrOprFABg3aLP8uHDh6ULe9PsRr60AACAafI1AAA0Q7YGYBYzAQCwdjHoN6b/yg4GbqoKOQbfpwKAKCxoahD9KrIzD9SZCSBbKFFXVFfH4xHtiYIA2KQoSElFNqb2AwDaKn2JEl+QxL/I02ka5fQva9XsDwAAQyJfAwBAM2RrAGYxEwAA1yZ7xvw0GLhq5XEMno/B7THLQNjb2xsXAFSdYaDOTADFM/qfnp6O27NIdLxu3bo1uRxn7C92zuqI/Yn9CnHm9WyxAlyXeF3E66Puax4AAAAAAAAAAIDvzAQAwLWJ2QCyA+RjEH8MDo6zhC9biRyD/h8+fDi+XyoASOutWgDQhOzZ9lO7FskuF4UHTRYAhHic01nX4zFT7c0mxHMvxOB/BQAAAAAAAAAAAAD1mQkAgI2IAfAvX77MDYSPQfxxtvoY4J8GxMfA9c+fP4/Pap+mOEvLxsD7GFTcxOD57Jn8q8wEEOKs/tG+aNvZ2dlSg6PfvXs3/j2WX1cRQ8y+ELMwRFFAFEvAdYnXaBT5xOs6ZqMAAAAAAAAAAACgPkUAAGxcDIT/9ddfxwP9YyD++fn5ZLB/DPC/ffv2+Oe9e/dGd+/eHQ8obnLAfGwrBvAnyw7iL4r2R/tCnIF/3lnPo/hhf39//HsUQ8RsBtcxGLtqgQOsKgpPogBF8QkAAAAAAAAAAECzFAEAMCgx+D4KDVKRQQz2T9dlxcDlKDa4c+fO+HIqQojrlxn4HGLgc9nysa0oFog2RKFAFAxch1QIEAUHUXgA6yzsiZkuFAAAAAAAAAAAAAA0TxEAAIOSBsLHoP5VxID9Zc/YH0UFMQA6DfKPbcZg6Bj8H4OjU5HAotkC1iEVKWxi2wxDPM93d3fNOgEAAAAAAAAAALAmigAAYE2i2CAGQX/48GFcEBCFBzs7O6PHjx+PB+CvWojQlDTrQbQFmhbP9XjOx0waAAAAAAAAAAAANE8RAAAAAAAAAAAAAAAAdMT2phsAAAAAAAAAAAAAAAAsRxEAAAAAAAAAAAAAAAB0hCIAAAAAAAAAAAAAAADoCEUAAAAAAAAAAAAAAADQEYoAAAAAAAAAAAAAAACgIxQBAAAAAAAAAAAAAABARygCAAAAAAAAAAAAAACAjlAEAAAAAAAAAAAAAAAAHaEIAAAAAAAAAAAAAAAAOkIRAAAAAAAAAAAAAAAAdIQiAAAAAAAAAAAAAAAA6AhFAAAAAAAAAAAAAAAA0BGKAAAAAAAAAAAAAAAAoCMUAQAAAAAAAAAAAAAAQEcoAgAAAAAAAAAAAAAAgI5QBAAAAAAAAAAAAAAAAB2hCAAAAAAAAAAAAAAAADpCEQAAAAAAAAAAAAAAAHSEIgAAAAAAAAAAAAAAAOgIRQAAAAAAAAAAAAAAANARigAAAAAAAAAAAAAAAKAjFAEAAAAAAAAAAAAAAEBHKAIAAAAAAAAAAAAAAICOUAQAAAAAAAAAAAAAAAAdoQgAAAAAAAAAAAAAAAA6QhEAAAAAAAAAAAAAAAB0hCIAAAAAAAAAAAAAAADoCEUAAAAAAAAAAAAAAADQEYoAAAAAAAAAAAAAAABg1A3/PxsBZ+a+tSJKAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fields = [\"p3m\", \"p1\", \"p2\", \"p3\"]\n",
"figname = \"_\".join(fields)\n",
"slices_dict = {\n",
" \"p3m\": DELTA_P3M,\n",
" \"p1\": DELTA_P1,\n",
" \"p2\": DELTA_P2,\n",
" \"p3\": DELTA_P3,\n",
"}\n",
"titles_dict = {\n",
" \"p3m\": f\"P3M $n_\\\\mathrm{{steps}}={nsteps}$\",\n",
" \"p1\": rf\"$p_{component}$, step {steps[0]}\",\n",
" \"p2\": rf\"$p_{component}$, step {steps[1]}\",\n",
" \"p3\": rf\"$p_{component}$, step {steps[2]}\",\n",
"}\n",
"\n",
"npanels = len(fields)\n",
"fig, axs = plt.subplots(1, npanels, figsize=(3 * npanels, 4), sharey=True)\n",
"\n",
"ims = []\n",
"for i, key in enumerate(fields):\n",
" ax = axs[i]\n",
" data = slices_dict[key]\n",
" title = titles_dict[key]\n",
"\n",
" if key.startswith(\"diff\"):\n",
" im = ax.imshow(data, cmap=cm.balance)\n",
" elif key.startswith(\"p3m\"):\n",
" im = ax.imshow(np.log10(2 + data), cmap=cmap)\n",
" else:\n",
" im = ax.imshow(data, cmap=cm.curl)\n",
"\n",
" ims.append((im, key))\n",
" ax.set_title(title, fontsize=fs_titles)\n",
" for spine in ax.spines.values():\n",
" spine.set_visible(False)\n",
"\n",
"axs[0].set_yticks([0, N // 2, N])\n",
"axs[0].set_yticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
"axs[0].set_ylabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for i, ax in enumerate(axs):\n",
" ax.set_xticks([0, N // 2, N])\n",
" ax.set_xticklabels([f\"{-L/2:.0f}\", \"0\", f\"{L/2:.0f}\"], fontsize=fs)\n",
" ax.set_xlabel(r\"Mpc/$h$\", size=GLOBAL_FS_SMALL)\n",
"\n",
"for ax, (im, key) in zip(axs, ims):\n",
" divider = make_axes_locatable(ax)\n",
" cax = divider.append_axes(\"bottom\", size=\"5%\", pad=0.6)\n",
" cb = fig.colorbar(im, cax=cax, orientation=\"horizontal\")\n",
" if key.startswith(\"p3m\"):\n",
" cb.set_label(r\"$\\log_{10}(2 + \\delta)$\", fontsize=fs)\n",
" elif key.startswith(\"diff\"):\n",
" cb.set_label(r\"$\\Delta\\phi$\", fontsize=fs)\n",
" else:\n",
" cb.set_label(rf\"$p_{component}$\", fontsize=fs)\n",
" cb.ax.tick_params(labelsize=fs)\n",
" cax.xaxis.set_ticks_position(\"bottom\")\n",
" cax.xaxis.set_label_position(\"bottom\")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.png\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
" transparent=True,\n",
")\n",
"fig.savefig(\n",
" simdir + f\"{figname}.pdf\",\n",
" bbox_inches=\"tight\",\n",
" dpi=300,\n",
")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "41689724",
"metadata": {},
"source": [
"## Time stepping diagnostic"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "69dcd0c5",
"metadata": {},
"outputs": [],
"source": [
"a, _, _, _, _, da_p3m, da_p3m_fit, _, _, _ = np.loadtxt(\n",
" OutputTimestepsLog[:-4] + \"_custom.txt\", delimiter=\",\", unpack=True, skiprows=0\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "c1c096bb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[15:15:41|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.plot_utils)\u001b[00m Plotting timestep limiters from /Users/hoellinger/WIP3M/notebook12/timesteps_log.txt and /Users/hoellinger/WIP3M/notebook12/timesteps_log_custom.txt...\n",
"[15:15:41|\u001b[1;36mINFO \u001b[00m]|\u001b[38;5;147m(wip3m.plot_utils)\u001b[00m Plotting timestep limiters from /Users/hoellinger/WIP3M/notebook12/timesteps_log.txt and /Users/hoellinger/WIP3M/notebook12/timesteps_log_custom.txt done.\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABpsAAARHCAYAAAAMZ9uIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAuIwAALiMBeKU/dgABAABJREFUeJzs3Qt4lNWdP/Dv3DKTSUIuhFwMEi4JYKwIsQgFg4gIalWwRWu1WmDdQmVb/9tqxRW2dImtra5b2hVKtQLV2oKs3FpFoIESQIISbjUYAmi4mAshF2YymcnMZP7PeS2UQDLJTN7JvJfv53l4CGHm5JyTYSa83/n9jiEQCARAREREREREREREREREFAZjOHciIiIiIiIiIiIiIiIiEhg2ERERERERERERERERUdgYNhEREREREREREREREVHYGDYRERERERERERERERFR2Bg2ERERERERERERERERUdgYNhEREREREREREREREVHYGDYRERERERERERERERFR2Bg2ERERERERERERERERUdgYNhEREREREREREREREVHYGDYRERERERERERERERFR2Bg2ERERERERERERERERUdgYNhEREREREREREREREVHYGDYRERERERERERERERFR2Bg2ERERERERERERERERUdgYNhEREREREREREREREVHYGDYRERERERERERERERFR2Bg2ERERERERERERERERUdgYNhEREREREREREREREVHYGDYRERERERERERERERFR2Bg2ERERERERERERERERUdgYNhEREREREREREREREVHYGDYRERERERERERERERFR2Bg2ERERERERERERERERUdgYNhEREREREREREREREVHYGDYRERERERERERERERFR2Bg2ERERERERERERERERUdjM4d+ViHrK5/OhoqJC+ri+vl76PSkpCUbj1Tlwampqr8+PiIiIiIiIiIiIwtPW1nbpmt9Fubm5MJt5WZ60h49qoigSQVNeXl60p0FERERERERERES9oKysDNddd120p0EkO7bRIyIiIiIiIiIiIiIiorAxbCIiIiIiIiIiIiIiIqKwMWwiIiIiIiIiIiIiIiKisPHMJqIoSklJuepzu3bt6vDzqampvTQr9fjjH/+IM2fOoH///vjmN78JvdLDPmhljWpchxrnTET6oJfnp7d/9iEunHfLNl6fVBsemD8aelXzi1+gad36iIwdf9tEpD/zDGAy4cJ7m+HcsQPec7UItLTAEBuLhgDwad8UtH3lK3jw29+OyBxIGfTy/KRE3PvwcN/0sw9aWaOa1lFXV3fVee0dXfcj0gKGTURRZDReXVw4dOhQ9OvXLyrzUZtrrrkGbW1t0u963jM97INW1qjGdahxzkSkD3p5frqmfwYCrkb5xstK0vR+dSXpBz/Ap8W74G+Ub08vKd6Fxo/2A21tCHg8iAWkX5LGJvQBkF1dDX/FcficTqTOmQNLZqb886Co08vzkxJx78PDfdPPPmhljWpfR0fXA4m0wBAIBALRngSRXp07dw5paWntPldbW6vKF0oiIiIikt/h7WdQvPqYbOONvX8wbpo6EHrmKi3FqVmzpUAomkxJSei/dCns+aOiOg8iIiKKHF77Iz1hjEpERERERKRQw8dmwGw1yTbe0V1VcNTL15ZPjez5+Riw4nUp7IkmUV11atYsKfwiIiIiIlI7hk1EREREREQKFRNrxrAxGbKN13SuBe+8uB/1Vc3Qe+A0aN07SHroGzDY7UFva7TbkXD3XYgZMkT2eYjqqjNPzIO3qkr2sYmIiIiIehPb6BFFEUtpiYiIiKgrohJpzfMfwt3slW1MW5wF93zvRqQPFCcJ6Zvf6UTThg1wvL8Fvpoa+F3NMNnjYE5PR8LUKUicNg2m+Hi0tbbi3H+/jPpVq2Sfgwi9Mhctkn1cIiIiii5e+yM9YdhEFEV8wemZlStXorKyEtnZ2Zg5cyb0Sg/7oJU1qnEdapwzEemD3p6fqo43YsOSg/B722QbU7Tnu3vuDbj2uhTZxtQDZ3ExPp//LPznz8s2pqieytn5NynUIvXT2/OTknDvw8N9088+aGWNaloHr/2RnrCNHhERERERkcJl5iRh2pMjpYokufg8fvz5lUM4vr9WtjH1IL6gAIM3rJe1rV6byyVVVxERERERqZU52hMgIgrXyJEjMXDgQCRF+XDnaNPDPmhljWpchxrnTET6oMfnJxE4PfjcaOzfXInykmopLOqUQRwI1PWYbb4A3n/t72huzIHBaMTJA7VwNnjg9fhhsZoQn2zF4FFpGD42Qzo/ir5gTk2FuW8KWk+ckG1M0cYv5ZFHZBuPokePz09Kwb0PD/dNP/uglTVqZR1EWsM2ekRRxFJaIiIiIgpHa4tPCpxOlNbC2eiB1+2HxWZCfJIVQ/LTkH1DX2z9XRmqTzbJ1nJv2JgM3HRnNhJSbLKMqXbHp06Ft/KUbOPFZGdjyPubZRuPiIiIoo/X/khP+NY0IiIiIiIilRFVRjdM7C/96sx9/28kNi//O0593POzhUQV1cc7z+LE/lrc/cQIZA5JhN6J1ndy8ruaZR2PiIiIiKg38cwmIiIiIiIiDbLEmHD3Ezdg6M3pso3pbvZiwy8PoOp4I/TOaLfLPKLofUhEREREpE6sbCIi1Tp+/DicTifi4+ORk5MDvdLDPmhljWpchxrnTET6wOen7jGZjJg8Mw/WOAuObD8jy5h+bxveXXZEOj9Kzy31LOkZsrbR8587h8+feQbpCxbAlJAg27jU+/j8FD3c+/Bw3/SzD1pZo1bWQaQ1DJuISLV27dqFyspKZGdn6/qHCz3sg1bWqMZ1qHHORKQPfH7qPoPRgIIHcxEbb8G+TZ/KVuG0f3MlJj48DHqVMGUKXPv2yTpm04aNaP7wQ1zzwguIu/lmWcem3sPnp+jh3oeH+6affdDKGrWyDiKtYRs9IoXZ8GIhDmzeBI/MPeCJiIiISL8MBgNGf3UQxs8YItuYx0qq0drig14lTp8Gg+yt9ADf51U49e2ZqHnxRbS1tkqf8zscqH/zD6h87Ns4PnUqjhUUSL+LP4vP+51O2edBRERERBQKQyAQCIR0DyKSzblz55CWltbuc4vum4x4mxUWqw15E27DzdMfRJ/UflGbo5KJkmmfzwez2SyVTuuVHvZBK2tU4zrUOGci0gc+P4Xn8PYzKF59TLbxJjw0FDdM7A+9qlq0CI1/Wh2x8WOGDIE1NwfOncUIBHkzmgi9Eu+7F6lz5sCSmRmx+VD38Pkperj34eG+6WcftLJGNa2jo2t/tbW16NeP1/pIexg2ESk0bLrIltAH059eiKxh10VhhkRERESkJetfLsXZY42yjZc1NAnTf5APvfJWVeHT+78Gf6N8e9oTpqQk9F+6FPb8UdGeChERETFsIp1hGz0ihXM7LmDt4udw9pOyaE+FiIiIiFTO2eCRd7xGecdTG1FF1H/pKzBY//lmsWgSodepWbPgKi2N9lSIiIiISGcYNhGpgM/bivUvFeJC3bloT4WIiIiIVMzr8cs7nlve8dTInp+PAStel6qKQmIwRGQ+AY8HZ56YJ1VdERERERH1FnOvfSUi6nGF0771azD58XnRnopibN68GdXV1cjIyMCdd94JvdLDPmhljWpchxrnTET6wOen8FisJlnHM8fw/YsXA6dB695B3fLlaNq4Kej5Sm1WK1Lun47E++/Huf/5JVx790akwknMJXPRItnHpq7x+Sl6uPfh4b7pZx+0skatrINIaxg2EalIWfEOFDw8C1a7vcO/97iaUbazCBUle+Cor4PX7YbFZkNCSipyx4xD3oTbO72vGokfLCorK6F3etgHraxRjetQ45yJSB/4/BSe+GQrms61yNqW79PDdRg0IhV6J1rqiXAn7amn0LRhAxzvb4GvpgZ+VzNM9jjUBQI43q8f2iYU4NE5c6T7DHj9d2h44w3U/vfLCLS2yjqfCxs3SXMxKfzgdC3i81P0cO/Dw33Tzz5oZY1aWQeR1jBsIlIRr7sFZcVFGDX1nnafF+31StatxtHiHfB63Ffdr7G6CqfLjqD4rVXIm3Abbp7+IPqkqv8gQvEOlst/1ys97INW1qjGdahxzkSkD3x+Cs/gUWk4e6xRtvHa/AG8u/QwvnRrFsZ/PQfmGHkrp9RIhDspjzwi/bpcxebN8P7jXdgXGYxGpHz727B/5Sv4/EfPwPPJJ7LNo83lkkKvK+dBkcfnp+jh3oeH+6affdDKGrWyDiKtMQQCgUC0J0GkV+fOnUNaWlq7zy26bzLibZ0fMJyYnoFpP3wOqQMGwmAw4OwnZVj/4mK4nY5uf11bQh9Mf3ohsoZd16P5ExEREZG6tLb4sGL+bvhkPrtJSM6Mw5R/uR6p/VlJE4621lacmHonfDKetWS/+WZk/36VbOMRERFRz6/91dbWol8/9b8JnOhKrGwiUpmmmmr8/kffQ1xSMvplD8Kpvx9Gm98X8vlPaxc/hxkLCpE1PC9icyUiIiIiZYmJNWPYmAx8vPOs7GM3VDXj7Rc+xLj7czBiUn+0uv0o31uNkwdqpXZ7Xo9fOjNKtPITFVbDx2ZI86EvGGNiYIixyDqmaONHRERERNQb+JM9kUo1NzZIv8Ll87Zi/UuFePSFJZpoqUdERERE3XPTndk4sb8W7mav7GO3+QLY9XYFDm47JY3va2276jbizCjRyu+D9Sek4EvMJyHFJvtc1Ei0vpOTOC+KiIiIiKg3MGwi0jFR4bRv/RpMfnxeh3/vcTWjbGcRKkr2wFFfB6/bDYvNhoSUVOSOGYe8CbfDarcjWpxOJ3w+H8xmM+J1fPCxHvZBK2tU4zrUOGci0gc+P4VPBDt3f/cGbFhyEH7v1WGQHEQlU1dEKz9RYSWCr7ufGIHMIYnQ+2PWaLdDzgaHYjzqfXx+ih7ufXi4b/rZB62sUSvrINIahk1EOldWvAMFD89qFxpdqDuHknWrcbR4B7we91X3aayuwumyIyh+axXyJtyGm6c/GJXqqLVr16KyshLZ2dmYOXMm9EoP+6CVNapxHWqcMxHpA5+feiYzJwnTnhyJd5cdiUiFUyjE19/wywPSfMS89PyYtaRnwFt5Srav6as9h5a/f4zYL10v25jUNT4/RQ/3PjzcN/3sg1bWqJV1EGmNMdoTIKLo8rpbUFZcdOnPZz8pwxvPfB+Ht23uMGhqd1+PG4e2voc35j+Js+VHe2G2RERERCQXEew8+NxoXD8hC2arKehtxVlL1xdcg/EP5Egfy01UWIngy1Ef/OdPrUuYMkXW8QItLfjsG9/AuV/9GoHWVlnHJiIiIiK6nCEQCATafYaIes25c+eQlpbW7nOL7puMeJu1V+dhS+iD8Q9+C7HxCdi89H+k85xCZbbEYMaCQmQNz0NvOX78uFQ6LUqmc3JyoFd62AetrFGN61DjnIlIH/j8JK/WFh/KS6pxorQWzkYPvG4/LDYT4pOsGJKfJp2tFBP7RWOMxloXtv7uY9RWOmSfhwi+Jj48DHp9zPqdTlRMuBUBmc9uEqzXXYdrXvgZbMO+2F+/w4GmDRvh2LIF3ppq6bwo0XZPVFeJ0Ctx+jSY2JooLHx+ih7ufXi4b/rZB62sUU3r6OjaX21tLfr14/nppD0Mm4iiSClhk5yh1aMvLIlKSz0iIiIi6j1+fxs+3PQp9r9fCcj4P0pRNTXzhfGXgi09qlq0CI1/Wh2ZwS0WpDz2KNouOND0l78EDbUMdjsS77sXqXPmwJKZGZn5EBERaRzDJtITttEjUgmT2SyFOUrmdlzAvvVroj0NIiIiIoowk8mIsdOHYPq/j5I1GPJ6/FKFlZ6JcMeUFKGzq7xe1P/udTS+/XaX1VPi70Xo9en9X4Or9EBk5kNEREREmqHft4sRqYjUom7h87gmdxjOnfoMby9+Dm6n/G1L5FBWvAMFD8+C1W7v8O89rmaU7SxCRckeOOrr4HW7YbHZkJCSitwx45A34fZO70tEREREypI1NBl9r4lD1Ykm2cYUrfxumNgfeiWqiPovfQWnZs1GwOOJ9nTgb2zEqVmzMGDF67Dn50d7OkRERESkUAybiBROVDNNf3ohsoZdJ/05beBg9BswEKfLjkCJvO4WlBUXYdTUe9p9/kLdOZSsW42jxTvg9Vx98HNjdZW0puK3ViFvwm24efqDXbbjO3jwIBobG5GUlISRI0dCr/SwD1pZoxrXocY5E5E+8PlJOVwXQj/vMxhxZpTeH7Mi1BHhzpkn5klhT7SJ0EvMZdC6d9hSrxv4/BQ93PvwcN/0sw9aWaNW1kGkNWyjR6RQFlssbrzjLukMpItB00WiAkjJPt6xDYG2tkt/PvtJGd545vs4vG1zh0HT5cTfH9r6Ht6Y/yTOlh/t8oeLv/3tb9LveqaHfdDKGtW4DjXOmYj0gc9PyiFa38k6nlve8dT6mBWBkwh3kh76hnR+UjBGux1JDz6A5MceA8yReU+pCL3qli+PyNhaw+en6OHeh4f7pp990MoatbIOIq1hZRORwmQNy8NNt9+BvIJJnbaTE63mRAVQV8FNtNScPI5l3/kWskeMQmJaOj768zr4vd6Qz39au/g5zFhQiKzheRGbKxERERH1jMVqknc8m7zjqZmoIspctAhpTz2Fpg0b4Hh/C3w1NfC7mmGyx8Gcno6EqVOQOG0aTPHx0n0Sp92Hqvnz4ak4Lvt8LmzcJM3l4tciIiIiIrrIEAgEApf+RES96ty5c0hLS2v3udraWvTrF7x9nLDttVekCiA9tBEU1V1dtdQjIiIiouhY/3Ipzh6Tr9XbNblJuP+HPBuoJ9paW1H36//F+d/9Dris44Ac0hcuQMojj8g6JhERkVb15NofkdqwjR6RSokzjUQQ0xMWqw3ZI/IBgwFKJSqc9q1fE+1pEBEREVEnBo9qfwGlp5qbPPC0+GQdU2+MMTFI++EPMPCtP8Bgs8k6tqiuIiIiIiK6EtvoEamUqPSZ/tQCrC1cAJ839EOZzZYYfP25xdJ5UKsXzceZo3+HUpUV70DBw7M6bCvocTWjbGcRKkr2wFFfB6/bDYvNhoSUVOlsK9FysLN2hERERETUc8PHZuCD9Sfgk+nspqbaFrzz4n7c8283IiFF3qBEb2JHjoS5Xz94T5+WbUzRxo+IiIiI6EqsbCJSMXGWkTjTKNQKJ3H7GQufl4ImYejY8VAyr7sFZcVF7T53oe4ctr76v1g+99soWrEcp8uOoLG6Cs2NDdLv4s/i88vnPia1HBS3JyIiIiL5xcSaMWxMhqxj1n/ejP/7+Uc4d9oh67h61OZukXU8cV4UEREREdGVWNlEpIHASZxpJFrNle3cDq/H3eltLbZY5BVMlFrwXX4Gkqj+KX5rVdD7Rlvpuxsw4Es3IuWa/vi8/CjWv7gYbmfXFx/EmsTZVuV7d2P60wsvBWxasnbtWpw5cwb9+/fHjBkzoEVaWaMa16HGORORPvD5SVluujMbJ/bXwt3slW3M5qZWrHupFFO/8yVkX98Xahetx6zRbodfzvFi2TWgK3x+ih7ufXi4b/rZB62sUSvrINIahk1EGiCCo8mPz5NazYkKoIq9u+FsOI/WlhbExMYiPrkvcseOR17BpA5byonP5U24TQpllEpUK638wXcRm5gkneMUCPGgY3GftYufkyrBRECnJU6nE01NTUhKSoJWaWWNalyHGudMRPrA5ydlEe3u7v7uDdiw5CD83tB+TgvG6/HjL68cxsSHhyHvlmugZtF6zFrSM+CtPCXbeL7aWrgOHIB91CjZxtQaPj9FD/c+PNw3/eyDVtaolXUQaQ3DJiINEaHRqKn3SL9CJaqdRPWPCGXCZjAAgQAiqaWpMez7irOt1r9UKFWCXV7ZpXY5OTnSD1ipqanQKq2sUY3rUOOciUgf+PykPJk5SZj25Ei8u+yIrBVOgbYAtr/5CS6cb8HIOwbgWEkNTh6ohbPBI4VRFqsJ8clWDB6VJp0fJdr6KVG0HrMJU6bAtW+fbOMF3G5UPvwIkh/9FtL+3/+TKqeoPT4/RQ/3PjzcN/3sg1bWqJV1EGmNIRCI8JVhIurUuXPnkJaW1u5ztbW16NcvOkHI2U/KsLZwgRTKhMpsiZGqhkTg9dnhA9i9+k34Wj1QohvvuEuqBOuIx9WMsp1FqCjZA0d9HbxuNyw2GxJSUpE7ZpzUcrCj6jAiIiIi+oKj3o39mytRXlINn6fzBm7mGCMMRgO87u43eRO3F+FTp2NaTdL5UaKtn6i2IsDvdKJiwq0IuFyyj23p3x+Zi/8LcV/5yhdfy+FA04aNcGzZAm9NNdpcLimMEtVVIvRKnD4Npvh42edBRESkVEq79kcUSQybiKJIiS84InAS1T+hVDjZEvpcdR7Smp88i9NlR6BE4uyqOctWtQuNLtSdQ8m61ThavCP4uVdWm9Ry8Mpzr4iIiIiovdYWnxQ4nSithbPRI4VKFpsJ8UlWDMlPk0Ihv68Nf1l6GDWf9qC6vgO2OAvufmIEMockyjquWlUtWoTGP62O2Ph9vvpVGKwxuLD5/aChlsFuR+J99yJ1zhxYMjMjNh8iIiKlUOK1P6JIYdhEFEVKfcERwcu+9WtQtnN78ODFFou8gokdBi8HNm9C0YrlUKrbZn0H+Xfe98+A7cXFcDsdPQrYiIiIiCh03lY/tr1ehpMHz8k6rslilNr6ifZ+euetqsKn938N/sbwW1LLyZSUhP5Ll8Kez3OfiIhI25R67Y8oEhg2EUWR0l9wPC4XyoqLULF3N5wN59Ha0oKY2FjEJ/dF7tjxyCuY1GlLOXHf5XMfCxpWRZPRZELOzeOQmJaO0nc3wO/1ht06MGt4HqKpuroabrcbNpsNGRkZ0CKtrFGN61DjnIlIH/j8pC1tbQHsXluBw0VnZK9wevC50YpoqRftx6yrtBSnZs1GwKOMVtcGqxUDVrwOe34+tCba32s9496Hh/umn33QyhrVtA6lX/sjkhPDJqIo0voLzrbXXsGhre9By0SF06MvLIlqS72VK1eisrIS2dnZmDlzJrRIK2tU4zrUOGci0gc+P2nTob+exq61FYCM/0u9fkIWJj48DNGmhMesCJzOPDFPURVOg9a9o7mWekr4XusV9z483Df97INW1qimdWj92h/R5Yzt/kREJCPRXk+EMT1hNJthje24ekoJxNlWouUgEREREfXcjbdfizu/8yUYzQbZxjxWUi2dH0WQqohEuJP00Dek85OCMdrtSHrwAaT8y2wYLJaIzEeEXnXLldt6m4iIiIi6j5VNRFGkh3c3iPOQ1hYugM/bGl6buoXPIzN3KF79t3+B83wdlEicXTVn2aogLQWbUbazCBUle+Cor4PX7YbFZkNCSipyx4xD3oTbO72v1srH9b5GNa5DjXMmIn3g85O2ieqmQ9tOyzbehIeG4oaJ/RFNSnvM+p1ONG3YAMf7W+CrqYHf1QyTPQ7m9HQkTJ2CxGnTYIqPl27rOX4cVc8tQMuhQ7LPQ4RaOTv/dulraYHSvtd6wr0PD/dNP/uglTWqaR16uPZHdBHDJqIo0ssLjgic1r9UKFUBdZeoiJr+9EJkDbtO+vOanzyL02VHoFSTZs/FqKn3tPvchbpzKFm3GkeLdwQ9u8pitSFvwm1SJVg02/ERERERKcX6l0tx9ph8rd6yhiZh+g+0dzZQbwr4/Wh4803U/s8vEXDLey5r+sIFSHnkEVnHJCIiUgK9XPsjEthGj4giLmt4nnSu0Y133CUFK11VCYnbidtfDJoEUQGkZPv/sgF1pytxMb8XAdsbz3wfh7dtDho0CeLvxdlWb8x/EmfLj/bSjImIiIiUy9ngkXe8RnnH0yODyYSUb38bgzdthLFPz1plX0lUVxERERGRupmjPQEi0gdRsTP58XkoeHgWyoqLULF3N5wN59Ha0oKY2FjEJ/dF7tjxyCuY1GFLOdFqrvitVV0GN9HSVFOFVU/NQ3xyCvplD0blkYNo84d2NoCo/Fq7+DnMWFAoBXREREREeuX1+OUdzy3veHoWc+21MCUloe1C97sWdEW08SMiIiIidWPYRES9SgRJot3clS3nunM/0WpOVAApmbOhXvoVLnG2lWg5KCq7uttSb9euXairq0NqaipuueUWaJFW1qjGdahxzkSkD3x+0jaL1STveDZ5x9P7Y7atxSXreOK8KC3R0vdabbj34eG+6WcftLJGrayDSGvYRo+IVEOcaSTOcuoJa1wcvvLAwzBbrVAqUeG0b/2aTv/e42rGgc2bpHOsfvfkv2Lfb3+Jiv97A/v/8Dvp8x6XvP/5V4Ljx4/j0KFD0u9qpsZ1qHHORKQPfH7StvhkeX9WsyfEINq09Jg1dtCJoEcCgUvtqLVAS99rteHeh4f7pp990MoatbIOIq1h2EREqiEqfaY/tQBmS3gXC8T97n9mEcbNeBiZQ4ZCycqKd1wVGl2oO4etr/4vls/9NopWLMfpsiNorK5CwOOGsdUDX/056fPL5z6Gba+9It1eK+Lj45GYmCj9rmZqXIca50xE+sDnJ20bPKr9Qdo91VDjwvnPnYgmLT1mLekZso7nrzuPU7Nno/Wzz6AFWvpeqw33PjzcN/3sg1bWqJV1EGmNIaCltw8Rqcy5c+eQltb+P9JlZWVSGfCV+vXrXks1PTj7SZnUak5UAHWXqIia/vRCZA27TvqzqAASwYySTZo991K7QWnNLy6G2+kIe81EREREatHa4sOK+bvhk/HsJtGab/KsPAweyZ+re6r+zT+gprBQ9nENMTFIfeK76Dt7tvSx3+FA04aNcGzZAm9NNdpcLqmqSoRdCVOmIHH6NJh4oZGIiFR27a+2tpbX+UiTGDYRKewFpzP8p9qeqNoRrebKdm6H1+Pu9HYWWyzyCiZKLfguPwNJVA2JCqBg94222IQ+GP+NR2FLiMfm//0f6TyncKq5ZiwoRNbwvIjMkYiIiChSdrxVjo93npV93NFfHYjRXx0Eg9Eg+9h64Xc6UTHhVgQi1L45ZmA2YoYMQfMHe4N+DYPdjsT77kXqnDmwZGZGZC5EREQ9wbCJ9IRhE1EUMWzqOREalRUXoWLvbjgbzqO1pQUxsbGIT+6L3LHjkVcwCdZOesqLVnOHtr4HrRMVTo++sKRd2EZERESkdI56N9Y8/yHczV7Zxx50Y6pU5RRjM8s+tl5ULVqExj+thhKYkpLQf+lS2PNHRXsqRERE7TBsIj1h2EQURQybol8d9cb8J0Nqx3clk9kMs9UGT3N0zwDoyo133IXJj8+L9jSIiIiIQlJ1vBEblhyE39sm+9jJmXG4+7s3IDYhBuV7q3HyQC2cDR54PX6p5V58slU6O2r42AzExDKUupK3qgqf3v81+BsboQQGqxUDVrwOe35+tKdCRER0CcMm0hOGTURRxLCpZ1auXInKykpkZ2dj5syZYY0hzkJaW7gg/BZ1C5/HNbnDUPvZSax9fmFIZyr1JtFOcM6yVZ1WeXlczSjbWYSKkj1w1NfB63bDYrMhISUVuWPGIW/C7Z3eVy3fayVQ4zrUOGci0gc+P+krcHp32ZGIVDgZzQYYDIagYZbZasKwMRm46c5sJKTYwv5aWnzMukpLcWrWbAQ8HiilwmnQunei3lJPi99rteDeh4f7pp990Moa1bQOhk2kJ8ZoT4CI2isrK5NedK78RZEhzjISZxqJVnOhELcXQVPWsOtgMBqRPjgH/QYMhFJ53S1Su8GOqru2vvq/WD732yhasRyny46gsboKzY0N0u/iz+Lz4nwr0XZQ3J6IiIioN2XmJOHB50bj+glZUvATjPj7uMSYbo/d5gt0WTXl8/ils6NES7+qE03dHlsPRBWRqCYSIU9IDJE5L0tUWdUtXx6RsYmIiIgoOFY2EUUR393QMwcPHkRjYyOSkpIwcuTIHo0lQpR969egbOd2eD3uoBVCeQUTcfP0B686A+nA5k1SMKNUIhB75PmXpXDsYlXX+hcXh1SNJUK26U8vlEI2tX6vo0mN61DjnIlIH/j8pE+tLT6Ul1TjRGktnI0eeN1+WGwmxCdZMSQ/TapAMscYsfv/juNw0RnZv77JYsS0J0dKAViotPyYFS31RMjTtHETAi5Xp7cz2u3oc9+9SH74YTS8+Qc0rlkj+1zE18jZ+TeY4uMRLVr+Xisd9z483Df97INW1qimdfDaH+kJwyaiKOILjvJ4XC6pAqhi7244G86jtaUFMbGxiE/ui9yx45FXMClIKzqXVAEULKyKNntiErJHjEJivzR8uOkd+L3e8NoHLiiUqsKIiIiIlOronir87a1y+H3ynvdki7NIlVY9aamnVX6nE00bNsDx/hb4amrgdzXDZI+DOT0dCVOnIHHatHYhkGv/flT9+MdoPX5C1nmkL1yAlEcekXVMIiKicPDaH+kJwyaiKOILjvaIVnOHtr4HrRMVTo++sOSq6i4iIiIiJan59ALe+81hNDeFfj5nMKKl38SHh8k6pl4FWltx4u674T1zVrYx7TffjOzfr5JtPCIionDx2h/pCc9sIiKSkWivF+r5T1eyWG3IHjEyYr3s5eB2XJDaDhIREREpWfqgPnjgP0YjY3DPfj670rGSaqmlH/WcISYGMAU/iytUoqqKiIiIiHqXuZe/HhGRbI4fPw6n04n4+Hjk5ORACUSlz/SnFmBt4QL4vK1htaj7+nOLpTORVi+ajzNH/w6lKivegYKHZ3XYVtDjakbZziJUlOyBo74OXrcbFpsNCSmpyB0zDnkTbu+0HaFavtfhUOM61DhnItIHPj9Rd8UlWjH93/Ox/n9KUX3ygixjej1+6eyoGyb27/Z9+JjtXFuQc57CbecXTfxeRw/3PjzcN/3sg1bWqJV1EGkNwyYiUq1du3ahsrIS2dnZivrhQpxlJM40Wv9SoVQB1F2iImr60wuloEkYOna8osMmr7tFOt9q1NR7Ln3uQt05lKxbjaPFOzo8u6qxugqny46g+K1VyJtwm1QJ1p1WfEr9XodKjetQ45yJSB/4/EShMFmMMJrlbexxorQ2pLCJj9nOGe12+GUcz9/QgMZ165E4fRoMUegWwO919HDvw8N9088+aGWNWlkHkdawjR4RUYQCJ3Gm0Y133CW1xQvGYouVbidufzFoEkT1T1f3jbbSdzeioeosxPF/Zz8pwxvPfB+Ht23uMGi6nPh7cbbVG/OfxNnyo702XyIiItKv5gaPrOM5G+UdT88s6RnyDtjWhqpnn0Xltx6Fu/xYu7/yOxyof/MPqHzs2zg+dSqOFRRIv4s/i89HuyqKiIiISK0MAXGFkIiigocE9owomfb5fDCbzVLptFJ5XC6pAqhi7244G86jtaUFMbGxiE/ui9yx45FXMKnTlnLbXntFCmWUzp6UjJYLTQi0tYXVOlBUgomATu3f666ocR1qnDMR6QOfnyhUK360C64Lobc57kxsggWzXyzo9u35mO2cCHlqCgsjM7jJhJRvfQuJD8xAwxtvomnTJgSCtO0z2O1IvO9epM6ZA0tmZlhfkt/r6OHeh4f7pp990Moa1bQOXvsjPWHYRBRFfMGhroi2dKL6J5R2fFcRrUMU/lQvWgiKyq7utNQjIiIiCsebCz9A07kW2cYTP2KN+3qO1ErPdFmLPk+LD+V7q3HyQC2cDR7pfCeL1YT4ZCsGj0rD8LEZiIllR/vLiWqiigm3Bg2BeizEn4lNSUnov3Qp7PmjIjcnIiLSPF77Iz1h2EQURXzBoe4Q7enWFi6Az9sadtWQxWZD5eED2PP2H+Brle8dvXISrQQnPz6v07/3uJpRtrMIFSV74Kivg9ftltaVkJKK3DHjpLaDnVWIEREREa1/uRRnjzXKPm5iWizGfS0HqdfGo3RzJcr31cDn6fwEIrPVhGFjMnDTndlISFF2y+TeVLVoERr/tBpKYrBaMWDF67Dn50d7KkREpFK89kd6wrCJKIr4gkOhBE7rXyoMqcJJVAtNf3phu3Og1vzkWZwuOwIlEmdXzVm26qrASFR3laxbjaPFO4KeBSXOt8qbcBtunv4gK6SIiIjoKoe3n0Hx6vbn98jJYDQg0Nb9/17b4iy4+4kRyBySGLE5qYm3qgqf3v81+BvlDwR7QlQ4DVr3Ttgt9YiISN947Y/0hGETURTxBadnNm/ejOrqamRkZODOO++E1onQZd/6NSjbuT146GKLRV7BxA5DlwObN6FoxXIo1aRZczDqznvbh2wvLobb6ehRyKYUanzMqnHORKQPfH6iULW2+LBi/u6gVUe9zWQxYtqTI5GZkxTtqSiCq7QUp2bNRsDjgZIkPfQNZC5a1O3b8/kperj34eG+6WcftLJGNa2D1/5IT9gomohUS/xgUVlZCb0QwZFoM1fw8CyUFRehYu9uOBvOo7G+Hv5AADHxfTBh+teRVzCp03ZyotVc8VurgoZV0bTj96/hbPlRDBwxCtb4eLy75MWQ2weK6q+1i5+T2gdmDc+DkqjxMavGORORPvD5iUIlzkkS7es+3nkWSuH3tuHdZUfw4HOj2VIPkNrVibZ1Z56YF1KFk9FuhyEmJmJVURc2bkLaU0/B1M1D6Pn8FD3c+/Bw3/SzD1pZo1bWQaQ1DJuISLXEO1gu/10vRJA0auo90q8r39EzauqdXd5XtJo7tPU9KFGb34/yPTulXz0hAirRdvDRF5YoqqWeGh+zapwzEekDn58oHOKcpBP7a+Fu9kIpxFz2b67ExIeHRXsqigmcRNu6uuXL0bRxEwIuV9CQqc999yJ1zhwYExJQ9+tfo/7NPwB+eavX2lwuNG3YgJRHHunW7fn8FD3c+/Bw3/SzD1pZo1bWQaQ1bKNHFEUspaVoteN7Y/6TIZ3/dCWj2Qyz2YJWdwuU7MY77pKqwYiIiIguqjreiA1LDkpVRUphsZow84XxUvUV/ZPf6ZRCHsf7W+CrqYHf1QyTPQ7m9HQkTJ2CxGnTrqo2cpeXo/q/FqNl/35Z52K/+WZk/36VrGMSEZH28dof6QnDJqIo4gsORYs4C2lt4YKQW9QJZksMZix8Hpk5Q/Hqv/0LnPV1UCpxftWcZas6bCvocTWjbGcRKkr2wFFfB6/bDYvNhoSUVOSOGSe1HOysHSERERGpP3AS7etCqXCy2EyIsZnQ3Bj6z0/dMeGhobhhYv+IjK034jJHxS0F8J8/L9uYMdnZGPL+ZtnGIyIifeC1P9ITvm2KiEiHxFlG4kwj0WoulAonW0IfTH96IbKGXSf9OTkjU9Fhk9fdIp1vdbHl4MXKrpJ1q3G0eEeHZ1c1VlfhdNkR6Wwr0XLw5ukPKqoVHxEREfVcZk6SdE6SaF9XXlINn8cftOpo6JgMqQWfvU8Mjuw4g4/e/Qwel0/WOZ0orWXYJBODwQAYDbKOKaqqiIiIiKhzDJuISLWcTid8Ph/MZjPiu3lYrxaFuw8icBJnGu1bvwZlO7d3GLxcXiGUVzDxquBFVACJYEbJyv5WhJFTvipddBAVXetfXAy309Hl/cR+iLOtyvfubhew6e0xq8Y5E5E+8PmJeiohxSadkzTu/iFS4CTCHmejB163X6piik+yYkh+GoaNyWjX3m7k5AEYPjYTbyz8AK0t8gVO4muTfMR5TrKe3OT1oc3jgdFq7fKmfH6KHu59eLhv+tkHraxRK+sg0hq20SOKIpbS9szKlStRWVmJ7OxszJw5E3olxz54XC6pAqhi7244G86jtaUFMbGxiE/ui9yx45FXMKmTVnQuLJ/7WNCgSgni+6ai34BBqDx8AG1+X3itAxcUSgGd3h6zapwzEekDn58o2lb8aBdcF+RrqWeLt+BfXiqQbTy9q3zs23Dt2yfrmJZrr0X6/GcQP2nSF9VT/+B3ONC0YSMcW7bAW1ON5rrz8BgMCKSkIPexx5A4/eqzpSgy+NoQHu6bfvZBK2tU0zp47Y/0hJVNREQkBUmi1dzl7ea6ez/Rak5UACmZ83yd9Ctc4mwr0XJQVIKxpR4RERFdbK8nJ7fTi/df/TtGf3UQUq6Ja/d3nhYfyvdW4+SBWjgbPPB6/NLXj0+2YvCoNAwf2776ioCEKVNkD5u8p0/jzLx/Q9y4cUj/j2dhjItD3W+Wo2nTJgRcrku3i/nHLzidqCksRO3LLyPxvnuROmcOLJmZss6JiIiISClY2UQURXx3Q88cP35cKp0WJdM5OTnQq2jvgzgD6Y35T4Z09tOVrPY4jLrrXlSfqMBnB0vFsc5QohvvuAuTH5/X6d97XM0o21mEipI9cNTXwet2w2KzISElVWo5aOs/CB6fT1WP2Wg/voiIOsPnJ4q29S+X4uyxRvkHNgC5X07H6K8OhDnGhP3vfYbyfTVBz5UyW01Suz9xrpRoD0iA3+lExYRb24VAsjIaYTCbEWjtfnWbKSkJ/ZcuhT1/VGTmRHxtCBP3TT/7oJU1qmkdvPZHesKwiSiK+IJDWiHOQlpbuECqAAqrRd3C5y+dibR60XycOfp3KJE4u2rOslVXtRQUgVvJutU4Wrwj+NlXVptUCXbl2VdERESkPoe3n0Hx6mMR/RpGswFtvu7/l90WZ8HdT4xA5pDEiM5LLaoWLULjn1ZDSQxWKwaseB32/PxoT4WIiHoBr/2RnhijPQEiIlI/cZaRONPIltAnpPuJ218eNAlDx46HUnndLdLZVlcGbW88830c3ra5y7OrxN+LloOiEuxs+dEIz5aIiIgiSbSuExVFkRRK0CS4m73Y8MsDqDoegYorFRJt60Q1kZIEPB6ceWIevFVV0Z4KERERkawYNhERkWyBkzjTSLSaExU8XVUIiduJ218eNAl5E27v8v7R9MHbb+HwXzfjwrnaSxVdbqcjpDFEy8G1i5+T7k9ERETqJM5IEq3rlMbvbcO7y47AUR/8TTB6IM5H6r/0FamaSEn8jY2oW7482tMgIiIikhXb6BFFEUtpe+bgwYNobGxEUlISRo4cCb1S4j54XC6pAqhi7244G86jtaUFMbGxiE/ui9yx45FXMOmqVnSX2/baK1IFkNIZDEYEAm1h319UdonATckt9ZT4+CIiEvj8REogAp01z38oVRQpzfUTsjDx4WHRnoYiuEpLpWoiEfJ0m9EItIX/c16Xw9vtyNn5N5ji4yP2NfSIrw3h4b7pZx+0skY1rYPX/khPzNGeABFRT364qKysRHZ2tuJ/uNDbPoggadTUe6Rf4RBnGpXv3S1VAIXPIBqVIJJ6EjQJYn371q/B5MfnQamU+PgiIhL4/ERKkJBiw93fvQEblhyUKoqU5FhJNcbdP0SqwNI7cT7SoHXvSNVETRs3IeByBQ2B+tx3L/r+y+Nw7tiBc7/+Ndou9ORn0o61uVxo2rABKY88IvvYesbXhvBw3/SzD1pZo1bWQaQ1/KmTiIgUR1T6TH9qgdSizudtDfn+ZksMvr7gv2A2x+D/fvbjkNvc9aay4h0oeHhWh5VeHlczynYWoaJkDxz1dfC63bDYbEhISUXumHFSy8FgFWJEREQUeZk5SZj25EipdV0oFU4iBOqXnYCz5Q0ReX+M1+NHeUk1bpjYX/7BVdpSL3PRIqQ99ZQU8jje3wJfTQ38rmaY7HEwp6cjYeoUJE6bdqnaKOXRb6HPPV/FuV/9Co2r18he6STmwLCJiIiItIJt9IiiiKW0RMGJM43Wv1QYUoWTaE03/emFl86CWvOTZ3G67AiUbNLsue2qwC7UnUPJutU4WrwDXk/n5y2Is63yJtwmVYIpuRUfERGRXlrq7d9cKQU8Po+/09tZrCYMHZOBm+7Mliqjzp914sM/f4oTB87JPqesoUmY/oN82cfVI/cnn+CzbzyEgMcj25gx2dkY8v5m2cYjIiLl4bU/0hOGTURRxBccoq6J4EW0mivbuT148GKLRV7BxKuClwObN6FohbIPYO6fdwO+8eOf/TNge3FxSNVYVwZsREREFD2tLT4pcDpRWgtnowdetx8WmwnxSVYMyU/DsDEZHba2O3fagXde3A9fq3zVM4lpsfjWf31FtvH07tgtBfDX1ck2nqlfKoYWF8s2HhERKQ+v/ZGeMGwiiiK+4BB1n8flQllxESr27oaz4TxaW1oQExuL+OS+yB07HnkFkzppRefC8rmPBQ2qos1gNOK6WyaiT780fLjx/+D3esNqHThjQSGyhudFZI5EREQUeSt+tAuuC6G3EO6MyWLEN54bjeSMuKv+ziNCsb3VOHmgFs4Gj9R2T1RdxSdbMXhUGoaP7TgU07PjU6fCW3lKtvFMSUnI2V4EY2ysbGMSEZGy8Nof6QnDJqIo4gsOUe/Y9torOLT1PWidqHB69IUlbKlHRESkUm8u/ABN51pkHdNgAHK+nI4v3zUQKdfEfdHu773PUL6vJmi7P7PVJFVhXWz3R0DlY9+Ga98+WccUZ0X1+3//D4nT7pPegHSR3+FA04aNcGzZAm9NNdpcLhjtdljSM5AwZQoSp//zbCkiIlIuXvsjPWHYRBRFfMHpmbVr1+LMmTPo378/ZsyYAb3Swz70dI2iFd8b858M6eynjs5HyswdiqqKY4qukrrxjrsw+fF5so2nh8cXEakTn59Ii4/Z9S+X4uyxxshMwPDFGU7nTjnQ2tJ5yHQlW5wFdz8xAplDEqF39W/+ATWFhREZ23rddUh/5kfSOU51v1mOpk2bEHC5Or29wW5H4n33InXOHFgyMyMyJzXia0N4uG/62QetrFFN6+C1P9IT1sQTkWo5nU40NTUhKSkJeqaHfejpGkWlz/SnFmBt4QL4vK1htaj7+nOLpTORfF4v3nruBzhX+SmUqKx4BwoentVhS0HB42pG2c4iVJTsgaO+Dl63GxabDQkpqcgdMw55E25vd189PL6ISJ34/ERafMyK9nURC5sCwNny0Md2N3ux4ZcHMO3JkcjM0fe/N1FNVPvyy0FDoHB5jh7FqZmzALMZ8Pm6vL2YQ+OfVsOx+X30X7oU9vxRss9JjfjaEB7um372QStr1Mo6iLSGYRMRqVZOTo70g0Vqair0TA/7IMcaxVlG4kyj9S8VhlThJFrTTX96oRQ0CWaLBTdMmoKiFcuhRF53i3S21aip91xV3VWybjWOFu/osDKrsboKp8uOoPitVcibcBtunv6gFNLp4fFFROrE5yfS4mNWnJP0wfoTQdvbRYPf24Z3lx3Bg8+N1nVLPdG2TlQTiZAnYroRNF3O39iIU7NmYcCK12HPz4fe8bUhPNw3/eyDVtaolXUQaQ3b6BFFEUtpiXqfCF32rV+Dsp3bg7bDs9hikVcw8VLocjmPy4Xlcx9TbDu9pMxr8PX5P0FSxhctVc5+Uob1Ly6G2+kIO2QjIiKi3rHjrXJ8vPMslOj6CVmY+PAw6Jm3qgqf3v81KeRRElNSEgate4ct9YiIFIbX/khPGDYRRRFfcIiiRwRGogKoYu9uOBvOo7WlBTGxsYhP7ovcseORVzCp01Z0wrbXXsGhre9ByRLTM9BvwECcPPAR2kJ8l+zF9oGiGkxUhREREVHvcNS7seb5D6X2dUpjsZow84XxiInVd5MUV2kpTs2ajYDHAyVJeugbyFy0KNrTICKiy/DaH+kJwyaiKOILDpG6K6TemP9kSC351EhUOD36wpKrqruIiIgocqqON2LDkoNS+zqlmfDQUNwwsT/0TgROZ56YF1qFk9EItEXue2q025Gz829Suz8iIlIGXvsjPWHYRBRFfMHpmerqarjdbthsNmRkZECv9LAPSl2jaE+3tnABfN7WkO9rssRg8uNPwNXUiA/WvgVfa+hj9JZBY2/BuG/O7HDvPa5mlO0sQkXJHjjq6+B1u2Gx2ZCQkorcMeOQN+H2oBViRERae20gkusxKwIncU5SKBVOtjgLxs0Ygs8On8fJA+cQCVlDkzD9Bzwb6GJLvbrly9G0cRMCLlfQEKjPffei7+OPw7V3L2qXLIH/XF1E5pS+cAFSHnkEesXXhvBw3/SzD1pZo5rWwWt/pCcMm4iiiC84PbNy5UpUVlYiOzsbM2fOhF7pYR+UvEbpPKSXCkOqcDJYYvCNhc9fOg9pzU+exemyI1CqgNGIlEn3Yva//mu7yq6SdatxtHhH8LOvrDbkTbitw7OviIi0+tpAJNdjVrTU27+5EuUl1fB5/EHb2w0dk4Gb7sxGQopN+tz5s0589O5nOL6/FnJKTIvFt/7rK7KOqXZ+pxNNGzbA8f4W+Gpq4Kyrg8doRCA5GbnffgyJ06a1qzZqa27G+RUrcf53v0OgpUXWudhvvhnZv18FveJrQ3i4b/rZB62sUU3r4LU/0hN9N1omIiLqIXGekWgzt2/9GpTt3B40eIHJDG+fZPS7cfSloEkQFUBKDpsMbW1o/byyfcD24mK4nY4u7yv2Q5xtVb53N6Y/vbDduomIiCg4ERxNfHgYxt0/RAqcTpTWwtnogdfth8VmQnySFUPy0zBsTMZV5yj1zYrH1H/9Es6UF8PtlO/8pxaHF21tARiNhqv+ztPiQ/neapw8UAtngwdej18KwuKTrRg8Kg3Dx149Ty0QQZKoJrpYUXT5RdAxHVQZGePi0O/f5iHpgQdw8qt3o83ZLNtcRNhFREREFA2sbCKKIr67QT9l05Gkh31Qyxo9LhfKiotQsXc3nA3n0drSgpjYWMQn90Xu2PFIHXY9/DBctQ5xv+VzHwseVEWZLT4BEx97HFZ7HP6y5BdhtQ40W2IwY0GhFNAREenltYEo2o/ZNxd+gKZz8lbPJGfYpSqq3NHpMJqMX1RgvfcZyvfVBK3AMltNUjB2eQWW3r/XxwoKZG2pZ+rbF0N374Je8bUhPNw3/eyDVtaopnXw2h/pCcMmIoW94JSVlSE1NfWq2/JFiEjbtr32ilQBpHW2hD5SJRhb6hEREfWO9S+X4uyxxoiM3SfVhiGj+qFsdxU8Ll9IZ0vd/cQIZA5JhN4dnzoV3spT8g1oMKDf97+HlMcekyqoLvI7HGjasBGOLVvgralGm8slnSVlSc9AwpQpSJzevtUfERHJg2ET6QnDJiKFveB0hv9UibRNnIH0xvwnQzr76UpGsxkmkwlejwdKduMdd2Hy4/OiPQ0iIiJdOLz9DIpXH4PSmCxGTHtyJDJzkqBnlY99G659+2QfV1Q4pX73u4ifUIDzv3sdTZs2IeBydXp7g92OxPvuReqcObBkZso+HyIivWLYRHrCsIkoihg2EdHlxFlIawsXhN+ibuHzyBiSi6rj5djwi8VwNzuhRBZbLOYsWwWr3d7h33tczSjbWYSKkj1w1NfB63bDYrMhISVVOt8qb8Ltnd6XiIiI2mtt8WHF/N1B29tFi6hwevC50ZpuqdeV+jf/gJrCwsh9AaMRaGvr9s1NSUnov3Qp7PmjIjcnIiIdYdhEesKwiSiKGDb1zK5du1BXVye1HbzlllugV3rYB62ssTvrEIHT+pcKQ6pwEq3ppj+9EFnDrrv0uTU/eRany45AqSbNnotRU++5qrqrZN1qHC3eEfT8KovVhrwJt+Hm6Q+yHR+RjmnltYH0I5qP2R1vlePjnWehRNdPyMLEh4dBr99rv9OJigm3Bq066m0GqxUDVrwOe34+1IavDeHhvulnH7SyRjWtg2ET6Ykx2hMgIgrX8ePHcejQIel3PdPDPmhljd1ZR9bwPOlMI9FqToQqXVUIiduJ218eNAmiAkjJROXS5SG6CNneeOb7OLxtc9CgSRB/L863Em0Hz5Yf7YXZEpESaeW1gfQjmo/Zm+7MlqqIlOhYSbVUfaXX77U4J0m0r1OSgMeDM0/Mg7eqCmrD14bwcN/0sw9aWaNW1kGkNeZoT4CI2isrK5PemUFdixf/MUtMlH7XMz3sg1bW2N11iGodcaZRwcOzUFZchIq9u+FsOI/WlhbExMYiPrkvcseOR17BpE7byYlWc8VvreoyuImW6uPH8Nr3/gXZI0ahT99+2LtuNfxeb0hjiOqvtYufw4wFhVJIR0T6opXXBtKPaD5mRZu6u797AzYsOQi/t/st1XqD1+NHeUk1bpjYH3r9Xotzkhyb34e/sRFKIeZSt3w5MhctgprwtSE83Df97INW1qiVdRBpDdvoEUURS2mJKJK2vfaKVAGkdaKNoKjuYks9IiKi4KqON+LdZUfgbu7+GzyscWbk5KfhxIFzcDtDe2NId2UNTcL0H6ivZZucXKWlODVrtlRVpBRGux05O/8mVV8REVF4eO2P9ISVTURERBolzjQq37s7pPOfrmS2WpE+KAdnP/kYSiXWt2/9GqkajIiIiDqXmZOEB58bjf2bK6VqIp/H3+ltLVYTho7JkFrwicqo8TNy8XHxWRzYcgquC62yzsvZ2HHA4mnxoXxvNU4eqIWzwSNVQYl5xSdbMXhUGoaPzUBMrDYua4jzkcQ5SaJ9XSgVTsa4OJiSk+E9c0b2ObW5XGjasAEpjzwi+9hERESkPaxsIooivruBiCJNnIW0tnABfN7QLwqZLTGYsfB56TyoPy16BmePKjdwEudXzVm2qtO2gh5Xs3ROVEXJHjjq6+B1u2Gx2ZCQkiqdbyXaDnZ2XyIiIi0S5ySJwOlEaa0U9njdflhsJsQnWTEkPw3DxnQc5Pha/Vjxo11odXceVIXKYABuumsg8m65Rgq2HPVu7H/vM5TvqwkaiJmtJmmeFwMxLRDnJIn2dU0bNyHgcgWtOupz371SCz5zWhou/OUvOLfkV/CePSvrfOw334zs36+SdUwiIj3htT/SE4ZNRFHEFxwi6q3Aaf1LhSFVOInWdNOfXigFTcKBzZtQtGI5lGzS7LkYNfWedp+7UHcOJetW42jxjqDnV1msNuRNuE2qBmM7PiIiouDeXPgBms61yD+wAUgf2Af1nzdLVUzdZYuz4O4nRiBzSCK0wu90SlVFjve3wFdTA7+rGSZ7HMzp6UiYOgWJ06Zd1d6urbUVx2+dCH9Dg2zziMnOxpD3N7efm8OBpg0b4diyBd6aaqkCSoRflvQMJEyZgsTpV8+NiEiveO2P9IRhE1EU8QWnZ1auXInKykpkZ2dj5syZ0Cs97INW1hjNdYjQRbSaK9u5PXjoYotFXsHES6HLxTlfe801cBa/H/S+0ZZ8TRZmPFd4KSySQrYXF8PtdIQdshGRcmnltYH0Q0uP2fUvl+Lsse63eusNJosR054cKbUK1PP3+lhBAfzn6mQbz2CzYch778KSmflF1dVvlqNpU/CqK4PdjsR/VF2J+/UmLf07603cN/3sg1bWqKZ18Nof6Yk2mhsTERFRUCKAEWcaFTw8C2XFRajYuxvOhvNobWlBTGws4pP7InfseOQVTOqwnZzRYpEqfw5tfQ9K1fD5Wbw6bxZSsq5F6rXZOP7RXrT5fCGNIaq/1i5+DjMWFCJreF7E5kpERKRm4rwkpYVNfm8b3l12RDqTSist9cIhKozka3AIBNxunJgyFfETJ6K5pARtF7qulBdBVOOfVsOx+X30X7oU9vxRMs6IiIiIlIphExGp1siRIzFw4EAkJUX/3YvRpId90MoalbAOESSJVnNXtpvrzpwH989C+d7dIbXji4b6s6elX+ES51uJtoOPvrCELfWIFEwJz6lEen3MDh+bgQ/Wnwh6nlI0uJu92L+5EhMfHqbb77VoZeetPCXrmAGvF46tW0O+n7+xEadmzcKAFa/Dnp+P3qClf2e9ifumn33Qyhq1sg4irWEbPaIoYiktEamNaE23tnCBFMiEymyJwdcX/BeMRjMqDx9Ayfq34Q9jnN5y4x13SdVgHfG4mlG2swgVJXvgqK+D1+2GxWZDQkoqcseMQ96E2zusECMiItKKHW+V4+OdZ6E0FqsJM18Yj5hYfb63tv7NP6CmsBBKYkpKwqB17/R6Sz0iIiXgtT/SE4ZNRFHEFxwiUiPpLKSXCkOqcOroLKQ1P3kWp8uOQKnE+VVzlq1qFxqJs69K1q3G0eIdwc++stqktoMXz74iIiLSGke9G2ue/1CqJlKaCQ8NxQ0T+0OP/E4nKibcGvRMpWhIeugbyFy0KNrTICLqdbz2R3rCsIkoiviCQ0RqJUKXfevXoGzn9uChiy0WeQUTOwxdDmzehKIVy6Fkk2bPvdRyUArZXlwMt9PRo5CNiIhIK6qON2LDkoPSeUlKkjU0CdN/0HHbNk+LD+V7q3HyQC2cDR54PX6pGio+2SqdRSVaBKq9Kqpq0SLpzCSlnSWVs/NvMMXHR3sqRES9itf+SE8YNhFFEV9weub48eNwOp2Ij49HTk4O9EoP+6CVNapxHV3N2eNyoay4CBV7d8PZcB6tLS2IiY1FfHJf5I4dj7yCSZ22kxP3XT73saBhVbTZk5Jx22OPwxIbiz+//ELY7QNnLChE1vC8iMyRSK/U+JxK+qbVx6wInN5ddiSkCidbnAV3zb1BCqk+Lj6LEwfOyTonk8WISY8Ox5BRadLHFyux9r/3Gcr31QQ9a8psNWHYmAzcdGc2ElJsqvxee6uq8On9X5POTFKS9IULkPLIIxH9GtHee7XivulnH7SyRjWtg9f+SE/U/XYdItK1Xbt2obKyEtnZ2Yr/4SKS9LAPWlmjGtfR1ZxFkCQqfy5W/4RC3Fe0mju09T0olauxAX/51Ys9GkMEVKLt4KMvLGFLPSKdP6eSvmn1MZuZk4QHnxuN/ZsrUV5SHTTIERVEQ68Icq7NS8HrTxejxSFfOz4RYm19vQy7Eipw3fhr0G9APHb8oRyeZl+X9xXzF2dRndhfi7ufGIHMIYmq+16Ls5H6L30Fp2bNRsDjgVI43t8S8bAp2nuvVtw3/eyDVtaolXUQaQ3DJiIiIooa0V6vfO/ukM5/upLRZILBaII/jKqj3iLWJ9oOTn58XrSnQkREJDsRHE18eBjG3T9ECpxOlNbC2eiB1+2HxWZCfJIVQ/LTpIqhjlrUxdjMsoZNF4kxSzdXhnVfUam14ZcHMO3JkVKgpjb2/HwMWPE6zjwxL6QKJ1NSElKf/L4UDLn27pV1Tr6amnZ/9jscaNqwEY4tW+CtqUabyyW127OkZyBhyhQkTp/GtntEREQqwjZ6RFHEUtqeESXTPp8PZrNZKp3WKz3sg1bWqMZ19MacxVlIawsXhN+ibuHzSB80BGfLy7Dpf34GT3MzlEicXzVn2aogbQWbUbazCBUle+Cor4PX7YbFZkNCSipyx4xD3oTbO70vkR6p8TmV9I2P2c6tf7kUZ48pq+Xb5S3/ROVWKC31lPS9Fi316pYvR9PGTQi4XJ3eToQ8fe67F6lz5kiVUUL5mLFoa2qSbS6m5GQM/WDPF3P6zXI0bQo+J4PdjsQr5qSmvVcT7pt+9kEra1TTOnjtj/SEYRNRFPEFh4jon4GTaDUXSoWTLaEPpj+9EFnDrrv0uTU/eRany45AqSbNnntVy8ELdedQsm41jhbvCHp+lcVqk9oOimowtuMjIiItObz9DIpXH4NSXT8hS6rcUjO/04mmDRukiiVRYeR3NcNkj4M5PR0JU6cgcdrVVUTHp06Ft/KUrPOwjx0L98cfo83hCKnaqv/SpbDnj5J1LkREvYHX/khPGDYRRRFfcIiI2ocuotVc2c7twUMXWyzyCiZ2GLoc2LwJRSuWQ6kyc4fh4cL/bh+yvbgYbqejRyEbERGRmrW2+LBi/u6g5z1FkzhrauYL4ztsAahllY99G659+6AEBqtVagso2gMSEakJr/2RnjBsIooivuAQEV3N43KhrLgIFXt3w9lwHq0tLYiJjUV8cl/kjh2PvIJJQVrRubB87mNBw6poS868Btkj8pHQNxV73v4D/F5veO0DFxQia3heROZIRETU23a8VY6Pd56FUk14aChumNgfelL/5h9QU1gIpRAVToPWvdPtlnpERErAa3+kJwybiKKILzg9s3nzZlRXVyMjIwN33nkn9EoP+6CVNapxHWqc87bXXsGhre9B60SF06MvLGFLPdItNT4/kb7xMRuco96NNc9/CHdz6G/C6A1ZQ5Mw/Qf5uvpei9Z7FRNuDXquUm9LeugbyFy0SPN739u4b/rZB62sUU3r4LU/0hN91YATkaaIHywqKyuhd3rYB62sUY3rUOOcRXu98r27Qzr/6UrmGCtSB2Sj+rhyz48Q6xNtByc/Pi/aUyGKCjU+P5G+8TEbXEKKDXd/9wZsWHIQfm9byPc3WYz40oRrcOrjejRUuyIShnXG0+JD+d5qnDxQC2eDBxcaTfC19UNLXBsOW89g+NgMVbbgE2c4Jd53Lxr/tBpKcWHjJqQ99dRV50tdxH9n4eG+6WcftLJGtazD0erA/x37v2hPg6jXqO+nHSKifxDvYLn8d73Swz5oZY1qXIca5ywqfaY/tQBrCxfA520Nv0XdsOvwpx8/g7OffAylKivegYKHZwVpK9iMsp1FqCjZA0d9HbxuNyw2GxJSUpE7ZhzyJtze6X2JlE6Nz0+kb3zMdi0zJwnTnhyJd5cdCanCyRZnwd1PjEDmkEQEZgRw9lgj/vzrQ/D7Qg+tOnOhzo1tK8rwpVuzkD6oDwwGgxRA7X/vM5Tvq7nivCkTTIhF2wWgePUxfLD+BIaNycBNd2ZLoZqapM6ZA8fm9+FvbIQStLlcaNqwASmPPNLh3/PfWXi4b/rZB62sUenrqG6uxm8P/xZ/PvlnOOq7fz4vkdqxjR5RFLGUlogocs5+Uob1LxWGVOEkWtNNf3qhFDQJBzZvQtGK5VCySbPnYtTUe9p97kLdOZSsW42jxTuCnl9lsdqQN+E2qRqM7fiIiEgppBBncyXKS6qvCHHas1hNGNpJiPPmwg/QdK4lIvPrNyAB/a9LRlnx5/C4fGGFYmriKi3FqVmzEfB4oAT2m29G9u9XSR/7HQ40bdgIx5Yt8NZUS2GU0W6HJT0DCVOmIHH6tE6roIiIIuFA7QF8r+h7aPI0SX/2XfDhk+9/0u42vPZHWsWwiSiKGDYREUWWCF1Eq7mynduDhy62WOQVTLwqdPG4XFg+97Gg9422lKxr8eB//hRxScn/DNleXAy30xF2yEZERKQEraI9XUk1TpTWwtnogdfth8VmQnySFUPy06Rqoc7a061/uVSqcFIa0e5PVG+JKi61BU5nnpgXUoWTMSEBtuuug2vfPlnnEpOdjQErV6DuN8vRtGlT0DOlDHa71ApQVGhZMjNlnQcR6ZtokbfpxCZsO7UNNc01cPlcUl1rbUstAvjn5XaGTaQnDJuIoohhExFR7xChUVlxESr27oaz4TxaW1oQExuL+OS+yB07HnkFkzptJ7fttVdwaOt7ULp+Awejb9a1OFayG22+7r/L+qr2gcPzIjI/IiKi3nR4+xmphZ0SiQqnB58brbqWet6qKtQtX46mjcEDHlFZ1OeygOfYV8bB39Ag30RiYmC0WtHm6P4ba0xJSei/dCns+aPkmwcR6dLlLfJafF1X0DJsIj1h2EQURQybesbpdMLn88FsNiNex60R9LAPWlmjGtehxjlHojrqjflPhtSOT61EhdOjLyxhSz1SBT4/kdrwMdv7VVEr5u8O2oYvmq6fkIWJDw+DGvmdTuncJMf7W+CrqYHf1QyTPQ7m9HQkTJ2CxGntW9cdnzoV3spTiDaD1YoBK16HPT8/2lNRHD4/6WcftLLGSK+jo6olu9kOu8WOz5o+g9vf/c4XDJtITzquNyciUoG1a9eisrIS2dnZmDlzJvRKD/uglTWqcR1qnLPcRPAy/akFWFu4AD5va1gVQ1/7j59IH1cePoCPNq2D39f9Q897kwjURNvByY/P6/DvPa5mlO0sQkXJHjjq6+B1u2Gx2ZCQkorcMeOQN+H2TivEiOTG5ydSGz5me5doryfa7H2882y0p9KhYyXVGHf/kE7bACqZCJJSHnlE+tUd4vwkJYRN4swp0Qpw0Lp32FLvCnx+0s8+aGWNkVpHqFVLRNSe+n6qISIiIuplorWcaDG3/qXCkCqcrjwL6dq8G/B5+VGcLjsCpSor3oGCh2e1C41EdVfJutU4Wryjw/OrGqurpDUVv7UKeRNuu+rsKyIiomi46c5snNhfC3ez8t7k4fX4pfOobpjYH1qXMGWK7Oc2hUucOSVaAWYuWhTtqRBRlMhZtURE7bGNHlEUsY1ezxw/flwqnRYl0zk5OdArPeyDVtaoxnWocc6RJEIXUflTtnN7h6HLRRZbLPIKJnYYuhzYvAlFK5ZDySbNnotRU++RPj77SRnWv7gYbqcj7JCNKBL4/ERqw8dsdFQdb8SGJQfh97aFfmeDKIdBxGQNTcL0H3Tc0s3T4kP53mqcPFALZ4NHCqcsVhPik60YPCoNw8dmqKYqSrTdq5hwa9BznnqTOFMqZ+ff2rX60zs+P+lnH7SyxnDWEa2qJbbRIz1h2EQURQybiIjUyeNyoay4CBV7d8PZcB6tLS2IiY1FfHJf5I4dj7yCSZ22kxP3XT73saBhVbTFJafg9tlzYbFaseHF58NuHyiqwURVGBERUbQDp3eXHQmpwskWZ8HdT4yALc6Mv+88i08+qJbOgZKT1W7GA89+GYn9/vkzg6Pejf3vfYbyfTVBz5syW01Sm0BRvZWQYoPSVS1ahMY/rYZSpC9c0O02gESkfgdqD+B7Rd9Dk6ep1782wybSE4ZNRFHEsImISJ+2vfYKDm19D1onKpwefWEJW+oREVHUSSHO5kqpdV2wEEdUDw3tIMQRlUUrn9mFVnfn9w1X1rAk5N1yDex9YrD5t3+Hp9kXciiWOSQRSuatqsKn939NamOnBPabb0b271dJH/sdDjRt2AjHli3w1lSjzeWSqp/EWVOiBWDi9GmsgiJScYs8E0yobalFIJKlqkEwbCI9YdhEFEUMm4iI9NuO7435T4Z0/tOVjCaT9HubX/6LXnK68Y67MPnxedGeBhERkURUJ4nA6URpLZyNHnjdflhsJsQnWTEkP02qFuqsPd2bCz9A0znlHRhvshgx7cmRyMxJgpK5SktxatZsBDyeaE8FluwByF65EnW/WY6mTZuCtvgz2O1IvO9epM6ZA0tmZq/Ok4ig6BZ53cGwifSEYRNRFDFs6pmDBw+isbERSUlJGDlyJPRKD/uglTWqcR1qnLNaiLOQ1hYuCL9F3cLnkZY9CGeO/h1/+dWL8LiaoUTi/Ko5y1YFaSvYjLKdRago2QNHfR28bjcsNhsSUlKRO2Yc8ibc3ul9Sd/4/ERqw8es+q1/uRRnjymjMqejCqcHnxut+JZ6InA688S8kCqcTElJCPh8aHM65ZuIwQCD1YqA2x3SPPovXQp7/ihoDZ+f9LMPal7j5VVLp+pPocXfglhTLJLjk/FZ02dw+5XZppxhE+mJOk6TJCLq5IekyspKZGdnq+6HJDnpYR+0skY1rkONc1YLcZaRONNo/UuFIVU4idZ0059eiKxh10l/HjTqy0gbOBiny45AibzuFul8q1FT77mquqtk3WocLd7R4flVjdVV0pqK31qFvAm34ebpD7IdH7XD5ydSGz5m1W/wqDTFhk3iPCrRJnDiw8OgZPb8fAxa9w7qli9H08bgFUWilV2ff1QUVc6cKW/YFAiEFDQJIiA7NWsWBqx4XVqHlvD5ST/7oMY1BqtauuC/gJr6mqjNjYjaM17xZyIiIiLqxcBJnGkkWs1ZrLYuK4TE7cTtLwZNF4kKICX7ZNeOq6q63njm+zi8bXOHQdPlxN+L861E28Gz5UcjPFMiIqLODR+bAbP1iza2SnSspFpqE6h0ohVd5qJFyN35N6QvXCCdnxSTnQ1Tv1Tpd/Fn8fmcnX+TbiduL85PUgLRAlBUZokzqIgo8g7UHsCMTTPw9rG3Fdcej4iuxjZ6RFHENnpERHSRx+WSKoAq9u6Gs+E8WltaEBMbi/jkvsgdOx55BZOCtKJzYfncx7oMbqIp9dpsZI8YhfiUvtj1pzfgD7d94IJCKaQjIiKKhh1vlePjnWehVBMeGoobJvaH1tS/+QfUFBZCKZIe+oYUhBGRvO3xappr4PK5YDfbYbfYcbzhOHwB5YfowbCNHukJwyaiKGLYREREctn22itSBZDWiTaCorqLLfWIiCgaHPVurHn+Q6ltnRJlDU3C9B9oq8Wb4Hc6UTHh1qBt93qTaPEnKq9M8fHwOxxo2rARji1b4K2pRpvLJf29qMZKmDIFidOnSbcjou63x9MShk2kJzyziYiIiEgDxJlG5Xt3h3T+05XMMTFIuaY/aj87CaUS69u3fg0mPz4v2lMhIiIdSkix4e7v3oANSw7C720L+f5GkwHX5Cah6ngT/L7Q798VZ6Onw897Wnwo31uNkwdq4WzwwOvxw2I1IT7ZKp1FJVoExsQq9xKRCGsS77sXjX9aDSUQgVL9738PX00tmjZdffaUX7QCrjwF1759qH35ZWnu4uwp0RKQSO8VS+lx6RiePBwbTmzAhdbw/+9CRMrDyiaiKGJlExERyUmchbS2cAF84baoW/i8dB7Un/7zRzhbXgalEudXzVm2qsO2gh5XM8p2FqGiZA8c9XXwut2w2GxISEmVzrbKm3B7p+0IiYiIuqvqeCPeXXYkpAonW5wFdz8xAplDEqX7lZdUY/fa4wi0yXdZxmAAbr5vMK6/5RrEJsRIlVj73/sM5ftq4POICKRj4iyqYWMycNOd2VKgpkTinKRP7/8a/I2NUASTCfD7u3/zpCT0X7oU9vxREZ0WUbTppWKpu1jZRHrCsIkoihg29czatWtx5swZ9O/fHzNmzIBe6WEftLJGNa5DjXPWOxE4rX+pMKQKJ9GabvrTC6WgSTiweROKViyHkk2aPRejpt5z6c8X6s6hZN1qHC3eEfTsKovVhrwJt0mVYGzFp258fiK14WNWe6QgZ3OlFBoFC3JEBdHQToKcNxd+gKZz8l+MNZmN6D88GVUnGtHa4g8rEFMiV2kpTs2ajYCn4woupTNYrRiw4nXY85XV6pDPT/rZBznWyIql0DBsIj1Rbo00EVEXnE4nmpqakJSUBD3Twz5oZY1qXIca56x3WcPzpDONRKu5sp3bgwcvtljkFUy8KngR1T/Fb60Ket9oO7TlXQwffyti4xO+CNheXAy309Hl/cSaxNlWouXg5QEbqQ+fn0ht+JjVHhEcTXx4GMbdP0QKnE6U1kpt7C40OOFr88ASZ8Qtd4+QKoY6a1En2thFImwSLfoq/34+5PuJiqsNvzyAaU+ORGaO8h6rIqQRYc2ZJ+aFVOEkqorEe63bmpoQTSIkE3MftO4dRbXU4/OTfvahJ2vsqmLplOMUPqz+UKaZEpEaMWwiItXKycmRfkBKTU2FnulhH7SyRjWuQ41zJkjBkTjTqODhWSgrLkLF3t1wNpxHa0sLYmJjEZ/cF7ljxyOvYFKHLeXE50T1jwhllOr8mVNY+vjD0hlTDVWfI9DW/XdtC6Lya+3i5zBjQaEU0JH68PmJ1IaPWe0SQdINE/tLv4Rdu3ahrq5Z+l7fcMsXn+uMOC/p7DGFtIX7B3EWlWgR+OBzoxXZUk8ETiKsqVu+HE0brz4v6XJGux19/nFeUuXMmVEPmwQRkom5Zy5aBKXg85N+9iHcNR6oPYDvFX0PTZ7o/xtSm0SrMitFiSKBbfSIooht9IiISKlEW7o35j8ZUjs+NRItBEUlGFvqERFRNLS2+LBi/u6gbfii5foJWVLllpL5RZXGhg1wvL8Fvpoa+F3NMNnjYE5PR8LUKUicNg2m+HjptpWPfRuuffugBCIEy9n5t0tzI1KCztrj2S12HG84Dl/AF+0pqorYu3sG34P7M+/HDYNuaPd3vPZHWsXKJiIiIiK6ighfpj+1AGsLF8DnbQ35/mZLDO6fvwhtbX58dqgUBzdvgt+nvP+gijBNtBwUlWCd8biaUbazCBUle+Cor4PX7YbFZkNCSipyx4yT2g52VCFGRETUnaoo0Wbv451noTTHSqqlFoGdtQBUAhHWpDzyiPSrKwlTpigmbGpzuaSQTMzb73CgacNGOLZsgbemWvo7EUZZ0jOkOSdO/2dgRhQJXbXHo87FmmMxsM9AKZhr9jYjzhKHNHsa7si+A/cOvhfxMfHSG82J9IKVTURRxMomIiJSOuk8pJcKQ6pwEtVCV56HtOYnz+J02REokTi7as6yVVcFRqK6q2Tdahwt3hH87CurTWo7eOXZV0RERN3hqHdjzfMfSuclKc2Eh4Zeag94kafFh/K91Th5oBbOBg+8Hj8sVpN0/pRoCzh8bOdnVEW7Cqpiwq1B2+71JtuNN8I2fDiaNgVvBWiw25H4j1aASjrnidRdrZQel47JAyYju082nil+hu3xwqxa+tcR/4qMuIygt+W1P9IThk1EUcQXnJ6prq6G2+2GzWZDRkbwF3ct08M+aGWNalyHGudM8hOhi6j+Kdu5PXjoYotFXsHEDkOXA5s3oWjFcijVpNlzMWrqPe1DthcXw+109Chko8jh8xOpDR+z+hHO97rqeCM2LDkonZekJNcMTcL9P8i/FIrtf+8zlO+rCdr2z2w1SdVaN92Z3etnPnW191WLFqHxT6uhCEYj0Nb977cpKQn9ly6FPX+U7FPh85P29oHVSr1TtdQdvPZHesKwiSiK+ILTMytXrkRlZSWys7Mxc+ZM6JUe9kEra1TjOtQ4Z4ocj8uFsuIiVOzdDWfDebS2tCAmNhbxyX2RO3Y88gomddpOTtx3+dzHgoZV0WSOseKG26dg4Ih8GM1mbPjF4rDbB85YUIis4XkRmSf9E5+fSG34mNWPcL/XInB6d9mRkCqcbHEW3DX3Buk+h7efxtnyRsjJaDJg9FcHIinDjh1/KIen2RfS3O5+YgQyhyRCKXvvrarCp/d/Df5GefeptxisVgxY8Trs+V8EgHLh85P69iFYxdLw5OHYcGIDLrRq++xVJVQtdQev/ZGeKK+umYiIiIgUSQRJovrn8gqgUO4rWs0d2voelMjX6sGB9zZJv3o0jrdVajv46AtL2FKPiIhCkpmThAefG439mytRXlIdtHpItK0bekX10OCR/fC7p4rhdsrXjq/NH0DJxk/Duq8IwDb88gCmPTlSWpsSiDZ0/Ze+glOzZiPg8UBtxJzPPDEPg9a9w5Z6OtVVxdIpxyl8WP1hVOamNgYYkG5Phy/gC7tqiYjaY2UTURTx3Q09o6US957Qwz5oZY1qXIca50zKbsf3xvwnQzr/6UpGkwnix9dACG1nouHGO+7C5MfnRXsamsbnJ1IbPmb1Q47vdas4F6mkGidKa+Fs9MDr9sNiMyE+yYoh+WlSm7qOzkV6c+EHaDqnrJZZosJJhGi90VKvu3vvKi2VQpuQKpzMZsDX/cquSEp66BvIXLQIfocDTRs2wrFlC7w11WhzuWC022FJz0DClClInD4NpviuL5rz+Sn6+9DV2Ur3DbkPFY0V+F7R93i+kgySrEn49aRfY2TayIh/LV77Iz1h2EQURXzBISIivRFnIa0tXBB+i7qFzyP12mys+Pc5aG5sgFKJ86vmLFsVpK1gM8p2FqGiZA8c9XXwut2w2GxISElF7phxyJtwe6f3JSIi6sz6l0tx9pjyWsRdPyELEx8e1u5zHhGo7a3GyQO1cDZ44PX4pYqt+GQrBo9Kw/CxHQdqchEt9eqWL0fTxk0IuFyd3k6EN33uuxfmtDTU/erXUAKDzYY+d9+NC5s3B527wW5H4n33InXOHFZCqfxspRhTDPxtfvgDnVc8Uu+3yOsOXvsjPWHYRBRFfMEhIiK9Bk6i1VwoFU62hD6Y/vRCZA27Tvrzmp88i9NlR6Bkk2bPvarloKjuKlm3GkeLdwQ9v8pitUltB2+e/iDb8RERUbcd3n4GxauPQWlEiDTzhfFSeOSod2P/e5+hfF9N0FaBZqtJquC6vFVgJPidTjRt2ADH+1vgq6mB39UMkz0O5vR0JEydgsRpX1QHidtVTLg1aLijVKakJPRfuhT2/FHRngpd5kDtAVYqRUCsORYD+wyUqsOavc1Rb5HHa3+kJwybiKKILzhERKRXInTZt34NynZuDx662GKRVzDxqtDlwOZNKFqxHEp2zbDr8M3/erF9yPbiYridjrBDNiIioq7a762YvztoiBMtEx4aitT+8fjLssPwNPtCasN39xMjkDkkEdFWtWgRGv+0GmpksFoxYMXrsOfnR3squhGsNd7w5OFYfWw1Wv2hV/uTcqqWuoPX/khPGDYRRRFfcHpm165dqKurQ2pqKm655RbolR72QStrVOM61DhnUhePy4Wy4iJU7N0NZ8N5tLa0ICY2FvHJfZE7djzyCiZ12E5O3G/53MeCBlVKkDZoCAbemI/4pBT87Q8r4A+3feCCQmQNz4vIHNWKz0+kNnzM6ke0v9c73irHxzvPQmliYk3wtbahzR/6ZSiTxYhpT45EZk5SVPdetN779P6vhXbWk8IqnAate+eqlnrRfswqhVz70N3WeBQ6s8GM3ORcnHecvxTeZffNjlrVUnfw2h/pSeSa3xIRRdjx48dRWVmJ7OxsXf9ArId90Moa1bgONc6Z1EUESaLV3JXt5rpzP9Fm7tDW96BktZ+ekH71hDjfSrQdfPSFJWypdxk+P5Ha8DGrH9H+Xou2cyf218Ld7IWStLaEX23l97bh3WVH8OBzo4O21Iv03ouQpv/SV3Bq1mwEPB6ojQjJxDlVaT/8IZo2bIRjyxZ4a6qRUHceMQYDAikpqH/sMSRO/6J1oN509fgJVqk0ecBk3DfkPlQ0VrA1XoQkWZPw60m/xsi0kVi5cuWl79XMqTOjPTUi+geGTUSkWvHx8UhMTJR+1zM97INW1qjGdahxzqQforVe+d7dIZ39dKWYWDuuK5iIqoryHodCkSTWKNoOTn58XrSnohh8fiK14WNWP6L9vRZhzN3fvQEblhyUQppwqohuvmcQ9m36FH5f6PePFBGe7d9ciYkPD7v0OU+LD+V7q3HyQC2cDR60NPVH30A6Wt1G6fyq4WMzpHOi5CTa0Il2dGeemBdahZPRCLRFfz8b1/6fFDQFWv5ZcRPzj19wOlFTWIjal19G4n33InXOnKuqoPT4b7erSqVTjlP4sPpD/Pf+/4a/zQ9/QHltLLXWHi/az7NE1DG20SOKIpbSEhER9Yw4B2lt4QKp+ies9nQLn790HtIf//NpfF5+FEolzq+as2xVh20FBY+rGWU7i1BRsgeO+jp43W5YbDYkpKQid8w45E24vdP7EhGR9lQdb5SqgUKpcLr8fKQ3F36ApnPKagFmsZow84XxUsi0/73PUL6vJuj5VGarCcPGZEjVXsEqosJtqSeqhJo2bkLA5er0dka7HX3uuxeeT8rRcvAg1NZ2r//SpbDnj4IWsVJJGRJjEjEtZxqO1h9FrasWzd5mxFnikGZPU3R7vO7itT/SE4ZNRFHEFxwiIiJ5AifRZi6UCidbQh9Mf3rhpaBJOLB5E4pWLIeSTZo996qWgxfqzqFk3WocLd4R9Awri9UmtR4UFWFsx0dEpA+OerdUDVReUh00lBEhztArQpn1L5fi7DHlnU104+3X4pO9VfA0+8IK0eTmdzrRtGEDHO9vga+mBn5XM0z2OJjT05EwdQoSp33Rkq7+zT9IVUNqY7BapUouUdGlFd09UynGFMNKpV6uWNIiXvsjPWHYRBRFfMEhIiKShwhcRJu5sp3bgwcutljkFUzsMHDxuFxYPvexoPePttRrs/HQf714qUJJCtpeXAy309GjoI2IiLStVbSbK6nGidJaOBs98Lr9sNhMiE+yYkh+mlT9c2W7OdGGrnj1MWiFaA847cmRyMxJisrXF6FUxYRbg1ZBKbnCadC6dxTfUo+VSsqi9Yql7uK1P9IThk1EUcQXHCIiInmJwKisuAgVe3fD2XAerS0tiImNRXxyX+SOHY+8gklBW8lte+0VHNr6HpTMaDIhM3c4Uq7Jktrm+X3df2d3uxaCCwqRNTwvInMkIiJtBFQr5u8OWhGlNqLC6cHnRsveUq+7qhYtQuOfVkONkh76BtJ++EPpvCfHli3w1lSjzeWS2gRa0jOQMGUKEqd/UcXV21ippCx6qVjqLl77Iz1h2EQURXzB6ZmVK1eisrIS2dnZmDlzJvRKD/uglTWqcR1qnDNRTyuk3pj/ZEgt+dRKVDg9+sIS1bbU4/MTqQ0fs/qhpe/1jrfK8fHOs9CS6ydkYeLDw6LytcU5T5/e/zX4G5XXnrBLZjMMFgsCLZ2HOQa7HYn33YvUOXN6XAXVnSolURVzoPYAK5WiwGwwIzc5V/q+RKNiSU3Ps7z2R3rSvkaaiIiIiEjHRPAy/akFWFu4AD5va1gVQ9Of+U/4vV58dqhUqpJq84deedQbRKAmWg9Ofnxeh3/vcTVLlVMVJXvgqK+D1+2GxWZDQkoqcseMQ96E24NWiRERkfqJM5xO7K+Fu9kLrThWUo1x9w+51DbQI1oM7q3GyQO1cDZ44PX4pTOs4pOtGDwqDcPHXt1iMFwigOm/9BWcmjUbAY8HquLzIdBFNbVoESgqtxyb30f/pUthzx8le5XSKccpfFj9IX5Z+kt8JfMr2HV2F1rbQv+ZjcKXZE3Cryf9GiPTRkZ7KkSkMKxsIgLQ2NiIBx54AIMHD8by5b13MDjf3dAzBw8elL53SUlJGDlSvz/k6GEftLJGNa5DjXMmkoN0FtJLhSFVOHV0FtKanzyL02VHoFTiDKs5y1a1C41EdVfJutU4Wrwj+PlXVhvyJtzW4flXvYHPT6Q2fMzqh9a+11XHG7FhyUH4vW1hnZOUnGFH3WknlGTCQ0MxcEQq9r/3Gcr31QRtFWi2mqQzrUTwJlf7PVdpKc48MU+dFU7dZLBaMWDF67Dn57NKSSOU1B5PTc+zvPZHesKwiXRLvCh99NFHePvtt7FmzRrpz5MnT8bWrVt7bQ58wSEiIlIuEbqIyp+ynduDhy62WOQVTOwwdDmweROKVvTeG1nCMWn2XIyaes8/Q7YXF8PtdPQoZCMiIm0RgdO7y46EVOEkzke6+4kROHfKgeLVx6AkffvHw9nghqfZF/J6MockytZSr275cjRt3CRVBHVGnImUcNeduPCXdxFwd/7ziBIZEvtg08KJ+HNNEUYfdGFMeQB9HQHYWgF3DHA+wYCSYQbsG2XHqIHjWKUU5WqlXxT8Ap85PsPWyq2oddVGpT2eFvHaH+kJwybSpSFDhqC+vl6qZBIBU2lpKbZt28awiYiIiK7icblQVlyEir274Ww4j9aWFsTExiI+uS9yx45HXsGkTtvJifsun/tY0LAq2hL6pmLq3P8Hg9GAdS/8JOz2gTMWFCJreF5E5khERNHnqHdj/+ZKlJdUB60EEi3ohl5WCdTa4sOK+buD3kctRKXWtCdHIjMnSbYx/U4nmjZsgOP9LfDV1MDvaobJHgdzejoSpk5B4rRpMMXHo2rRIqlFndqc7gv0uwDYguSUbguw80sGrBtnxPk+ht6cnu4pqVpJq3jtj/SEYRMRgDlz5uC3v/0twyYiIiKS3bbXXpHObtI6UeH06AtLotJSj4iIeo8Ij0TgdKK0Fs5GD7xuPyw2E+KTrBiSnya1nLvyjKMdb5Xj451noQWiwunB50bL1lIvlEqoT+//mqZb712IBX4xw4Rj/Rk4ySUxJhHTcqbhaP1RVitFCa/9kZ7Ic8IhEVEUHD9+HE6nE/Hx8cjJyYFe6WEftLJGNa5DjXMmUhrRXq987+6Qzn+6ksFoRKAt9LMyepNYn2g7OPnxeb3y9fj8RGrDx6x+aP17LYKkGyb2l351l6hyOrG/NqQ2fEol1iAqvCY+PEz6s0eEb3urcfJALZwNHng9fqm6Kz7ZisGj0jB87NXhWzgsmZnov/QVnJo1GwGPB1rUpwX4zz/6sfibJpQzcOqU0WCExWiBx+8JuWJJK89PWlkHkdYwbCIi1dq1axcqKyuRnZ2t6x8u9LAPWlmjGtehxjkTKY2o9Jn+1AKsLVwQfou6hc8j5ZosnPr7IWxZ/iuplZ8SlRXvQMHDs4K0FWxG2c4iVJTsgaO+Dl63GxabDQkpqcgdMw55E27v9L5X4vMTqQ0fs/rB7/XVRBXQ3d+9ARuWHITfG8abJ0TuoKC+PMdKqjFiYhYObz+D8n01HbYIbDrXgrPHGvHB+hNStdfFtoI9Yc/Px4AVr+PME/M0W+EU4wOeXuvHjx8x4kuV6PScp503GNBiNejybKVfT/o1cpJysOnkppDPV9LK85NW1kGkNQybCL/4xS/wzDPP4MSJE9IZRuESbeiWL1+OkydPXvqcaEsnWtSJ34mIiIj0SpxlJM40Wv9SYUgVTqI13fSnFyJr2HXSn4d9pQCHtryL02VHoERed4t0vtWoqfe0+/yFunMoWbcaR4t3dHh+VWN1lbSm4rdWIW/CbVI1GNvxERFpizjnSJx39O6yIyFVOIm2dcPGZuDQX09DKUT10tsvfARfa9fBmQiiRAtBUdl19xMjkDkksceB06B176Bu+XI0bdiIQLA3oMTGAl4v4PNBbRVOL77eBvOV29sMZDYE8KVTATyyQ1/nPHVUqfTN4d+UfhERKQXPbNIxEQqJIGjbtm3Sn8MNm0pLS3H77bcjJSVFCq2+853vXBpfhE8izJoxYwZeffVVJCXJd4imnHhmkzqJkmmfzwez2SyVTuuVHvZBK2tU4zrUOGciJROhi2g1V7Zze4ehy0UWWyzyCiZ2GLoc2LwJRSuWQ8nB2kM/+cWlP5/9pAzrX1wMt9MRdsjWET4/kdrwMasf/F4H56h3S23oxLlPHVUEXSRa0Q39R0WQNdaMFfN3B729GpgsRilwE8FbT1Q3V+O3h3+LbUc34eaDLoz5JIAURwCxrUBLDFAvqn+GG7BvpB0/+jADQ7Yfh1Zp5ZynGGMMHhr+UMTPVtLK85Oa1sFrf6QnDJt0orGxER999JEUAIlQSQRMIiS6XDhhkxjnjjvukO63f//+DsMkEeKIMCfYbaKNYRMRERH1Jo/LJVUAVezdDWfDeaktXkxsLOKT+yJ37HjkFUwK0orOheVzHwsaVkVb5tDhGDhiFOyJydjx+9fgD7d94IJCKbwiIiLtaRVnHZVU40RpLZyNHnjdflhsJsQnWTEkP01qPXf5WUc73iqXKoTUTlRqPfjc6Est9RytDmw6sQnbTm1DTXMNXD6XVMWSHpeOyQMm474h97ULGQ7UHsD3ir6HJk9Tt75e3wsB/Px1v1QtpFWtZqj6nKeLrfFGpo2M9lQoAnjtj/SEYZNOXAyFRNDz5S9/Gfn5+VLActNNN0lBVDhhk7jfoEGDpN9FiCTG7CrMEbcRt1Uahk1ERESkJtteewWHtr4HrRMVTo++sIQt9YiISKqIWvP8hyG14FOq6ydkYfi0RKk66c8n/4wWX+dJUKw5VqpqEe3Tqpqr8K9b/hUevyekrzfsTAAL/+iXzkPScoWTks55MhqMsBgtQb9XHbXGI+3htT/SE4ZNOpecnBx22PTAAw9g7dq13QqQREXVkCFDpI/ffvttqa2ekjBsIiIiIrW143tj/pMhnf90JZMlBgl9U9FY/TmU7MY77sLkx+dFexpERKQAVccbsWHJQfi9XZ+VpGTGGGD1zc/jvL8WMT4bcs+NxuD6GxHfmgSzPwY+UyucMY04mXIIx/rtg9fsQZ+YPmgLtMHpdYb1NUXg9PRabVc4+Yy4+pyny7gtvXPO08VKpZykHGw6uQlbK7dGtDUeKRuv/ZGeMGzSuXDDJnEfcV/hRz/6EX7+8593eR8RNonQKVg4dTHAkkN35yUwbFKnzZs3o7q6GhkZGbjzzjuhV3rYB62sUY3rUOOcifRCnIW0tnABfOG2qFv4vHQm0lsLnkJVxSdQKnF+1Zxlq65qK3jx+alfSjKuiTGiomQPHPV18LrdsNhsSEhJRe6YccibcHunLQmJehNfU/WD3+vIB07vLjsSUoWTaF0Xn2JF3enwgppIKLn2z4hvTcbQc1+Gpc3a6e28Rg+O9fsQpVlb0Wz94vpNuERLvfv3tGHC3wOwBdm+Fgtg8QcPbvR2zpNWKpW08vykpnXw2h/pyT+b3xKFQAQzF40ePbpb9xFBlgibxFlR4veOgq1nn31WavcnBxEckbaJHywqKyuhd3rYB62sUY3rUOOcifRCnGUkzjRa/1JhSBVOojXd9KcXSkGTcN0ttyo6bPK6W6TzrUZNvafd589+ehLnDn2I8xfq8Yn/6gPjG6urcLrsCIrfWoW8Cbfh5ukPsh0fRRVfU/WD3+vIysxJks482r+5EuV7q+Br7TwRMVuNGDYmEzfdmY1PD9WhePUxKMXoM3fBGDB1eTsRRF1fcwsGnx+JzcNfRU3CZ2F/TVHN89qdJvzhtoAUOI35JIAURwCxrUBLDFAv2s0NN0jVP49sb8OUA9p8f7qo7vrPP/rxi68bkVnfdds9LVUqaeX5SSvrINIahk0UltWrV1/6WJwD1R2Xh0viDKnvfOc7V91GVD0FO/uJ6HLiHSyX/65XetgHraxRjetQ45yJ9BY4iTON9q1fg7Kd2+H1uINWCOUVTLwqdBGVPyKQCXbfaDu8bTO+NHEyLFbbpaouxwd/hcXT9ZkVYl3ifKvyvbvbhWxEvY2vqfrB73XkiQqfnYNW433vVlxb/SUpiIlrTYTFb4XX5EFzTBNO9j2I0xl/x52DpmC49V8xfGwGPlh/Aj7P1W9QiIbuBE2Xi/XF496P5+HPeUtR3efTHn1tEaC8f5P41fltRKu5sZ9ot+2eOL/qudVtuKq2qRnIbAjgS6cCeGQHcPaWHOQ/9TyuSRsh/fU3h39T+qVWWnl+0so6iLSGbfR0Ltw2egbDP1+ORUu87gREzzzzDH7xi19IH4ugafny5VAKttEjIiIitfO4XFIFUMXe3XA2nEdrSwtiYmMRn9wXuWPHI69gUqft5La99ooUyCiZyWJB1vDrkZxxDf6+fSv8Pm947QMXFEohHRERRZej1YFNJzZh26ltqGmugcvnktqQpcelY/KAybhvyH0dVokcqD2A7xV9D02epm5/rYuVKY3bYvHxzrNQsxazE2tHvNjjlnrdPedp4R/9UjCjZ6akJPRfuhT2/FHRngqpEK/9kZ6wsolCJlrgXa67AVXfvn0vffzRRx/JPi8iIiIiPRNBkmg1d2W7ue4Q1U6i8ieUdny9ze/14tSRg9KvcInzrUTbQVENxpZ6RES9GxJdVN1cjd8e/i3+fPLPaPFdXTZzynEKH1Z/iF+W/lJqS3b5+TciaPrXLf8a9NycjjR6GvH4lsex+MYX4NnTAqsvDmolKpzyz96B4sFvI8ZnQ+650RhcfyPiW5Ng9sfAZ2qFM6YRJ1MO4Vi/ffCaQ9ury5X3N2DxN014eq12K5y6w9/YiFOzZqH/K/+L1s8q4diyBd6aarS5XDDa7bCkZyBhyhQkTp8GU7yy2+gREUUSwyYK2cVKqFBd3m4v3DEipb6+PtpTICIiIooaEbxMf2oB1hYukAKZcCqG7nv6OfjcHnx2uFSqPGrr4BwlJRCBmmg7OPnxeR3+vcfVjLKdRago2QNHfR28bjcsNhsSUlKRO2ac1HawswoxIiKtBkQ9DYnCqUoSX2PNsTXYUrlFqkoSY4n7hho0XSTut+DgM0gZloV7yp6AORADtcqt/TKMbWbknB8lnenUjhdIdPdD1oVcjD11L471+xClWVvDroQSgdMzs024f0+bdM6TLUhhsTj3qa4PcG0dNCfg8eD04/961efFTzveylNw7duH2pdfRuJ99yJ1zhxYMjOjMk8iomhiGz2dC6eNXmlpKW666Z+NfRsaGrp1bpNoUyfa1Qni9uJ+0SbWLiq1HnjgAel3Ma+//vWv0j509yyqnmApbc84nU74fD6YzWbE6/jdQ3rYB62sUY3rUOOciSh84iwkUfkTSoWTLaHPVWchrf7JszhTdgRKJc6vmrNsVbvQ6ELdOZSsW42jxTuCn31ltSFvwm1XnX1F1BW+puqHkr7XXQVEF8WaYzsNiHraum5k2sgeVSUJVpMV468Zj6LTRZBDxoVBmFr+uFQl1F2tRg9irgx2VNR6b/PwV1GT8FmPxon1BKTAacwnAaQ4Aoht/SJgqk8woGS4ATu/ZIDdA/z8dX1XQl1su2fNzUHTho2KqoRS0vOTXtbBa3+kJwybdC6csGnbtm244447Lv25uw+hy8OmUO4XCSJcWrt2rfRxR6HSxT2J9BlOHb3ghOPHP/4xFi1aBL1ZuXIlKisrkZ2djZkzZ0Kv9LAPWlmjGtehxjkTUc+I0EVU/pTt3B48dLHFIq9gYoehy4HNm1C0Qjnnc3Zk0uy5l1oOSiHbi4vhdjp6FLIRBcPXVP2Q43stRyWSHAGRHCHRq1NeRWZcJmZsmhHSXCItzpMktaMbem701dVBl2k1ulHR7yMcydiJrx/5YdDbKpnP0Io/5y1FdZ9PI/61eNYTAKMRBotFqojqjMFu7/VKKK28FqlpHQybSE/YRo9CprQWeOF4++23oz0FIiIiIkUSwZFoMVfw8CyUFRehYu9uOBvOo7WlBTGxsYhP7ovcseORVzCp03ZyotVc8VurgoZV0fbRxnfQb8BABNoCeOdnPw65faCo/lq7+DnMWFCIrOF5EZsnESnflcHQeZyHIcuAZCQj5mhMt4IhOVvVyXG2kQiIRqWNkubT09Z13y/6Pm7JukVRQZMg2sqJc4/2DtiIoXWjMfj8SMS1JsLit8Jr8qA5pgkn+x7EsdQPL517JFrSXV9zC9RItA0U1VxrR7wYdku9UFrvvfCIDc+tM8F0oRm61NYWNGgSAi4XGv+0Go7N7+Oal15C62efKaoKiogoVKxs0rlwKptERZCoDFJzZZNSsLKpZ44fPy6VTouS6ZycHOiVHvZBK2tU4zrUOGciUoZtr72CQ1vfg9aJCqdHX1jClnrUJb6mRqe6J5JjytWiTu5KJDGvnlYRiXHfvvdtvHr4VencJPpnNdSMw0+H1H5PaT5O34WSAZuQe240BtffiPjWJJj9MfCZWuGMacTJlEM41m/fpYBNMMCAAAIhPy6v96ejbvlyqZVcoCVIXz2zGfDpuQyqa3JVQWnltUhN62BlE+kJwyad02sbPaVg2ERERERabsf3xvwnQzr/6UoGoxGBtjYo3Y133CVVgxHpnVxBjtwhjpKDITlb1YlKJGHxB4tlCYiuT7ke5Y3l8LUxBLjyvKd7yp6QKoXUyA8f2oz+oO0AvUaPVMVVmrUVPnsLfl7wc+z5fA82ndwU9N+P+Pd+z+B7rvr343c60bRhAxzvb4GvpgZ+VzNM9jiY09ORMHUK7GPG4NS3HoVfA5109HweFHWMYRPpCcMmnQsnbCotLcVNN9106c8NDQ0dnnsULGwStxf30zuGTURERKRl4iyktYULQm5RJ5gtMZix8HkkpWeg8vABbPvdMnjdyjxtXJxfNWfZqk7bCnpczSjbWYSKkj1w1NfB63bDYrMhISUVuWPGSW0HO7svkd4qfOQOcZQeDMlVidQnpg9+VvAz6U2dP/jbD9DqD/15l0ILnERLulAqnPwGH0wBdZ1m4TE348szMzDhy6OlPztbnVLgtLVyK2pdtWj2NiPOEoc0exruyL5D+vcd6nPRRa7SUpyaNbvL1nOk3POgqGMMm0hPGDbpXDhh08mTJzFkyJAehU3i64ivp3d8wSEiIiI9BE7rXyoMqcJJtKab/vRCZA277tLn1vzkWZwuOwKlmjR7LkZNveeq6q6SdatxtHhH0POrLFYb8ibchpunP8h2fBoIcpQa4kRqTDmDHLlDnEiMKVeLurfufgsJMQlwep34n/3/gy2VW8Iej6LXUi//7B0Yem500CqhVqMbFf0+QrOlCTef+SrUxmQxYtqTI5GZ0/V1n54SgdOZJ+axwklGxsREJE6fDs/Ro6yAihJe+yM9Ydikc+GETeL24n4Xdfd+v/jFL/DMM89IH+fn52P//v3QO77g9MzBgwelx6MIO0eO7PhdjHqgh33QyhrVuA41zpmIlEeELvvWr0HZzu3BQxdbLPIKJnYYuhzYvAlFK5ZDqbKGX4+HfvLz9iHbi4vhdjp6FLL1FqVXzkRiTLlDl+6OZzVaMS1nWq+3aYvEmHIGOXKeM3RxX+Uac809a5BsS5Yebz/f93O8++m7YY9H2mPxWTG0bjQGnx+JuNZEWPxWeE0eNMc04WTfgziW+qF0/pG43WP7FwcNppTKFmfBg8+NRkysGeV7q3HyQC2cDR54PX5YrCbEJ1sxeFQaho/NkG7TE96qqi/Oedq4CQGXq/Mb8pwnWVxeAWWMj1dNaz4l/D/V73B0uV8IBHDijTcxbN4T7e7La3+kVQybdC6csEkwGAyXPhahkQiPuiKqmkR1kzBjxgy8/fbb0DuGTT2zcuVKVFZWIjs7GzNnzoRe6WEftLJGNa5DjXMm0islV2dcdL6pBu+sX4aq0kMwOFth9AXQZjYgEB+DzPwb8fXpTyAlseMWwx6XC8vnPhY0rIq2/nlfwsAR+bAnJuGvr/8G/nDbBy4oRNbwvKC309PZOJEYMxKhi1JDnEiNKXc4JNc5Q+Kx/90bvwu3z41XDr4i/RshUoqCkw/g+ppboEbJmXY46j3wefyd3sZsNWHYmAzcdGc2ElJsPfp6POepdxliYsTFvm615kt+5BG4SvZ1GUp1J4wJN7yK9P9Tg81dPPa8Z8/iwubNXQeiAOrdbtxy4ni7v+K1P9Iqhk06F27YJM5sEmc3CVu3bsXkyZO7vM8DDzyAtWvXSh///Oc/x49+9CPoXUdh0zf/9E3cM+KeqL/TMxLjyT2m+OHi+KnjcAxwwJHp0MWaOxrv/IXzMPgMSDYn41tjvqXIOfZ0PK18rx0lDlRXVnf7B2IlPB67+iFeCXOMxphqmKNe162GOWqlOiMaQcG2117Boa3vQetEhdOjLyzpsKWe3s7GicSYcocuSg9xIjWmXOHQVzK/gsnZk/HCvhfgbfP2eDyi3mAymOAPdB66dCbFl4aHP14An0vbl+JEJdTdT4xA5pDEiH4dnvOkUDYbYrKypEAm4HZHJLyqr6hAoKUFhthYpOTmtqsk6k61UY+DpBDU+3wMm0g3GDbpXLhhk2iHJ9riCcuXL8d3vvOdkAKqUL6W3sKm4b8aDnMfc1Tf6anki0xqGY9z5Bw5x+jPMRJjqmGOkRiTc1TumEqvzpB7TNGO7435T4Z0/tOVTBYL4pKSceFcLZTsxjvuwuTH5+n6bJxIjCl36KLkEOfruV/HD7/8QynAefHDF6XnnZ7KTsjGsJRhcHld2FO1B22Bth6PSdTbYowxaG0LvfL08n+zP/7Kj/GTD36CRk9jyM/H6RcGYsOSg/B7tf3vp7fOeuI5TzrQzfDqYiVR0PaK3bmNzBg2kZ4wbNK5cMOmy89tEkGTCJy623pPfA3xtSh42BTNd3oq+SKTGsbjHDlHzjH6c4zEmGqYYyTG5ByVO6bSqzMiNeb2veuxb8mrMLf9s61zd/mMAYx58juYOHYa3nruh6g6Xg6lEudXzVm2Cla7vcO9tHgNGHI2HtnVdsS5TTD7DfCZAmi2+VGZ4cKJLCe8loDqzsZRSzXO/Tn3499v+ncpxNl0clOPx7u+7/UYd804NHubsaZ8DXwBnkNCFAkXg6L5xfPDfm16bcpr0uuyeI569fCr0nNAsDeQiMrlewbf0+4NJFXHG/HusiNwN2u7mq+3znrq9jlPRFHAsIn0hGGTzoUbNgl33HEHtm3bJh3G19DQEPS24nbi9qFUQulBd8Kmi++8em3qaxG/gKOGi0xKH49z5Bw5x+jPMRJjqmGOkRiTc1TumGqozojkmNYqNybt7web19TtsdwWP/765XPwZsRKY1YVf4iiFV2/YSqaJs2ei1FT72m3l/YWE248nojBn8fB4jd2el+vqQ0nsppxeEgTXLH+iJyN88DQB/AfY/5DaiX1070/xTvH3+nxmOOvGY8ZQ2dIYcva8rUoqS7p8ZjXJlyLYcnD4Pa7sedzVuMQRYPZYJYlRJ107STs/nx3j4Mi8br8/aLvh1WZdOUbQJytTilw2lq5FbWuWik0jrPEIc2ehjuy75AqlTtqjeuod2P/5kqUl1QHPQdJhDJDbkrD8Y9q4GtV3/NXb5711NU5TzHZA3Fm3jy23aNexbCJ9IRhk85dHjbt378f+fn53b7vyZMnpdZ44v5vv/02ZsyY0eV5TWJ88XUotLCpNy7gqOEik9LHEzhHzpFzjO4cIzGmGuYYiTE5R2WPKVdY8ODQB7HwKwtlH0/OOV4MNMR/W54veR7/V/F/0udF6DLiRCKGnA0tdBHuHHgnZud+G39++lkYfQr+71BaPPDITdhTuxfHGo4hrd4adsh2LtmD1NhUXBN3Df5e93e0QX0XLImod4mKnKkDp2Ld8XU9HuueQfdg1+e7Qgp3OnstrGqukiUo6kllkpxaW3xS4HSitBbORg+8bj8sNhPik6wYkp8mhTCi6mfHW+X4eOdZaFlvnPXEtnvU2xg2kZ4wbNK5i63thK1bt2Ly5Mkh3V8ESCJIClYZ9dvf/hZz5syRKqBE0MSzmsILm4RpQ6bhqS8/JX380kcvYcOJDT2ew8Ux5RxP9IYX/vuj/5ZlTHFIuhhTjLfxxEZZxvvBTT/Ay/tflm080UZF+J/9/yPLmOLdb2JMMZ4crVnEeE/mPyl9/MvSX8rSs1/8h0uMuaR0iTzjDboH38v/nvTxr0p/hb98+pcej3n3oLvxvVHfw68P/BrvfvquLOPNG/nF+RmvHHxFljHFBc8nRj6BpQeXYvNnm2UZb86IOdLHvzn0G7xf+X6PxxzYOhBT+0zFp+mfYkvllh6PN3nAZDx+w+PSx68deQ3bTm2T5V2us740S/p4xd9XoOh0UY/HnNh/Ih7NexRvlL2BHWd29Hi8gqwCfHP4N6WP//jJH1F8trjHY4qWS+JCvPD2sbeld+z31M0ZN2N6znSsP74e+6r39Xi8m9Juwt2D75aCAvFvprT2i/Mbe2JE6gjcnn07tlVuw5G6Iz0e77qU6zA+a7w0R/Fu6U/qP+nxmIMTB+Om9JsQQAD7a/bj06ZPezxmVnwWhqcMh9fvleYZzsHkVzIajBiaNFQKMuQIHwwwSIGGWHddSx16wxft5OKQXR0Hu9sEi98ArykAl9ROrlkKmi62k7vS2L+nYPipBCiZCMuqU9y4YPdh+OkEmMJqH9iGLTfXojaF7+Qm0rrvj/o+zjjP4J2Kd2R5A4EIWB7Y9IBsIVFPqnwvViXJHRSFW5nU20Ql1JrnP9R8673eOOuJbfeoNzFsIj1h2KQjopXd5VVJop1daek/L/iIEEiEQuJ3EQwJX/7yly99HGzci4HTz3/+80st8kTF0zPPPCOFTSLEEtVPXY2lN6GGTUREREQkH1Eddd+uzJAqha4kgjURsimdqHDaeEvVpeouIoq+h4Y9hEkDJklVOqLNY0+JYOWvD/wVTq9TtoBIBDQ9bQV7eUgkZ/u6joKiuqY6GHwGJJuT8ejYRxUTFMlFnPW0YclB+L1tujjrqSct9cJpu+esq4PHaEQgORm5336MbfdIFgybSE8YNumwiqm7gU932uNdfts1a9ZIAZYIsi4SIZMIsEKtmNILhk1ERERE0SVa003ZlwZzW+et+IJVDG0fdQ4xfiOuOReLIZ/HwRhQbvD0yQAH9n6pPtrTIFKlGbkzcOu1t+Kpvz0VVujSWTAkgpBItDKVMyCSOySKZPu6Xbt2oa6uDqmpqbjlllugRSJwenfZEc1XOA0fl4l+1ybg5IFaOBs88Hr80vlV8clWDB6VhuFjv2gvKKeOHj9su0c9xbCJ9IRhE1EUMWwiIiIiir6enoV00dS96cisj+y7sHvakm/NpDMdthX8oh1hPLKr7Yhzm2D2G+AzBdAstSN04USWs9N2hEQ9JaoDRZWgHERQ8r+T/hex5lg8vuVxWSuGIhUMifBFzkqki+SuIpI7JFJL+zolEi319m+ulM568nk6r1g1xxjR5gugrU17z99mq0k6z+qmO7MjXgHV3bZ7BqsVAZ8P8LOKmP6JYRPpCcMmoihi2ERERESknJZ6I04kSuc/WfzGoIGNOAfq8JCmq1rSDf8sAWPLUqBke/PO45OBznbrvvF4IgZ/Hv66SV/E2XED+gzAXyv/KsvZcReDHHFWqdwhjtqCITkrkSJZRcSQSDlaW3xS4HSitBbORg+8bj8sNhPik6wYkp8mhTF71p3AxzvPQsst9+5+YgQyhyRG/Gtd2XbP72qGyR4Hc3o6EqZOQeK0afAcO8ZKKGqHYRPpCcMmoihi2ERERESkLF9U+MQhuzoOdrcJFr8BXlMALqnCp1kKXDqr8BH3fbCof9DQJtocsV78bVQdzie2ol+DPBVdJI+02DT0tfVFeWM52gI9P49FBBA/veWniDHFqKL1WyRCHLUFQ3JXIl2OAZG+q6DWPP+hptvumSxGTHtyJFKy4lG+t7pXW+/1pBKK9IFhE+kJwyaiKGLYRERERKQtY/+eguGnEqB0rSY/zH4jjDCEdVbVlptrUZviUVU1zrUJ16LoVJEs1TgiMFg8fjEW7l6o+BBHTRU+kQhx1BYMRfI8Iz2orq6G2+2GzWZDRgb35fJznjYsOQi/t+dBtlKZzEYYjICvtS3s1ntyP366qoSKyR6Iz596ilVQGsewifSEYRNRFDFsIiIiItIW0Zbuvl2ZIVULXakNgbBCoN4kKpzev/U8fjTpP2E0GLFwz0K0+lt7PK64gL7l61ukMW9fe3vQi+1KCHLUEuKoqcInEiGOGoMhViKFZ+XKlaisrER2djZmzpwZ7ekoLnB6d9kRTVc4hdp6L+WauHaVUBcanfC1tcISZ8D4u0b0SiUUz4PSPoZNpCcMm4iiiGETERFp/aB2wWb64p2jchzSfvmYco4n2lcJtS21so2ZnZAt/V7pqJRtzOtSrkNWfBa2n94uS3WG2WjGvYPulS5o+gK+Ho9nMVow98a50se/OfQbeNt6fkFLXJBe9JVFMBgM+M89/ylLoCEeP7++7df43vbvyfI4EheSt83YJs1x0tuTkFDbhin70mBuM4ZVNfT+mFoE4iz4Rfaz2PPm7+HzyPdYl5P3hjTMX/C69HFHocsXLQnjkV1tR5zbBLPfAJ8pgGapJaELJ7KcV7UkVFs1jtpCHLVU+EQixOnNYKiuqQ4GnwHJ5mQ8OvZRBkO9iGFT1y319m+ulM558nk6/zlCaj2XYkNDVTO0SlRBGU3GoNVeXVVCyYnnQWkXwybSE4ZNRCoKm8R/8l689UXp46f/9rQsLTvkbgEixvvvW/9b+viHf/uhbGM+f8vzeG7Xc4ocT1ywenniy9LH/77j32Ub86cFP8Wzxc/KNt6S25ZIH39/+/dlG/PnBT/Hj4p/JNt44qKD8G9F/ybbmC/d+pJsj0Ux3rLJy6SP526bK+v35sntT8pywVOM97spv5MueM5+f7YsY1qNVjyf/zwWHFggy3ix5li8cdcb0sffevdbso35x6/+UQpJvvHnb8g6z0ffe1S2d9Zvun+T9PE96+6Rbcz3v/6+9PGU/5si25gbp2/EvevvlbWiQBAX4fU0x0iNqZbqDDWMGck5ptX37Dyki2Ou+cmzOF12BEpktlox9zdvwGq3twtdRHXXjccTMfjzuKDnV3lNbdIZWIeHNMEV61dtNY6aQhy1VfhEorqnNyqG2Moterj33dPa4pMCpxOltXA2euBxeWGyGGBPtOC6sf2lgMXT4tP8WU89rYSKxplQPA9KfRg2kZ4o9+RaIrrKtCHTcNu1t0m/xMdyjXnXoLtkHe/Wa2+Vfsk55tSBUxU73n1D7kNB/wLpl5xjiv/syjneuKxx0i85x5yUPUnW8cZeM1b6JeeYcj4WxXhfzviy9Evu7434Xa7xRqSNwA39bpBtzGk50zD1+qmyjScu4gxLGSb9knPMIUlDMDhpsOzzFL/LQVxcExeyxC85x0yyJUm/5BwzPS5d1vHERTvxS29zjNSYgrhQKy4A94S4vxgnEuOpZcxIzlGcZ7Txlip8MsAhhSrBiL8XtxO3F0HT5WPmjhkHpfJ5PDiyfYv0sQgOfjXpV8hqipfaCA47nRA0aBLE34vzrcTtxf1EoHF5AHFxTBHIhEPc78oxhVFpo/DqlFdD/t6L23cUDMk93uXjiqBMBI/iDRDBiBBH3E7cPlgoFIkxBbHHIhwteqAI/zHmPzA6YzSy+2QjNTZV+l38WXxeBObidt2tGBLPed8c/k28PvV1/Pn+P2P7g9ul38WfxefDCYUiMeaVRMgxcOBAhh1RwL3vHhGI3DCxP6b/IB/f+q+v4F9emoCZPyvAg/PHSp8Xfy8qee7+7g0wWXjpUARu6/57P1b8aBeKVx/D2WONaDrXAteFVul38Wfx+RXzd2PHW+VSBVmkWDIzkbloEXJ3/g3pCxfAfvPNiMnOhqlfqvS7+HPyzG/DmJgYsTkQEXWGlU1EKqlsivQ7PdXQG17p4wmcI+fIOUZ3jpEYUw1zjMSYnKOyx1RLdYYaxuyNOX7RTi4O2dVxsLtNsPgN8JoCcEnt5Jql6p6L7eSuHNPjcmH53MfgVWgrPVFJO+CGkRh4Yz7sCX3w/qu/Rps39JaMRosZDy74KbKG56m2Gkdt5/fwTCAi6g6e9aTOSqhQzoJCIIBAa8/bFFPHWNlEesKwiUgFYVOMMQa/m/o7TVxsUdoc9bhmzpFz1PocIzGmGuYYiTE5R2WPGYmL8Gpp26W3dW977RUc2voetM6W0AePvrAEfVL7qTrIYYhDRFrDs57UeyZUd86CanM42JovEsxfXNurd7sZNpFuMGwiUnjY5HP4ULmkEq6Kjl/w9XaxRQ3jcY6cY1fijHH4zdTfKHqOF8d0HnOirq4OqampuOWWWxQ5R709frhudc4xUmOqpTojEmNu3LER66vW47D3MDwBj6bXfaHuHN6Y/yTcjgsIl8ligS0uAc2N9VCyG++4C5Mfn6fJIGfXrl1XvaaSNvF7HT3c+8ju25VnPXndflhsJsQnWTEkP41nPfWgEuqOf7kejTWuiFdBBftedxVM2ceMQcObb3ZdLWWzwdI/C94zZxFwK7Myu6eMdjsS7roTlqz+cO3d22mQJ5x44w0Me+KJdvdn2ERaxbApQi5cuIA+ffpEexqk4rDJ3+JH4weNqPtzHbz1XgT7p6rHi0xivKfefgp/D/wdfqNfN2vW6xy18r22BCy41nEtbk+4Hd+f+X1FzvHKMVeuXInKykpkZ2dj5syZipxjb46phjlGYkzOUdljqqk6Q84xLz4/ZWRnoM/YPppf99lPyrC2cAF83tDb3JgtMZix8HlcM3Q4Xv232XDUnYNSWWyxmLNsFax2e4d/73E1o2xnESpK9sBRXwev2w2LzYaElFTpfKu8Cbd3et9o6+w1lbSH3+vo4d4rY99E670NSw4Greqh0FxZBSVCvXBa9Mnxve5OtZQpPr73w6t/VBLB5+vRbbobJIk1hnvtj2ETaRXDpghoamrCoEGD0LdvX0yePBkPPPAAJk2aFO1pkQJ19IJz7feuRXNZMxp3N6LN/c8fzLrzT1VvF5nWrl2Lk2dOoi69DnUpdbpYc0fjnXech9FnRIolBQ+PfliRc+zpeFr5XrcdacO5s+fQv39/zJgxQ5FzvHJMsfdnzpzpdM5KmGM0xlTDHPW6bjXMMVJj6k1Xz09aJAKn9S8VhlThJFrTTX96IbKGXSf9ec1PnsXpsiNQskmz52LU1Huuqu4qWbcaR4t3BD2/ymK1IW/Cbbh5+oMdtuOLJj0+ZvWK3+vo4d4rZ9941lNkWGPNuGZoEk5/0hC0peHFcOqGiVk4W954KZRyNDXDH/AiJt6IsVOuj+i5UZEMrxpOnABaWoDYWCQPGdKukqirsbpzm+4GSd3BsIn0hGFTBB04cACrV6+WXrQbGhowZ84c/PSnP432tEhBOnrB6Qz/qRIRERGRCF32rV+Dsp3bg4cutljkFUy8KnQ5sHkTilYsh5KlDRyMR376PzCaTP8M2V5cDLfTEXbIRkREyj3riZRRMSVCp3CqpSg4hk2kJwybunDw4EEpMBo9erRUpRRua7zS0lLMnz8fn376Kfbv388We9TpC05ZWZnUO/dKfBEiIiIioos8LhfKiotQsXc3nA3n0drSgpjYWMQn90Xu2PHIK5jUYTs5cb/lcx8LGlQpQUysHQO+dCOS0jNw4P0/w+/1htc+cEEhsobnRWSORETUPV2d9XTulANH91RFe5q6ZjIbAQOCtj7srFqKoVRwDJtITxg2dSElJUVqi3fR4MGDpdDpjjvuCCt8euaZZ/DZZ59JARYRX3CIiIiIqLdte+0VHNr6HvRAVDg9+sISxbXUIyKi9hVQa57/kC33NIKhVHu89kd6wrCpCyJU+utf/3rpzwaDod3fJyUltQufBg4c2OWY4iyn8+fPR2S+pC58wSEiIiKiaLTie2P+kyGd/XQlW1w8xnztIdScrED5nmIEAso9BP7GO+7C5MfnRXsaRETUxRlPG5YcDFpZQ9pt4ZeQYoNW8dof6QnDpi6Iqqaf/exn+MUvftHpbS4PoLoKn8Q5TuLzDJtI4AtOz6xcuRKVlZXIzs7GzJkzoVd62AetrFGN61DjnIlIH/j81DPiHKS1hQvg87aG155u4fOXzkNa/ZNncabsCJRKnF81Z9mqDtsKCh5XM8p2FqGiZA8c9XXwut2w2GxISElF7phxyJtwe6f3DQUfs/rB73X0cO/VvW8icHp32RFWOOmM1W7G8K9kou60o9sVUEp5zHbF0+LDB5s/xm1fG9nu87z2R1ql/VrFHhJBkjhvSfjOd76Dm266STpzadu2bTh58qT0+cvzuoaGBqxdu1b6dTF8Eq33RDu++vp6aawZM2ZEaTVERERERESQzjES5xmtf6kwpAon0ZZu+tMLLwVNwtAx4xQdNnndLdL5VqOm3nNVhVfJutU4WryjwzOsGqurcLrsCIrfWoW8Cbfh5ukPsh0fEVEEZeYk4cHnRmP/5krpjCefx9/pbc0xRoiiWr+PlVBq53H5cOivp6/6fNO5Fpw91ogP1p+4qi2f61QmUloz4GowYP3LpZdCKXGFtnxvda+07hNBUmdfK2tYMi7UuXG8tBYNjSw4IP1gZVMXcnJypICpozOWRNWTCJ22bt3aLnzqLLS6uNXidt1pt0fax8qmnjl48CAaGxulUHfkyPbvEtETPeyDVtaoxnWocc5EpA98fpKHCFz2rV+Dsp3bOwxcLq8OyiuY2GHg4nG5sHzuY0HvH22JaRm49wfPIi17EAxGo1TZtf7FxXA7HT0K2kLBx6x+8HsdPdx77exbq7iQX1KNE6W1cDZ64HX7YbGZEJ9kxZD8NCl8OH/WydZ7dInBaIDoPdXWFgjaui/npjT06WvD2fKGTgOpYKHV5UFSsED0IkdLI579/dfbfY7X/kirGDYF8eyzz0qVSr/5zW+6dXsRPn300UeXwqeLFVEXg6b8/Hy8+uqrGDVqVIRnTmrBsImIiIiIlEAERqL6p2LvbjgbzqO1pQUxsbGIT+6L3LHjkVcwKWgruW2vvYJDW9+D0tkTk9AvexBOf3wYbf6uLxB12EJwQaFUGUZERNHH1nsUjdAqFAybSE8YNgWRm5srBUc9qUL67W9/i/nz52POnDnS2U9El2PYRP+fvXsBl6sqD8b/nuQkBAzkQhKpooEEvEStyEVQoXJJFCjWW4KfVC1VScRWrVUTo7VKtUJA2trvsxhQwdZLSeIVq5QERAEFJQi1BisJcAQ1TUIuEEISkpz/s6b/SScn5zKzz5wzs/f+/Z7nZHLmzKxZa+09e2b2O++7AACKkiH1Lx98T0Ml+fqrBtHOUobTmy/5tJJ6AG3isY3b6yq9N3LUiNize0+l/B4MF8EmykSwqR8jRoyopBEfcsghg2onlc17xSteERdeeGG8733va1r/yD/BJgAAiiKVplv2ib+KXU/uzJYx9JG/jaeMGx8P/sfP4odf+kJbl+V74ayzYubb/6zXv+3Y9nis+uFNcd8dP4rHNm6IJ7dvj1FjxsTBEyfF0Se+NGb8wRn9ZokBMLSl92RCMZwEmygTwaZ+HH/88XHZZZfFaaedNui2UtAqtZfK6DWjPYpBsGlwVq9eHVu3bo2xY8dW1lcrqzLMQ1HGmMdx5LHPQDk4PrWnylpIn/pEQxlOva2FtOSihfHQqp9Hu0prWM274ov7BI1Sdtcd37g27r3l5n4DZSNHj47nv/yMXte/ohgcn1rH3GdTtnmTCcVwEmyiTDpb3YF2loJD8+fPj5/+9KeDbistsnjDDTfECSecEI888khT+kcxbdiwodfrvQjt79Zbb42urq6YOnVqKd4Ql3keijLGPI4jj30GysHxqT2ltYxSibmffHNJrPrh9/sNuqSAzYxTTu016JIygNo52PTk9icqa1y96JXn/G+Q7bKPx/atjw143907d1bWt/qv22/bL8hGMTg+tY65z6Zs83bwxDFx6nnPjpe+dvo+mVCPbtoau/bsiFFPGREnn/37MqEAGiTY1I8UaEovsh/60Ifik5/85KDbmzZtWsyZMyc+9alPxfvf//6m9JHimTGj98WGJSECAJAHKXCUSsydct6fVgIy991+W2zd9EjsfOKJGH3ggTF2wqFx9EkvixmnnN5nOblUau6Wr3yxrUvp/WjJl9Ob9Bgz9pD4989+OnY3WD4wZX8t+/iHY/ZffaISpANgeI0+sDNecOrhlZ/kmmuu2Rt0q173e0eNj3M/fIJMKIA6KKM3gFmzZsVNN90U8+bNi3/6p38adHs/+9nPYu7cuU3JlqKYZfT64qm6v5Tmv2vXrujs7Kyk+5dVGeahKGPM4zjy2GegHByfim/F5z5TyQAqulRGMGWDKalXHI5PrWPuszFv9c2DNaHIQhk9ykSwaQBbtmyJI444Ih599NGYPn16LF68eNBrLo0cOTJ27+77mxCUh2ATAAD0Lq2B9C8ffE9D6z/1NLJzVIw+6KB44tEt0c5eOOusSjYYAOVZE4pyEGyiTASb6nDXXXdV1m/q6OjYm+20YMGCTEGnlNk0c+ZM6zZRIdgEAAB9S2shLfvEX8WuBkvUJZ2jRsfsj/xtPO1Zz4kNv34wlnz8w4MKXA2ltH7VvCu+2GdZwR3bHo9VP7wp7rvjR/HYxg3x5PbtMWrMmDh44qTK+lap7GBf9wWgNQbKhBo3+cBY/oVVsqAKTrCJMhFsaiDglIJEmzdv3ht0SmbPnl0JPp177rlxyCGH9NtGyo4644wzYuLEifHv//7vw9Br8hhsWrVqVUyaNGm/23oRAgCgrAGnb37qEw0FilJputd84CPx9Gc/d+91Sy5aGA+t+nm0q9Pf+o540SvP2S+7645vXBv33nJzv+tXjTpgTMz4g9Pixa85Vzk+gAJmQY06YGQc/pwJ8dv7NseObbuGtY8MjmATZSLY1ID7778/5syZU8lOSgGnNHW1gafx48dXMqBS8Cn9f9q0aZXrU4Bq+fLlsWTJksr/V65cGcccc0wLR0I7B5u84NTv+uuvj7Vr18Zhhx0WZ555ZpRVGeahKGPM4zjy2GegHByfyiUFXX7yzSWx6off7z/oMubAmHHKqb0GXX52/XVx09WLo1099cjpcd4n/y5GjBj5v0G2yz4e27c+NqggG8PP8al1zH025q3181DPelCjD+xUoi+HBJsok85WdyBPUvAoBYpSCb3LLrtsn7+lwNOmTZtixYoVlZ/epNukNZ8EmqA50pvArq6uKLsyzENRxpjHceSxz0A5OD6VSwocpTWNTjnvT2PVLTfFfbffFls3PRI7n3giRh94YIydcGgcfdLLYsYpp/dZTi6VmrvlK1/sN1jVSv/9wJq4Yu6bY+rzXxiHTHlq3PXdb8XuJxsrrZSyv5Z9/MMx+68+EU9/zowh6yv9c3xqHXOfjXlr/TykQNILTj288tOfgyeOiVPPe3a89LXT+w1OPf1Z4+M/bv7NgEGpkaNGRHRH7N61ZwhGBZSNYFMGixYtig996EPxyU9+cr+gU63apLGU6XTVVVfF61+/byQbyC5926j2sqzKMA9FGWMex5HHPgPl4PhUTimQlErN9Sw3V+99U6m5e5Z/L9pVChb9149vGVQbaX2rVHbwzZd8Wkm9FnF8ah1zn415y9881BOc6i0otXXLttjTsSsOGDsyXjzzOZWMqR1P7JItBTSFMnpNcOONN1bK5KWMplQmL5Xbqy2rl0rvXXDBBa3uJm1IGT0AABjecnz/8sH3NLT+U2/rIx3+3OfHg/es3OcLhu3mhbPOqmSDAUAzSvnVmy3FvpTRo0wEm6CFBJsAAGB4pbWQln3iryoZQI3qHDU6Zn/kbytrIl170Qfj4VX/Ge0qrV8174ov9llWcMe2x2PVD2+K++74UTy2cUM8uX17jBozJg6eOCmOPvGllbKDfd0XgPISlGqMYBNlItgELSTYBAAArQk4pVJzjWQ4jTn4kHjNBz5SCTQlP7v+urjp6sXRzk5/6zv2KzmYsrvu+Ma1ce8tN/e7flXK4EplB1/8mnOV4wOgqUGpSc84OH55++9ix+O7ougEmygTwSZoIcGmwdm6dWvs2rUrOjs7Y+zYsVFWZZiHoowxj+PIY5+BcnB8YrBS0OUn31wSq374/f6DLmMOjBmnnLpf0GXHtm2x+B1v6fe+rTb+qb8Xr5n/kZj49GdER0fH/wTZLvt4bN/6WOYgGwNzfGodc5+NeSvPPLTTGB/buL0Ua0UJNlEmgk3QQoJNg3PNNddEV1dXTJ06Nc4///woqzLMQ1HGmMdx5LHPQDk4PtEsKWi06pab4r7bb4utmx6JnU88EaMPPDDGTjg0jj7pZTHjlNP7LCe34nOfiXuWfy/a3diJh8bkqUdG13/cHXt278pWPvCvPhFPf86MIelf0Tg+tY65z8a8lWce2nGMzSrLN2JER+Vyz572ONU96oCRMf24KbG78/F45R+fsM/fnPujqDqj4D73uc/F5s2bY/bs2XHEEUe0ujsAAAC0kRRISqXmepabq0fKdvqv229rqBzffjo6Iob4O6BbNz5S+ckqrW+Vyg6++ZJPK6kHQFONPrAzXnDq4ZWfvpx63rPjpa+dvjco9dtfr4/dO7tj5OiOeNozJ1eCUs8+8bDKbfsKXD392RPisUe2x30r1w06aFUNJB1y6Jj4zX9t6jVIlvqTxpa+aA5lUfjMpokTJ8aWLVsq/z/uuONi3rx5MWfOnDjkkENa3TWQ2TRIq1evrqSAp9Tvo446KsqqDPNQlDHmcRx57DNQDo5PtItUmm7ZJ/6qEpDJmjE0ZuzB8eA9d8Wt//rPsWvnjmhXL5x1Vsx8+5/1+fcd2x6PVT+8Ke6740fx2MYN8eT27TFqzJg4eOKkOPrEl8aMPzijzyyxInF8ah1zn415K888FGWMgxnHQJlUAwWtagNJ9XDujzIpfLApBZoWL15c+XnggQcqdaqTFHBKgafTTjut1V2kxLzgAABA/lXWQvrUJxrKcOptLaQlFy2Mh1b9PNpVWr9q3hVf3C9glNa/uuMb18a9t9zc//pXB4yJGX9w2n7rXwFAUTn3R5kUPthU62c/+1n867/+a1x55ZWVIFQKPI0fPz7e8IY3xNy5c+OYY45pdRcpGS84AABQDCng8pNvLolVP/x+/wGXMQfGjFNO7TXg8rPrr4ubrl4c7ez0t75jn5KDlUDbZR+P7VsfG1SgDQCKyLk/yqRUwaZaK1asqGQ7fe1rX6v8ngJP06ZNq2Q8pcCT9Z1o1QvOqlWrYtKkSfvd1osQAAC0vx3btsWqW26K+26/LbZueiR2PvFEjD7wwBg74dA4+qSXxYxTTu+zlFy67+J3vKXfYFWrHXjwIXHy/3lLTP39F1XWgRpsCcGnP2fGkPQTANqBYBNlUtpgU61ly5ZVAk833njj3sCT9Z1o1QtOXzxV93f33XfH5s2bKxmKZc5MLMM8FGWMeRxHHvsMlIPjE0XdZ1d87jNxz/LvRR6kz86D+ZySMpzefMmnC1dSz/Gpdcx9NuatPPNQlDHmaRyCTZTJiFZ3oB3Mnj07li9fHps2bYpLLrmkktV05513VjKcJkyYEGeeeWZ84xvfaHU3gV7eXPzgBz+oXJZZGeahKGPM4zjy2GegHByfKOo+m8rrpSDMYIzs7IwDDnpKDLXBfiEurXGVSg8WjeNT65j7bMxbeeahKGMsyjigaDpb3YF2Mm7cuJg/f37l54EHHojPfvazcdVVV8UNN9xQCUZZ3wkAAIChlLJ8XvP+vxpcebqP/G383tHPinUP3B9f++RfN7Se0nBbdcvNccp5f9pracEd2x6PVT+8Ke6740fx2MYN8eT27TFqzJg4eOKkOPrEl8aMPzijz5KEAAAML2X06pDK6y1ZsqQSeKqWCkiBp1Rmz/pODIYyegAAQG9+88tV8c1PfaKS/VOvlBH1mg98JJ7+7OfuvW7JRQvjoVU/j3Z2+lvfES965Tl7f390w/q44xvXxr233Nzv+lWjDhgTM/7gtEo2WNFK8QFQDMroUSaCTQ2yvhND/YKzatWqmDRp0n639SIEAADlkoIuqczcqh9+v/+gy5gDY8Ypp/YadPnZ9dfFTVcvjnZ2+IwXxBs+evH/Btku+3hD2Vi9BdkAoB0INlEmgk0ZbdmyJa699tpK4OlnP/tZJeiUzJo1qxJ4eu1rX9vqLpIDXnAAAICB7Ni2LVbdclPcd/ttsXXTI7HziSdi9IEHxtgJh8bRJ70sZpxyep/l5NJ9F7/jLf0Gq1qtY8SIeO7LXh6HTHlq/PTbX4vdTz6ZrXzgX30inv6cGUPSRwDIwrk/ykSwqQmq6zulrKf0/2rgKQWdZs+eHaeffnqru0ib8oIDAAAMtRWf+0zcs/x7UXQpw+nNl3xaST0A2oZzf5SJYFOTpSynFHhaunRpbN682fpO9MsLzuCkAO/DDz8chx9+eCWwW1ZlmIeijDGP48hjn4FycHwib1q5z6ZyfP/ywfc0tP5Tb+sj/d6znh2/+9V/tXWW1AtnnRUz3/5nLe2D41PrmPtszFt55qEoY8zTOJz7o0xGtLoDRfOiF72oUlpv48aNsWTJkkpW06ZNm+KSSy6J6dOnx7Oe9ay4/PLL49FHs7/JB/7H1q1bKyUt02WZlWEeijLGPI4jj30GysHxibxp5T6bMn1e8/6/qpSayyLd7/Uf/njM+au/jT/7wldj8hHTol2tuuXmSunAvuzY9nhlHaslFy2Mz7/ngvjsvDdXLtPv6fr+7lsvx6fWMffZmLfyzENRxliUcUDRdLa6A0WWIuvpp+f6Th/4wAdi/vz51neCQTrqqKMqmYOTJk2KMivDPBRljHkcRx77DJSD4xN50+p9Nq1llNY0+uanPtFQhlMqTfeaD3wknv7s51Z+H9k5Kl5w2qy46erF0Y6e3P5EZX2rF73ynP2yu+74xrVx7y0395qZtXnt7+KhVT+PW77yxZjxB6fFi19zbuZyfK3e1mVm7rMxb+WZh6KMsSjjgKJRRm+YpTWdUom9FHiqXd9pzpw5lcDTaaed1uouMoyk0gIAAMMpBV1+8s0lseqH3++3HN6oMQfGjFNO7TXokrJ/Fr/jLW1bTm/8YU+L1y38WEw47GmV33/zy1Xxzcs+Htu3PpY5yAYAWTj3R5kINrXp+k7nnntuHHPMMa3uIkPMCw4AANAKKWCUMoDuu/222Lrpkdj5xBMx+sADY+yEQ+Pok14WM045PQ446KA+77/ic5+Je5Z/L9rZuKceFpOfeUTc/7M7Y8+uXZnKB6ZssJQVBgBZOPdHmQg2tYkVK1ZUsp2+9rWvVX5Pgae0xtOCBQvibW97W6u7xxDxggMAAOQ1Q+pfPviehkry5VHKcHrzJZ/OXFIPgHJz7o8yEWxqMz3Xd0pBp927d7e6WwwRLziDs3bt2ti+fXuMGTMmDjvssCirMsxDUcaYx3Hksc9AOTg+kTdF3GdTebpln/ir2PXkzobvO3LU6Jj59nfGti2b48fLvhK7djbexnB54ayzYubb/6zU2zovzH025q0881CUMeZpHM79USaCTW0eeNq4cWMceeSRre4Kw/iCc8wzD44zTj813vs3/xhPf8YRDbX3UNcD8emPvSd++IMfxvot22Lbzt1x0OiRMXncQfEHL/+DhttsdnvNbvOaa66JX/3yF/G7VT+KX/znL0ox5v7am3TImHj5qcXcd4qyrY940WnxyKZHY+rUqXH++ee3ZR97tpnmvqurq88+t0MfW9FmHvpY1nHnoY95abPd+1g9Ph06/pB48O7vl2bcQ9VmHvpYhPdqz3rOs+MlZ50Xf/7u9xZm3JX1kD71iUqG0xM7n4yVXb+Jnz/8u9jyxPbYsWt3HNA5MsYdOCZecPjvxfFHPD3GjBq133pISy5aGA+t+vl+bdfbXiOytJnWr5p3xRf7LCt4/3/9Ii5+/zvj1jt/Ho88vj12PLk7Dhg1MiY+ZUyccvwL4sN/tziOOPo5DfXz0c2PxL3XXxlj7/9ujHtyfYzpfiK2dxwYW0ZNjq3Tzo4ZZ82Lg8dNbEl7zWqrGe30bOOAPdtiW/cBsXHExNj5nNdkaqPRfrTy/lnvm3XemvV49dxvOO7T6DwMtv3+bj9UbTcyxqxttuJ2B+/47zgwtscTMSYeO+Cpe2+XTnMP1NZw3+ZHS/4uzpr3yX32VcEmikqwCdos2FT1lFERr3jxs+LDl38ujjvxlH7bWXnHLfG373tb3PCT++LxJ/u+Xb1tNru9oerjX//5m+MH93SVasxl7WORtvUfvOAZcdrr3hof+PDH2raPtW32FWxqpz4OZ5t56ONQtKmP5WozD31MLvvbj8VNX/9C3PLzh0o17rJu7zy0mYc+DlWbtyz/TnzsL98dt/7y17FzV9+VOUZ3joxTnvvM+Ojl/xinzDpn7/U/u/66uOnqxXt/37ztiVixanXc9evfDNjecVOfHmc896gYf9CB/fZxsG2e/tZ3xIteeU5Tx92btQ+tjq5v/k28YMP1cVDHjj5vl04W/3zSWTH1NR+Jw55x1LC016y2mtFOO7TRyvtnvW8e7pcM9X3Gv+RPYvOPr2mL2/9i3B9ER3THjC23NLnt0bFu5FPjqbv/Ow7s2NmkPtTbZmtu92T3iHSqO0Z17G6r22ze9mRM+dTWff4m2ERRCTZBmwabqiYeOCL+3z9eHm98+1/0+vevXPn38ed/8b7Y9ET9T+X+2mx2e3noYxnHrI/6WG+bp53zf/YrT9BufSzrtjHufPUxL23moY9D0WYe+jgUbeahj3lpMw99bOc2d2zbFovf8ZZ4csf2eGDDxrj61jtj285+ImE9HDR6VLz15OPjiEm9Z380o82DDhkXf/Cmt8bUFxwTYyceGp/95IfjfRdd1lCbTxk9Ki7/2PyYt/ATvf79l3fcEId9709jfOx7UrI/m+Lg+O+zr47nvHjWkLbXrLaa0U47tNHK+0d3d6b7/mrGu+PZqz7d1vd7tPvA6IiIgzueGNL77OmOGJHu1Ca3b8RQts3QWP/4HsEmSkOwCdo82JSM6Yz4/Gf+Ls6b+979Pti97c/+Mrbvavyxe2uz2e3loY9lHLM+6mPR+zgUbeahj0PRpj6Wq8089HEo2sxDH4eizTz0MS9t5qGPeWhzxec+E9/86pdj8Q/uiF279zTcXufIETHv5SfGkT0CTinQ1Ow2f7ttR/zj927K1OaokSPiH//mg/GOD/3tPten4MMR3z0vxnTUH7yq2t49Kh48+yvxnBNfMSTtNautZrSTtLqNe2bMjxeuurQl99/RPTI6oiNGdzT+pEtn/zoyBCmG+35QNIJNlIlg0xB59NFH45BDDml1N8hhsOmPnnt63HDfbbF91479vv13w/dv3lvCIpW/mHXayxv6BmFPtW02u7089LGMY9ZHfSx6H4eizTz0cSja1MdytZmHPg5Fm8PZxzGdB1Te55027aQYP+aQ2Lz90fj+/bfHt++9KfP7vqxt5qGPeWkzD33MS5upJN2Z57xuv0yhRtpLmUPvP+eMOLhz5N7SeX93wy2DajNlOP3lK07ZW1KvGW2mfn7vO1/fW1IvlRob8/mXN5QB0lsmyY633by3dFmz2quMrQltrTvnn+Op33nzoNrZHE+JVJTqkHi8pW0MNrNEZgqUi2ATZSLYNAS2bNkSRx55ZBx66KExc+bMmDNnTpx++umt7hY5CTbd/a5vVy4/8L1FsXz1bfv87fUnTY1PfWFZ5f/vf+vs+NrtXYPuwyte+LRY/NVvNa29E4+eHG++8C/jyCOeGV+49ENNbfNfrvi7uOO+9W3bXtKsNl/xwqfHH/3Jnzetveq+8/Bvfhvvf+fbm9pms/adodi/W9HHRk401NPHrO21cx/Tc+avF/1DzHjOs5raZnoePv1pvxdf+oePNrXNvp6HWdtL8tBms9pL+8+CRZ+Nn6y8u6ltpn3y3W95XVx350NNay/Jw3NxKNrMQx/bedwvn3FYXLPsuj77OOuol8VlZy2IQw8av999H9m2udf3fem5+GcLPhqnvPTEpraZnt9fWfz38aP/Wte09pLent9laLNZ7aV9ctFV18b1y7/f1Darz503vubsuP1XzW2zWftlf8/HLO297qSpsfBjfxc/+upX419v/Un8eM2vB93mS6Y/M15/3Asq///ayp83pc0znjc1Prf0f+bykX/7eBy39X8CO1XrHh8Rl/9kdHznV9tjw+NPxvYnd8eYUSNj0lNGxTnPGhPvP3FnTD5o38yqlWNPjUP/8CO9tpdFai9pRlsPdxwWh3evHXQ7AHkj2ESZCDYNoZ/97Gdx7bXXxrJly2LTpk0xb968+OQnP9nqbpGDYFP6kLJ7z+54+9c/HCvW/Gjv38aOjvjNXx5c+f/TLn+s3wV96zV6ZMSad4+N5/y/rU1pr+rPjh8V19zzZK9tNnoCZyDt3l6WNg8YGbFjd/Paq+47X/35znjHv+1oWpv3/lnf+07WPva3f7d7H7OcaOivj1nba/c+Vo8Rn5w5pml9rHrD8zrjO7/a1dQ2e9Ps9vLSZtb955rXHBizl/ReR38w++Sz/u/WeGJX+z5v8tJmHo5B7T7ukR0RGxf03sfU3lWv/USMHPE/mRa96e19X/LCp3bED/90bFPbTNIX6ms/BA62vd6Utc2s7aV9Mr0nf2qPk1GDbbP63Bl3yWNNb7NZ+2Vfz8fB9vHrv54R85bcGTt37R50mwd0joyPvOqMyv//5robm9bmQ+89eL+A0apHRsb8G0fG8vs27fM4PY3uHBmvOHpCLDpjd8w4tJ8PDgC0lGATZSLYNIC77767EjA64YQTKllKWUvj3XXXXfHBD34wHnjggVi5cqUSewwYbKqe0DjpitmxfdfOvX//f2eNqZwceNf3tjctUDJnRmcsXbWrqYGX044YGd9/cHdbnvgczvbaqY9p37n9N7viS/+xq2lt9rXvDKaPfe3f7d7HwZys6q2Pg2kvD308/YiR8drnjmpqH5MTnjYifvrbPW15IjHvbQ6mvXcePyr+6c79I75Ff97kpc2yzuVwjDu9j7r9wqW9vtb01Nv7vmcc0hHzX3ZAU9vsqdntlbnNwbb39688IN777zua2uZQ7JdD0WbP52Mz+vjrxw+JS3+4rmltvvZFz6uM+5s/+0XT2lzw8ilxyan/O4/f/NUB8cdf27xfib7+pJJ8X549Ll59dP/7OwCtIdhEmaRStfQjlb+79NJLK6XwJkyYEEcffXRceOGF8fWvf72yLlO9jj322Ljhhhvida97XVxwwQVD2meKI31o+aPn/s836KqW3ftkfO3e3j98pBMk6cPO5WcvjHOec1qcfMRxlcv0e7o+/b03y+/f1dT2kvs27r9YbvUETl8fxtL16e8zp7+0z3bz1F679THtO3f2OAk/2DZ723cG28fe9u9272M60ZACV/2dnEzS3z919gdjTOfofvs42Pby0MdfbdzT9D4mv97S3fQ2h7K9vLQ52PZufWj/Lx+U4XmTlzbLOpfDMe70hZ16TkL39b5v0/buprfZU7PbK3Obg23vG7/c1fQ2h2K/HIo2ez4fm9HH27s2NrXN/3j4d/Hzh3/X1Da/du+uuOF3R8V/PToplvzXgXHukkcaCjQlj+98MuZcu7ESqAIAaCXBpgEcd9xxkZK/qj/3339/XHnllXuDT2ldpje84Q3xuc99Lh588MEB21u0aFGsWLFiWPpOMZw67cR9fv/No93x8KPdTT15/vjO5gdJtu7M1wnfMpzsTftObws4D6bNnvtOM/rYc//OQx8He6KhZx8H214e+piOEc3uY7Ltyea3OZTt5aXNwbb3yLb9X7fK8LzJS5tlncvhGHfKDB/M+74nd0fT2+yp2e2Vuc3Btvfbx/Y0vc2h2C+Hos2ez8dm9LHnfA62zS1P7IgtT2xvapubt+2In2/+vfjSfUfEn359Yzy5e89+71vPfcFZccWrL4qvvuHvK5fp93R9rXS/N31tc6UEHwBAqwg2DSCttzR//vy9v9cGntJPWosp3SatxzR9+vQBg09pHSdoxIQx4/b5/bGd3U0P5Ozubn6QJJ0caecTn0PdXjv2Me0723c190Rdz32nGX3suX/noY+DPdHQs4+DbS8PfUzHiGb3Mdm1p71PJOa1zcG21zMIWJbnTV7aLOtcDse4UwniwbzvS31sdps9Nbu9Mrc52Pa27mh+m0OxXw7Vvt7ufdy5a1fs6LGG0mDb3LHrfzK6brx39X4ZTY1WmUgZTgtuFGwCAFpHsGkAHR0dlfWWkrlz58bixYsrl9OmTdt7m4GCT2m9p1e+8pWVy+OPP76y9hPUa9P2Lfv8fvDojhg7Oi3r3LyT52lR62a2l4wa2d4nPoe6vaFoc7DtpX1nTGdHU9vsue80o4899+889HGwJxp69nGw7eWhj+kY0ew+Jp0j2vtEYl7bHGx7B43qsQOV5HmTlzbLOpfDMe601uVg3velPja7zZ6a3V6Z2xxse2MPaH6bQ7FfDtW+3u59nHLQkzGmxxuNwbZ5QGdnbH/yyVjZ9ZumVJlYft+mWL+t99M86x4fEQu+PyaetzjiqX/3ZIxbtL1ymX5P1/d1PwCAenk3UcdaS6lc3p49e+Kzn/1sZb2ldLl69epKYGnp0qUDBp9WrlxZKZ2XLtN1qZQe1Ovm++/Y5/enH9IRhx/S3JPxTxnd/CDJUJxEzlN7Q9HmYNtL+86EA5u7XXruO83oY8/9Ow99HOyJhp59HGx7eehjOkY0u4+9BTXa7URiXtscbHuHHrR/sKkMz5u8tFnWuRyOcX///tsH9b4vBeab3WZPzW6vzG0Otr2nHTyi6W0OxX45FG32fD62Yx9Te5PHjmpqm+MOPCDufPA3sbMmY2owVSZS5tXlP9l3MlNpvXOWjI5n/MNjcekP18WqtY/GuseeiEe376xcpt/T9Yf//WPxqiWjleIDADITbOrHwoULK1lI1157ba9/HzduXLz+9a/fJ/i0fPnyStm9FKSqzY5KQaZ0XQo4HXHEEcM4CvJsw+Ob4tv33rjPdbOfOype/9xRTT15PmtaZ1PbS46e2Nxv/fXU7u0NRZuDbS/tO8c/rbnbpee+04w+9ty/89DHwZ5o6NnHwbaXhz4+a+KIpvcxeeY4J2WHos3BtnfyM/Y/cVWG501e2izrXA7HuL99703xyLbNmd/3TRjT0fQ2e2p2e2Vuc7DtvfY5nU1vcyj2y6Fos+fzsR37mNo851ljmtrm7x/+e/Hzh3/X1CoT3/6v/63H+M1fHRAnXLk1/u3eDfsEtHqT/v6dezfEi6/cGt+6b+D1aQEAehJs6kcqh/fBD36w7tun4NMZZ5wRl1xySdx55517s6HS9QsWLKhc96IXvWhI+0xx7N6zOz7wvUWxfdfOfTIBTpq/JF4yf0k8ZVRzTp6nNi/4m882tb07v//tuOzqb+zT5mBO4KQ2b1j2ubZuL405/bRzH9O+8xef/npT2+y57zSjjz337zz0cTAnGnrr42DbG4o+njD7wqa2d+nV32h6H9Nz8Iovf7OpbfZ8Hjajjz2PFe3YZrPH/dbLvtb0PubheZOXNss6l8Mx7u27dlTez6X3dVne933jW99qeps9n9+Dba+3Y1BZ2mz2XJ7ywaVN7+NQ7JdD0WbP52M79jG1+doP/1OM7hzZlDYP6BwZxx3x9NjyxPamVplYv3VXfH7N8bFo5dNjzpJH9lsLaiBp7ac5126sBKq2dY+O7d3NCTx17798IwBQMIJN/VizZk1MnDhxUG2kEnspyJTK7V1++eVN6xvFlk5gvP3rH44Va360z/WzTjg6jjv1VZWfV7z4WU05eZ7anPX6tzW1vd76OJgTOL31sd3ay8OY9XHo+jiYEw299XGw7TW7j6e96IiY9dq3tnUfy7ptyjzuPPQxL22WdS6HY9zJ8tW3Vd7X9fXa0+j7vsG22XPc7djHvLRpLss3lye94vVxynOf2ZQ2j5369BgzalSl9F0zq0zs2LUrHtwc8Tc3rI5du/fs87dUou/cF5wVV7z6ovjqG/6+cpl+T9fXenL3nnjT1zbHd3efHPdMOjuaoWvkM5rSDgDQvjq6U303enX88cfHZZddFqeddtqg29q8eXOlvauuuqop7VEM69evjylTpuxXNuGG+27d5wRGMvHAEXHD92+O4048pfL7yjtuiVecdmpsfGJP5cPB7RcuravcQvqw85LPzqm0X9tms9vr2cfahW77qz+eTuDUfhjrq4/t2F4exqyPQ9fHJC3SnGrn9/bcSc+VdHKy9kRDf30cbHtl7aNxl2vceehjXtrMQx/zPO4krauSyl2lLIR0cjhlhqcv7KQvNTTyvq8Zbeahj3lpMw99zEubeehjcsvy78RZ57yukgGUtc2njB4V/+8j82PMkzvjXX/3mdiwddvev6UA0DnPqf+cwXW/vCne+a2P7f190tinxNFPPTR+vObX+9wuvf9Na0H1dmxLgbJ0bEuBs1pnvvTFcfW/fjkO+PypMSEe23v9usdHVNaG+s6vtseGx5+M7U/ujjGjRsakp/xPqcH3n7gzJh/0v3O+KQ6Odef8c0z5zlv2aadRm+MpkQomj4vHW9rGnu6IEfsvRzls9wfyZf3je2LKp7buc926deti8uTJLesTDBXBpn684x3vqKyx9NOf/rQp7d1///1xwgknxCOPPNKU9ihmsKk3YzojvnDF38cb3/4X+1z/lSv/Pt72Z38Z23c1fvK8tzab3V7PNhs9gTNQH9uxPX0sdx8bOdFQTx8H215Z+2jc5Rp3HvqYlzbz0Mc8j7tew9VmHvqYlzbz0Me8tJmHPiaf/eSH491/fUklA6hRo0aOiP/78YUxb+EnKr8/74hnxqquh/b+PWUaXX72wrrbe993L44lP//e3t+PPHRC/GbLo/us0ZTli1bJAZ2d8dBDD8UjXf8RR3z3vLh/456Yf+PIWH7fpn7XgEqlBl9x9IRYdMbumDZxRDz4h1+N57x4Vvzyjhsq7YzpaKy0X7K9e1SlnVSPr9Vt3PO8+fHCX1zakvvv6B4ZHdERozsa36HT2b+ODEGu4b4fFI1gE2Ui2DRAcOioo46qrNv0yU9+smkBrNTm+9///qa0R/GDTembdP/vHy/f7wNO7Yend/3F+yvf1qv35Hl/bTa7vZ5t1nsCp94+tmN7+ljuPtajkT4Otr2y9nEo2sxDH4eiTX0sV5t56ONQtJmHPg5Fm3noY17azEMf89JmHvpYDTi9/6LL9stw6k/KaLr8Y/P3BpqSBe+cF5deceXe37NWmaj6/cMPi/94eG2m9lKG00lXzN6nvQXvfEdc8pkrKuN930WXNbQGVG/jTQGnp37vrQ1lOKXMqP8+++pKwKpd2mjl/VMUJ8t9fzXj3fGsVf/Y1vd7tPvA6OjoiINj25Dep9HssqG+fSNkxuWPYBNlItg0gFmzZsVNN90U8+bNi3/6p38adHs/+9nPKus4NStbiuIGm9IitKk2+Icv/9zekg19SeUh/vZ9b48bfvKr2N3d98nzzhFP1tVms9vr2ebj/Xw+qXfcqb2Pv/etseLO1U1rr5n9G4o2y9zHIm3r04+dFhfM/2Sc89pz27aPtW2uXr06tm7dGmPHjq18WaId+zicbeahj0PRpj6Wq8089DH5zjeWxFWXfihuXLmmVOMu6/bOQ5t56GNe2sxDH6sl9S5637vjlnt/3W+mzwGdI+Pk5z4zPnr5P8Yps87Z52/r166Nw59xeJMykUbG08YfEg9s2NS0TKmjf++p8d4L58V7LvpE5kyuJf/8xXjNeW/ae93ah1ZH1zc/Hi/Y8L04qGNHn/d9vHtM/OekM2Pqaz4Shz3jf9+Htksbrbx/1vvm4X7JUN9n/Ev+JDb/+IttcftV406plHacseWHTW17W/cBsW7klHjq7v+OAzt2NqUP9bbZqts92f0/x8xRHbvb6jabtz0p2ERpCDYNYMuWLXHEEUfEo48+GtOnT4/FixcPes2lkSNHxu7d/S88THmDTcc88+CYecZp8RcXfTqe/owjGmrvNw89GP/w0ffED27+QWzYsi0e37k7njJ6ZEwad1C8/NSXN9xms9trdpvXXHNN/Oq/fhFrV/04/vPn/1mKMffV3kGpvUPGxKmnFXPfKcq2nnrMqfHIpkdj6tSpcf7557dlH3u2mea+q6urzz63Qx9b0WYe+ljWceehj3lps937WD0+HTrhkOi6++bSjHuo2sxDH/PSZl/tHXrImHj2c54TJ531xvjzd7+3cOMeijbz0Mfkwft+GZ983zvilp/+R2x8fEdsf3JXjBnVGROeckD8wQm/Hx+6/LNxxNHP6fP+rzr1lPjOD27d57pG149LXjL9mXHff29o6hpQEw46MHbs2rVfRlPKmErrDZ827aQYP+aQ2Lz90fj+/bfHt++9Kbbv2vdk9VMOGB0/ueOOmPHCY/a5/rEtG2PV9VfG2DX/Foc8uSEO7N4WT3QcFI+OmhRbp/9hzDhzbhw8bmK//e3Zxpg9j1dOnm8aMSF2Pve1mdpotB+tvH/W+2adt2Y9Xj33G477NDoPg22/v9sPVduNjDFrm6243dgd/x0HxfbYFmNi6wFP3Xu7ZKC2hvs2ty35uzhr7t/us68KNlFUgk11uOuuu+L444+vpOVWs50WLFiQKeiUMptmzpxp3Sb6DDZ5wanfQCfBy6IM81CUMeZxHHnsM1AOjk/kjX22PBrd1qvuuTtefOKJ8fiOfb+xX+/6cclBo0fFX77ilPj0itvise3/G+z56hv+Pk4+4ri6+37rgyvjjde+d5/MpJ4ZTSnz6rKzFvQaCEul+FIgbPnq2/a5/pyXnxzX3XzLPtet+91v4/KPXxTf+d71sWHT5ti+c2eMGT06Jk0YH+ecdWa8/68vismHHRaN8DzLxryVZx6KMsY8jcO5P8pEsKmBgFMKEm3evHlv0CmZPXt2Jfh07rnnxiGHHNJvGyk76owzzoiJEyfGv//7vw9Dr2l3XnAGJ5X22rVrV3R2dlZKfJVVGeahKGPM4zjy2GegHByfyBv7bHlk2dbf/MqX4ty3/EnmUnX/es01cfwxvx/Hv/TkWP/Y1qZlNvWUvcRfZzz00EOV4FEKrs1/95/H8h/d3m/5wdGdI+MVL3tJLPr0/90vK6ovnmfZmLfyzENRxpincTj3R5kINjXg/vvvjzlz5lSyk1LAKU1dbeBp/PjxlQyoFHxK/582bVrl+hSgWr58eSxZsqTy/5UrV8Yxx9T3Roli84IDAABANeD0pre+bb8Mp/6kEnVfvvrqePUbz6v8/rwjp8aqB3/dtDWbepbOu/3Cpb1mNPWW4XTSFbP3ycBa8M53xEkve1n88VvfFtsGMUaAPHHujzIRbMogldC77LLLKv+vBpuq01gbfOop3Sat+XTBBRcMU09pd15wAAAAqEpZPwve86644bYf95v1kzKFZr3spP2yfha8c15cesWVmQJEaS2ol3x2zn4l+poVuHrGoRNj7ebNmbO3lvzzF+M1572p4fsCtJJzf5TJiFZ3II8WLVoUmzZtig984AOVAFJf8brq39LPuHHjYunSpQJNAAAAQK9S4CitbfTwQw9XMoFmHPHMeOr4Q+KQA8dULtPv6fpUki7drmd5ubTOUSo/V7V9147KGkqptF1/0t/T7WoDTT2/SnvatJMaGktaa6rWw49s3C/QlIJhKYiVyv2l9aXSZfo9XV8r3S9lfaVgHADQnmQ2NcGNN95YKZO3YsWKSpm8VG6vtqxeKr0nyERvfLthcK6//vpYu3ZtHHbYYXHmmWdGWZVhHooyxjyOI499BsrB8Ym8sc+WR6u39atOPSW+84Nb97lu5vSXxqfO/mCvGU4poykFmmrXWKpmE9UGh1Iw6OQjjqu7H7c+uDLeeO17+13/6bKzFvTap1SGL/Vp+erb9rn+nJefXAmyVa373W/j8o9fFN/53vWxYdPm2L5zZ4zu7IwJhxwcr/2jV1WCb2mdKNp7n20XZZiHoowxT+Nw7o8y6Wx1B4rgjDPOqPwAwyu9sejq6oqyK8M8FGWMeRxHHvsMlIPjE3ljny2PVm/rVFrv+yeeuM/aTymQlNZQ+qPnnlHJOJowZlxs2r4lbr7/jvj2vTfuVzovrZOUSvVtfHzb3us2b3+0oX6k9vsLNF312k/EyBH/m4VVKwWg0t/f/vUP7xMEW37b7bF+7dpY/99rY/67/zyW/+j2XssNbnhsa6Wc4D9c9fl4xctesl+5Qdprn20XZZiHooyxKOOAohFsAnIrfYOl9rKsyjAPRRljHseRxz4D5eD4RN7YZ8uj1ds6BVW+9IXPx7lv+ZN9MpNSQCmtoVS7jlJvUkbTl6++Oj70oYWx8fFf773++/ffHuc857S6+5ECWb1JJfJSRlNfgaaq9PeUjZWCZNVg2I5du+Kd5785vnvzD2NbTTCtLykQlbK8UvAtjenVbzyv7v6XSav32XZRhnkoyhiLMg4oGmX0oIWk0gIAADAUvvmVL1XWOarNcBpIymiqBmUWvHNeJTuoNkh0+4VLey1711tpvpd8ds5+GVNJWpPp8rMX1t2n93334gEDZPVIQbQl//zFeM15bxp0WwD1cu6PMhnR6g4AAAAA0FwpqPKTO+6orHM0urP/LKJUMi/dLt2+mv2T1juqvd/2XTsq6yjt3rN/2bpa6e/pdr0FmpLTpp3U0DhS2b/+pCBYCmBd8eqLKutKpcv0e7q+VsrySsG3Vffcvc/1ad2nFFh73pFT46njx8W4gw6sXKbf0/WpbB8AMDCZTcPs7rvvjmOOUSeY/+HbDQAAAAy1FDC5/OMXxXXf/W48snlzPLFjZxx4wOg4dPz4eNXZZ8f7PvLRmNxLOapXnXpKpQxdrZnTX1opb9dbhlPKaEqBptp1lnpKAaGTjziu7r7f+uDKeOO17+1z7adUkq+3vjyybXOlL8tX37bP9Smodt3Nt1SCTv2t+1SVAm7WfQKycu6PMhFsGiZf//rXY8GCBfHAAw/Erl27Wt0d2oQXnMHZunVr5fnU2dkZY8eOjbIqwzwUZYx5HEce+wyUg+MTeWOfLY8ibesUkHnxiSfuV4pvTOfo+KPnnlHJOpowZlxs2r6lskbTt++9cb+Mpo6IqD3xlDKPGln76bpf3hTv/NbHeg00XfXaT/S79lPKsnr71z+8T/ArZXFd+Y//EBe+9y/rWveptxKDRVOkfXYwyjAPRRljnsbh3B9l0tnqDhTd5z73uVi0aFHcf//9keJ6HR3pbRb0bcOGDb1e70Vof8uWLYuurq6YOnVqnH/++VFWZZiHoowxj+PIY5+BcnB8Im/ss+VRpG2dMnm+9IXPx7lv+ZNKGbqqFFBK6ygNtJZSWifpaZMOja7/Xr/3uu/ff3tDwaYUxOoplchLGU39BZqS9PeUhXXSFbP3BsF27NoVf/pn74o9DX73OgXc5rz5zbGke0/h1n0q0j47GGWYh6KMsSjjgKKxZtMQBpkOPfTQmDdvXqxZs6YSaIJ6zJgxo/KNh54/AAAAMNxSYGXJP3+xktnTiHT7pf/yL/GG1712n+u/fe9NlRJ39Uhl+VK2VE9/9NzTey2d15t0u5SFVatnoGmw6z4BAMroNd2nPvWpuPjii2Pz5s17A0zVbKZqZtPu3f0vpkl59JZK2xdP1f2tXr26kjqdUqaPOuqoKKsyzENRxpjHceSxz0A5OD6RN/bZ8ijqtk4BlgXveVfccNuP+13jKJWpm/Wyk/aucZTWizr8GYfvc5+sJfCaXYpvsOs+Jet+99vKeljf+d71sWHT5ti+c2eMGT06Jk0YH+ecdWa8/68v6nU9rHZS1H22UWWYh6KMMU/jUEaPMhFsGsYgk2ATPQk2AQAAkCcpeJSCK9d997vxyObN8cSOnXHgAaPj0PHj41Vnnx3v+8hH9wuuvOrUU+I7P7h1n+tmTn9ppcRdb0GelNGUgjy9BZqSlH108hHH1d3nWx9cGW+89r1NXffpxuu/Fxf/zcdi+Y9u7zf4NrpzZLziZS/ZG3wDykWwiTIRbBriIFMybdq0yppN1b8JNlEl2AQAAEDRpayoF594YmXdo1pjOkdXStydOu3EmDBmXGzavqWyRlMqnVddY6k3zchsSiXybr9waV3l+FKGU+26T8nokSNjZwPnd1JZwS9ffXW8+o3n1X0fIP8EmyiTzlZ3II8effTRSoDp0ksvrfzeV5Bp9uzZsWjRolixYkVl7Saox6pVq2LSpEmt7gYAAAA0Rcro+dIXPh/nvuVPKuseVaXgzZKff6/y0590tqX265ffv//2hoJNKYDVjHWfavvZSKApSYG2OW9+cyzp3lNZBwsAikawaQiCTHPnzo0FCxbEkUce2cLeklcp0OTbDfW5++67K1mF48ePj2OOKW85gjLMQ1HGmMdx5LHPQDk4PpE39tnysK17lwIsSyLiTW99234ZTgNlBJ116h/Esn9fsfe6b997U3zo1AvrChalknwpU6qn06ad1EDvo5J91VdQLGVJpeBVanP8mENi8/ZHKwGx1M/tu3bsvV0KtKXx/+R5z99bUq8d1nyyz5ZnHooyxqKMA4pmRKs7kJcg08KFC2PChAmVQFMKKlXXX6quxZR+UpBp06ZN8dnPflagCYbpzcUPfvCDymWZlWEeijLGPI4jj30GysHxibyxz5aHbd1/wOknd9wR57z85MpaRv1J6yKl26Xb/9M1/7LP7VMAJ63plNZT6k/6e7pdbyX5UlCoEanMX2/Suk+pHN/lZy+sZFultaTSZfo9XZ/+XisF2ha8512V0oJpfM945jPj0iuujFUP/jrWbXk0Hn1ie+Uy/Z6uP/wZh1fWvEq3Hyr22fLMQ1HGWJRxQNEINg0QZLrwwgsHDDLNnz9/b5Bp3Lje33wAAAAAlF3K6Lnu5lvi4YcejgXvfEfMOOKZ8dTxh8QhB46pXKbf0/UPPfRQ5Xbp9imz5xUve8k+7SxffVu8/esfrqyn1FdGU/r7ijU/6vXvKfuoEWk9qZ5SIOmq136izwyrdH36+8zpL93n+n+/9cdxwotPjH/74W2xc1f/AbP09+/84NbKmlff+upXGuozAAynju5q7Tf2evDBBytrLV155ZX9lstLQaaU8TRQgOmqq67au2ZTamN3g3V9KS6LBAIAAMDAUmZPCrj0LME3pnN0ZT2lVOYuZR+loFBaoymVzusto6nq3BecVck+qtf7vnvxPmX0Uum8lLlUTym/FBA76YrZ/fanHqNGjogl//xFaz5Bjjj3R5lYs6lHkCmttbRs2bI+g0ypFmgKMKWSebKYAAAAAIZeynD60hc+H+e+5U8qax9VpQBOCgL1tZ5S1YiOjthT833rwa77lNZoque+SbpdCog1e82ndljvCQCqlNH7/4NMb3jDG2L69OmVQFNv5fJSYCllO23cuDE+8IEPCDQBAAAADKOU0ZMye55ywOiG7pduf80/faap6z6lwFAjUuZVs9Z8+vML3to26z0BQFWpg01pEblGg0wAAAAAtC7g9JM77qgEW2qDR705oLOzcrt0+ze/48KmrvuUMpAakUr8NWvNp+//9GfWewKg7XSWNciUyuWtWLGi33J