mirror of
https://github.com/hoellin/selfisys_public.git
synced 2025-06-07 08:31:12 +00:00
.. | ||
CONTRIBUTING.md.txt | ||
index.rst.txt | ||
README.md.txt | ||
REFERENCES.md.txt | ||
selfisys.global_parameters.rst.txt | ||
selfisys.grf.rst.txt | ||
selfisys.hiddenbox.rst.txt | ||
selfisys.normalise_hb.rst.txt | ||
selfisys.prior.rst.txt | ||
selfisys.rst.txt | ||
selfisys.sbmy_interface.rst.txt | ||
selfisys.selection_functions.rst.txt | ||
selfisys.selfi_interface.rst.txt | ||
selfisys.setup_model.rst.txt | ||
selfisys.utils.rst.txt |
# SelfiSys: Assess the Impact of Systematic Effects in Galaxy Surveys
[](https://arxiv.org/abs/2412.04443)
[](https://github.com/hoellin/selfisys_public/blob/main/LICENSE)
[](https://github.com/hoellin/selfisys_public)
[](https://github.com/hoellin/selfisys_public/commits/main)
**SelfiSys** is a Python package designed to address the issue of model misspecification in field-based, implicit likelihood cosmological inference.
It leverages the inferred initial matter power spectrum, enabling a thorough diagnosis of systematic effects in large-scale spectroscopic galaxy surveys.
## Key Features
- **Custom hidden-box forward models**
We provide a `HiddenBox` class to simulate realistic spectroscopic galaxy surveys. It accommodates fully non-linear gravitational evolution, and incorporates multiple systematic effects observed in real-world survey, e.g., misspecified galaxy bias, survey mask, selection functions, dust extinction, line interlopers, or inaccurate gravity solver.
- **Diagnosis of systematic effects**
Diagnose the impact of systematic effects using the inferred initial matter power spectrum, prior to performing cosmological inference.
- **Cosmological inference**
Perform inference of cosmological parameters using Approximate Bayesian Computation (ABC) with a Population Monte Carlo (PMC) sampler.
---
## Documentation
The documentation, including a detailed API reference, is available at [hoellin.github.io/selfisys_public](https://hoellin.github.io/selfisys_public/).
For practical examples demonstrating how to use SelfiSys, visit the [SelfiSys Examples Repository](https://github.com/hoellin/selfisys_examples).
## Contributors
- **Tristan Hoellinger**, [tristan.hoellinger@iap.fr](mailto:tristan.hoellinger@iap.fr)
Principal developer and maintainer, Institut d’Astrophysique de Paris (IAP).
For information on contributing, refer to [CONTRIBUTING.md](CONTRIBUTING.md).
## References
If you use the SelfiSys package in your research, please cite the following paper and feel free to [contact the authors](mailto:tristan.hoellinger@iap.fr) for feedback, collaboration opportunities, or other inquiries.
**Diagnosing Systematic Effects Using the Inferred Initial Power Spectrum**
*Hoellinger, T. and Leclercq, F., 2024*
[arXiv:2412.04443](https://arxiv.org/abs/2412.04443) [[astro-ph.CO]](https://arxiv.org/abs/2412.04443) [[ADS]](https://ui.adsabs.harvard.edu/abs/arXiv:2412.04443) [[pdf]](https://arxiv.org/pdf/2412.04443)
BibTeX entry for citation:
```bibtex
@ARTICLE{hoellinger2024diagnosing,
author = {Hoellinger, Tristan and Leclercq, Florent},
title = "{Diagnosing Systematic Effects Using the Inferred Initial Power Spectrum}",
journal = {arXiv e-prints},
keywords = {Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics},
year = 2024,
month = dec,
eid = {arXiv:2412.04443},
pages = {arXiv:2412.04443},
doi = {10.48550/arXiv.2412.04443},
archivePrefix = {arXiv},
eprint = {2412.04443},
primaryClass = {astro-ph.CO},
adsurl = {https://ui.adsabs.harvard.edu/abs/2024arXiv241204443H},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
```
## Requirements
The code is written in Python 3.10 and depends on the following packages:
- [`pySELFI`](https://pyselfi.readthedocs.io/en/latest/): Python implementation of the Simulator Expansion for Likelihood-Free Inference.
- [`Simbelmynë`](https://simbelmyne.readthedocs.io/en/latest/): A hierarchical probabilistic simulator for generating synthetic galaxy survey data.
- [`ELFI`](https://elfi.readthedocs.io/en/latest/): A statistical software package for likelihood-free inference, implementing in particular Approximate Bayesian Computation (ABC) with a Population Monte Carlo (PMC) sampler.
A comprehensive list of dependencies, including version specifications to ensure reproducibility, will be provided in a yaml file, along with installation instructions, in a future release.
---
## License
This software is distributed under the GPLv3 Licence. Please review the [LICENSE](https://github.com/hoellin/selfisys_public/blob/main/LICENSE) file in the repository to understand the terms of use and ensure compliance. By downloading and using this software, you agree to the terms of the licence.