5Kch0wQUXtLSvQN9SkPjhhx+Oww8/PGbPnh1lVYZ5KMoY8ziOPPYZKAfHJ/LGPlsetvXQSyXkrrv5lli/dm2ljNx13/1uPLJ5c2zbsbMSYJpwyMHxule/Ot73kY/uU0Zu0af/b3y/x7pPKZCU1lNqdN2nVOquEanNnqXzLjtrQYwc0X/ALP39U2d/cFBrPqXxznnzm2NJ955e13uyz5ZnHooyxqKMA4qmVMGmeoJM06ZNq9xGkAna39atW2PLli2V4HCZlWEeijLGPI4jj30GysHxibyxz5aHbT18UiDpks9cEZf8/79fc8010dXVFVOnTo3zzz+/6es+1UprKqVyd/VKwauhWPMpy3pPk6ZM2Wetpyd27qxkiU04+OD46U3LS7vWUxmeu0UZY1HGAUXTWZYgUwoe3XXXXZXfa0vl1QaZUibT61//+hb3FqjXUUcdVXljMWnSpCizMsxDUcaYx3Hksc9AOTg+kTf22fKwrdt77ivrPkVUAi+1GU4DScGY2rJ1KZjzoVMvrCtglMrxpSypwa751DPYlMrwpeyonn1IQbDUt7TWVCoVWJXGO+v002PDo4/2WoLvkccer6z19A9Xfb5ScjBlgqUAXVmU4blblDEWZRxQNB3d1fSeAps4cWIl2l2byVT9/3AEma666qqYN2/e3sfevbv/mrqUx/r162PKlCn7XLdu3bqYPHlyy/oEAAAARbfqnrtjwXveFTfc9uN+1z5KZflmveyk+OBffyxOf+Ur97ltdc2l/krh7d6zu9d1n776hr+Pk484ru7+3vrgynjjte9tymPX6ykHjI4vX311vPqN52W6P+DcH+UyIkpgzpw5+5XMO/bYY2Pp0qWxevVq2UwAAAAAJVz36eGHHo4F73xHzDjimfHU8YfEIQeOqVym39P1Dz30UOV2Lzv9jEq2T62UNZSCOY9s29xnRlNfwZ7BrPnU6HpPYzpHx2DWevrmV76U6f4AlEspMpuSBx54IObPnx9f+9rXKgGnFGh63eteNyyPLbOJvvh2AwAAAOQnG+rFJ564X/m9FMxJayqlUncTxoyrBIbSGk2pdF5aD6o3577grLj87IV1P/b7vnvx3jJ6g7lvo2s9VTOcfnLHHfut9bR9584YM3p0TJowPs4568zSrvUE/XHujzIpTbCpt6DT9OnT44Mf/GC87W1vG9LHFGyiL15wBmft2rWxffv2GDNmTBxW4je0ZZiHoowxj+PIY5+BcnB8Im/ss+VhWxd77lOWz7lv+ZN4cveeQbWTgj23X7i07jWfXvLZOXsDV1e8+qLKukz1uu6XN8U7v/WxAdd6SlKWVs+1npKnTZzQ51pPteta5XmtpzI8d4syxjyNw7k/yqQUZfRqHXnkkXvL551++ulxwQUXxKGHHhqf//znW901oEHXX399fPGLX6xcllkZ5qEoY8zjOPLYZ6AcHJ/IG/tsedjWxZ7715z3pljyz1+sZPs04qDRo2LUyP89DZeyh1JQJ62r1J/093S72gyplInUiJRt1XOtp76CXOn69PeZ01+6z/W/3bip30BTkv7+nR/cWsn++tZXvxJ5U4bnblHGWJRxQNGULthUNW3atFi8eHFs3LgxZs+evTfodPnll7e6awAAAAC0qRRwSmXlznn5yZVsnv4c0NlZud1Pf/KTeOXJL23Kmk9Z13uy1hMAQ6l0ZfT6smXLlvjkJz8Zl112WUyYMCE+9KEPxfve976mtK2MHn2RSluetOmhVIZ5KMoY8ziOPPYZKAfHJ/LGPlsetnW55n792rWVdYyu++5345HNm+OJHTvjwANGx6Hjx8erzj473veRj+5dx6hZaz5lXbPJWk/9K8NztyhjzNM4nPujTASbBgg6pSBRWtfpkEMaS1GuJdhEX7zgAAAAQHk0Y82nrOs9WesJhp9zf5RJacvo9WXcuHGxaNGi2LRpU7z97W+Pz372s3sznR59tLE0ZQAAAAAY7JpPtbKu92StJwCGkmDTAEGntKbTxRdfLOgEAAAAQEvWfDrt+GMHvd5TntZ6Wve738aCd86L5x05NZ46flyMO+jAymX6PV2fyhcC0F6U0WvApZdeGpdcckml1F4qi7dgwYKYOnXqgPdTRo++SKUdnFtvvTU2bNgQkyZNipNPPjnKqgzzUJQx5nEceewzUA6OT+SNfbY8bOvWyePc17vmUzPWe8rLWk+dI0ZUzp89uXt4S+/lcf8p6xjzNA7n/igTmU0NmD9/fiXT6Yorroh//dd/jWnTpsU73/nO6OrqanXXoJRWr14d99xzT+WyzMowD0UZYx7Hkcc+A+Xg+ETe2GfLw7ZunTzOfQokXfKZK+IXD3TF2k1bYsu2JyqX6fd0ffp7kgIqX/rC52PUyH1P5aWAUgrspLWV3njteyuX6feegaYkBXb6yoTqLTMqBaySFCBqRAp81Uol+NIaUylgldaMOvmI4yqX6fd0ffp7rV179vQbaBqq0nt53H/KOsaijAOKRrApg7lz5+4XdPo//+f/CDrBMBs7dmyl5GW6LLMyzENRxpjHceSxz0A5OD6RN/bZ8rCtW6focz/Y9Z7ytNZTltJ7g1X0/adIYyzKOKBolNFrgiuvvLJSYu+BBx6IOXPmxMKFC+OFL3zh3r8ro0dfpNICAAAAjUgl9Ra8511xw20/rmT49Lfe06GHHBy/3bhpn+tTYCetrdRbAChlNKVAU+1aT1e8+qJKJlK9rvvlTZUMq1Q6L2Uu9RVoqpUyrk66YvY+GVmNlN5LAbjr/+07cd3XlsV3vnd9bNi0Obbv3BljRo+OSRPGxzlnnRnv/+uL9maKwXBx7o8yEWxqomXLlsUHP/jBStBp1qxZsWjRokrQSbCJvnjBAQAAAIZqvaf1/702l2s9pYyoy85a0GugKgWmUkBs+erb9rl+REdH7OnnNOdQrPMEA3HujzIRbBrioNPMmTNj/PjxsXTp0srfBJuo5QUHAAAAGEqpxNy5b/mTeHL3nkz3byRDKWVGveSzcyoBq6wZUdXSeyNHjOy31N/bv/7hfTKw6pWyoL589dXx6jee1/B9oVHO/VEm1mwaArNnz64sUHfttdfGI488Ugk0pSATAAAAAAynPK31lAJbKaOpv0BTkv6eSgGmDK2s6zx98Z/+byx457x43pFT46njx8W4gw6sXKbf0/UpcwyA+slsGgYrVqyIBQsWxM9+9jOZTezDtxsG55prromurq6YOnVqnH/++VFWZZiHoowxj+PIY5+BcnB8Im/ss+VhW7eOuc//Wk+plF/W0nuNrvM0kCKW3SvKcyRP43DujzLpbHUHyiCV0lu5cmUl6JRK7EF/NmzY0Ov1XoQAAACArFLA5Lqbb9lvradtO3ZWAkzjDx4br3/Na/pc6ykFkk66Ynbdaz2lIE8jwabUTgoSNSL1Y6B1nlIfPnTqhb2u89SfFJD7zg9uje+feKKyewB1kNkEbfbthr54qu7v7rvvjs2bN1fWRTvmmGJ8yyiLMsxDUcaYx3Hksc9AOTg+kTf22fKwrVvH3Dd33lqx1tPVr18UJx9xXN2PceuDK+ON1753yNd5GjVyRKUUYSpJmGdFeY7kaRwymygTwSZoIcEmAAAAoF2lgNOb3vq2fTKcGtFoEChL6b2//LeL6w5qPbJtcyU7q5qF1UjZvYNGj4o/fu2r47Y7fhIbNm2O7Tt3xpjRo2PShPFxzllnxvv/+qKYfNhhdfedchBsokwEm6CFBJsAAACAdjacaz2d+4KzGl6zKcmyzlNfZfeqQalGy+4VcY0nBk+wiTIRbIIWEmwCAAAA8qDnWk9P7NgZBx4wOg4dPz5edfbZfa71lIzpHF3XWk9ZSu/9/R9+uOFsqG/8YvmQld17ygGjrfHEXoJNlIlgE7TZC86qVati0qRJ+93Wi9D+Vq9eHVu3bo2xY8fGUUcdFWVVhnkoyhjzOI489hkoB8cn8sY+Wx62deuY+/aYt8Gu9dRo6b2vvuHvG1rn6Uddd8WzJ0/LVHavkTWervrHf4hV//mf8Z3vXd82ZfeK8hzJ0zgEmyiTzlZ3ANhXCjR5wanPrbfeGl1dXTF16tS2f3MxlMowD0UZYx7Hkcc+A+Xg+ETe2GfLw7ZuHXPfHvP2mvPeFEsiMq/1lErXpUBSvaX30jpLjTho9IF1BZqSdLuUkZXK7jWyxlMKtJ3/Z+/er71Hn9ge67Y8GquuuDL+4arPD3vZvaI8R4oyDigawSYAAAAAoGlSwOknz3t+XWs9jR45MvZ0d8euPf+bCZUCSSmjqJ7SeynY00gZvY4Gx5Iev781ntJjf+jUCxte4ynNyXd+cGt8/8QTld0DCkEZPWghqbSDk1Kmd+3aFZ2dnZXU6bIqwzwUZYx5HEce+wyUg+MTeWOfLQ/bunXMfXvOWz1rPd1204rMpfcaXefpVxseiJdOPbbu9m99cGV8YeWyIVvjKekc0RGvmXlGrPrVr4a05F5RniN5Godzf5SJYBO0kBccAAAAgP9Z6ylr6b1G1nl6/fNf2VAm1Hf/6+Y48RnHZFrjqd6yewMZ3Tly2Evu0RzO/VEmI1rdAQAAAACg3Cql9+64I855+cmV4Ep/RnR09LrOUwr29JXRVM06SsGeRjy6Y2vDazxVA2Ap4+rysxdWglsnH3Fc5TL9nq5Pf2+05N6LTzwxvvXVrzTUf4DhIrMJWsi3GwAAAAAaK733qte9Pl75h3+4XxbUmM7RA67z1GjZvZ8+/B9x1rNfXnffr/vlTfGNXywfsrJ7o0aOiKv+8R9i1X/+Z3zne9cPadk9Bs+5P8pEsAlayAvO4Fx//fWxdu3aOOyww+LMM8+MsirDPBRljHkcRx77DJSD4xN5Y58tD9u6dcx9ueYtld3Lus5TI2X33nb8nEpWUr1+1HVXPHvytIbL7jWr5F5/Zffyuq17ytM4nPujTDpb3QGArNIbi66urii7MsxDUcaYx3Hksc9AOTg+kTf22fKwrVvH3Jdr3lLZvSURmdZ5qpbd+9TZH+w1KJQymj7wvUWVrKO0xlMjDhp9YMNl9zY98WhcdtaC/e6Xyu596NQLK31JfW607N73Tzwxvnz11fHqN56X623dU1HGAUUj2ATkVvoGS+1lWZVhHooyxjyOI499BsrB8Ym8sc+Wh23dOua+fPNWWefpec+PBe95V9xw248rQZZ6pUBSyioaqOxeyi5KQZ967bua1MDe8Pt/GMc97Xl9ZlmlAFTKwspSci8F4V73x2+KZ/zFX8QTO3ZUyu2N7uyMCYccHPf+5Me5LbeX530WikwZPWghqbQAAAAAQ7/O04znPz/e/q53N1x2r9E1nn614YF46dRj627/yd1PxqiRoxoquVft12DL7vVVbo/mce6PMhFsghbyggMAAAAwfOs8ZSm718gaT6nsXiOZUI1433cvjiU//16lP72V3asGpRotu/eUA0bvU26P5nHujzIZ0eoOAAAAAAAMS9m9O+6Ic15+ciWrp9E1nlIgp6+MpmqZu5RdNFRSub9q4KuvTKtq2b2Z019ad7sp+Db7TW+KOa+cFc87cmo8dfy4GHfQgZXL9PuCd86rZI4B9EdmE7SQbzcMztatW2PXrl3R2dkZY8eOjbIqwzwUZYx5HEce+wyUg+MTeWOfLQ/bunXMfTZlnbfeyu6NGT06Jo0fFy876aT48je/Fdt6ZECN6Rw94BpPjZTd27n7yRhdRwm9qh913RXPnjytrrarZffSKlKDLbfXbiX38rTPOvdHmQg2QQt5wRmca665Jrq6umLq1Klx/vnnR1mVYR6KMsY8jiOPfQbKwfGJvLHPlodt3TrmPhvz1vs8pJJ7577lTxpe46mRsnt3/fYXccLhv193u3f/7t445veeW/ftv3Dn0nj1jFlNK7fXLiX38rTPOvdHmSijBwAAAADQo+Tekn/+YiW40qh6y+7963/8W0PtdjTYjz89bnZTy+1VS+697o/fFEc8dYpye8A+ZDZBC/l2w+CsXr26kjqdUqaPOuqoKKsyzENRxpjHceSxz0A5OD6RN/bZ8rCtW8fcZ2Pe+p+HVffcHQve86644bYfx85duxtqc6Cye42U3EsBql9teCBeOvXYaKZqub1qfwZbcm84yu3laZ917o8yEWyCFvKCAwAAAJDPNZ4OPGB0HDp+fLzq7LNjxvOfH29/17sbLrtXb8m9lAn1+ue/Ms55zmnRbO/77sWx6YlH47KzFjSt5N5Bo0fF2ae9PFb9169iw6bNsX3n/78m1oTxcc5ZZ8b7//qimHzYYVF0zv1RJoJN0EJecAAAAACKIa3z9Ka3vq1Saq4RqZTdp87+YK+BnpTRlAI9K9b8KM59wVlx+dkLo9l+8vB/xHFPe15dAa/Uj2YYjgyoduDcH2Ui2AQt5AUHAAAAoDiylt0bqOTe/9ym/rJ7jXhy95MxauSoukvupdWjBlturyqtifXlq6+OV7/xvCgi5/4oE8EmaCEvOINz9913x+bNm2P8+PFxzDHF/RbMQMowD0UZYx7Hkcc+A+Xg+ETe2GfLw7ZuHXOfjXkbmnnor+zejGc/K7654qbY1WDJvXrL7qXTvR0dHTEUvnDn0nj1jFlNK7eXjOjoiGdMnhRP7NhRV7m9PO2zzv1RJiNa3QGArNKbix/84AeVyzIrwzwUZYx5HEce+wyUg+MTeWOfLQ/bunXMfTbmbWjmIQVILvnMFfGLB7pi7aYtsWXbE5XL9PvS65fH0n/+YiWrp1EpkJPK2aXATm9S2b0v3LkshsqfHje7z8yqdH0KhKWygNVMrFT674pXXxRffcPfVy7T7+n6Wnu6u6Nr3fpYt+XRePSJ7ZXLVQ/+Oi694so4/BmHx6tOPaWSMVZln4X21NnqDgAAAAAAlMlrzntT/OR5z89Uci+tm5TK2fVVdi+VuXvN83rPPupp5+4nY3QdJfSqBsqYShlXaf2pD91weXzyFe/brw/nPOe0+NCpF9adAZXm5Ts/uDW+f+KJhS63B0WgjB60kFRaAAAAgHLrr+Teq84+O2Y8//nx9ne9O55soOxePeX2du/ZHXf99hdxwuG/H822p3tPjOgY0e9jpwytFDgbqnJ77cC5P8pEsAlayAsOAAAAAAP55le+FG9669vi8R07675PKmeXsox6y3BK5fZSdtHEg8bF5WcvjFZIpQBThlbKxPqj554ep007KcaPOSQ2b380vn//7fHte2+K7bt21NXW6M6R8YqXvSQWffr/xowXts86Ts79USaCTdBCXnAAAAAAqEdat6jRsntjOkf3WW5v+66dlfWTbr9waV0l94bCF+5cGq+e0XvJvxSMqrfcXm3Q6fcOnRhPbG+P7Cfn/igTwSZoIS84AAAAADSj7F4KrDy0/pHY0+Dp3npK7qVTyAOt15TFQO1mKbfXTtlPzv1RJoJN0EJecAZn2bJl8fDDD8fhhx8es2entOtyKsM8FGWMeRxHHvsMlIPjE3ljny0P27p1zH025q1Y85Cl3F49Jfe+tWpFvO2EOZH3cnvJUw4YHV+++up49RvPi6Hm3B9l0tnqDgBktXXr1tiyZUuMH9+aVO92UYZ5KMoY8ziOPPYZKAfHJ/LGPlsetnXrmPtszFux5uE1570pfvK85zdcbi9lDqWATl8l91Kg5zXP673c3VBLj7nw5fN6Lbd3znNOiw+demFD5fZSIO615/1xjLvggtizZ0/LS+1BUQg2Abl11FFHVd4ETpo0KcqsDPNQlDHmcRx57DNQDo5P5I19tjxs69Yx99mYt+LNQyoRd93Nt/Rabu+AUaNiwiEHx+8/b0Z8c8VNsWv3nr33S2s4Lfn59yo/vUkBnYHK7aXgzYgRI5o+pj89bnaf5fZSACr1K5Xbu7VrZV3ZT6nU1+bHt1X+/+gT22Pdlkdj1RVXxj9c9flhL7UHRaGMHrSQVFoAAAAA8lJyb6Byex++4e/ik698X0syoB7dsTV27d4VE3t57FSKr5Hsp7S+0+8dOjGe2L4jtu/cmTn7ybk/ykSwCVrICw4AAAAArbLqnrsbLrk3pnN0n+X2UnbUrKNeNmAGVDol3Vem0lDZvWd3JfsplQwcjBSIqjf7ybk/ykSwCVrICw4AAAAArdZbyb0DDxhdyeh5aP0jsafBU8gDZUB9a9WKeNsJc2K4pQynU6/643jF0ScPWGpvIE85YHR8+eqr49VvPK/P2zj3R5kINkELecEZnLVr18b27dtjzJgxcViJF28swzwUZYx5HEce+wyUg+MTeWOfLQ/bunXMfTbmrTzzkHWMWcrtDZQBFdERt1+4tCXl9rbu2BZjDzho0KX2kpSbNe4pB1XWquqt1J5zf5SJYBO0kBecwbnmmmuiq6srpk6dGueff36UVRnmoShjzOM48thnoBwcn8gb+2x52NatY+6zMW/lmYfBjDFLub2BtGO5vWqpvVu7VsYfPff0zNlP1VJ7Cz56UZxy+hn7/M25P4qqs9UdAAAAAACgfaW1ia67+ZY+y+0dOn58zHj2s+K7N/8wttWZAZUyiFJgp53K7aXA16df9Vexa/eumNijT+c857T40KkX1pX9lAJy3/nBrfHvs2YNcY+hfchsghaS2TQ4ZUhxr0cZ5qEoY8zjOPLYZ6AcHJ/IG/tsedjWrWPuszFv5ZmH4Rhjlgyodi23N1D204o1P8p0f+f+KCrBJmghwSYAAAAAiqavDKi0rtFD6x+JPQ2ckq6n3N5wS+s7nXrVH8crjj654VJ7zv1RVIJN0EKCTQAAAACUyTe/8qV401vfFo/XWW4vmTn9pf2W2zugc1QcfMDYGE5bd2yLsQcc1Gsgqr9Se879UVSCTdBCgk0AAAAAlE2zy+2dcsQJbZX91F+pPef+KCrBJmghwabBufXWW2PDhg0xadKkOPnkk6OsyjAPRRljHseRxz4D5eD4RN7YZ8vDtm4dc5+NeSvPPLTjGJtZbq+/7KfHdjweBx/wlBhOKcPpxH96fezY/eQ+1zv3R1GNaHUHALJavXp13HPPPZXLMivDPBRljHkcRx77DJSD4xN5Y58tD9u6dcx9NuatPPPQjmOcfNhhcclnrohfPNAVazdtiS3bnqhcPvjf6+NrX/rneMoBo+tuK2URnXTF7Hjfdy+O6355U9z64MrKZfr9pZ89txL8GU4p6PXKZ50yrI8JrdTZ0kcH9pO+YdIb33jY39ixY2PcuHGVyzIrwzwUZYx5HEce+wyUg+MTeWOfLQ/bunXMfTbmrTzzkLcxvua8N8VPnvf8hsrtbd+1M5b8/HuVn57SOkrDXWrvZVOPi2/fe9OwPR60kjJ60GZl9PriqQoAAABAGfVXbu93GzfVve5Tf6X2Njy+KQ7oHBUHH9C8YNx3f/mDmPetj+xznTJ6FJVgE7SQYBMAAAAAZLfqnrsbyn4a0zk6/ui5Z8Sp006MCWPGxabtW+Lm+++Ib997Y5xyxAlNzX76yj3XxYLrL9vnOsEmikqwCVpIsAkAAAAAhib7acSIjtjy+BPRyFm1/rKfHtvxeBx8wFPqbuvPvv2x/croCTZRVIJN0EKCTQAAAAAwdL75lS/Fm976tnh8x86679NX9tMN990aN1/w5V4DUb2V5TvpitmxY/eT+1wv2ERRCTZBmwWbVq1aFZMmTdrvtl6E9nfNNddEV1dXTJ06Nc4///woqzLMQ1HGmMdx5LHPQDk4PpE39tnysK1bx9xnY97KMw9FGWOWcTRaaq8/s4562YCl9nbv2R1v//qHY8WaH+33N8EmimpEqzsA7CsFmtILTs8fAAAAAKBxM154TFx38y3x8EMPx4J3viNmHPHMeOr4Q+KQA8dULqdOmRSjO+tbp2n56tsqgaRHtm3uM6Opr0ATFFlnqzsAkNUxxxwTRxxxRIwfP3DqcpGVYR6KMsY8jiOPfQbKwfGJvLHPlodt3TrmPhvzVp55KMoYBzOOyYcdFpd85oq4ZJDZTymQlErk9VZq79v33hjbd9Vfsg+KQhk9aLMyelJpAQAAAKA11q9dG5d//KK47rvfjUc2b44nduyMESM6YsvjT0QzTqQ790dRKaMHAAAAAAA12U+/eKAr1m7aElu2PRGbtm6Lr3/5X+IpB4xudfegbQk2AQAAAABAP15z3pviJ3fcEee8/OS613eCMrFmE5Bbq1evjq1bt8bYsWPjqKOOirIqwzwUZYx5HEce+wyUg+MTeWOfLQ/bunXMfTbmrTzzUJQxtnIcM154TFx38y29lto78IDRMWb06Pjdxk0DrvkERSTYBOTWrbfeGl1dXTF16tRcv0karDLMQ1HGmMdx5LHPQDk4PpE39tnysK1bx9xnY97KMw9FGWM7jKNaau+SXv626p67Y8F73hU33PZjQSdKRRk9AAAAAABoYvbTww89HO/60z9pdXdg2HR0d3d3D9/DAbXWr18fU6ZM2ee6devWxeTJk1vWpzxJKdO7du2Kzs7OSup0WZVhHooyxjyOI499BsrB8Ym8sc+Wh23dOuY+G/NWnnkoyhjzNA7n/igTZfSA3Gr3NxTDpQzzUJQx5nEceewzUA6OT+SNfbY8bOvWMffZmLfyzENRxliUcUDRKKMHAAAAAABAZoJNAAAAAAAAZKaMHpBb119/faxduzYOO+ywOPPMM6OsyjAPRRljHseRxz4D5eD4RN7YZ8vDtm4dc5+NeSvPPBRljEUZBxSNYBOQW+mNRVdXV5RdGeahKGPM4zjy2GegHByfyBv7bHnY1q1j7rMxb+WZh6KMsSjjgKIRbAJyK32DpfayrMowD0UZYx7Hkcc+A+Xg+ETe2GfLw7ZuHXOfjXkrzzwUZYxFGQcUTUd3d3d3qzsBZbV+/fqYMmXKPtetW7cuJk+e3LI+AQAAAACD59wfZTKi1R0AAAAAAAAgvwSbAAAAAAAAyMyaTUBubd26NXbt2hWdnZ0xduzYKKsyzENRxpjHceSxz0A5OD6RN/bZ8rCtW8fcZ2PeyjMPRRljUcYBRSPYBOTWsmXLoqurK6ZOnRrnn39+lFUZ5qEoY8zjOPLYZ6AcHJ/IG/tsedjWrWPuszFv5ZmHooyxKOOAolFGDwAAAAAAgMw6uru7u7PfHRiM9evXx5QpU/a5bt26dTF58uSW9SlPVq9eXUmdTinTRx11VJRVGeahKGPM4zjy2GegHByfyBv7bHnY1q1j7rMxb+WZh6KMMU/jcO6PMhFsghbyggMAAAAAxeTcH2WijB4AAAAAAACZCTYBAAAAAACQWWf2uwK01t133x2bN2+O8ePHxzHHHBNlVYZ5KMoY8ziOPPYZKAfHJ/LGPlsetnXrmPtszFt55qEoYyzKOKBoBJuAXL+56OrqiqlTp5b6zUUZ5qEoY8zjOPLYZ6AcHJ/IG/tsedjWrWPuszFv5ZmHooyxKOOAolFGDwAAAAAAgMw6uru7u7PfHRiM9evXx5QpU/a5bt26dTF58uSW9QkAAAAAGDzn/igTmU0AAAAAAABkJtgEAAAAAABAZoJNAAAAAAAAZNaZ/a4ArbVs2bJ4+OGH4/DDD4/Zs2dHWZVhHooyxjyOI499BsrB8Ym8sc+Wh23dOuY+G/NWnnkoyhiLMg4oGplNQG5t3bo1tmzZUrksszLMQ1HGmMdx5LHPQDk4PpE39tnysK1bx9xnY97KMw9FGWNRxgFFI7MJyK2jjjoqxo8fH5MmTYoyK8M8FGWMeRxHHvsMlIPjE3ljny0P27p1zH025q0881CUMRZlHFA0Hd3d3d2t7gSU1fr162PKlCn7XLdu3bqYPHlyy/oEAAAAAAyec3+UiTJ6AAAAAAAAZCbYBAAAAAAAQGbWbAJya+3atbF9+/YYM2ZMHHbYYVFWZZiHoowxj+PIY5+BcnB8Im/ss+VhW7eOuc/GvJVnHooyxqKMA4pGsAnIreuvvz66urpi6tSpcf7550dZlWEeijLGPI4jj30GysHxibyxz5aHbd065j4b81aeeSjKGIsyDigaZfQAAAAAAADIrKO7u7s7+92BwVi/fn1MmTJln+vWrVsXkydPblmf8kTadHnmoShjzOM48thnoBwcn8gb+2x52NatY+6zMW/lmYeijDFP43DujzIRbIIW8oIDAAAAAMXk3B9looweAAAAAAAAmQk2AQAAAAAAkFln9rsCtNatt94aGzZsiEmTJsXJJ58cZVWGeSjKGPM4jjz2GSgHxyfyxj5bHrZ165j7bMxbeeahKGMsyjigaGQ2Abm1evXquOeeeyqXZVaGeSjKGPM4jjz2GSgHxyfyxj5bHrZ165j7bMxbeeahKGMsyjigaASbgNwaO3ZsjBs3rnJZZmWYh6KMMY/jyGOfgXJwfCJv7LPlYVu3jrnPxryVZx6KMsaijAOKpqO7u7u71Z2Aslq/fn1MmTJln+vWrVsXkydPblmfAAAAAIDBc+6PMpHZBAAAAAAAQGaCTQAAAAAAAGQm2AQAAAAAAEBmndnvCtBa11xzTXR1dcXUqVPj/PPPj7IqwzwUZYx5HEce+wyUg+MTeWOfLQ/bunXMfTbmrTzzUJQxFmUcUDQymwAAAAAAAMhMZhOQW8ccc0wcccQRMX78+CizMsxDUcaYx3Hksc9AOTg+kTf22fKwrVvH3Gdj3sozD0UZY1HGAUXT0d3d3d3qTkBZrV+/PqZMmbLPdevWrYvJkye3rE8AAAAAwOA590eZKKMHAAAAAABAZoJNAAAAAAAAZGbNJiC3Vq9eHVu3bo2xY8fGUUcdFWVVhnkoyhjzOI489hkoB8cn8sY+Wx62deuY+2zMW3nmoShjLMo4oGgEmyitzZs3x8UXXxx33XVX3HnnnZXrjj/++Dj22GNj4cKFFhnMgVtvvTW6urpi6tSppX5zUYZ5KMoY8ziOPPYZKAfHJ/LGPlsetnXrmPtszFt55qEoYyzKOKBolNGjlFasWBFHHnlk5f+LFy+OBx54IJYuXVoJMF166aUxYcKEyiUAAAAAANC/ju7u7u4BbgOFcv/998dxxx0XN954YyWLqacrr7wy5s2btzcQNXfu3CHry/r162PKlCn7XLdu3bqYPHnykD1mkaSU6V27dkVnZ2cldbqsyjAPRRljHseRxz4D5eD4RN7YZ8vDtm4dc5+NeSvPPBRljHkah3N/lIlgE6Uza9asys/8+fP7vE0KRqXyesmaNWti2rRpQ9IXLzgAAAAAUEzO/VEmyuhRyhJ6CxYs6LdMXjWzKVm2bNkw9QwAAAAAAPJHsIlS2bx5897/pxJ5fTn++OP3/j9lNgEAAAAAAL3r7ON6SiRl+KRMn8GWi0trHaUATloTqWrmzJmVLKF02Q7Gjx8fs2fP3pvd1JeNGzfucx/a0/XXXx9r166Nww47LM4888woqzLMQ1HGmMdx5LHPQDk4PpE39tnysK1bx9xnY97KMw9FGWNRxgFFI9hUYikolAJBKfAyGGltozPOOCMmTpxYCeDMnTt3b/sp+JTWR0oBnquuuqotAjdLly4d8DbV9ZqSE044YYh7RFbpjUVXV1eUXRnmoShjzOM48thnoBwcn8gb+2x52NatY+6zMW/lmYeijLEo44CiEWwqUfm4O++8sxIAShlMKcBUG1DJKrWTgkkpI2rlypX7BJPSdYsWLYrp06dXglrp8Xrepl1VS+ylMaRAGe0pfYOl9rKsyjAPRRljHseRxz4D5eD4RN7YZ8vDtm4dc5+NeSvPPBRljEUZBxRNR3d3d3erO8HQqwaFUqAnrUd07LHHVs633hkAAL9SSURBVAJAxx133N51jBoto5fud+SRR1YuUxAptdmX9FipzF66TbptHsoKJgONa7DWr18fU6ZM2ee6devWxeTJk4fsMQEAAACAoefcH2Uis6kk0ppJzY4rXnDBBZVAUwrGDBSQScGbFGxK2U3Lli1r22yh6lpOKSh34403DmmgCQAAAAAAimBEqztAPqUgUwoaVQNZA0kZU9WsqYsvvrjP282ZMyc6Ojqa8lPNTqpXCoTVlgQUaAIAAAAAgIHJbCKTlKVUdcIJJ9R1nxTESWtGpaBOuuytZN/ChQsrAZ9mqCcI1rPMYMq4Wrp0aVMen6G3devW2LVrV3R2dsbYsWOjrMowD0UZYx7Hkcc+A+Xg+ETe2GfLw7ZuHXOfjXkrzzwUZYxFGQcUjWATmVx77bV7/59KztWjNriUgjtz587d7zb1lORrtpShlTKqFi9e3GufUhZXvWMkhn3bdXV1xdSpU+P888+PsirDPBRljHkcRx77DJSD4xN5Y58tD9u6dcx9NuatPPNQlDEWZRxQNIJNZJKyk6omTpxY131qAzapTF27vDiltaf6Kpt36aWXxiOPPBKLFi1qSf8AAAAAAKDdCTbRsFQCr1Zv5fB6c+ihh+79/5133hntUAowBZFSoKmvMfz0pz+NN7zhDcPeN+pz8sknxzHHHFP6lOkyzENRxpjHceSxz0A5OD6RN/bZ8rCtW8fcZ2PeyjMPRRljUcYBRSPYRMNSWbksajObsrbRLCljacGCBTF//vxKdlNvUkZT+ltaR4r2dNRRR7W6C22hDPNQlDHmcRx57DNQDo5P5I19tjxs69Yx99mYt/LMQ1HGWJRxQNEINtESGzdubHmgqfr/gQz3GlIAAAAAAJAnI1rdAfIfKKrNWKpXqzKbUgnAaqCpHvWWCGymKVOmREdHR0M/H/vYx4a9nwAAAAAAkMhsomGtLoE3GCl41N3d3epu0CR33313ZX9MAc9Uq7esyjAPRRljHseRxz4D5eD4RN7YZ8vDtm4dc5+NeSvPPBRljEUZBxSNYBOQ6zcXXV1dMXXq1FK/uSjDPBRljHkcRx77DJSD4xN5Y58tD9u6dcx9NuatPPNQlDEWZRxQNMro0bAsZfMAAAAAAIBi6uhWU6zUJkyYsLcs3po1a+pao+iuu+6K4447bu/vmzZtqisAdeWVV8a8efMq/0+3T/cru/Xr11fWaBqsj370o9ZtAgAAAIA2P/e3bt26mDx5csv6BENFGT1aktk0ceLEpvSliLzgAAAAAACQJ8roMehA0caNG+u6XzWDKlGKDwAAAAAAikGwiYb1DBTVBpH6k8r0VdVTrg8AAAAAAGh/yuiRybHHHltZu6mRzKba251wwglD1jfKY9myZfHwww/H4YcfHrNnz46yKsM8FGWMeRxHHvsMlIPjE3ljny0P27p1zH025q0881CUMRZlHFA0MpvIZObMmXv/f//999d1n9rbeSGgGbZu3RpbtmypXJZZGeahKGPM4zjy2GegHByfyBv7bHnY1q1j7rMxb+WZh6KMsSjjgKKR2UQmCxcujEsvvbTy/5UrV9Z1n2omVCqhp4wezXDUUUdVyjpOmjQpyqwM81CUMeZxHHnsM1AOjk/kjX22PGzr1jH32Zi38sxDUcZYlHFA0XR0d3d3t7oTtM6ECRP2rrmU1lRqJAg0a9asWLFiReXgvmnTpn5vm26Xbp8sXrw45s6dO8ieF8P69etjypQp+1y3atWqXl8sJ0+ePIw9AwAAAACafe5v3bp1zvNRSMrosVc16FSvFDRKgaZ0v1QrdaDbVtd6Emjq34wZMyovQj1/AAAAAACgHQk2lVxtgGnjxo0N3TdlQV111VWV/8+ZM6fPtZuuvPLKSjAqBaaWLl06yB4DAAAAAADtRBm9Ekml7KpSYChlG1XXUaoGj+bNm1e5TIGh5Pjjj9/7//7aTcGmZNGiRXszl1Iga8GCBZVg08yZMyuBpoHaKpveUmn74qm6v7Vr18b27dtjzJgxcdhhh0VZlWEeijLGPI4jj30GysHxibyxz5aHbd065j4b81aeeSjKGPM0DmX0KJPOVneA4VNdM6k24FP7/5TZdPHFF+/9PQWLUoBo9uzZ/babAkkPPPBALFmypBLASgGm2r8tX768cgnNdv3110dXV1dMnTo1zj///CirMsxDUcaYx3Hksc9AOTg+kTf22fKwrVvH3Gdj3sozD0UZY1HGAUUj2FQiQ5kZk4JWKaPJekyDt2rVqpg0aVKruwEAAAAAAHVRRg9aSCptedKmh1IZ5qEoY8zjOPLYZ6AcHJ/IG/tsedjWrWPuszFv5ZmHoowxT+Nw7o8yEWyCFvKCAwAAAADF5NwfZTKi1R0AAAAAAAAgvwSbAAAAAAAAyKwz+10BWuvWW2+NDRs2xKRJk+Lkk0+OsirDPBRljHkcRx77DJSD4xN5Y58tD9u6dcx9NuatPPNQlDEWZRxQNDKbgNxavXp13HPPPZXLMivDPBRljHkcRx77DJSD4xN5Y58tD9u6dcx9NuatPPNQlDEWZRxQNIJNQG6NHTs2xo0bV7ksszLMQ1HGmMdx5LHPQDk4PpE39tnysK1bx9xnY97KMw9FGWNRxgFF09Hd3d3d6k5AWa1fvz6mTJmyz3Xr1q2LyZMnt6xPAAAAAMDgOfdHmVizCdpMqjnbGy9CAAAAAAC0I8EmaDMzZszo9XpJiAAAAAAAtCNrNgEAAAAAAJCZzCYgt6655pro6uqKqVOnxvnnnx9lVYZ5KMoY8ziOPPYZKAfHJ/LGPlsetnXrmPtszFt55qEoYyzKOKBoZDYBAAAAAACQmcwmaDOrVq2KSZMmtbobuXDMMcfEEUccEePHj48yK8M8FGWMeRxHHvsMlIPjE3ljny0P27p1zH025q0881CUMRZlHFA0Hd3d3d2t7gSU1fr162PKlCn7XLdu3bqYPHlyy/oEAAAAAAyec3+UiTJ6AAAAAAAAZCbYBAAAAAAAQGbWbAJya/Xq1bF169YYO3ZsHHXUUVFWZZiHoowxj+PIY5+BcnB8Im/ss+VhW7eOuc/GvJVnHooyxqKMA4pGsAnIrVtvvTW6urpi6tSppX5zUYZ5KMoY8ziOPPYZKAfHJ/LGPlsetnXrmPtszFt55qEoYyzKOKBolNEDAAAAAAAgs47u7u7u7HcHBmP9+vUxZcqUfa5bt25dTJ48uWV9ypOUMr1r167o7OyspE6XVRnmoShjzOM48thnoBwcn8gb+2x52NatY+6zMW/lmYeijDFP43DujzJRRg/IrXZ/QzFcyjAPRRljHseRxz4D5eD4RN7YZ8vDtm4dc5+NeSvPPBRljEUZBxSNMnoAAAAAAABkJrMJ2syGDRt6vV56LQAAAAAA7UiwCdrMjBkzer3e8mr7u/7662Pt2rVx2GGHxZlnnhllVYZ5KMoY8ziOPPYZKAfHJ/LGPlsetnXrmPtszFt55qEoYyzKOKBoBJuA3EpvLLq6uqLsyjAPRRljHseRxz4D5eD4RN7YZ8vDtm4dc5+NeSvPPBRljEUZBxSNYBOQW+kbLLWXZVWGeSjKGPM4jjz2GSgHxyfyxj5bHrZ165j7bMxbeeahKGMsyjigaDq61eaCllm/fn1MmTKlrtt6qgIAAABAvs/9rVu3ztrsFJLMJmgzq1atikmTJrW6GwAAAAAAUBfBJmgzKdDk2w0AAAAAAOSFYBOQW1u3bo1du3ZFZ2dnjB07NsqqDPNQlDHmcRx57DNQDo5P5I19tjxs69Yx99mYt/LMQ1HGWJRxQNEINgG5tWzZsujq6oqpU6fG+eefH2VVhnkoyhjzOI489hkoB8cn8sY+Wx62deuY+2zMW3nmoShjLMo4oGhGtLoDAAAAAAAA5FdHd3d3d6s7AWW1fv36mDJlyj7XrVu3zppNdVq9enUldTqlTB911FFRVmWYh6KMMY/jyGOfgXJwfCJv7LPlYVu3jrnPxryVZx6KMsY8jcO5P8pEsAlayAsOAAAAABSTc3+UiTJ6AAAAAAAAZCbYBAAAAAAAQGad2e8K0Fp33313bN68OcaPHx/HHHNMlFUZ5qEoY8zjOPLYZ6AcHJ/IG/tsedjWrWPuszFv5ZmHooyxKOOAohFsAnL95qKrqyumTp1a6jcXZZiHoowxj+PIY5+BcnB8Im/ss+VhW7eOuc/GvJVnHooyxqKMA4pGGT0AAAAAAAAy6+ju7u7OfndgMNavXx9TpkzZ57p169bF5MmTW9YnAAAAAGDwnPujTJTRgzazYcOGXq/3IgQAAAAAQDsSbII2M2PGjF6vl4QIAAAAAEA7smYTAAAAAAAAmclsAnJr2bJl8fDDD8fhhx8es2fPjrIqwzwUZYx5HEce+wyUg+MTeWOfLQ/bunXMfTbmrTzzUJQxFmUcUDQym4Dc2rp1a2zZsqVyWWZlmIeijDGP48hjn4FycHwib+yz5WFbt465z8a8lWceijLGoowDikZmE7SZVatWxaRJk1rdjVw46qijYvz48aWfrzLMQ1HGmMdx5LHPQDk4PpE39tnysK1bx9xnY97KMw9FGWNRxgFF09Hd3d3d6k5AWa1fvz6mTJmyz3Xr1q2LyZMnt6xPAAAAAMDgOfdHmSijBwAAAAAAQGaCTQAAAAAAAGRmzSYgt9auXRvbt2+PMWPGxGGHHRZlVYZ5KMoY8ziOPPYZKAfHJ/LGPlsetnXrmPtszFt55qEoYyzKOKBoBJuA3Lr++uujq6srpk6dGueff36UVRnmoShjzNs4Pvaxj8Xdd98dmzdvriy+eswxx1SuA2gHeTumgn22PGzr1jH32Zi38sxDUcZYlHFA0Qg2AQC9uuiii/b5/Vvf+pZgEwAAAAD76eju7u5udSegrNavXx9TpkzZ57p169bF5MmTW9anPJE2XZ55KMoY8zaOjo6O/a7ztgFoF3k7poJ9tjxs69Yx99mYt/LMQ1HGmKdxOPdHmQg2QQt5wQHamWATAAAAZOfcH2UyotUdAAAAAAAAIL8EmwAAAAAAAMisM/tdAVrr1ltvjQ0bNsSkSZPi5JNPjrIqwzwUZYxFGQdAO3BMJW/ss+VhW7eOuc/GvJVnHooyxqKMA4pGsAlaKL0w9naduq39U++2PPNQlDEWZRwA7cAxlbyxz5aHbd065j4b81aeeSjKGIsyDigqZfQAAAAAAADITLAJAAAAAACAzASbAAAAAAAAyEywCQAAAAAAgMw6s98VGKw9e/bsd92aNWt6ve2kSZOGoUf5sGHDhrquK7oyzENRxliUcVQXZAVopSIdUykH+2x52NatY+6zMW/lmYeijDGP4+itf72dD4Qi6Oju7u5udSegrG677bY4+eSTW90NAAAAAGAYrFq1Kp773Oe2uhvQdMroAQAAAAAAkJlgE7TQxIkTW90FAAAAAAAYFMEmAAAAAAAAMrNmE7TQrl274r777qv8f+PGjZXL8ePHx4gR+8eBJ02aNOz9AwAAAACy2bNnz95zflVHH310dHZ2tqxPMFQEmwAAAAAAAMhMGT0AAAAAAAAyE2wCAAAAAAAgM8EmAAAAAAAAMhNsAgAAAAAAIDPBJgAAAAAAADITbAIAAAAAACAzwSYAAAAAAAAyE2wCAAAAAAAgM8EmAAAAAAAAMhNsAgAAAAAAIDPBJgAAAAAAADITbAIAAAAAACAzwSYAoC1t3rw5Zs2aFfPmzWt1VwAAAADoh2ATANBWAaYVK1ZUAkxHHnlk5f/3339/q7sFAAAAQD8EmwCAtjB9+vRKgGnBggUxfvz4OP7441vdJQAAAADq0FnPjQAAhtqaNWv2+V35PAAAAIB8kNkEAAAAAABAZoJNAAAAAAAAZCbYBABt6NJLL42Ojo64//77B9XOlVdeGccdd1xMmDBh78+cOXNixYoVTesrAAAAAOUm2AQAbSQFl2bNmhULFiwYVDt33XVXJbC0aNGiytpHmzZtqvysXLkypk2bVnmMFHTavHlz0/oOAAAAQDl1troDAFBWKdBz5513VgJMa9asqWQbpSDRYKV2UjApBZVScGn8+PF7/5auSwGo6dOnV4JQ6fF63gYAAAAAGiGzCQBaJAWaqllMKegzc+bMStBpMIGfFMBKGUvJ0qVL+2xr7ty5lZ8U6DrjjDMyPx4AAAAAyGwCgBZJwaXu7u6mtnnBBRdUAk7HHnts5ac/KciV1nRKga5ly5bF7Nmzm9oXAAAAAMpBZhMAFEQKMqWgUTWQNZBUUi/9JBdffHGft0uZUh0dHU35GexaVAAAAAC0H5lNAFAQKUup6oQTTqjrPinYlErppeymdFkNPtVauHBhpdxfM9QTBAMAAAAgXwSbAKAgrr322r3/r3fdp9rg0ooVKyrrOPVUT0k+AAAAAMpLGT0AKIiUnVQ1ceLEuu5TG5RauXLlkPQLAAAAgGITbAKAAkgl8Gr1Vg6vN4ceeuje/995551N7xcAAAAAxSfYBAAFsHnz5kz3q81sytrGUNm4cWOruwAAAABAHQSbAIC2Cu6koFcqCVgtC5gyrtL/2y0YBgAAAMD/EGwCgAIGimozlurV6mDOnDlzoqOjIyZMmBBnnHFGZUzVcaTf0/Xp77NmzWppPwEAAADYV2eP3wGAHGp1oKgZli5d2uouAAAAAJCBzCYAAAAAAAAyE2wCgALIUjYPAAAAAJpBsAkACmDixImDLqsnYAUAAABAFoJNAFAAzQgU9QxYAQAAAEA9BJsAoAB6Boo2btxY1/1qM6BkNgEAAACQhWATABRAz0BRvWX01qxZs/f/06ZNa3q/AAAAACg+wSYAKIhjjz224cym2tudcMIJQ9IvAAAAAIpNsAkACmLmzJl7/3///ffXdZ/a282ePXtI+gUAAABAsQk2AUBBLFy4cO//V65cWdd97rrrrr0l9JTRAwAAACALwSYAKNC6TdXspiVLlgx4+xUrVuz9/4IFC4a0bwAAAAAUl2ATALSxzZs3N3T7xYsXV4JO6X7Lli0b8LbVtZ7mzp07qH4CAAAAUF6CTQDQxgGmjRs3NnTfVArvqquuqvx/zpw5fa7ddOWVV1aCUSkwtXTp0kH2GAAAAIAy6+ju7u5udScAoKxqS9mlwFDKNqquo1QNHs2bN69ymQJDyfHHH7/3//21m4JNyaJFi/ZmLqVAViqZl4JNqeReCjQN1BYAAAAA9EewCQBaqKOjo3JZb8AnBYtSgGj27Nl13Tat3ZQCWLUZTinIlAJY1fWdAAAAAGAwBJsAAAAAAADIzJpNAAAAAAAAZCbYBAAAAAAAQGaCTQAAAAAAAGQm2AQAAAAAAEBmgk0AAAAAAABkJtgEAAAAAABAZoJNAAAAAAAAZCbYBAAAAAAAQGaCTQAAAAAAAGQm2AQAAAAAAEBmgk0AAAAAAABkJtgEAAAAAABAZoJNAAAAAAAAZCbYBAAAAAAAQGaCTQAAAAAAAGQm2AQAAAAAAEBmgk0AAAAAAABkJtgEAAAAAABAZoJNAAAAAAAAZCbYBAAAAAAAQGaCTQAAAAAAAGQm2AQAAAAAAEBmgk0AANBEd911VyxYsCCmT58eEyZMiI6OjsrlrFmz4tJLL43Nmzfvd5/7778/jjvuuCiSNKY0D/PmzYs5c+ZUxl+dk3R90aTtmsaaxli7zdP+AAAAUHSdre4AAAAUJbiSgg0rVqyI8ePHx7nnnrs3gLRmzZrK3y+++OJKoGX+/PmxaNGivfdN9ytaUCKNJwXXyuDKK6+sbNcUcFq8eHFl22/cuLESbEr7wPLly2PmzJmt7iYAAMCQEWwCAIBBSgGmlL2Tgg2zZ8+OpUuX9nnbZcuWVQIT6XLlypWVIFS6f9Gkeeju7q7MyZIlSyoBtSJK27IaVEvb89hjj638/4ILLqhs2ySNPQUcAQAAikoZPQAAGIQUUEgZLNWslv4CTdUgTApKpOynlPWSghJFlsY5d+7cQmb21GZvpWy1aqCp+reqatAJAACgqASbAABgEFKgKUnBlBRUqTcAkwJOSdHK5/Vl2rRpUTQpm61q4cKF+/ytNrhWxEAbAABALcEmAAAYxFo91ayVgTKaepPW8iGfUpCwuu1TRlMKINZKWW5p+6b9omjbOWXkpTKQAAAAVYJNAACQUQooVLN2egYb6pHuV282FO3lzjvvHDBrK2U0pbKJRaMsIAAA0JNgEwAAZJDWaKqWwKtdq6dRCxYsaGKvGC5r1qwpdInAgfZ9AACAWoJNAADQwuyOFKgoW7CiaAGXQw89NMpCVhMAANAbwSYAAMhg48aNe/9fzXDKKpVbgzyVjgQAAKgl2AQAABlMnDhxn2yPwWR8zJo1q0m9gqF15ZVXtroLAABAGxJsAgCADHqWvps3b17mttKaT+PHj29Cr2DoLFu2zHpNAABArwSbAAAggxQcSkGiqhUrVsSll16aOXB14403NrF30Fwpc++CCy5odTcAAIA2JdgEAAAZLVy4cJ/fFyxYEHPmzMlUUq82cFWvtFZUeszjjjsuJkyYEB0dHZX/pz6kLJQsUpspS6u2zenTp1euSwG1VkkZNamEWyo5mPqT+pX6l/qZgnyDKWPYKsMx183YR1Jf0n2GKqupr3lotI9pnKmdtI+ktqr7Sc/bpb+nx0k/6f+DXXMti7S/VsdcHW/qPwAA5FY3AACQ2bHHHtud3lb3/Jk5c2b3okWLuleuXNn0x1yzZk2l/fQ448eP3/s46fp0mX6fNm1a5Wf58uV1tblp06bu2bNnV+6zePHiSlvVx0q/p8dJj5fGW/1bI+bOnbt3bubPn9/QfWsfP923tm9prNV20/+HSu3j1PvT1zwN9Vw3ax+p9rHRcacx1NvH6vMnPVbqR5qb6t9SH1Pf08/SpUvr3r96/lSlfqXxpLZq56e/bdVsaXzVx01jr445PX4aQ+pf+r16uzT2oTiGAABAs3Wkf1od8AIAgLxKGQoDZX2kknszZ86sZFGky57rPTUiZWGkx0tSW8uXL+/ztikTKGVPrFy5csDMqZRZMXv27Fi0aFGvf0/jO+OMM/ZmgdTTZq3Uj9SfZP78+X0+Tk/V7JY0h+kxe5u7tA1S/5O5c+fG4sWLo9nSuGuzja699tq9c5Hm4Q1veMN+90l96W0trqGe62btIz3LQl588cV79/PU/xNOOKHXNtPfBtrH0zZN2zbNz9KlSyv97E16vHS7NPep3XTb/qR9Ic1rdV9L0kfe9HvaL1K5yvSY1QynqnSftF8OpbRd0nZNY+rrOZDGmv6etkV1/ht5vgAAQMs0PXwFAAAlkzIPqtko9fykjIaUtVHN4qhXyoKozZyqRzVTpr/HSlklKatiICn7ovr4A7XZjMym1K/qfQbK7kjZKsOR4TTYTK2hnuuh2keS2iyngTKNBnq8erdrVTUDqt4x9cwwq2YMVaXHrb3NUO8ztY830PbvebwYzFwDAMBwsWYTAAAMUspCSJkhfWVn9LWOzpFHHln3mjTVDI+qgTI8kpS5kbJWqusd9ZUJkvqQ/p6yYfpb+yhlq6RsnWp/hnKNmdSn6tykxxwos6c2myb1a6jWFxqMoZ7rodpHhmJ9pmrGTr0ZW9WxVNdmGkhtZlXKCkr7R22WWXrcdH26TPM8lFlNaTunjKZqvwbKvKtu96p6jysAANBKgk0AANAE6SRyKle2Zs2ayonrekrlVYMD9Zzkv+CCC/YGUPoqz1YrnZSvLfv205/+tNfbVUu1Vf8/0In82tJjQxmcSOOtqjeolQIKVcMROGnUUM/1UO0jzVQbDFu4cGHd90vPp2rQJZWXq53LgSxZsqTXMofpeZqCxENRdrG30nhJPY9VLYFYHfdA2xEAANqBYBMAADRROjmcMiZS0GnTpk2VjIx04r+/4FPK9Ojv5Hk1I6b29gPpmdkzceLEXm/X6InsnpkoQ5FBlIIJ1XZT/+pd46o2OJPWVGo3QznXQ7mPNEvqXzWbK42t0fmoDVSl9aPqlcbVyJpXzZQCitXndgqW1ZOllAJgVbKaAADIC8EmAAAYIulkesq2SdkM1eBT+n9vJ5BrM3l66pkNUc+J8/S41UyfdPu+smhqT4Cn/g6UbdIz8NNfKbisasfbyMn2448/fu//G8l8GS5DOddDuY80S22AKEsQpfY+KXBVb6CzVQGb1L8UOK2qd35rs81qA6gAANDOBJsAAGCYpABDynJK5fZ6rqeTgiN9lUqrzVhpJEMjPUZ3d3clU6K/7KDUn3S7FAxrVQZI7Qn62qBKvVlN1fmtzZYZikDYYA3VXA/1PtKM7VobAJw+fXrDbfTsXyqPV49WlaHrmX1VT9Cr5/4vswkAgLzobHUHAACgjFJGSTrRX1saLGWnpGBUs4Ivg5WCAynLIq3lk/qxcePGISmb11dWR5agRCqZVu3jUPe1Xea6lftIve688859fm9GH1PgrufzpTdZAlvNUJvVVLueWL37f8/gKQAAtDOZTQAAkNFgM2fSCejak+Up4NAzwJCCDsO5rk462Z0CYB0dHXHcccdV1j5KgYFUAiwFx1I5wKHUc7xp7aHUl3p/qtskDyfqmzXXw72PZNGsLLPabVpvMK4V89EzaFpvObwUQKuS1QQAQJ7IbAIAgIwnk1NQIJUfG4zURm35vHRSvrYMWs8T6kMVQEmPmwIf1VJnKRC2aNGiYc+S6TnedPK9aCfdmz3Xw7WPDMZQZJnVG8BqxXzUBo2Sc889t677Wa8JAIC8EmwCAIAWZmukAEMKLlUDDz2DTcNx0j6t91Nbzq+VAZ52DJTkba7zUD4wax9r79fO+0qWcnjWawIAIM+U0QMAgBaf1K/NaOl5UrpntkvPkmnNKuVWlTK1WnmSu2fJs2aVX2sHQzXXQ72PZFmrqOdzYyj62I5rU1XVjv/4449veF2rdBxo5/EBAEBPgk0AANDEtVkGG2DpGWzpmRXR7OBLbfBj/vz5/WZVDYeej5+HLJ1Wz/VQ7yONWrx48X59aMZ27XmfE044IdpV7fibtV5TkZ4LAAAUj2ATAAAM8sR6M09M9xaAqF3vpVpurxnSWlG1J7AXLlw46DY7OjoGdVI8ZXPUZnT89Kc/jSIY6rkeqn2kWXpu1zVr1jTcRs8AVl7KzNVb7m+g9ZqOPPJIAScAANqWYBMAAAxyDZ7BngCuls/q6+T5vHnz9vk9SzAhnbzuebK+NpOi3nVlhiNrpna8WTPHehtvKw31XA/VPpJFXyXyBrtda+9TXeusXdVu33rL4dVus57HgvS3lPXYzutUAQBQboJNAAAwSGeccUbm+6YT6NVg1aJFi3q9TTqpXnvy+eKLL27oMdKJ6hTQ6nnSuzawkOWE+FBJJeaqJ9XT3DQamEh9TPdppzVvhnquh2ofqVUb6OhvzaW0zXprp3a7pvloNLB17bXX7v1/X8+VdlHvOk21mW/9rdeUxp6XTC4AAMpJsAkAAAYpnajvmVlSr+r90onk/jI1asv1pWyqRk7UL1iwIObOnbvf9bXrQ9XbXurHQEGHgbIv6skEW7p06T79b8QFF1xQCWwMl3rGMxxzPRT7SF8BlJUrV/Y7F33tA1ddddU+j9nIc6wafJs9e3blp16tKD1Xuz7XQI+ftlPtXPQWqEvbs7ZNAABoN4JNAAAwSOnEd8pMSGXIGjmxnQJN6URzOjFfG1zpTToBXXubek88p36lx+gtE6TnCfGBMmmqGUa16w3VBjSqY+mvVGDP+/QlBd+qfU79qjcwkW6XxjLUmS89xz2Q4ZjrodhH+hpDX9lmqa3+AkHpb9VAYAqgpJ+BpPmqZg/2HGNfaueqFet+pcBddfvUllDsbWzpuFEb6KsNTCZpX0mBRplNAAC0tW4AAKBhy5cv705vp6dNm1b5feXKld3jx4+v/MyfP797zZo1fd5306ZN3ccee2zl/un2/d22p6VLl1bul35SG6mtvixevHjA9mfPnr23vepY+hpv+ntqK/30dp+5c+dWxp6k2yxatKjyM3PmzL23r/6k66p/769/6e/V+1Tb7kt6/Ebns14DjSdti9S//sY0VHM91PtIrep+m37SfWulx0ltpefCQGq3a+pvX1K/0rgHGkuas9RmmpPaPva2v/Xs91Cpboc0J731uzq21Kek2u90WSv1faB9HwAAWk2wCQAABhFs6nmiPJ0Urg0OpABDNQiRLmsDFelv/QUC+pJOUteeUE/tphP8qa10mU6mp8dOt6kniFDb53RiPI2p2q/UXupnNfjRW7Ag3af6eL2daO/vZ6BgQ7UP1fFWT86n61J/0mX6PbWV5nYoAk214xloTNXbpP1juOZ6OPaR3gKl1YBTun81QNZIUKR6n2owKM1FNcCW/pYCatXHqQZk+lK9bT3723B+5zLNTzWAVA3CpctqYLR2P0nXV/tXvW2az/4CkwAA0C460j+tzq4CAIC8qZZ266tEVioPdu2111bKeaWfVC4rldVKZcBSOaw3vOEN/a7RVI9UyiyVFEuXqcxWeozUfmo3lehrpOxWum8qgZbGU+1z6m9apyeVT+ttPZ/q46fbplJgQ71OUu14q2XSso63lYZzrpu5j/Tcv9MaUak8YrXNetZ9aqSP6SfNx7nnnjvgOmB5OFZU5yrNfXr+97YNq+s3VcsUpu2T1rnK8/gBACgHwSYAAAAAAAAyG5H9rgAAAAAAAJSdYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJkJNgEAAAAAAJCZYBMAAAAAAACZCTYBAAAAAACQmWATAAAAAAAAmQk2AQAAAAAAkJlgEwAAAAAAAJl1Zr8rAAAAADBc7r///pg+fXqru9H2uru7W90FgNKR2QQAAAAAOTBv3rxWdwEAeiXYBAAAAABt7q677ooVK1bE3LlzK5k7fvr+AWD4dXQ7AgMAAABAW5szZ04sW7Ys1qxZE9OmTWt1dwBgHzKbAAAAAKDN12pKgabZs2cLNAHQlgSbAAAAAKCNLViwoHK5aNGiVncFAHol2AQ5+hbT9OnTKzWagd5deumlez+EQU/2DwAA8vg5e7BZTan83rx582K4bd68ufL+e9asWTFhwoTKT/p/ui79bSDpdscdd1y0K58vhp85h/Ym2ERhXmzSG5Z63qzk1eLFiytvMIHepQ9P1157rW/60af58+dXTiSkD9sAQH6V4fMfwyMvn7MHk9WU3v+mQNVwW7FiRRx55JF75/mBBx6IpUuXxvjx4yvP4RR4Spf19D+11W58/mwNn+mgvXV0d3d3t7oT0IxvIiVz586tvIkpovRGbOLEiZWFQKGe50Uj33hr9Pbt+EZ/yZIllQ8w6cML9CWdlEofemfOnFn5sAsA5EtZPv8xPPLwObu6z6f3r8uXL8/0WenKK6+MlStXxrHHHhvD1eeUkXTjjTf2+pipP9VMq/QcTs/l/saeMrra6b27z5+t5TMdtC+ZTeRe7bdI0huWPHwrqVHpWzzpxbQVae9lkvaf9Ia4mt6fftK3ZYbzW1TN6kO6T0dHR+Ubn6nN9M2f2m9+VsswpH2q+hit6GczpL6kn/RBprc3+qlftf1MP+kDS/Wn9vo0Zz2fZ+lbhOn6eu6fZS6zSt8CTI+VtnHaFqkvqZ/N+IbvULZd3e9q207zNlzftkz7SNpX0uPV801KAKC9lOHzH8MjL5+zq/t81gyaFBRJXywcrkBTkuZ04cKFfT5mCi5V/5Zu29fzOPU7BRTSe/d2yWQc6PNn9fNj1p9qqcH0WSXr8S3dr7Z8YWo3ffZKn/Hq+dyVHru/PqZ2myW11d9j9faZzWc6aGMpswnyas2aNSkzb5+fuXPndhfN7NmzK2PbtGlTq7tSSCtXruweP35897Rp07oXL168z/41f/78ytynbTCU89/sPhx77LH7PTf6+kmPmx6nFf0crNSf9Jjpsfu7zfLly7uXLl3avWjRokr/e44/XZ/+nm7Xcy7S7wPdPz1+9f7p8YZDmufetnMz5n4o205z2Fvbaf6GU9p/0+OmbQYA5ENZPv8xPPLwOTv1LfVx5syZme6f3mOn+6f34MOp+vzs73Gr78cHul11DLWfP1ulns+fA31+TJ+Fqp8da3/SdWmM6ZhWe5/0WI3so9X7p/ul/qb7pp/UfrXd9Hm+v89BPceQbt/z2NuMz73V8wu17abH6u/zeS2f6aD9CDaRa+lFtLcXvXZ+s5jFYN5c0r/0pqT6hqav/ab6Bqa/27RbH+oNNqX9qt4xtcNc9ZQeJ/00Ir1xrZ2DRj+0VD/s1PPBaLjUHgebPe9D2Xba/1oVbMq6/wAA5fr8lwIS6WSok5nFk4fP2WmfH8yJ/er77eE8R1INkFU/Fw4UuKknaJyeg+kzbqtl+fzQ8/NjvceSnp9b6/m8lLZ3f5/x0/W1wZ16+1I9F1AN0DYr0J/a6DnORvd1n+mgvSij12SPbn8yvvijB+P/XPnjOPWy78cJf7uicpl+T9c/tv3JVnexMFIKdUpdTqnkaYHA3hbPLII0xsTih0OzD1XntbpQaV8p/uknpaKfccYZhehDKlmQ6n2nn3pqTLfDXPVULZvS6PO9Z99TjfbB3L8danQPZUmMoWy7meUXskj7TtqHlF4AIKsdT+yK//j+w/HNv7srvvSRH8fV82+tXKbf0/U7n9jV6i4WRis+/6Uya9XyXaksNcWRh8/Z1X0+lZHL8p48vc9N+3Ba72g4P7Okx6o+Zn/PzY0bN+5zn/6ce+65ledgK5+Hzfr8Wa90nKtdk26gsvXVsnv9fV5P19eWY0yfx+op1Vf9zFxbcrL6HBqMNJ60f/fsYyN8poP2ItjUJL/d/ER86Bs/j5M+eWN89Nu/iNvv3xgPPrIt1j+2o3KZfk/Xn/jJG+PD3/h55fYMTnpBSfV705uYVAu4VnrRa5d6voNVfXPR14KZZHfBBRdU9pP0xn2gN+/VN5TpzW0z15YZyj6kN5Fpodv0ZjPtR+kn/X/Tpk2VxWF7vqlrVT+zSH2pHgMafW40GlzKg6Ec01C23epAXdp3qh+CrfcAQCMe27g9bv7yL+OaD94Wt1z7q/jNrzbHlvVPxLZHd1Yu0+/p+qs/eFvc/JX/qtye/H3+S1/MqhrO9W4Yenn4nF39XJV1rabqGFuxJlX1c2d/81sbODrhhBP6ba86htrgy3AazOfPwUiPlR6zqr/g6MUXX1z5TJPWaOov8NLzPEAj+1e6b21/BhNwSvdtRiDUZzpoL4JNTXDngxvj7H+8Jb5yx69j287d/d42/f3Ld/w6/vAfb4mVXf/7LQ6yf6stSS8sRcxuqn6DLr0A0/y5rQZC6gm6pDdU1TdV6U1cXvpQ/UBezTjK8mauHeaqp+oJhXZfzJf2Vz1Z1aoPrgDkz+9Wb45r//Yn8Ytbfhu7dvT/+S/9/Rc//E0s+dufxu/WbBm2PhZNqz7/1WYRNPJFLdpbHj5nV/f5er7s15d0//Rcadd9t/r+u/qZtT/VeViyZEm0Qis/f9Zuv+p+0VO6vjbg3t/xsDZYlNx5550N9ad2DgbzGSrdt1nz6TMdtA/BpiYEmv74c3fE5m2NlcfbtO3JOO+qOyr3Z3DfaqsqYnZT9U2EE+rNV/sGbaBvUfV8U5Y+mDTjGzPt0Ie89rP6JrKdPyCSD9VvJjajDAQA5Qg0fevTd8eOxxsrj7f98SfjW//ws8r9yc/nv2rmhaymYsnD5+zql/ayZjWlQGl6PrRr5la15Fs1C6oeaXvVfhFyOLXy8+f06dP3+b23+RpMdlCjlSxq96msn/fTfdLj9gx8ZeUzHbQPwaZBSKXw3v7Pd8aOXXsy3T/d74J/vlNJvUF+q62qiNlN6Q1NO38TKc+uvfbaht+Y1b4R6q9Wcp76kMd+pvbSm9PaDCrIKu3TaT9q1QdXAPIjlcL7tyv+I3Y/me3zX7rfd6/4uZJ6Ofn8J6upuNr9c3ba51MwJgU5s/axlSX06nlupedq2gapvHu9wdy0blMrslda/fmz52fwvoI71f06/fQXwOt5/0aD6T2fO1m2RzqeN3Pf9JkO2kdn5MT2J3fHrzdui3byjzfe13BGU28ZTp/87r3x7jOOjnbyzIkHxZhRIyMv32qr/XZbbW3a6oeSVq8LkkX1GyI9P0DRHLX1oev9Jk/tfpTeFBehD3nsZ/WNc7t+OCR/0r6UXi/SByXZcgCtt+vJ3ZV1j9rNnf/2YMMZTb1lOP3oa6vj+D88ItrFuMkHRmebfvZr5ee/2vWaZs2aNej2aA95+Jw92Kym6gn3nuvrtMv8p+dT6ld6jjXSv/S8TseBNLY0xuE6z9Pqz589Mzb7Gne1dP5Aen4ZNEvQJx2Xq+309mWAevrQ7KChz3TQHnITbEqBplf8/Q+jiL7zH7+r/LSTG977B/Gspx4c7fqttr6+pVH9dlvtB470IpjHuq3t/E2kvOv5TZ563+Aeeuihmesat2Mf8trP6pva4447rqntUl7pA296bRmO5xQAA0uBpn/9m59EUa1eua7y0y7+z1+/OA592thoR638/DecmU3psdKJ92ppqfQ+N2VxZFlrNa1ps2bNmr2ZGFkDFkXV7p+zm5HVVF3XqN3GmPbz9L47BQLqLZ3XUxpTCjal48JwBQxb/fnzkUce2ef3wR6Pao+P6fiQJSCZ+pCOT9W1otI2qTfA08htG+EzHbQHZfTIlf6+1TZctbvTm/b0BifVzZ0wYULlsme5hmY8XnqDmN5gDuabSMPV17zJOubaD3uDnbfh7EN6czxnzpzKPlD9+f/auxeova76vvP79QVfcECSCcHhFklAIGES0CXpjUIqKZlktUCKLJfVCZRpJRNYSdspkeM0mUlTGo9cMrOmQIKsJKS5TCrJLQUyKxeh0JQJk1SSadomk9DImkBTSIP0GhMbG2PeWb8H/uKv7XPZ55x9bs/z/az1+JXf9zzn2Weffc6z9/7vvc/OnTuT1jOeQl7F6bEA2BxmNimPdQ2q4qs8t2ux7KGu2lbnyra389Xl+vf70b91D+j6HK0+992kTFt++s9vU96sLPnyBQAAVqf9pzrF2traFS8/uz/+W67l+lTv0Ger7qcAg3Wiq56l+o09oyaF0qT3WH2srxkt2re1LZQXqoMVLZutdFhdTcc31BLgQ7Sz+2TthLhcN2Gz+5p06Ov8WN1e580HcIv4MppCZVvlQIGOokBTajm32Vo2+6tvU2h/xtdOl7Kh82r3NpWTLgE7P4uqSYBf566PQChtOmAaCDZh9mt1x/pcu9sCN/riUgVpfX19sUSYdbwqjdbx6RsnTdm08C5fwEOldVVdunRp8mnQCChV6G095AsXLizKgX6qImYNhL4bfjnzyqd1qg1ET6NKNbJKL1uyo6ohZdvpOPXTRoo1zW/d83Tu9Tp9+vTivOulhonuo0WB57H3nUJ5YZ+tf9u9zX9+WTCviq1tLlPpCAEAYNUN2f5TnUIzi+zl96cOVf83vbp09hrV9VRvUvq1T6vT6N/Waarj37p1a2V7TfVLBQnUiawOX+1Dx6N8yz2ryQISu3fvXrQpNjY2FnVym1FgbJCV6sJKj4I7Uwg45Whn900d8XUB1irW5rDnG6Xmi/Lk2LFji/Ol8qdrqCzgZEFRu0brOva1/cGDBxf9EUXLvOlzmgSPrD9jiPI0dvtT59Nf//ZcpiYsrxQk1nnV9Rjf59rw15E916qObdNHXtKmA6ZhNsvoASmj2vpau1tfzqow64tRlSM/asMevqi/79mz53LHcJcOdtt/kwriWGmdo/h425SLrrN1hkiDNTjjCr0+S9eDGoA268Y3aodOZxNnzpxp9RDTun02Oa4mwVnfwNd1V/Vee0CufUbbZRrUiNC9Uo37mO6fOs/WIaFKeJNnavW57zrWkaLypIZR3Hmiz1fatI01fFLWLDd6r/J9qGehAQCA6bT/4rqlf16T6hU5655G7bGi5cRUn7Jnj1inuuo3qqPE6bD6kZbeK/p7TtZZrc/xHcUKUFiwQu1XBRVuu+22y/UwpdE6ftU2GXN1gi7t7CGoDOt8K0+HWiZQ9V9dazqvdr2onSgKABUFJOLrSvsoCx7YtRiXm7g9pjKTSmXLlsvsuzz10f5MpXzVfcIoH5u0b2zwsaf353qunc6n8t9f33UBbm2TI1hflSbadMC4mNmEpRrVVjW6re00a322RpPpS1pfpGXTg5U235HcttJjo05sDdwpp9VTZS9eXqKvV9cH9E5h6cC+06BKlhquVZVR/c0q/Go4TjWvPKssq0Gds1Fns2VSXm1n7TS5zro0ZpQ3VWug2+hZ0X2g7NwPve86NptJeVP2XaC/2b2/6XmyMsWSCwAArHb7TxQ8MX10MuvYdu3aVVmvUl3d/71o4JLqR0MEmnQ+VK/TrPY4YKC8t8/WNqpL+XOh31m6x6xndWlnz2VWk5UtnY/U8qDgYDxbxgIsZW1B5WHKrBi1sxT00vHomtL/xy/V2fW3JjNdlFalwWaqza39Wfd5Kqe2ZLmOT8eqa7zpTCQNENTsQ71sxqOWkdRKELouc+SdD2qmrC7R1/OaDG06YHzMbMIstKl0xaPb9G/9rmnF0mYA2aygMmosmC4V/S4P8xw6rXFDZ6gv9K7BplWQ+sBVXVM2gk4V/ak/QNjKWM4GovKq6XrmbcrgzTff3Gh7e+BqUylBFt1P1YGhBoEq/KmV/j73XUX3Qzv3dSPh7N5vD1dObZRZmaJhAgDAarf/hnhGi+rcKfV1Hb+2tTqYOohthrm1v/T/fQdPFJBQ/a6s7WgdvKonxwMefX22yeyV3Lq0s+cyq8mCpKnHqPNlwYz493V9BSqX+ryy54NZIMn+Xadpv4SOUenUeW0y22cK7c+UtqQ9c0v3sBx9NrY/7UtBLJ075Z8CyF32r31au9UHdIvoM/ueiUabDhgfwSZMnnUYpnaex6PbfMVGjZYmnen+4YmqwFRVMPSsFdPlC9RGFTXtnB0jrUXLPczBFEayTSENYg8jLmuQTyWdcWN1qJFlc5SaN+qssNFnagim3HP63HfdyGZTty+VWTV41cDQ/TQ12GTHtmrLigIAMDVjtv/iZ330MchNbTY/G6iOjkkzx+2ZKOpkV13LAjt9P0dGn6lOYs2MqNrGxB3/Oo9Kp5b06vqMmC7atrOrlAVaxprVZIG+1OCLto8DU362UF1w0AYuFi3v2GSVgTZ5aEGOomXjp97+rFsOr882uPJaAU2b2VS2RGcTOha77+rYyvqFUpbZ64o2HTA+ltHD5HWpdMUj4G20UAqb6WHqRgf5db3bjthSpUyNj6ZrSI+R1jmLK4ptZo90rQBOIQ1FFfv4QZpTSecQ+1w1vhFg954p7ttGoUpqI8i2azKizdamn9rSkQAArJqx2n9FbaU+BtNp4F/T/frAmwbhqKNY9Z0+O9l9+0BBorL6t58JVlRX0++aDADqQ9t2dhnrpM81S0rnNG7Tt11+rcl145+tZfzMtLp9qf5cdM51/drybSmvoufBplDadV5ztmOGaH9qX1WvvlmgznRd+txfBzZbrqh8KgDU97OvaNMB45vNzKbnbLkx/Nrf/8thKh569PPhtcd+Kzzy2Bc67+uGa68O/+fBbw5Pvu6aSeX3lEa1lT17qI6+QG05p6aj2/x7VFmqG23jO+nbfoE2fZjnmGmdsxwVuK4jm6aQhqJ9aH1u36iYSjoNI5T6o/tCX/eDLvv2HT6pZcnfA3OOOAUADOOpX3lD+Bv/8zeFKXns0cfDe/+3j4TPZ2j/XfOkq8Kr/v5Lw7XXXR2mkt9TMWb7L24rNZl91IQ61q1DNJXN4LB2ovJpqOWv6wJavm051SXq2razy47XP+8mR11TQSYru13S1XQwaRxMsmXQRGW/7rhUlsdc3cRW6eizHbOs7U8FXu0+qTKsf7ctfyonyn8L+mlfcXC5aBYdgOU0nehGjeuvvTq84Ku+IkzJa3Y8K/zCb3+s837++o5nhpc+Z3OWNC3rqLYulS5Vwn1jI3Xt7iYjelQpsy/WLpUtpdO+qJsYI61zFndYqwKZElTxo2Nyz2zKlQadWzV+tL+66fl1++8znW0pPYxSysc/F+rixYuT3LefnaSGZGrnjDWOWXIRAObnmmuvDjd/9U1har72z98Sfvff/nH3/fy5W8Iztj41S5qWzZjtv3iWjn/ObU7af5vl+ZQnavdZW04DcqbQnjt+/Pjlf+eaOZRb23Z2UVBIy8z5NonKW9vgqKVN++qyD7GyoPPRdik+f92kBAZUNx/zmb82KK3P62BZ259xm0p52eW+q3uszZAqmsmo66btDDYA88Iyeh28+VueFzbfeG2nfej92g/KR7V1mUouRSOE1Iip+2zfwVnXGMixrrdNN2462mOMtM5d3NBMrTz6ylHX0Wt9pUEP71V5sLLUtGIcp2sKeVVkGSv8Y+gzEJNr3/5c616ustXklRrstIAYSzQCAMrs/O+fG65/crf2n96v/WBa7b+itlLXpaX66Lz2Hfv+mb1jUieyKJAzxXpU23Z20bJ5+qn6pS+jFiwac1aTtbkUdLHz0TVwWJcetTn1GjPgqbxXuRtitZaptz91L1D/jl7x0vhF4mu1673EBzhtSUejfw9VTmjTAeMj2NTBV2+6IRx73a5w3TXtslHv+8nX71rsB/2MajPxaJu6tbvj53zUfTHmWNe76cM8x0zrMvAV0tSp8X673bt3TzINTZ5RU/S5RbNGppBXxiqNy7qcwdB8PjZdzmWofftgZZ/nvY+H/wIAlstXbLk+fMd3/3fh6mvbtf/0vu940zcs9oNptf+GbCspaNG0zm7i2S8aaDYmH9iY6rOA27azi2Zu+H35zmw/I6gJC1Tlmh1kAbU26Wm6AoryYsyZbCp7XYOIy9T+3LNnzyKoo5cCTnX3mKIVTLry15i/V6l8D7WEHm06YHwEmzra9TVbwi/8nW9uPMNJ2+s5TTufyw2wz1FtbUe3+S/mlFkZ9gD7eF3veERHXWVJlbqmIzDGSGsRnau1tbVBXjlmZPkKdGpjz2/XdmmCvtPgy4AqdXXlKf7cogbDFPIqPr6pjyzLYYhj9J+Ru0Ml177j+1RfrIHF850AAFVued6m8Kq/+5LGM5y0/av+3kvDLdtZPm+K7b+i5zWV1Qm6dppqv22Wk1IgQG1G1fGtfqTfKd/G4mfCVNX5lcax0tm2ne3pvfHx+fKVOnMuZu21HAFWURrt+V5NNV0BRQGtMZ/BY8fYd8BrDu1P3Qfi9NXNVIqDSznaQL48WDBQL33WUM8Kp00HjG82z2yaesDp//rel4V3fvAPw3s+8sfh4c89Xrrtk590dXj1S5+5WDqPGU3DjGprs3a3/2Kq+5KyJcuKOlRVAbr55ptrO1otXW0qa0OntUzK6JlccgSbdO6twXPu3Lmk91iFTfmco/LSRxp0/vT7kydPJu0vHr1ZdD1MIa+M7WvqI8uKNGngDnEtxYHqnOcp5751X7Ty13R5B22f2rCxeyMNEwBASsDpwD/cHc79yh+FP/jtT4bPP1re/rv2uqvDC775GYul85jRNN32X7w8eVmbSPvrWk/Ts6C0RF/TgIDeozzSs1AUVLCZ4wrQKb19debqmNUG0OfH+WIzm6qCc5bG1HaE8lfnzgc/tG87zqZplz6CIr6NpLKjvGgyyE7b27HmpOCLldMm9VpfruvKktKucjxUACGm/Fb5sOBan+bQ/izKg7pzE1+POWYm2pKG1mbr8/orQ5sOmIANZPXgZz+38c8/fGHjtqMf3njFP/3gxq63nlr81P/r9/o7qq2vr2+oaB49ejT7vg8dOrTYt70OHz5cuq1to/dU0T5s2zjN27Zt2zh37lxtunbs2LF4f1tDpnWZ7N27d5EXmzZtqt321KlTpXlX5OTJk0n5mTsN58+fX/xd11EKnXfbZ1V6+8yrJpSvtu8c+9BL/9+EP74mx+g/98iRI43S2OTepvSlUBpS3tPnvpV3Kedh//79jc+XfZekXgsq23199wAAltejDz+28R8++PGN9/zYuY2f+6EPb/z0931o8VP/r9/r75hH+y+lDpurzaR0NDleqwuprl9U31I9JrXO04T/jLhO6uuras9W7UPpT2HnID5PynPlfWpdNFc7u46vo1blQREdT0rbqinlVUrfQFW9vK6Mj913YP0aTcvDWO3Ptu3HJqxdr3Z7Sr74foCUNpOVqyblSJ+hV92+rQ/DXv4+1xRtOmB8BJswOao46AtCXzC5X/GXfNWXqlVM9WVdJt6fr3Dp8/TFmtq4Sq2Aj5nWZaPjtspIXQe2NSTqGhE6n77iVhdU6CMNuoZSGju+IljV8O4rnW3Y9ZLSCEo57iGDTT7tdfltjc82waa6fRvbf11DtM99pwablHe2z5QGi5XD1Ea2PzddGjcAAGC+7T/fqVzUWat0Nu3Ar2szpNZpyupKfjCh9pe7HmPtTNt//Df7e1m939oQqenStkV5rHp/2d/6bGfXsQ74pu0TK2t1bcW2dD6aBrL8tVI3EC21TdAXHdtQ/Rc52p9DBJusTKUEmtqkx96Twu875fqLr6O29zHadMA0EGzCpPgvh6FeZRUl/4VX1AjQl7kqOGUjgFIrYTZarMuonKHSuox8o7KsQmL5ltJQimekpFTyc6fBGhgKPqY0plMbbX2kc4zRSvEIzab7ic9xk0ZiXYNcdC1qn75xX3d/sICQNbzqGkK2fUrlv899+3NRdx58wLOuc0Z52KQBaue0j9GlAABgHu0/P7o+ru+onpJ7IJXV98rqNEqP1QerBuX4gFPujmw/iMzX7S0//ICg+DgsoJY6sMvaEUXpt/plk2PL0c5O4evsqYGtvmY1xXnZdFBd3YAxK7NjsqBHX4G6PtqfXdqPTdi9oGr/NtC47n5YttJJStr9jL82wa+2QT3adMA0EGzCpMQV5aFeZRV8q6T5Tnt9Oavy5RsG8Rdvk8ZIrormEGldVqrc6Bzo5SuQyjNr2FQFbuJ9+bKVmrc502DsfbqubFk/fY5V/uLPGiudTVn6U4NkNqpVeaBy72cMWT7o99pGrzhIZu/XS9vFSw7Y+7V/bVNVOfYBEx2Hzye9z8/G8Q1XC7DEDX1jea80aJ/aT1HF3v7W5Nzn3rflp7bx58IC4kXnIP4Mn++2rX7q/dpP0zJo3z1Vs0MBAEB+U2v/+fqzr+P2VUewWV36afVI1bnKgjx1dXRfP1Wau87qsbaNr3dbfcvy0Lbx9S+r5zUJdlhwyN7nz5H+3bQDuu+ATlkgoa4Oatv3OdjTgrhNy61vq/j6vLVT+pwllsqujT7bm7nanznaj03ZQOP4vqKXH+ine0tdu9Xaz3H6Va5UPuLrNB4MXTb4z+eP3U/idq+1C6vahjHadMA0EGzCpMSdwEO9qjpGrWJlX9j6Ui7a3kbSW8U+pfJjX8K5Kpp9pnXZKQ8s8GbBFL3KOtZTKjlNl7LImQZjwSW7tqxcqNLY9rz3kc4mrEGbOnPFByfqXkWNCDufqe9PndET55+uRd8gt79bkMkCUUXnragTxBo3Olf6qePQPpoGGHPv2490K8q/lHuiritbLtKX7bZlMGXUMAAAWI32n3WuWj2s7xkU1obzdZq4XphKx6X3+tngXaluZfu0+lZcH1XdzI7BtmnagR4vpWXpV1206YoJudvZdZrUY63e2XcbvG1QRtv7a8Daj1OoJ7cNog3d/uyj/diUzpcNPI7bSynnMn4mXFm7rew6t4BU1b5T8yf1HkybDpiGNf0nABjF7bffHu65555w/vz5sG3btrGTA8zG5s2bwwMPPMC1g85UjlSeNm3aFNbX18dODgAAwMpS2/iOO+5Y1M9ip06dCnv37p1kO/vuu+9epFuq6pQf+MAHwr59+8Lhw4fDkSNHek2TfZY+R5+3DCyfT548Gfbv3z/oZ9P+nDbadMB0XDV2AoBVduLEibBjxw4qK0BDd9555+LnvffeO3ZSsAT3YTl06NDYSQEAAFhpqo+po/jcuXPh6NGjVwQUFECaajvb1yPV6a1AVxELSFlbpk8KzKnjXfm4LHQsOqahA01C+3PaaNMB00GwCRiJKimqiDapNAMIV1Qi77rrrrGTgpmzUaVDNPoBAABwJbWJFYTRTByjQJHq+5rBopkkcv/990+2na0AiO/kLpq1pOO77777FrOMtP0QVL9Vvvm8nSvlnY5lrGAC7c9po00HTAfBJmAkNsLowIEDYycFmB010FShrBo5CKR0RqjRqrI0VKMfAAAAX7Znz54rlqGLaXaS6mkKQE25ne3TXxTgGXJWUxwgWYbZTXYMYw3Wpf05XbTpgGnhmU3AiOvJavq3RmsBaGf79u2LnzbiEWhi586dl9deBwAAwDj1+UuXLi3axUXPZNKMFtXZtLReXcBp7Ha2npFkQSYdi54z5Y9BwZ+hAz+WJi1POOeO+LW1tcX5VzkYE+3P6aFNB0wLM5uAEdeTZQk9oBs1IjWKqWwkJFBGI2jV8F+GkZ4AAABzpTbxrl27nvB8JZtBoplPqq+lzGwau53t2yQK8NjSf/b7ouX1+mZ5YXkzRzaTaAr9J7Q/p4U2HTA9zGwCRhp5oQqKRhcB6N74UMMjZbQjILr/alSiGvxaNx8AAADjUWBG9TILzmgGjoJNmh2kTv04EDXldrbqmHYcmsmkdspYs5qMZntt2bJltjM/lH8KKEyl+5L25zTQpgOmiWATMNIX4piVTWDZqLKv0XoXLlyY9fIQ6J86LtRgVcOQZUwBAACWw1Ta2RaIMKpzKlAy5jJ2So/SNcfgyFTOa4z257ho0wHTxTJ6wIo92BJY1utKDwHWMhtAlVtvvZVGCQAAwJKZSjtbQREffFCgKf7d0GzJtykFa+Z2XmO0P8dFmw6YLoJNwAi0HMDcRhQBU6cKvy21AZSt6U2jBAAAYDlNpZ2t4JI3dvtEyxDu378/zNVUzmuM9uc4aNMB08YyegAAAAAAAECmJb70nCRRkIdOcQDAqmBmEwAAAAAAAJCBlsxTkEk/jxw5MnZyAAAYDDObAAAAAAAAAAAA0BozmwAAAAAAAAAAANAawSYAAAAAAAAAAAC0RrAJAAAAAAAAAAAArRFsAgAAAAAAAAAAQGsEmwAAAAAAAAAAANAawSYAAAAAAAAAAAC0RrAJAAAAAAAAAAAArRFsAgAAAAAAAAAAQGsEmwAAAAAAAAAAANAawSYAAAAAAAAAAAC0RrAJAAAAAAAAAAAArRFsAgAAAAAAAAAAQGsEmwAAAAAAAAAAANAawSYAAAAAAAAAAAC0RrAJAAAAAAAAAAAArRFsAgAAAAAAAAAAQGsEmwAAAAAAAAAAANAawSYAAAAAAAAAAAC0RrAJAICW7r777nDHHXeMnQwAQI+41wMAAABAvbWNjY2NhO0AAIBz++23h7Nnz4Zz586NnRQM1Nl86tSpcPLkybBp06axkwNgYPv27Vtc+7oHAAAAAACeiGATAAAtAk0nTpwIFy5cIPCwAu6///6wffv2xb8PHToUjh49OnaSAAzsgQceCFu3bg179+4l4AQAAAAABVhGD5Nx6623hs2bN1/xUueevfzv19bWFp29npY30e9T3q+XPm+o0fD6LI2I3blz5yItSqc6Laa873vvvXeRx37fyjf9fhks8/GpY1zHVHSdoLt77rln8Tp9+vTKBZqW+bqpcuTIkcv/1rnXNQZMgcqjrsW4fvOBD3xg1mno+7hUf9J3ZJNrWfd73fd1v9P7AQDAcmL53HrkEYAy15T+BRjYnXfeuejEVKBEjf+77rrrik4ANfK1zbZt2xb/1k/POkCr3q8R6bt37178e8uWLYMc15kzZxbpuO+++2a1b+1XS4T1se8pWObj07Vgx6UOO10X+/fvHztZS0H5qvw9fPhw2LFjR1g1y3zdVB2zrqM4+MTsJoxJ1+CePXsWdRk19FW/sfKqsmn3/WPHjvUWFO8jDX0fl/aje3jboJXu+0qH9qF/a5YTgHGwvC2APrBUehq1h1Uv02AgZnwDuIKW0QOm6MiRI1ri8fLr6NGjjd5/8uTJK96v/Y1t27Ztl9Ozvr4+m33v3bv38r6Vr8tm2Y7Pl4U2186U7dixY+P8+fOj5q1eWL7rpsyhQ4eecE31cZ8FUp06dWpRBlUuy8qh7vt120wtDbn3qb9rn3rP4cOHF98f8XXc9vuE7wJgXLp27TrW9zQA5KD7yaZNm6jnJ1I+Kb/2798/dlIATAjL6OX2yKdD+O17QviZvxrCP3tpCG97wRd/6v/1+0ceHDuFsxGPUGs6Eyl+/xRGvPU5E6LPfWvEyjJbtuPz09lV7g8cOBCWxZgzamz5NJYLWM7rpohmyuq8ayaTRu95lAOMVSZtGeCq0fyaEaSX7lmaKTT1NPSxT41K1n1K16q+OzQL6fz581nqg9qn0sByesA4WN4WU7WMy9vayg62ZL9e+neXmcJ9pLPvpdJXdTnxKiwxDKAIwaZcPv1fQnj/3wvhx14Uwi9/Xwj/34dCuHR/CH/2J1/8qf/X73/shSH80t//4vaoNNQyd8tyTH3uewqBuj4t2/GpI07T/tVhd+HChaU5vhzPIuvy2epc1PKdtqzTqluWclXFzrmW7dIyrp4ao2OWSaymgwcPLsqdBpjUDTKxgKg6iXJ2hPSRhj72qeDSxsZGWF9fXyy1pc7peAnmtvQ9oHugBZ0AjL+8LTAmfScp8KCyqICEvnv0UptM3z223Fifdcc+0qDvOQVWLl26tPi32pd2vdly7fp7k+/CKeRVm6XSbTlxBcO0vf6ftsCXlxhW+RgrUAhgWgg25fCx3wrhXX8phHPvDuGxh6q31d/P/nQI73pZCB/77aFSCGAFK33qIF+mgMCYlVcLLKgRgtXgZzWJriVmN2HsMmnBlZRnBanDxoIreo7lVNMwheNqwwLQPL8NGFZR4JgBIBi7jaKAiwZ/KmDiB6aprNqzPvVdp+36KKt9pEHbaXvNClaQSftU+1L1Yf3OPkOBF83ySWmrTSGviii4ZZ9fRsetNGsgy5Se2dg02NcHnUflH21lAEKwKUeg6WdfFcJn15u977OXQvjZV37x/QCAWmN26Nlnq4GF1eBnNRlmN2FMfiT/7t27k95jHbI2AneKaZjCcbVhHWTxDAusnkcffih85FfeH078ozvDT/3dg+Fdt3/X4qf+X79/9OGHx07i0mB5W0zNsi5vqyXRtF+bbVTWPvLBIs1IqvpOnkJe5VoqfUrLiY+5zLzHEsMADMGmLrQU3i/+jRA+/0i79+t9v/haltQDgBpqnIw1s0mfq4qzH02P1ZrVZJjdhDEdP3788r9TZ636e1aOe2gfaZjCcbWhtCodfmYWVsuDn/rTcOrYO8LRN74+/Pq7j4aP/95/DA988hPhoQfWFz/1//r90Te+LnzgJ9+52B7dsLwtpmYZl7e1wIuCSXXfy3FduWpmyxTyKtdS6VNZPWRK9zyWGAZgrglz8dgjIaxfCJPyG0eaz2gqmuH0az8Ywssn1lm1eWsI114/dioAYGGIUW1lNPJOprRcAoaf1WTUueVH7FlQaiqNTiwvP3I19TmNvlxqdPIU0zCF42pL3wu6B6hDjpmvq+WPf//3wr/+p/84PPJnn6nd9rFHHwm/c+qXwx/81m+GV3/fD4Vnfu2LBknjsg4EsXqZDQDx38nWQQ4Moe0ysOqI1zKwOb43+khDk3qttlOQwWb5+kF6faczBwtSx8HruZjaM5KUj3Yf5ll6wOqaT7BJgaYf/3NhKf3ue774mpI3/VYIT6chBGBcttzCmMsDWCVe62Fj9TqzYnRuYQzxCNHUWZY333zz5X/rodZTS8MUjqsLLaOj+8WYacA4gaZ73/qD4fOPfa7R+x75zIPh3n/8D8P+H3xreOYLv6639K3a8rYMAMFY2i4Dq+8+Wwa266oJfaRB32mqD+s7Tn/T85mqxG0ktZ3iWUJTyKtlXCp9au0PnXfdq4tWiACwOlhGD/hS5UdTvlWhUmVJD7jcvHlz4Tr8qnhpW3WA2/baVq82VHHS/vx+9O8c04/73HcKVTSVT5af/vOnNOV7yOMrKmtra2tXnA/tV3+3v2m/+py6kUv6e1E5brL0wFSOSe+1chtvY/uIX32UKe3TjqPLzKYc10LZ9az9pp5jdchU3bv0GT6d+nfbfFXD0M510Ut/K0q3PrPoffrd2LOaTN9L99i5tvOgn/FyfctwD0W6tufbd7h2LTN9pGEKx9WFfS/47wosNy2FpxlNTQNNRu/71297K0vqNcTytpiiKSwD20ca/PeZ/l3XzoiDQEXBqSnk1bItlT7mMvNlWGIYgBBsAr5UIdIIHr1s5ExV54Vtpy93/dS2TTs7Ll26tGgMqdNXr9OnT4f19fXFSx2ZalAVdTCOve8UNhJKL/1bMwTizy8L5s1Bl+OzsmZlJ+6c0j7VkNZL225sbIRjx44tKmv6W9U62EpLk3I85WPSUkra/tSpU4uXX9dbI7js9/7VxyhWX4Fv0wjJdS34ALe/nrU/5ZUFiOoq9WfOnHnCvcv486H8tN+1XcJQ+aX96Dxao8Ne6qBV2osCePp8/d5vf+DAgdKZRkN0ZsX67NyyIJOuIysvWibMAlBKowXgpvJAYMyD6gbLmIYxj0v3AvvumVqHz9x9/nOfC5/6+B9N7vUbP/9TSUvn1c1w0n7GPhb/Un7PeXlbj2c3YShTWAa2jzTs2rWrdPsi8ecWXX9TyKtlWyp9zGXmq1h+Tm3WFYDhzGcZPaw8dZI26Uxu0gnnOxY12r/qvUqDVXa0XdultdQ5XDYtXQ0pfUlr35qJoA6MJhWsPvddx2akqJKpzti401afr7RpGwsyNHkY59i6Hl9VWVNHv85dnB/ap95nU9K1TVGlWNtZI1z7Su34muIx6Trz/6/Pt/3q90ONPtN9R+oeYtvntWB5pL/p2P19UO9XRd6Cx8pH/X/ZNWWNKqVp69atlxuD9nBcBYe0T99R0zag4c+hgkX+8xRsLLuf6z16KZii7XV/apP/fc1q6mvpHh2ryoLKjc6fb6Bpnzp3+rsalpaPUwgeYBjxuW5Tzrp2vvaRhikcV1f2/TTms6OW0QN/8onwz9/y5rCsPvr//N+L11S8/m3vDE979nPDFLG8LaZoCsvA9pUG1WfVptD+dW3VBWPidKhdMkQ6V3Wp9CksM1+FJYYBMLMJs6EGhM0QSHm1HWXeZGRLlw5QjeipGqmvhpPNLlBFQhWKKey7js3gUN6UzQ7Q32xWwNyWush5fLfddtvlf6tBbA9YLeJ/n9J4VjqX7ZjGYI2j1BF4feSrzXrSz7JttA/rpK2a/VYWzDt48ODiHFjjz49ozDHaLy4HJ06cqH2P0qJ8GyrQlDqrqWp2kx5g3PazFYxTeVN+l10PSptvWM51JOZU6HoqWpKzj1eTe/IUAyp9pWEKx9WVfT+wjB7QD5a3xRRNYRnYvtKguretRpFSL46//+K6+xTyqq+l0pvouiR6X8vM5370AUsMAyDYhNlQ8EQVntSXBVOa8iNoUrQdxZ4SZFHDyjpoVQFJXfe2z31XUeXJKhRxoy9mf1clxI9EnLI+j0+NYs32SClnKaOYUsvlnI5pDJY3Ta/znPnqK/lVM1l8QyklP62DVPvX9v79aiTqPqqR+m3vpTEfBKtruCrvbDTlUBQoSp3VZOJzq/PXplFms5VsBlMZHwQcKgi3zBQAshmhfb9yDurAtNj3Ax0qQH4sb4tlNoUZ6jnSEM/G7yN4kzuvui6V3lSOJdFzLzPf16MPWGIYAMvoASNJnSmhiod9wavRlNIR2ue+6xqDpm5f9vBINdRUORqyU3mKx6dt6wIa+rvSkauyvYzHlJsFDprMbMqdr/qdrk9rYJTxDaWm+VmWxpwBDaVPjU97GK9+ljVGq5YC7IMF+po+F6po6R4FrVJnR4nea51TOuaqa8YvR8Gspu5sycY56OOZdFNIwxSOqyv7fpjq9xgwZyxvi6mawjKwU0hD/LzeojrwFNKZc6n0pnItiZ5zmfm+H33AEsPAamNmEzBxvkKhSkHOEXM59+2XxUqttNl2cxgN3PfxxQ9iHcIyHlNfmjSKcuerKvYaYablLKoaEX5WZtMG2e7du8MQ/CjjqqUT1SBLWQ5wzFlNOWY32bOyTN0x+1lmfslKLL+Uh2/3HdjpIw1TOK6u7NkULKEF5MXytqtpLkvcTuGeP4U0+Hqsyn9RQGIK6cy5VHpTfSyJPvVHH7DEMLDa5jOzafPWEN70W2EyPvdQCD/zV0P4/Ge77+vaG0N4/ftDeNKTw6TyG5Ok2QB9jcDpsm/fCZpaafMd56qIDDGFva2+jy9+kGqVXBX2ZTym3NqMUB3iWlDHhq5XBaCURlt2rq2hrj0bdae0apkIWzrOU0NMgcqh0mSzmto+N8yeR+Vns6XObvLv0fHWHbNfioJl9FZLjoBK1w6VPtIwheMCME1tl7f1s5v0b/2u6b2G5W3Ho07woTqouz5PcdWpLm91U12rTVcImONS6W00WRLdltFTW6+ve0rT5d5tIJ1+pq5GwxLDwGqbT7Dp2utDePqLwqS85LUhnP3p7vv5xr8RwrOWZwYA8rOlxuTixYuT3LevSKjSmRposM7VqXcW9X18Y4zMXsZjyk3H2DQQ1le+ar8KYFiAQp0vaiRbYKZqtFydIc+VGjiWzqKgjII+TZahy9WZ1WXZPn9emnRu+QBXXWeaPVtLGDm9euL7gjorUq5bf//KPbMpRxqmcFwApoflbVfXXJa4ncJ3z5hp0DV68ODBxb9Vj9ZyaWXpmUJe5Vgqva0hlkSf2qMPWGIYWG3zCTZN0cv+QQi/+69D+GyHG+gNW764HyBzh/fQ+/b7iNc1XwbLeHzLeEx9aXKN9JGvCtBYw0D77PIMgiJDBnuVfgs2xcvjqHNH+TdUJ0PXWU1dZjfps31gsm50rZ/VxEjc1RNf76n3JM1+NF1nC/aRhikcV1c2UGeKnWnAXHVd3rbt7CaWt0WqomVgm34P9LG87VBp0LOF9Hl1gaax0znWfj21EVIGtXVZEr3v5d6brqLBEsPAaiPY1MVTnxXCa38xhJ99VQiff6T5+6+5PoTX/osv7geo4EeENFmabMh924iXeJ/LYhmPb5mOSUEKdUzkXr7BGiBN8id3vurBrDbCVsfXpuNlSpSnOgZbRk8/7Zh0Dsd4VlOXWU1tZzfFDba6AJvv0JrDiF/kp8a+3QtS7y1+uxzPZusjDVM4rrmMjl4lm77qlvD6t70zTMnnHvlsOPkjPxA+/7nPdd7XNdddF279oX8SnnT9DWEq+T0VLG+LOZjCMrBjpUEBWZX9lEDTVPIqNnbbN/eS6KmW/dEHAKaBYFNXz/lzIbzuvSH84mubzXDSjCYFmp7zzX2mDgMYYrSG/4zcnYy59q0GljW4lnFt3mU8vmU6Jquk56bKtM22GSNfFXjxS7m0CTS1GT3YNwVhbE1ydQDpuJRO5duxY8dmNaupbeeWLxspjTYbiajP8R1a1jglABVadZb40e990vnxDfy2+7D7Qeq9xW+XI1DdRxqmcFw5OqzofMnrmic9KTzt2c8NU/P1L98TfufUL3ffz1/+K+Grn//CLGlaNixvizmYwjKwY6RB15WuJ9VFT58+nfT+KeRVUZqGnnXT55LoTdKwzI8+ADANBJtyBZze+KEQPvRjIfzO8RAee6h82yfdFMI3HPji0nnMaJqkJhWZITro4w7JnJ0ZOfetTnHrtLOGV6o+H4CZyzIe3zIeU252TTQZ/ZYrX+M1tetm/PhlpTw1WjQ7KsfsnVx0jDabQS/dixR8OnDgwGCBsZyzmtp0bvn7bd29V/ljDeK4Q0sdY1p2w36vhqPSofeo3NqoU71fx6y/69/6mxq32taXORutavQ3bVOXRh3r8ePHL+/H1njX8ZfdK7Td5s2br8gfO86NjY3Lv1MZURmOt1tfX+9UXub2EHK/NJTOaQq7B+WqP/SRhikcVxdWZsdOB4bxTa8+EP7gt34zPPKZB1vv4/qveMpiP3gilrfFXExhGdih06Ayr/ZI0wE0U8irMkMFnPpeEn1qy+izxDCw2q4aOwFLQ4Gjv/q/h/APfj+E73hbCF/zshC2bA/hpq/64k/9v37/P/2/X9yOQNNk+dEadZWPph3JXmrntY3+l9TKQJ/7LhOvq+73XUV5rE7Eory2JbamMOumj+Mb25yOqe667GtKvy3P1ORaz5WvcbmvC+75h1TPgQ+eqcGle9BQS+hZZ1bu0YPWueWpc6uIP591Zdffn+MOLZUvH4DSvrSOvh2ndZ7t2bNnUZ7Vma/Gu36qzNgyjXppG71Xf9dLyzZq/xr1WHUf1t8VaNIIV9u//i3af9l5VX4pYKRtFfiysh8vh2nBSXs2gGa/6TO6NmCVb/qsIV45gpo6XjvXfs39lI7QlLKuc113r+sjDX0fV9/s3quyjuX3lKd9ZXj1W34wXHPtk1q9X+979ff90GI/6H95W0/f+1V1V5a3RVO+Ljfm8rZDpEH1A9VB1capCjTFQduh09nnUultqX5ggSbVCVWvHyIIo3NmbYKiNkefx84Sw8BqI9iU2/VPCeGbDobwt34phO+9L4S3fPSLP/X/+r3+jkmvo+sbCzYio4w6OdpWFFJHA1lHpRpdqQ2ZPvddRR2Alh/Km5RgxMGDBxefXzTiaevWrYsKkjoy/cjEseQ8vqmYyzH5TryioIo6uPt4boe/LpoEnHLka5NRgHHDzt8/9e+6iv4Y91t/rLq+4+Xh+qR7n3Vw2zJ0uV5xo66qc8uOtyqQo451v9SbgjLG3hcHrmzEpFGaFNDxQVDfmaeyp5e28WVe+7VtykaDK31Kh64Pf20qf9Wg1j5syZUidt71vWXHYTOkPFsqUNe6jmNVZ5FYB4UNxqjbNj6PRbQvfc+qnOheW7e0YB9p6GOfKboOmrCArtDZvDqe+cKvC/t/8K2LGUpNaPv9P/RPwjO/9kW9pW3Ocg8EaTIAJPfytj4ojmZ0/tfW1gZ5dZ2R5u/7Yy5v23cabNCSrqe65+PqGiv6Hp9CXnl2jfc9eDLXkui5lpmP71V9YYlhYLURbMJkxV+qTTtD4/enfkn7BkNVQ0EVYVUe/BdoasNCn5Eyglj7V7pVKUmdedTHvn3eVZ0HfbY9JFSVl7rZL8pDpbPo89WA8+/tc/TyGMcXBzNTymeTimaT8j6HY9LyaqasvPSxTJzyxQIiTWYO5chX3Vt8w6xqxL86if2zjvyyE/r8oiCOL+ttGjGp100Vf860lNaQnVnWwZ77VdRxUda5ZefMlraL6V6ue3XZ9aYAUFmj1cqtzv9tt91WGBy2ddpV9sqW+7Ntysq/D375fxt9dlkAKWZr/+u4fcBD5Vv77vrMo2VgM7ssX8o6ChTgUz5a0K+KBQxTOmP7SkMf++zz3hXX+2zZSKxWwOm7/tf/I3zjvm8P1153feW2115/w2I7bU+gafjlbVMHgORc3ta3w3SfUN1A36daOtYGUNnStfp/+5u28+/VNqoH+HpG1T0yPlbt2/avn3pvVRtRn6cgjNJiLwvMeNpH0XY5Ou5t9swQr3iAUFO+7jrm8rZ9pkHnVOdEbbGU/gjtu2zJ3D7TOcRS6U3lXBI918Bbn4Y2y72nYolhYMVtABNx/vz5jVOnTm2cPHly48iRIxubNm3SAxsuv/T/+r220UvbF71fL223bdu2wvdr/9rm3LlzlWmxz9+/f//G+vr65b/pffrdoUOHFv+/Y8eOKz5Hn6vfxekTvUfbKA3ap/ajtMTsb0rD0aNHk/Iv974tP7WNPxc6Pv2u6BzEn+Hz3bbVT71f+9m7d+8Veetp/z5f9So6nrbGOj6Vn6LPtfMRf65dE3Z+7aXPt7Lc5JjK8nuqx+Tpb7at3qt0aL9K0+HDhzf6Yvli13wTOa4Fe79e8TVrx6/9ivLBb6v/19/jc6Xtfd7rnmXnquo663LdlO3P8mYoPo+GfJWdX+Wb/u7LgPJF5U3nxX6nv2s7O9d6n/5ext9Dy77v/DVVdt4sfTrHbdhnpJ5jpdXSpPfqfFUd56rS+VWext/lKi92b626r8T7iu8HQ6ehr33aPc3uW0V1Nl83rPqerLqf+PssVs8jDz20cd+vvH/j+A9//8ZP/d2DGz9x6H9Y/NT/6/f6O6rpuiuq5+QQ1zer6oy+nlklrm95uq/4711f37P7jn6n+5HuPX47q1vp/XppG18v89+RVfUta4/6+5mvk1Ydn7bT51i9w76PY3Y/teNoUv9bJpZPKfUc/32bUtaVr1V9FkOkQee3SRuoqmz2mc6mfB24Dasfl10f8fWa8jm+juL3qfwvygN/bysqJ3qPrvmqtmVZ2svu0al1JLuX9XHuAEwfwSZMhu+QrXsVVZKt0p/6/qIv3pg6IPSl79+rSpL/Ura/W6XeAlFFX8T6fdwhYR2/+iLWTx2H9tH0izn3vn0lpCj/6hprooqmdRTa+/SzLBBWdEzWKIvzvauxji/lc61sWkd8WbmOG5sp+65rsEztmIrSp3Jh2yqd1vneF2vstO1sz3Et6LzZ++160L/1M36/trP8jO+TPghflvdV+Z/juonpOPoMFsbiYx3qVXXftUEMOj9KnwX/Yson26auw9030rs0tJsEm1RuLJCsY7DymtqxUJQuva9J5/8qUb5YAMVfi6n3laI6lHWCjpGGPvZZ9X1T9h3UpK5hHUM56yfAKrK6i+4/uV9FA9jKvlfsmq4KIMf7iwNLZd+X9t1WFAjy+WD127JtrH1UFgDw6Su6Z9oxptSfbduidrPVRVadDxLWfRdYPbpuUIfOu6+z152rPtIgOr96qYyXXV8WGFVZs/I7dDrbsOBJSvu4bbDJt3vrAjX6m2+j+HaADcisSkNZMKqo7PjPUjlLqWf7wdZN8nZVg9DAqiPYBGAWVHmlMwdjsQo5Feb8rHMJeQ0ZbLLR19Yh5WeHNJ3ZFHemEWzCVFlnypAzM4Fl5Dsmh3qVDXLxMxGKvnv0nWazuYs6qvXdVbZv/71cFjxI6cC22ellnfA+P4uOoe798b6sDuzTrO96Ak3tZoqn1Hv9/lK/Z3KnIZ4RmPqqG5yUO51ddJl941eJqHq/nyFYt53PG38fKVs1x1/rRddzVR3aB/7qAk422C1V27o/gOXBM5sAzILWJi96nggwBFtnvO7B9WhG64/rWTys5z3vc6jnQGgddz1TSc/R0fMrutyvdb/XM8r0rDGt+W7PtwCmxJ6j18fzAoFVUvecuD6UPbtJ3zv2XBo9z8e20feSnnWitOp5M7ru7VlN9uw2fR/q+Ybxc6KKxM95Mlu2bLkiLUXs+7Xs+Uj6+5cGFRd+F1udK+W5T3q/nqdoz41RPVg/9V6eo/hlev6T8kP5pTqLf76OPXdLL533Cxcu1NZ74/OWUk/OmQZdH22fEVSX1tx51YVdh6nPkFK51/WuNPv7lq55/S5+BqboWO35qjquOF+1vZ6JZc8qO3z48BXnQNeb7gtF+eCfX6l6uD2T2/ap+1RZfVz7U/7qM7X91q1bF59p6ddPfb6e96Z9p+aRnDlzpvRZrgBWxNjRLgBIweh2jIkR7P3QKLmcz2LDsDOb/IjKstGaRaMbq0Z22tIxtk3KkkbAGGyJI+omQDcsb/tlLG87b8uyvG2XazJ1aew+luHte6n0LsuJ51oSvY9l5rsu9x5jiWEABJsATJ4t0QSMyZZL4EGn6azhU9RQsodlox9DdGr595d1PPnnKZqqjqr4GV5+CZ8hn+0FVLGy3/czAwEsD5a3BaaHpdLzYoAmAGEZPQCTp+njKUtSAH3SsgZacoCymMaWX9ByDvqpJRg8rut5KFumJ17ip2w5HlteKN5PvKyHXy7PlwttZ0t3dFnWBchJy+fo+8CWuwGAqWB5WyAdS6XnxRLDAIRgE4BJs7WPy9Y2B4akBrvKowIlqBavLe4DE8o/reNta5gjP/8sBQv4eOos8tvEwUDbxtZdV7mPA0o6x3YO9WwL/3dbL16BI9tG510BI38/t6CkdYwVrUmv31n50Xr0Zc/aAIag8qeyas91AYCpsGfeiO5Rqe2nqoEc2qd9n2vwh76P7TsemDsLiozx7LhlZAPGLIgHYDURbAIw+QYTD6DFVNiDo62zEWkNOLuGLVCn4Ic90BZ5qcNobW1t8VOjmPVSIEi/szKrc7B58+bF6EPbZs+ePYttLIije6+20bmybfSQYG3j6TzqpYCQAkbaRj/1GdbRdezYscVPjRq9ePHiFQ8z1vba9tKlS6UjS21mnKVDHQJKm44LGJLdw9SZwiAYAFPjB5ccOHCgcBsbROLpvlY2iEP1Aw0asTrd6dOnF9/F+iwGX2HuVJb1nW4rMaA91eFVT1J+dplJCWD+1rSW3tiJAIAiasDs3r2b2Q+YHHXEq6P+woULVKZrqOGmRoeCCQpIqIOW5fMAzI0tHaVBBwTLATSl4IzNBirrglFnrQ2kKNtGA57URlKd6vz581f8TR29GsQhNgspZjOJ/WdoAMf6+voT7nkKNNm+yj5HA0tYMgtzZ+U5vqaQTvcW3TfIQwDMbAIwWX75JWBK1LDWiFFrhKOcOiDU6FAnhjorCDQBmCN1ABNoAtAWy9sC08VS6d2wxDAAj5lNAAC0ZA0SAigAsNydKFoCkns9gKYUuFFAJp4Jr+CMzT6yoE/RNhqso99rH7ZErv+7xF06miGlTt+zZ8+GLVu2LN6jAJHuYfqp91kwSoEnu7eps1hBJvuMsv0XHZO21b4IyGOurFyXzQpEMZvpqPvI4cOHx04OgAkg2AQAAAAAAABgZbFUejMsMQygCMEmAAAAAAAAAGHVA06aFRg/qwxPpKU5FZQj0ATAI9gEAAAAAAAAYOWxVHo9lhgGUIZgEwAAAAAAAAAAAFq7qv1bAQAAAAAAAAAAsOoINgEAAAAAAAAAAKA1gk0AAAAAAAAAAABojWATAAAAAAAAAAAAWiPYBAAAAAAAAAAAgNYINgEAAAAAAAAAAKA1gk0AAAAAAAAAAABojWATAAAAAAAAAAAAWiPYBAAAAAAAAAAAgNYINgEAAAAAAAAAAKA1gk0AAAAAAAAAAABojWATAAAAAAAAAAAAWiPYBAAAAAAAAAAAgNYINgEAAAAAAAAAAKA1gk0AAAAAAAAAAABojWATAAAAAAAAAAAAWiPYBAAAAAAAAAAAgNYINgEAgF584AMfWLwAAAAAAACw3Ag2AQCAXtx6663h5MmTYycDAAAAAAAAPSPYBAAAsrv33nvDAw88EG6//faxkwIAAAAAAICeEWwCAGCFKSC0b9++7EGho0ePhh07dixeVZ99xx13LD5/8+bNi5f+rd/pbwAAAAAATNndd9+9aMMCsVUsGwSbAABYMQrk6FlKCjBt3bp18e/7778/2/61L9t/Gf1dn22BqQsXLiyW3Nu0adOiQqbAk34CAAAAADBFavMeP348HDlyZOykYIIOHz4c7rvvvsUjBlbF2sbGxsbYiQAAAMPYvn17uHTpUti2bVvYu3fvouKjwI/+ferUqSyfoZE7ChSVVTEUjNq5c2c4ffp04cyne+6553KgSoGoQ4cOZUkXAAAAAAA5qM164sSJxcBJDZoEygb7aqCt+lxW4ZnWzGwCAGCFnD9/Pqyvr4dz584tRl8p6JSbgkVVASJVyu+8887SJfb0Xvubts056woAAEyDBqasra2VvrS0bi7aV9VnMZu6HRtApDzkOZ1Y1ufQqmzrHqKyroF7WoFBv8+xPZrRQEnlr2aJ+Pwd4/6jNq9eGkBJoAlVNm3atCgnug+sQn3jmrETAAAAlocqUPYspjKaSaWXTSsvogaDNRq0z7LtAADAPO3fv38xuET1BgUtNJvZDzBRXUEdi1XPf0yhfZw9e/aK32mwjeoZ+qlOoD4G36wC5aHyV9Tpqg52nVdgWeiepPuHlfPc26MZrdCh/FU+j/mMXwt6qY3a9TsKq2HHjh2Leo7Kjf6tWU7LiplNAAAgm7vuumtReSrrtPGNAlW2yuzateuK2VgAAGC52JK+Ck6ow87qBT5YUVVXSKV9aEa1p2Vs9Jn6LKWBYFNYzBJoOps83l4dwZj+eUM63Se0IoSWB0/pHG66PZpRnip/tVLHmM9I0swqfW/wnKYn4p5UTiu42GCXZUawCQAAZKFKpUZ5xR06nkYPq2NHP6tmP/nOCpYlAABM1ac//enwjne8I3zLt3xLeP7znx9uueWWxU/9v37/4IMPjp3E2diyZcvip++E0WyZruzZlB51iydqMxPD1+WUpwcOHMicKtRhBs1wmi7tmXMpUDzRWLMo9b2kdm9VW3aVcU+qpnKj8rPMy+kRbAIAAFloZJcFk6poNLFGo1U918lXUnfv3p01nQAAdPXxj388vPGNbwzPfOYzw/d8z/eEf/Nv/k34wz/8w/DJT35y8VP/r99/9Vd/dfju7/7uxfZIE8806hJw0nttkAvKtV2OSnU5zTJQ3e7ChQvk88DGXEZsFTUt31wPwwxQGJItF6/vqKq27KrinlRP5cYG3i7rDDCCTQAAIAt16OSqdNuyOarIs/Y/AGBKfvM3fzO85CUvWXxXPfTQQ5Xb6u/vete7wktf+tLw4Q9/eLA0zp2f3dRlKT17PgKq2bM029DyyQT05nfeALRr7yqgwvdKMe5JaWwlmBxLBU8RwSYA6Jmmxw45xXroz5tqGoa0asdbxEYd56h4Kz9tlI9Gyo6F8wrU4zrBKgaaNPOm6bNpLl68GPbs2bN4P+r5wSua7dxm9K/eo5HvPI+p3rJ2eC07zhswrKJnC+LLuCelsTpOjqWCp4hgE5amo0Pr4TJlE1Ojjvfjx48P+uBIPZRUjXI9tHJVjnlsY+f5VCqWOR6wrdFQ6rjW6Fgty6LRsmNYxXIMtMH9D6tES+G98pWvDI888kir9+t9r3rVq1hSL4HqAf45S206sPQdzujzempDMxp9fjhvwLB0vWkQg9q7DGJ4Iu5Jzeo427ZtW+TZvffeG5bNNWMnAOjKP5hPP4mkYyrUuD1x4sRi/fKhaTbI1q1bF51/Q84MGfOYx9Y1z/W+XBUNdf4OGSRRR7NeXcua9qGBA6p4nTp1arRK/CqXY2BO3zlYLb/7u79b+fdnPetZ4alPfWrj/f7+7/9+ePzxx0v/fsstt1x+LsSP/uiPNp7RVDTD6S1veUt4+9vfHp7+9Kc3fr++mx5++OHSv2/evHnxnKhloLaddVxp9G/Tuo3eS9uwnmbcYX44b8CwrI7rB0Lgy7gnNbN3795F3Ub1lGWbKUewCbPnGx26UO1hfVh+Otea1WaK1gn3s93Uee0rBiovfrRj3fv1JZD6PBrtWy/NzBhj/XJ95unTp8POnTsXeaTgQ9/6OmadA3X86/wpuKz/9yOKNPNFa94WfabKyPbt2wd5eGfXPNcxKNCSw9AVYF0bOv4ulSR1COn4tY8xO6vrynF832k7imnXrl2L+89YM7eQn+5LCrYoaKp7zhw7OBXwtnutOtR1v9XPY8eOVV7fY3znYPW8+MUvrvy76gptZti97GUvC5/61KdK//6Od7wjvPnNbw4PPvhg+Lmf+7mQg9Kq74K77rqr8Xvf8IY3hN/4jd8o/fub3vSm8M53vjMsA9VndH/RvchG/6bWNZpsu6qUp/a9hfngvAHjsMEPqu/iy7gntbNv375Fv8PZs2fD0tkAZuz8+fMbKsb+dejQobGThYGsr69vnDp1auPkyZMbR44ceUJZ2L9//8bRo0cXf9d2Ve/Xdps2bbri/Xv37r3i/do+xblz5xbvP3z48MbYlH6lpej4c+rjmJXvOgd2PrZt27Y4pzrX+pudd9sm/mz9v36vtC1jnueie6aV97a6nnudS+1DeVck9dobohzre8ffd+L7xo4dOy7fM+KXjk/7Vln25XouZQXV/P1KL5WDuVGZVhmOv09Tj2Vu9z/MS1wu49eJEyda7fdpT3ta5X7f8Y53LLZ7+9vfXpuGJq9v//Zvb5Xel7/85ZX7fdOb3rQxV/Y9XFSfa1pX0b1M39ll7Ub/tzraVvUl7VPf+3rp36qXptwfdU/UZ9p7/cvSE9d1dKxl2+tzu9DxFN3rq15x+nRMyhOlU/tSfUbpK8sPfT/E28fnQfvU3+1v2p+Otawdp7Jh58TqVPpdm3qjPkOfZcdh57jt/lIoT+x47aXPVD7pM/V3/X/O85br2FVf0Hvi82nb+2vGzqWdnybXXlddr92yek5q3ajp9j7dVifz17/1TzS9z9g1ovPj74VF2+g8FdVvi7YtOpc5ryW7RuI8sHuC9jdUP6D/rC5lOD63lud2bovyqOj+qfcWlQW9X9v669Pybi73pDblf07fN7nL1BQRbMKs6QbiO+2a3MCwfHxZaNNxHgc2uqSjy/tzGyI9OT9DHQ2+0lL2pe+p8m4VBPHBxzFMrQz0GWyyRlTb+66du7KgoM7lUIHbNufNAmX2Su1kj8t5l2AfpiGuj6Q0hqbMfyc26SCZ0/0P8zJ2sOkVr3hFq6BS2etrvuZrWqV31YJNbYJE1gHWdT9iHdW6D/q6jnViW7uh6j6p99ngtnhggl6q65TVj4oG0nUdSGUD7uzl6yPaf9GAmaL0+Y63uu8L66iLj93Og/JFL39svo7l64JKj/JcabX366fyxzoNU8+v8sLOSdHn2/Hl/E5X2qxzuehc6nN9B2jO85br2JXXZedT50rvVbnWPvU5+mnXyxCBgVzX7hjBJguw+6CKWGe/dbzH+7P7TNFgOO3Tb1+0nV1TcbmxwLLfX1Gnf85ryQ8EVjr9+dN+tX+lyd/X+y5T/n7Ulp3b+Pqwa9uunfgcxIGOqraG9uUDLP419XtSl/I/h++bIn18x0wBwabMHnz0wY1f+L1f2HjDr7xh4zv+5XdsvOL4KxY/9f/6/Wce/czYSVwaFgXWTcGPeBuq8oJp8aMC2t6s4wpZG1ahnNKXhaWpqCGbc/85jtm+tPVSBaFJY1plwEZO+YrwMub5lIJNVjFtm096f1UFre3Iw6HKsY0itFfTGR3++0tll8ES8+U7FHQvmvu59EH7Nh0xc7j/YV7GDjY973nPq01Dk9eWLVtapXfVgk3iAzQpdfS4Y7VtsMm+o21Ud929MrUOEX/3p9TR+vxO8fXvNp1mTQcn+Lq6Pq9qtLrPX9WxbLBOWTqt464qX432YduXlSsrkznbdzZboC5tccduzvOW89h9p7aOq6q8+rpSyjlqq69rt89gkwUJ6upQfruyc+fbJ1XtNL9dXb3N8rRou5zlycp1XRtR6fBlr+8+QDv+tuXWzpnSXFYm/WDEsjZlHNCp4vO86Lt1SveknOV/it83delbtj5sgk2ZfOLPPrHxjz78jzZ2//zujRf/zItLX/r7j3z4RxbbI8+spqJAg15z7+TBRqfZBU2/3OIv4jZLAFmwY4ojuqumuneR65jjKdhtOynj5RTHDPr1lee5WaWwTcDIrps214udK1US9e+i11BLIXYpx12DTU06nTB9KqvxCNq5arv0y5zuf5iXsYNNz3jGM2rT0OR10003tUrvKgabfD0/ZSmgou/zNsEmP4q8qiPIb5fKd8qV3WNtCem+dQ02NR2c4LdXHajqGH0735Y8qqoX+hkYdfVH66iuq3v52Qhd1S0dHR9LXx27OY89HizY5Pz3NTCwr2u3z2CTtYVTrnlru1S1m1OPzcpC3bmwQYJ9lid//aaU6SFny3VpM/uAfNVx+XNWVg58uzHlPuK/96Z8T8pd/qf2fVPGzwZcJleN/cyoZfCR//aRsP/9+8PJj54Mn/38Zyu31d9PfPREuPX9t4Z//9/+/WBpXMYH0OlBakeOHFn8vx4cGz+MWg9xx+rQA82NyoMeutzmYY/+gcRNqUyqbN5+++1hau68887Fz9wPrM9xzHqQpB6yaQ+UVBrbPlxe79P573Iep57nuei8Kc8t3/VgSv1bv0+lB5vrWmuaz3fffffle7T9u+ilv8mOHTtCn8a+dvVdZseoczDFewjS6DzqgfT+PrSKpn7/A9q46aabsu7vSU96Utb9LTN/X9X3dVxv9+69995s9T9fJ7p06VLpdv7zUh+QfvLkycvtFT1Y/f7777/i76oH6Zi13dR1+c5THezYsWNJ+9Z5V15X1Qu3b99++d9xnnqqa9nf7TurjP1d5cHqpl3brOfOnavdVuWiD7mPfcuWLZf/bf0zqe01nVNds7n1ee32QXlrn5+Sh8q/Q4cOXb5XFJV1+7tU5bHdh3QuqtqBKrtFbZRc5Umfr/uBpT2lP6eva6SIHWPT+53y3r6z6o4rpR1+8803N/r8uvRO4Z7UR/mf0vdNFfvMtu+fKoJNGQJNB3/tYPj0o59u9L4HHn0g/J1f+zuL96M53VB0k1bDw8RfbNZ5iNXgG51tGpg+WNW2Y9s61Xy5nAr7MrYKXC5dj1lfqnv27Ll8rWp/vmLchp3/NkHHOeR5V6okrq2thc2bNy/yXg0wq+To//V7/X3fvn2V+9E5U+W5aWBE57zJYIAhzuEUrl1f8VWZGbPBCyzr/Q/o4lnPelbW/T3lKU/Jur9l5+uHVZ1R+k7PNWhD+7L6ZNVn+rpKVcd2VfvD17us0/X06dNh2Snv6jpD/d/rOjv9tmXnwgaumrr6n29TdB1EYZ2T+vy6IMuuXbuyD5zr+9h94KmK77vpY5Bw39du7nNiedCk/Xrbbbdd/ndZEMiUnbs4eH/ixInS7VRe43Z6zvLk05sa1EgtbzlYf0XTz/Tlu+64fLmtC9zlMoV7Uh/lfyrfN3WsPI11/+kLwaYOPvnQJ8P3/Pr3hEcff7TV+/W+7/31713sB+1nNRlmN60udV77kQB1neR9BKv0fqVBX2BjBjjK2Be3VRRz6HrMSotmNFnFTZXTroEmsbSMOauprzzPQSNkv7SMblhfX3/Cy/7mO0CK+JFnTShP7DNSXufPnw99msq1qyC3D3Tz/YU5m+r9D+jiNa95Tdb9vehFL8q6v2XnO5PKRuDr+1wdNrlmRKuOo7qR6iJVdQQ/0rzJYEft0zpclXab4aSfCjStwixZdV72tX3ZufAd6qllxbbrOvrct090ntXRqzpf0Wy9Pma2jXnsZfmg/eYeZNX3tdvXOWlSvv35K7on+rZN2T1T7Tnlle2rLCilNOqcxfekXOUp7s8Zux1fpcl9WeW6yXH5ctv3yh5TvCflLP9T+b5JDfYt20SJa8JMKDDz8Qc/HqbkXb/zrsYzmopmOL3tzNvCG7/xjWFKnv2UZ4frrr4uzGVWk1H030/HtaDUKlTUV1nXJfDiym2bYJV96U65YqS06ZpQJTLHDI6ux+xnNOWsuNgXdpvzOPU8nxI7prnfX6d07WqElt2PdF/Tv4dqaAC5LfP9D+P4T//pP/Uy8+hDH/pQePzxx0v/fssttyx+vu51rwvf//3fHx566KHQ1Y033hje/va3t3rvu9/97vDwww+X/l0zlJeR2n/6TrTvSd1f4oGGOWc1ldHn6ztanYEKbMWdpE2pc1HLF9mocu3bL6+77PwyRCly1Dv9gKrUWQo+YGGDlNrQedX5tUFF2pf6L/zS0ergVDnuowyMeexefGwq932X+dzXbl+PA2hLxxbXt1SOrKyV3TP10gBQbWvBkfgca5uimTa5ylPV0qhT0WbmyRyOa0r3pNzlfwrfN6tqNsEmBZq+833fGZbRr/7Rry5eU/KeV74nPG/z88JUZzWVdUrb7CYfcNJNc5meGaCbqG7I+hLQF7oqBgcOHGh8I1ReahSBKlv2JZ+yPuoUTeF5TbYPnY+pUvBF14+ezZNDl2OOlwnLWfasoqvrYtnyfCpsNtAcniMwp2s3vvccP358ZTqbsHyW9f6H8Xz91399L/t94QtfmLzs3Xd913eFd73rXZ0/U4Grpp0eZuvWrWFVqbPTlrUpesangjV9zIhWnUd1VZvVrQ4t3ePUAad2h37fZUayjsXqVmqjTWEAzFDG6MzzAQble+q1aG3Mrkt3qdxqX0XPGrHnqapMqZzlrmuPfezxubeBhxcvXgx96PvazZVG0yV/y57bZMcX3zNVzhRA0f3GP7tW2/m2uc08K+rIz1We/H17qh38SmvT2Se+XE9x9Zup3ZNyl//YVMvWMmIZPcxK1aymoZ7dpJuYvoj1RaqRgzbN1OtjCqQ+V5+lypGCaWpM6diUFqVDP1M/V+nVe+zLpO8vvr7zbOznNSnt9uWWo3HYV35Z2nx62+pyzH5dXlH5y7F8nrHlU7pUJuyhpQpA6BzoZR2nY+X5lKgRYiOM5yz3tdtVfC+OA+Gq6Nvztope+lvRkmX+OV3x9sa+T1TOVe5139Hf40ak/m5/0z6076aj9uwe568v/Vv7Sl1yLXd67b5kadL2du+tu99qf3FatI8my8fZKML48+2+k3LPz5GvOS3r/Q+r7Qd+4AcaP5w7pvdrP2jOtwF1X/H3c3uYd25WJ7flprTEkTrbbOmpXJ1X/timMDt/mfnvVJ1HdXQ3eeU45zrf2pfaoeroLVqiTN/duQdDTeHYhzLUtTtlOka7L8bLFWpQm7XBtZ3dg+I6Y9GzmlaxPHXtt5r6M3nGuietuotfCkjO8VqoQrAJs39WU6zPZzdZhcVG9KvComUPrINHabQOnpzrDmtf+lwdm27+9mwV/dsqD8objXSs+lylU18O6tBSZ7FVuJSnfc1q6jvPbARg0YMCh3xek+kauOszv1R+7Eus65TuLsd81113XXHOci93YsuRtGXXkirgui7selPD3zqUx8jzqbBnsIw9CjCHnNduDnElM77GlUbd91Uu7Xk49tK9S/eMonuYyq2NWrSXZv75kWlqXGgGii3fFwcHVO7tu0Lb6nlax44dW5QFuzZSaDsFP/QePY/Cri+lRaPZbK3wuuBI1/T68qt9WJDI7ru2Vrq+L3U/qAqWKD+VFr0sLU0aokqLPlv3Rn2HWb7oPqa/KS1KQ9U9JFe+5rSM9z/g2c9+dnjve98brr/++lbv1/ve9773LfaDdnynp1+9Qvf73HVKfTfYQCPdT+3h7bnpHunbufbcpqnQd9uU0tOVr/ON3QGs+pnOu7Xx9Z2vvgwrZzajINd5m9Kx+7pS25meY1+7OfjZHF3OSdnx+fui2rfxwK14uzgopbwru/5zlacpPDsrNX+bHOccjmvse1Lf5X/qHvhSucg5a3QKCDZhqWY19TW7Se/1o2J047UR/fasGXUy+WfQ5Ky8ab86bnU82QgDG6WitFhDS5+tilVREMICTdpG+8k5k2TMPIs7sLQP/S71FX9RthlJeObMmcXPLrM8hsovqxB2CcZ0Pea4s7PvstiEKj/WMW/Xm1ElS9ehzWIYOs+nwq6ZKZ23tnJcu7nFFWUf5LD7vvI+fnC4Aillz9Cy7wr7m8pi/BwdNSr0ewVl4vzQfVHXhr8vid5vHWMqF3UBBX2PazstXRKPlrOHpGt/1slW1ZDpml4FkSxQpXRpW+WrXa/6qfuuLfFS1clm389qkDUdsGADQPR5Fy5cWNxnbLStnW8FoPR3HVdRHufM19yW7f4HyF/8i39xcS02neGk7XXv/gt/4S/0lrZV4OtgqlPaIAqb2Z7zc6xNpe+HNs+eS52VqnuzvnP0HWCDJm0Viymw59ssC19Ohj4ulSu/5H/MlrbX96Z9h7Z9JEDReRvz2L34s3POShzq2s3F9z80+dx427I89Mdv9xR9h6l8+WCRr0NamfNL7RXJVZ6msMJEHcurJucoPq4xAk51nzn2Panv8j91l77UpzeFga85EWzCUs1qqprdpBHDbT/bRjXrBlZ2Y1XafJAn183OOpCq1kZVJcr/vSjgpJu4ouX6kui7Y3XIPPNL4InNPEl9xUGDNmmwL8y2oxGGzC9LY9fGRdtjjmcgFE3PHos6bNWwtxkiRWzmXPzMqSHyfCpsdNMy6Hrt9iFOS1mlW9eND/jpGXx1rLFQ9x3gZ4jaSNCy4GLZCPMi1sCtWh/fj5xLDeq2Ta/yQh18CtSVVfDt2W+2XnmdJgMWtK3t0wcDYxpkYNsV5XFf+ZrDst3/AB9w+shHPhLe+MY3hic/+cmV2950002L7bQ9gabu9B3mv8d074tH6Odqe5q6fZc9J8oGA1SxmbhWr/ff077THPn489k0f7ueD3Us+tklZWywSO7v0DGPvWzwYRz0mMu1m4sPBjV5zqXfti4P7TOUPwo0qWwV5Y3Ve61doe2qBhjmKk+65/n0p+5ryNl5lr4mnxkv19hkpn9Z+WvSd5Jy7xj7njRE+Z+yB77U1p9r+ssQbMIsKFCUOqupbHaTovVtRhLYTBKbXVJGASGTM5iTusSdH7EtfhS2GjH6QqjqzMppyDzzX9iqCGmUe5OX/9y2abAv27Z5O2R+WRpzBZuaHnNckZnKmvRq8OgeUXcOfCUgtbKYK8+nIn5o7Jx1vXaHUNWg8Q28unOiY9WraaBQDR0FY8r4vKtrGPrv4Krj8oH0pg3XJum153tU3U/9si45Hzyre47dQ/yMqiJ1dZch8rWtZbv/AZ6WwvuJn/iJ8F//638N73jHO8IrXvGK8PznPz884xnPWPzU/+v3f/zHf7zYjqXz8vHff6qX6GWdpDlUzQYp0qSDzFN7TfuOO3P97GW/qsEQA12KPmuIZ/wOKe5XSF1i1lYR6Xo+9B2csg9r+/k2YNfz1vexp3bE+4HAbWdJjHnt5uSfX2zBoBS+zVqXh3GbQee96J5p29my6Qo6VQXscpYn35ZJCX7Yfoaye/fuVnVo3y5JLev2CIU2172Xmtax70l9l/8pO/ule9CyPQuLYBMmTzccdQI37dzMMbtJn+unYFd1IvmKSq5ZTfpsfWZqYMEe5Oe/oGy5ON2Ah2gkDJln8XMx2gQucsxG67LO6tBlzNLYdRRQ22Puc8mEtvy6+LrPpHYW2xJsQ+U5VmON5LicVKVN93R/z6+qnNeNTKz6jLprInUNc5t1ZDOsqj7TNL1umqRX6p5B4bfNeQ37GUh1afD5Fg+kGSpf2+L+h1XwlKc8Jbz5zW8OH/zgB8NHP/rR8IlPfGLxU/+v3+vvSJN6r/DfZ/r+i0ePd+2UjPdV9V79zddv/THo32Xf4/oe0Pd20QAJP/ipbinXHHwnV1Hnu1bGsI7WZaF8t/Osc5FSPg4ePFjbXkulfdWxc1HWF9D2vPV57Cl9Nv4ztc+c7cEhrt0+2PNYJeW5uEq3zXxRsKcuD/1qIjbYquhc+hlGOucpM0ZylSd/HOojSRmo5POq77pm20Fb/risby7luMquJZ+Oixcv1u4n9X415j2p7/I/VQ98aRlgmesxlCHYhKWc1ZRjdpO28ze6uinYfjk3v6RPF7pBN73p+Ai/bsBlI+b6MHSexV/UTfMqfn/XWTZNGx5jlDEbpZ9rFFDTY44rjU0DoDbaxZ61Ysvy2ct+Z39P4c9B3XXi0586Uj93niO/Kc1sistJ3TXiy2/VqK62SwyVjVxrQ9eXPWi26ri6PEy3aXqbbJ/rGi5aTjQ134oad0Pka1vc/wA04Z+rV8e3DVO+3+KOyKr7kh/MUbdUrS3HWrQslwXCyp6Roe+gsjqIPt93UKZ0wLXlZzgU1SV0/FV15Kb3eN9BmvLets/xqOqIVb6r41M//bONyyj/9f2dawR9yjO57JnVZZ3Obc9bn8eu66yqrKrc2/Wtazj3jIS+r93U2eRNt9e5UFtf6VdeV93TlDbrt1AeVq3K4fmyULV/P7sp5d6aszz5561qP1XtbeVBkxUWurLnqbaZEeePS+WuKq2WP2WrUfjB6FWBK+1H5y91ZZax70l9lf8pfN+UsfNhgwaXyTVhJp79lGeH97zyPWEqHn7s4fC3f+1vh0cef6Tzvq6/+vrwU9/6U+HGa28MU8rvKc1qalsJsec2+JumglcpI278e1JGdPgbd65l9FTh8Uv4pB6zX4NXeTjUkldD55kPvqSMZq96f5fRBG1H0UyhjLXV9ph9hdFX2FLp+k3pgLDzGZ/jovTYdP+UgKyfzTSl2TBoZ+qzLVKuEZVz3TusLNuSnEXP/mtTiW3yHdQmoGDBYX3f2UNjuyy51uY7c2hN1mtvK3e+AkAfbKCQfqr9YvcpdWipDqdOOdW3ikbha1ChvvfizmW/b9uffsbtIe3bOs6K6uL2+foMa1fFM6rsWbHq8FLHoHWk67tI91+l3b6jdZzap6//6z6t/y+qg+r3/vvCVkNQmrTPqkBVUzaTyjpBdVzKL31/6N9FM1r8YC+/eojyVO+L06j92vdR3Da3jjZ/DnTsqlfEdXmlUYPu9B4/u7soLfocnQvtU+cibj/p9xcuXFiM6Nd51jN0Va50Pu28KR026l4d6rmovGi/Oj59pqVNx6yObJshUtWR2ua89X3s2l7Xsj2LzI7LrkGdE6VJ/+5rMGzOa7eqfNk9JS67Tbc3ls86J3b9qxyonCs92p+Wl7PrR/trsjy2BbmlaiC38soChqnLk+YsT/qb0qrjVMBJAcF4qT4LpKh8WeBBn7G2tnZ5dlZqEK4JnQt9fpt7gd6jdOsc6LiUzyqnNvBN+WPlpW7/OjZ7TrsFTf29VvtRmVF++yUJlVfWb6Z9+DI4hXtSrvI/xe+bqr6lnIM7J2MDrf3Ih39k48U/8+LOL+0HxQ4fPryxbdu2TvtYX1/fUFH3L/2ujj7Xtlc6Uj9j7969G7ns379/49SpU63eu2PHjuT05zJ0nm3atOnyPg4dOtQpj7qcNzvupvk8Rhk7cuTI5f10keOYc1zb586du+La1j7Pnz/fKj9OnjzZqMyklrlceY782pZjT/doXwbb3rMlLs/6DmhaxoqOReW2Sbr8/o4ePdroXpxC16iuH3+c+hwdv67rptdln+nV/mxbfU6T7cvSrnOU6z7YZ76mHEsd7n8AUu8RujfHL/ub7mNFVCcuu+/bvov2W/Q5Zfd4fbbu2/ou1T1bn6l/62f83artbJ++nmj3/aLPLfseqMuXlO+7tt8j9hk6zrJ80XdMWRqLzlvK9lbvUTpSyoXV+f13X9m2de0n7cvOs71PP7u0x4voM3xdTflr7QtLc1W57nre+jh2n/92zvU+vV/lu+1xdZXj2k0tu/6cNt2+yTmxPEzpzyqi96e0e3QMbfpXcl5L8X700nlUuuzat7aTfm/nVp/TpPy3afd1qb8X5Y/2p3Q3rW/b/cOXMeWB34/93fLIzq2VoTndk1LL/9S/b4zlc9t21pTR8uvgE3/2iY2/9It/qVOgSe/XflDeuZ6jQuJvCE079lM6D3VzaNIZ1STdbW88cQdoWSMtl6HzzH8ptL1B+/d3OW/WYd2kQjZWGfON3S7aHHMcrOmahqJ8bJo3qgg06Qhtcs5y5znya1uO+wo2+c79Jvc1fx3E5Uz3/qYNoj6DN/772Dd0yj5/2YNNue4LfeRrjmAT9z8AAJZbUbAJWFbWjmgywBUoa78vaxuJZzZ18IwnPyP8s7/yz8J1V1/X6v1639v/ytsX+0H5s5pyTK+Ol02oe3ZTvNRM3fJqfrplzge71a1TWyVeejDlgX9dDJ1nuZ/X1OW82VTgJktyjVXGrNx3XQKuzTHHac/xDI/4PDZ9tpu9P2Wasy231/Q85Mpz5Ne2HPfFL0vQ5FmFOg7bVuXNl1V9l7Z5VlMf9J1mSxnoWPU9NaXnZQ0l97OTppyv3P8AAACwLOy58HHfANDEiS89T66v5UTHRrCpo5c+/aXh2LceC5uua9ao1/Y/+a0/GV7y9Jf0lrY5s2c15XoQqj27yfPra1YFAlKecWE3Cv+wPttPl2cz6LP9gypTaY1Sffn5dZL1u9Rn3bQxdJ7lfl5Tl2cg2fE26TQcq4xZp3rXBxC2OWaJO727PsjTn8emD1b0n621eOv49Y6brI+dK8+RX9ty3AelwV/LTZ+1Zw0f//1m+5xCJVbXvl1zSk/TwPBUzlMOcaC6y3FNPV+5/wEAAGBZWLuqqj8RqGNtfd+GXyYEmzIFnE7+tZPhwAsOhBuuuaFy2xuvuXGxnbYn0DTMrKY2s5t8p0hdB4k6+20/cQeSRhd36UzXg+IsyNCEPThWHeJ+pLyCd10798sMnWe+U7brzKius9HseJvMjhirjNl+cgWbms4IiR/iHM/Aa8pfH6kPMG1TBnQObPSSPdR26DxHfm3LcR/87FOVx6ZBAwWh/eACeyCqrouxZ7noGvAPZ62baVU2yELfYX4/c6Xz5M9JkwED/vjnkK/c/wAAALAsrC8grocDqe69995FW13laOx2el8INmWipfB+6M//UPj1W389/MA3/0DY/Yzd4blPeW542g1PW/zU/+v3p289vdiOpfOGm9XUZnaTnzlS10HiO8v37dv3hJtI1+XZlOYmX2IKNOnGZTM+lH7fMb5nz55eRjEPmWc++FK0jxQ+QNPm/d7u3bufsM86Y5Wxs2fPXl52aehjLjoele22AdA4YNz0PPpZUXUz2/w15AO4Q+Y58utSjnPSdeyDmU3LWFGwQWVW19oUltCLlw2tu97smllmx44daxx0Vz768zmHfOX+BwDA6pjCAC6gbxrUHfezAU0nVxxusFrO3BBsyuymJ90UXvvC14af/rafDr/0nb8UPnjgg4uf+n/9Xn9H/YWnzjZ1oKsjJedLgZjU2U3WaVP1zCSNRvZL02kmkrH3dVmezaZV2siJOjo+dViqo9IHMHQTsxuZ9tPlWVBVhsqzKT2vKX5/m4DTUGVM575shtRQxywqmz7QowBo0/KofFFA2o8E6VIOqmYW6G8W8NW12ORzcuY58utSjnNR2bLvJl0b586daz3CSYMT7L3ab7zs5lji46n6PtPf/P3Ad1ro38vy7B/NXLPyp3tMyuwm3fN8o3bq+cr9DwCA5efrF8uy5DFQR31uKvu5B8ljud19992LfoeuK/xMHcEmTHJWk35u3749+6to5kPZ7CYbdawOoKJKk4I6GmFcdpNQh1CbZyfE1Jmkz6makaQvOQWQLNBU9LlKjwWctL3yI/e036HyzI/6b/O8pnjWQNfOWH2+paHJyPGhy5h1ZjZ9tlHOYzbqeFTASfuw6z2lPKrs6jrWS+fR8jBelqqODyzovWWVRG1n9w2dh6ajT3LmOfLrWo67NKpVthRkspkqKocKNHUtJ34Gb9s1oC9evNjo+Oq2iZfPrFoeVnniZ/34pd90/Rfdr3Ont2xb/zk59q17oB2Pjrsq4GnL4Pp7UN/56o+lzUhl7n8AACwn1UlsUKQfMGNL8+p3fQxuBaZCdWf1D1jwAKhz/5eCk00HMM/SBjAhhw8f3lCxHPq1vr5emJ6jR48u/r53797L25w/f37j0KFDGzt27Lj8O/1d2x05cuTy+/T33HmzadOmxc9Tp05tnDt3buPkyZMb+/fvX3y2Pk9pq6P3aj927Pq30q/95NBHnulYlW5/vP6l9+pv2qboXPr3F5UxpcHen5KHRSxdOs4mhixjduzaVw5tj9nT8en9vjxqv0qrnRM7bzpe+zx/nrW95UsqXw5UPrQP5Yv+bemybbZt23b5903lznPk17Qc6/pUudRL5U7lw99PdK6t7MYvXbe+LFuZ1+9zUfpsv03YfVJpib8j9Lv4/mjXpr9+9VJ+2vHH/P07PmbtW3ln17K/Ri3f/HXUZ3rtHFft298TyrZX2bDty+oZ8bEqfba9Xkqbyov/PugzX1OOJfV7kvsfAADLydd/VV/wL9/GBpad6u4q91V1fWB9fX1x38zV7zp1BJswKb5yMuSrqqPPOqJ1Y1D61OFTtL06VWwbHzjIydJi+WSfpc6opnQMeq/tS2nPnc4ceaaOLX+u4spsXKnVPos6XlPf3/bmb+lsk49DlTHr4G5TXnIfc0zHomP2+WDnS+m2DuFcfGe/0efbZ3e5too+J2fakVfTctx1UISVaQsq9EH7j++FdXzAou7+6O+rVffToqCE7ncWcFOe6zrTv/Uzzg8bZKFXHAzsM71xALxoWx9ASUlLXcBan2354r+XU+99Q+Zratni/gcAAIBlZwOFgTJ7Mw7wn4M1/Wfs2VUAsAw2b968WHZIyxNNbckgpUvp03JG6+vrK3HMVdbW1q5Yzm9OeY785lqOq44nx5J8QFvc/wAAALAqbFl+/3xVQLTUopZjX6WywTObACATez6KnrU0NfYsD/88l2U/5jJ+XfGi57hNPc+R3xzLcRmtk79r1y4CTRgV9z8AAACsCgUSVimYgHSHDx9eubLBzCYAWIGR3Nu3b188kFDpUvpW4ZirRh1pdIlo9oce7jmnPEd+cyzHVeVOD6td+oeOYtK4/wEAAADA6mFmEwBkog41jVhQx7VmF0yFZmuo009py93pN9VjTp3Z1Fegqc88R35zKse33377IjCmnzFLO4EmjIn7HwAAAACsJmY2AUAPI7pFz3+Zgp07d15+Hs2qHHPK85oUaNLMprnmOVavHKsD39JYNDNPQahjx46F/fv3j5RCgPsfAAAAAKwqZjYBQGYnT55cdArbQyLHpOXi7rvvvsWyWqtyzKmzmvqa/TFUnmP1ynH8HCYfaFKa9awmAk0YE/c/AAAAAFhdBJsAIDN1AKujzTrdxmKd5lrKqO9ltaZyzHVOnTp1+d/79u2bdZ5jNcvxoUOHrijLVuYUSFWwDBgL9z8AAAAAWG0sowcAPdEzVU6cOBEuXLgw+HMrtISRljJS5/mQHdBjHnMKBZhsdlPur7+x8hyrV471bCZ16F+6dGkx20kd+/p/YCzc/wAAAAAABJsAoOdO67Nnz/b2bKCqoIo6ycfo9BvrmFMfXH/XXXeFO++8M/tyY2PmOVarHANTw/0PAAAAAECwCQB6Zs9/GWrmgZYAu3jx4qgzHYY+5rFNIc+R36qVY6AN7n8AAAAAACHYBAAAAAAAAAAAgNauav9WAAAAAAAAAAAArDqCTQAAAAAAAAAAAGiNYBMAAAAAAAAAAABaI9gEAAAAAAAAAACA1gg2AQAAAAAAAAAAoDWCTQAAAAAAAAAAAGiNYBMAAAAAAAAAAABaI9gEAAAAAAAAAACA1gg2AQAAAAAAAAAAoDWCTQAAAAAAAAAAAGiNYBMAAAAAAJi8+++/P+zbty/cd999YycFA3jggQc41wAAzAjBJgAAAAAAMHl33HFH+MAHPhDuuuuusZOCAdxzzz1h586di58KNCr4BAAApmttY2NjY+xEAAAAAAAAVFlbW7v8b7oyhnfvvfeGU6dOLQI/ly5dWgR/9PPYsWNh//792T/v9ttvXwSaulhfXw+bNm1q/D4dowJdJ0+eDHv37u2UBgAAVsU1YycAAAAAAACgLtAR/38fAQ5UB2DOnj072NJ2+qwuVD7aBJrk1ltvXQTTmE0FAEA6ltEDAAAAAACTdvz48Sv+/+jRo2GKNBtGQZlldPjw4XDu3LnFrLIhZvt0yUcFmTTjqg3Npprbs6KWudwBAOaDmU0AAAAAAGBWM5v07CbNOmk7c6UvcwtStLVv377FOeiLzSpSgEuftWXLluTZUFp+T8vftSkb+ky9f25WpdwBAKaNYBMAAAAAAJh8oOnIkSPhjjvuuPz7EydOhEOHDoWpWKUl1/oO8mmWjj5D57zp8ncqE21nXun9+tw5ncs5pRUAsNxYRg8AAAAAAEyWlszT83fiwJJmr0xJnzN9Vo1mKDUNGNmMpLZLLGr5vEuXLoUDBw6EOaHcAQCmgmATAAAAAACY7KwNdaYrkKAZJz4AYUvpTcVUnyM1R3o21O7du5O3V1lQsKhtAFLlSLPm2i6/NybKHQBgKlhGDwAAAACAlr7wucfDZ//Dn4ZH/mA9fOHhx8JVN14brv/azeGGb/jKcNWTrh47ebOnpfJ8kElBJz+TYypL6VlQDHko8JP6nCblvZa/05J7O3bsaPV5Bw8eDHfeeWfYtm1bmBPKHQBgSgg2AQAAAADQwmd/72JY/5cfDV946PNX/v4/fip8+pcvhM2veUG44etuHi19y0AzTfyyZlpOL57VMYVg0549e8ZOwlJpEvRRoEjbHz58uPUzwfSMqKkty5iCcgcAmBKW0QOAEnffffcVDyAG0A3XFABg2QJNF3/u954QaDL6vf6u7dBt1oZmrXg+4HTfffeNupSePnvfvn2LdGB4ChTp1WX5PAWrjh07FuaEcgcAmCKCTQBQQMtzHD9+fLEUA4A8NNpUDeK4wwgAgDkunacZTWGjZsONsNhu47HHB0rZci+h5+vqnp7V05VmtmhgzM6dO8PmzZvD2tpa2L59+6JDX/uPA1ra3raNlzHT+/T++BXvQ/vVsegztC+9T/srOh69V9uqHmXba1u9Uo9P7/fv07+1PwVr5kqBItUx2y5/p/drZlzb5fe60rnW+dS5t5fOi86Vzrn+rv/PWe6KWFDXyqCVDw0UK3u/rhdfHu3zbXtf5vR77VPbaJ/6W195BAAYD8voAUBElVY1bC9cuDB2UoClo1GnW7duXTRM57hUCQAAomc0lc1oimm7h3/nT8OTdz2j93Qtm7Il8hR8UhDKOrU1SKztEmqizm91nGufem6P9m/Bi7Nnz4ZTp04t6i+qu1jgS88T8gPTtA+bZaJ0FwU/tH/v/Pnzi/2r4z0lIKBttV2Tjnpr3+i9Ojal2dKh/ej/VS9TevXveJnCKbNAiI6rDQVYdM7GqJMq7xVAsXyPg10KACqAou18uclR7oqed6W8UNlWXlhalAYF43RtFF2LZ86cWaQvnl116dKlcNdddy2CQDo3Kn9Kl7bVfrQ/vbQ//X/uPAIAjGgDmIjDhw9rXGDr16ZNmzb27t27ceTIkY3z58+3SoPep3RoP9qf9rtjx46N/fv3b5w8ebL2/frsqjRqv7loX1WfpbT07ejRo4u8UR4pv/Tatm3bxqFDh1qfg7HpmJR/586dGzspGIFdw0OXX5U7fx3ppWvr1KlTS7lPXV9D3acAAOjDp37+9zY+fse/TX5pezSzvr5eWS9Xm8O3f9rW31S30fvVjtFnFlEabLuyeo/qRF3SYvvXS3WulLqUvVLa2cqvsuPz7di6z47bTXqltJX7Kh/K97ZUly0qX75voq9jU3nTOa+icmR9HWW6lDttb/0eOua6slZVNnQ8tp2OS/0VZeXNl52qPMiVRwCA4bCMHiZDo100YkwjafxoK6NRLPqbtvEv/U6jYfTQWI3W0sgem5rdZO1um94t+nzNallfX1+MxPFTyuOp6p5GgfljiEcV2ciprrQPHatno30sj/oakWbLN2gavD5v9+7di89UXul17ty5xegjW25iTpSvOjaNihxrGQWMw0bNDf08IZU5LSeha0llz19HuqaVJt17mtzL5rBPXV+6byu/q+6pAABM1RcefqzX7fHFpbNUzyirl8dL6bVZCs4/80ZtqLLZEXv27Lli9kgf4qUCqzRpq1ibTD/L6rpq/9ixx/k6VZpx0yW9et9Yy+eprNoSc1VU/otm9uWi8q/6u/KgbPl4/c1mDVa1leJ8rLqedEz2ebqulI6p5hEAoKEBA1tAIxpB5EdrpY6cj2cXpYxE0qibqpE3+r2N+GmSFm1no63svRpR1pX2ER/nEDNx/MinqhFkbUdXadTSmDOiNHJKLyw3Xc+6NjWiTiP4/CjSriNjm7D7Q9UoWhv1V7XNHPdpuOYAAHPFzKb+qY5WNtvC+DZa0zqFb2/WtdF8PbGsHdR1ZlPT2UX+2LumPU5/SttyzJlNNpulbZeW6rdV5aXvmU02Ky+lb0Bp7WNmk58ZWHeMNousamUCv7/U/hJfhuM05MwjAMBwmNmU2eOf+Uy49PO/EP7oda8Pf/ht3xY++rKXLX7q//X7x//sz8ZO4my0XXNXo278aDNbf7iM1grWiBnNzin7TP3ej/TRyJuUdbK1nrL40Tg5ZvvYespxGvvmRz6VrWutfPGjCpuMMMwx66stnRelfeiZLRieZgXaLCaVOV1LWi9/yHW+bW10qbr3aJSeXiqbGlG7DPv07OHAug8DADAn13/t5l63X3X2HJi6WQ1+RoPe0+RZRr7eb/WdMmpfqh6kWRRtnw80Fp/2stkr4lfl0DN3psza+21nJalc9TVDLYVWTLE2aF17edeuXY1mvaVQHd/3S9StimLlR1LyzfpB6vhrKW6Hj51HAIB2CDZl8tgnPhE+8b/8cPjPL39F+JO3vjU8/O/+XXjsjz4WHv/TTy1+6v/1+//8l18ePvHDP7zYHv1Ro8NXlqsaD3pwpRolWiKqqsMzrrxUVdSL3uvT0yXgpPeqMjj0AzAV4LLGW9WxxxXLogeUFmmypFdu+mxVbpmCvxp0PWqQp5aB0/IORUteDrHshwVu6xrJ1vBSh0tVQ2su+/R0veleZkEnAADm4oZv+Mpw1ZOvSdr2qidfG278xq/sPU3LRHUJ1c/q6mi33XbbFf+fGkBQfcXXPeo6qlVnUd1RA5Tmtty2T3tVft58882TaJulsLqmggxNqd6p8z1mcMJ/ti3XX7a8tOrKZQM92zpx4sTlf6eWZ9suZ53d54MFmKeSRwCAdgg2ZfDwffeFC6/+zvDA8eNh4+GHK7fV3x/4F8fDhe/86+Hh+z4yWBpXka+cxCN3/O99RbpqVktcMY+fmVTHj8rrMopK7x1jHW11ypuqSr0qetpWjRqlNfXZUWM+t0Vlw55FBfRNZc0ayCmNXN/RouD4nPdZNaJxzNGlAAA0ddWTrg6bX/OCENZqNlwLYfNrnh/Wrr16oJQtB9UL1Pms58RWveyZuyZ1wMuqPzNSnfoaaKn2jzrylY9N6m9j8oMgbfZLk+NW22/semf8jCSb6a/VF6xc69z0tfKHb9unzkLy/SG5Ak5xoMtfl2PnEQCgHYJNGQJNH3vD/xge//SnG73v8QceCB97wxsW70c/4opn0UiXLrODUitlxs+YiUfSpdJ79LlDz8IQH5Sryzd1TKsC32SW0JgVfvvs1MAY0IUPfO/evTvpPXbNl9075rLPInafyLHEKAAAQ7rh624ON3/X15XOcNKMJv1d2yGdLYen9ps6xete8VJ6KZ3PFy9evPzvMdpWY1DeqHPeOurPnDmz+KmBP6dPn57N8oC+Xd/03CmwNpUZMFr+X2kpOgYLiun81C3x2IavpyvAo76Tupefbdi0L6SK71vw1+XYeQQAaCdt3j8KaSm8//Ldbwobjz7a6v16339505vD1vf8q3DtLbdkT9+qiwMiZR2fCjTYjKZjx46V7i9+f9PlE5QeBWFstI4+t8lSfKLtl3H2jQJZY40utJFxKct0ADkcP368ccDbl02V2TiQO5d9Vq0Bb897I+gLAJgTBZKuf/43hYd/50/DI3+wHr7w8GPhqhuvXTyjSUvnMaOpObWT1NZKrROoHuEHragO06StNvXnE+WgNqTlkepnalcOvSx7Lr7d2OQY1OZXuZjSs31UxvXSMSlwqgCKVlDxAz1VP1ZA5dy5c9k+1+/fViSZqrHyCACw5MGmLzz6aHjsYx8LU/KnP/7jjWc0Fc1w+pO77w5f+aY3hSm59jnPCVddd12Ys3id6boH29eJgyFtgj5+jWFV9psGm/TeKVcE29qzZ89on20j26bU6MBy86NtU0cF+vtXUSNqLvsso+vPljQh2AQAmBsFlJ686xmLF7pTx3GTtpYNGrPBgSntrDGeT6S6lZaqG3pmjTrhrV6nz557XcsPAm0yw0blypZmbCKeNaPZNk3b8XXiZ0gpnaoX23LvNounzfOFi8qdv17GDrb6669qWcQ+8wgAsILBJgWa7v9rrwzL6DO//CuL15Rse//7wnXPf36Ys3gKdtdggg/yqHLZZhaM0qDOWHtWVJNR/Ms44l95oMr7mOssW/AvXu8d6EM8QzL1PuI7ROLnxc1ln1W09roah02fhQcAAJaLLcXbtMNYwSlbrcI6nqtmN8VtQ72n75k+6tTP9ayb1CCZf6aN8rRNe3KIvEkVDwBtkq4mgzaVb3auFFxSXdXkWA1D+1dgRfsuos+wVU302RZYaRNIKSp3ujYsL3OWyabiz/bX5ZB5BADIh2c2YWnFFdEua1DrQZRWSVeFpqzCk8JXfppUeDUaaegl9DZv3nz54bt+aYqyh/MqcKSKnv6tiqHeX5RmVQS1jf4enye9r2j/fYw41D6tgts0GKn36Vh1DEpz0fNmbF10O1a99J5VfyDxKmtbjn1DOt7HXPZZxa4/f00CAIDVXUKvaXAjDqLUtbPiz2hSP+/rOZNNjjmlvqR6lU9rXVvy/Pnzhb9XEG8qz9bsMkjRZsakvPy50LNL/d9yBJsUAPJLVpfRZ1lZzllH9mWhaZ7mHCiqAbUmXtZ+7DwCALRDsAlLSRUgXwlS5aNpg8WeI6QAiq3vrDWCuwSa4oqdPS+ojm0z9DOF/EN5fTBG+WnPnFJ+qHGnJQyUTs1MsBGJZZ3N2lbvtX37UYfab9GDf/sYTecblU3zVkEjncv19fVF+v1oStG/LfCmfNR2Fy5cWFSa9Xu/LdBEH0tdjL1PXd92jROMBQBgdZ04caLVADvV5X2bQvup45/XmzoI0AaTFfFLuhW1g+w5sWXq3t+0w7/pM4fnMMM8Xr2kyTJ6U6NzmDI4a9euXVf8zFHu9P8+QOuDPlW0f7Vv69Kd2g7QgNqqazBXHgEAhkOwCUtHFRL/DCAFNZpMpbaZNTYLRRUvvf/06dNZnuujil0cuKmjbbrMzGqrbATXgQMHFnli61VbUErPaFFQpW4Na3Uql+27bHRZH86cObP42eQBwqJAkT2oVG677bbLM+BUGVa50U+NDlQ+2fHpuC1vtC0jr1ZP3PBqE0SNG1xz2Wcdu054sC8AAKvJnr3StsPY6uR+4GAV1eWtnaFtUwa8qB1Q1tbxy3IXBW5Ux9EsmTK+zRMHVYrSUVc/i/9eVTeLZ5f7uqD+PZWgzlDP1/Kf0+czjQ4ePFi7jZWlsjZr23KnYKuVEZWnlLxVetW+rSt7Kc+08p+pfZa1+XPkEQBgOASbsBRUMVbjwJYsU6VFlRVVrJrORFKAYGNjY/FS4ESBFI2MU/BJs5xyVHD9aLiUJQnm9rymuaTVGlRNG086Z2XBPwU6VfkuCyL6wNoyzOBQI6Fo2cM+Xn6t9LnqaznIOeyzjl2HBGEBAFjNAYM28z9l6awi8eyNlEF9fpWFumfJKn36e1n7UgPyqj5bbcqqQZBqQ1haqtoJSofak3XtiniQY9VsLx27n+nll9RT3ayoE3+ogIw3xuf0WS9WO7+uP0Dn255PlLPcqbypv0Q/bZn7qmO18p9yXSn/qlby0MBLvazvoGqfOfIIADCcawb8LKCTlI5mVZRUWVEgIMeoFtuf9qXKlyo6qshrllOX/Wuf2rcqczbqrmwkjz6zr5k9fZnKyLc61qndZNaGzocqsv49NkPKKECZomxd9Dmxh7EO9VlYXnZNEWwCAGA1qONaMxIU8PHLeNnzchUAUUd6VV3dlu/Wyy/JJdqn9qEZT9qH2ihFbTh1uKuzWp+rNp865vU+m2Gltprtu2oGtj5D7QALWikgpM5vdbzr3ykzQvR+pcGO388+0e+UDluS3AflVE+2Nor2YYEo5a32o7ywAY8+8GDLAur9aqMqkGaBAK34ofaKPs/2Z3kd57d18ttzd/pa/j1uZ+Zaal15q/Oktrny1Qdd7Dit7Khc5PpcWylE58n3YejzdW3Y7J+q9mWXcqfzpKXeNXtIZWTr1q2LdKgs6G82qFf70/+nrkCg7RVAUrnSv+24tD/9v4JHtupH3So0OfIIADAcgk2YjbqKSB/P9DGqWKmibzOb1ABQRatLwEnHYqN5dGxlASV7NhLys0ZEk+CYGh9+iY54JKEfEVjEd6TffPPNVzSEU6msq5Fjz4pq0phTmfMNKDUkupSvPpc5XEZ93Kfmss86dh0ONWIVAACMS534qgf7ZzcaW9Yunp1TtQ8p2o8FsrQfdVgXUX1Y9Wq1vfQezQZRfdmeBWUd8HW0jQI02p/2oU51vV/th5QVN/R5Wl3D6uzq/Deq/yuNPh0WRNNPvVf/jts26oRXEEL7s7altrXl8dRZb3ls7QKlW79XsM/nmX5n+enPmwU2fHCgD/p8BRgsaJGL2mJ+IGJcjizgpDKhPGyyTH8R5b/lk1463wr46DzZZ9v5TvmsLuXOglU6fh2byomOV8dqy9/r903afCpX2qcFai2YZ8eVkoe58wgAMAyCTZiNokrfkPxsJKuQdpmZokqRBZtUCbPKnKcKnyplrD3cryblKn6YqthyGzpPdefKN9ZsW+1PyzaqDKgBZcsEqHKthq1Pn7ZRmbARZipDqlzr31XHYUFSUcVfn62lIW3UIhX0YcSN/6Lrvk68/Vz2WUfl0D4LAAAsvxwzEXLOZsi1DJf2o870lOXGyqgdUBckaPKcy5R2irHO/SJjzx5pMrumiaFXnIjzN+V8913u+liGrsvAxD7yCADQv9kEm659znPCtve/L0zFFx5+OPzR6/9W2Hjkkc77WrvhhvDcn3l3uOrGG8OU8htPpJFdFghQIEj/bttJb6PkLFChfcWVJ1UU/fOdkFebGRRxpdfPakqpSFdtr855LTVgZUwPco077C3oqnKnlwJI2l4j/KoaXjZaz69Lr4CCjdjEMHIEzPtYPmSIfQIAAAAAAGB5zSbYdNV114Xrnv/8MCVPffWrwgP/4nj3/bzqleGGb/zGLGlCv2zkvVHHfZcZIZq1YsunKbAUB5u0RMEyPNdnqizY0oWfqZTyTCE/C6pOSoe/gl/6XFvXvWy0oQW5fICLsjW8OACjgGfKefbltG4W0lT3CQAAAAAAgOV11dgJmLOn3X57uLpjZ5rer/1gHOqgV0e9Xn7GSZm489QCB2355djs4ZtG/+ZZOMPoEnBqMrOp6SyoFH4/Ck4WHYuVU2YwjS++h6SWPR8YjM/jXPZZ5+LFi4WfDQAAAAAAgOkj2NTBtbfcEp714+8Ma9dd1+r9et+zfvzHF/vBOPbs2XP54bMKONlDQcsUjfbvys+M8usr20Nq8cVgic0Ay8k/0LatJjOVms6CSuU75+vKMMbny0pq2fPbaXnFue6zigW0WH4PAAAAmK8c/SQAgHki2NTRjTt2hOe8+6cbz3DS9s9597vDjTte2lvaUB8kiEfr181UiitNOWaK+ICSzUzRS5+V+hDXZae86COIYuev7cymnM9r6sKnf+jZS3fccUdYW1sb5JUzQDcmf+5Ty7Xfzs+InNs+U+6vzMADAAAA5sW3A7ouVQ8AmK/ZPLNp6gGnre/5V+FTR4+GT7/v/WHj4YdLt73qxhvDU1751xZL5zGjaVxFSzXVBXfOnTt3xf/fdtttndOhz9TLAl333HPP4iezmvpnndptR171+bymVD5Aqs59X67j5SHVAFDQxs+q87Pp2kiZEZjLsgSb9Ky2u+++u/CeUsYvhVgUjJnLPqtYo5RgEwAAADB9qvurLa2fvt2pAYn6vbUJqN8DwOog2JSJAke3/PAPh6e/5S3h0+99b/jMr/5a+Pyf/El4/OGHwtU3Pjlc81VfFb7i2741PPVVrwpX33TT2MmF6wxVR7lG8KtCVFcJip/r5JfA60KBJQsuWed/aufuMvDLZhWNgtI56qOCast8tX321tjPaxKVWwtgnTx5sjAYpuPbuXPn4t8bGxshJx0LzxYLV8xOVFmtCigqIKg8U5k4ceJEbcAvbrjNeZ9Vzp49u/hpZRUAAADAdGmpext46Ac9KtBk/Rt6PMDhw4dHSyMAYFgso5eZAklb/ubfDM/92X8etv/qr4QXfOhDi5/6f/2eQNO0qOJjHaMpwQI/g0Mdr3UPsk+dMeODVvoMdVTX7XvMqel1x9V0ppDvXLYOZ0+Bt6bPf0nhz3mbgNNYz2tSGdEMuO3bty/KpcrP6dOnO+0T3a4vba/zoQaXyrPNCCpj9w+9TwGqum2tnFUFuOeyzyK2fKgQvAQAAACm7/z584vBjHqtr69f8bLfE2gCgNVCsAmz6eztI7iiZcdU+VHnf1XnsDr3/bJ2ek9KZ6oFs+o6ni0tJmUJvTig03fwyX9e3Wf5v6cEng4cOHD530WzJzSrItcsMk+d6BbUKwpyjf28JpXLzZs3P+Gl3yt4pTKjinxK4BP1mpbbqmD0XXfdVbm9Zj8dO3bsCSMCYwoqKsij8xvPXJvrPquuD72fZTYAAAAAAADmh2X0MBnqxLSOTM0YiYMO1nmrjkh1SGrptRzPvlFASLNmNLtJn6GghjrzbWk3dYL6pcrU8Vr2uUq/0q6fSr8dj96v4IA6a7VfBRvi4ICej2JLcBUFI3z+6KcFsoz27ZcCzLE2sl+D2c9q0OcoIKZj2LVr1+WZDwrY6Kc/d3qfgm3Ks7JzZh3UOgZ9lvat47Pp9zonfQVTlNdKY9NlC4d4XpPysY8gG64M/tn1WrS0pd1vxMp6kfj3KdeegoV2X9BsKJV5O9+6jnSdKYijMqrrI+UamMs+Y2fOnLmcxwAAAAAAAJiftY3cD/AAWlKHpYISKR2V6uBUB2ibEfRVFHRQp6qCJuqA1ufYc0tuu+22K2YfFVH6LTBVdBw2c0KBjaKgg4IW6tAtCjDYvlPzJ8fayFoWrGgNZvsM0TlQvijvlPaqbdUBr6n2ZSyIpplMeo/ySPne59R7BR2U73Vpi+lYbSaHZhelfIboWOJAoefzMVewqc9nNs3V2tra4mdqYETl0cp63T1MZUn3kdRgr/Ztz0TyM4d031HAq82ycnPZp1H5VDmty2MAAAAAAABME8EmACtPS9OpI13BptQAgc2GsdkvVSwIURVoNASbsGp07ekaTAncAgAAAAAAYJp4ZhOAlaclDMUvFVhHASbNUEoJTvkl23Is/QgsE82WEpaMBAAAAAAAmC+CTQBWnnVy23PBcrPnNXVZZgxYVraspAV9AQAAAAAAMD8EmwCsPC3fpQ5vLed1zz33ZN23n9Vkz20CEC7PJrRntaU+PwsAAAAAAADTQ7AJAEIIhw8fvrw0Xk6nTp26/G9mNgFX0mxCXXe6/gAAAAAAADBfBJsA4EtOnjy5mGVxxx13ZNtnk+c1aWaVD07p3/pdzjT4fwNjuvvuuxdLTB49enTspAAAAAAAAKCjtY2NjY2uOwGAZaFl9G6//fZw7ty52uBQirW1tcuzmnwgKV5K7NZbb138O15KzIJN6pC3Z0ulsv0W7bMqPUDfFNTdvn37YiYhs5oAAAAAAADmj2ATAEQUbDpx4kS4cOFCp+fIaBaRPaepTbAIWEYKdu7cuXMRzNVsQgAAAAAAAMwfwSYAKAk4nT17djHDqUun+tatWxfPpOmyH2CZKACrIC6BJgAAAAAAgOVBsAkAStizm7TUF4A8z2m6ePEi1xQAAAAAAMCSIdgEAAAAAAAAAACA1q5q/1YAAAAAAAAAAACsOoJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDWCDYBAAAAAAAAAACgNYJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDWCDYBAAAAAAAAAACgNYJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDWCDYBAAAAAAAAAACgNYJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDWCDYBAAAAAAAAAACgNYJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDWCDYBAAAAAAAAAACgNYJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDWCDYBAAAAAAAAAACgNYJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDWCDYBAAAAAAAAAACgNYJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDWCDYBAAAAAAAAAACgNYJNAAAAAAAAAAAAaI1gEwAAAAAAAAAAAFoj2AQAAAAAAAAAAIDQ1v8PqyoDh6DFQSYAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_custom_timestepping_diagnostics(\n",
" log_path=OutputTimestepsLog,\n",
" aiDrift=aiDrift,\n",
" TimeStepDistribution=TimeStepDistribution,\n",
" nsteps=nsteps,\n",
" ymin=5e-3,\n",
" ymax=0.5,\n",
" fac_hubble=fac_hubble,\n",
" plot_bend=False,\n",
" fac_p3m_fit=fac_p3m_fit,\n",
" da_max_early=da_early,\n",
" da_max_late=DEFAULT_DA_MAX_LATE_CUSTOM,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "7a122521",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of log steps needed to reach af=1.0 from ai=0.05: 146\n"
]
}
],
"source": [
"# Delta a/a = cst => da = cst * a\n",
"cst = (aiDrift[-2]-aiDrift[-3]) / aiDrift[-3]\n",
"\n",
"# a_nsteps = aiDrift[0] * (1 + cst)**nsteps\n",
"# 1 = a_nsteps => 1 = aiDrift[0] * (1 + cst)**nsteps\n",
"nsteps_needed = int(np.ceil(np.log(af/aiDrift[0]) / np.log(1 + cst)))\n",
"print(f\"Number of log steps needed to reach af={af} from ai={aiDrift[0]}: {nsteps_needed}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f225b2f9",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "85b01324",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "dadb9198",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "p3m",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}