selfisys_public/docs/selfisys.prior.html
2025-01-10 17:03:16 +01:00

610 lines
No EOL
62 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="./">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>prior &mdash; SelfiSys /Users/hoellinger/Library/CloudStorage/Dropbox/travail/these/science/code/SELFI/selfisys/src/ documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=80d5e7a1" />
<link rel="stylesheet" type="text/css" href="_static/css/theme.css?v=e59714d7" />
<script src="_static/jquery.js?v=5d32c60e"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="_static/documentation_options.js?v=75025241"></script>
<script src="_static/doctools.js?v=9bcbadda"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="selection_functions" href="selfisys.selection_functions.html" />
<link rel="prev" title="normalise_hb" href="selfisys.normalise_hb.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home">
SelfiSys
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">API Documentation</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="selfisys.hiddenbox.html">hiddenbox</a><ul>
<li class="toctree-l2"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox"><code class="docutils literal notranslate"><span class="pre">HiddenBox</span></code></a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.Npop"><code class="docutils literal notranslate"><span class="pre">HiddenBox.Npop</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.Ntimesteps"><code class="docutils literal notranslate"><span class="pre">HiddenBox.Ntimesteps</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.Psingle"><code class="docutils literal notranslate"><span class="pre">HiddenBox.Psingle</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.compute_pool"><code class="docutils literal notranslate"><span class="pre">HiddenBox.compute_pool()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.evaluate"><code class="docutils literal notranslate"><span class="pre">HiddenBox.evaluate()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.force_neglect_lightcone"><code class="docutils literal notranslate"><span class="pre">HiddenBox.force_neglect_lightcone</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.force_recompute_mocks"><code class="docutils literal notranslate"><span class="pre">HiddenBox.force_recompute_mocks</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.gravity_on"><code class="docutils literal notranslate"><span class="pre">HiddenBox.gravity_on</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.load_pool"><code class="docutils literal notranslate"><span class="pre">HiddenBox.load_pool()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.make_data"><code class="docutils literal notranslate"><span class="pre">HiddenBox.make_data()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.modified_selfi"><code class="docutils literal notranslate"><span class="pre">HiddenBox.modified_selfi</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.prefix_mocks"><code class="docutils literal notranslate"><span class="pre">HiddenBox.prefix_mocks</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.reset_survey"><code class="docutils literal notranslate"><span class="pre">HiddenBox.reset_survey()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.setup_only"><code class="docutils literal notranslate"><span class="pre">HiddenBox.setup_only</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.switch_recompute_pool"><code class="docutils literal notranslate"><span class="pre">HiddenBox.switch_recompute_pool()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.switch_setup"><code class="docutils literal notranslate"><span class="pre">HiddenBox.switch_setup()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.hiddenbox.html#selfisys.hiddenbox.HiddenBox.update"><code class="docutils literal notranslate"><span class="pre">HiddenBox.update()</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="selfisys.normalise_hb.html">normalise_hb</a><ul>
<li class="toctree-l2"><a class="reference internal" href="selfisys.normalise_hb.html#selfisys.normalise_hb.define_normalisation"><code class="docutils literal notranslate"><span class="pre">define_normalisation()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.normalise_hb.html#selfisys.normalise_hb.worker_normalisation"><code class="docutils literal notranslate"><span class="pre">worker_normalisation()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.normalise_hb.html#selfisys.normalise_hb.worker_normalisation_public"><code class="docutils literal notranslate"><span class="pre">worker_normalisation_public()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.normalise_hb.html#selfisys.normalise_hb.worker_normalisation_wrapper"><code class="docutils literal notranslate"><span class="pre">worker_normalisation_wrapper()</span></code></a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">prior</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#selfisys.prior.get_summary"><code class="docutils literal notranslate"><span class="pre">get_summary()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#selfisys.prior.logposterior_hyperparameters_parallel"><code class="docutils literal notranslate"><span class="pre">logposterior_hyperparameters_parallel()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#selfisys.prior.perform_prior_optimisation_and_plot"><code class="docutils literal notranslate"><span class="pre">perform_prior_optimisation_and_plot()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="#selfisys.prior.planck_prior"><code class="docutils literal notranslate"><span class="pre">planck_prior</span></code></a><ul>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.mean"><code class="docutils literal notranslate"><span class="pre">planck_prior.mean</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.covariance"><code class="docutils literal notranslate"><span class="pre">planck_prior.covariance</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.inv_covariance"><code class="docutils literal notranslate"><span class="pre">planck_prior.inv_covariance</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.Nbin_max"><code class="docutils literal notranslate"><span class="pre">planck_prior.Nbin_max</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.Nbin_min"><code class="docutils literal notranslate"><span class="pre">planck_prior.Nbin_min</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.compute"><code class="docutils literal notranslate"><span class="pre">planck_prior.compute()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.load"><code class="docutils literal notranslate"><span class="pre">planck_prior.load()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.logpdf"><code class="docutils literal notranslate"><span class="pre">planck_prior.logpdf()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.sample"><code class="docutils literal notranslate"><span class="pre">planck_prior.sample()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="#selfisys.prior.planck_prior.save"><code class="docutils literal notranslate"><span class="pre">planck_prior.save()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#selfisys.prior.worker_class"><code class="docutils literal notranslate"><span class="pre">worker_class()</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="selfisys.selection_functions.html">selection_functions</a><ul>
<li class="toctree-l2"><a class="reference internal" href="selfisys.selection_functions.html#selfisys.selection_functions.LognormalSelection"><code class="docutils literal notranslate"><span class="pre">LognormalSelection</span></code></a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.selection_functions.html#selfisys.selection_functions.LognormalSelection.init_selection"><code class="docutils literal notranslate"><span class="pre">LognormalSelection.init_selection()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.selection_functions.html#selfisys.selection_functions.LognormalSelection.lognormals_z_to_x"><code class="docutils literal notranslate"><span class="pre">LognormalSelection.lognormals_z_to_x()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.selection_functions.html#selfisys.selection_functions.LognormalSelection.multiple_lognormal"><code class="docutils literal notranslate"><span class="pre">LognormalSelection.multiple_lognormal()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.selection_functions.html#selfisys.selection_functions.LognormalSelection.multiple_lognormal_z"><code class="docutils literal notranslate"><span class="pre">LognormalSelection.multiple_lognormal_z()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.selection_functions.html#selfisys.selection_functions.LognormalSelection.one_lognormal"><code class="docutils literal notranslate"><span class="pre">LognormalSelection.one_lognormal()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.selection_functions.html#selfisys.selection_functions.LognormalSelection.one_lognormal_z"><code class="docutils literal notranslate"><span class="pre">LognormalSelection.one_lognormal_z()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.selection_functions.html#selfisys.selection_functions.LognormalSelection.r_grid"><code class="docutils literal notranslate"><span class="pre">LognormalSelection.r_grid()</span></code></a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="selfisys.selfi_interface.html">selfi_interface</a><ul>
<li class="toctree-l2"><a class="reference internal" href="selfisys.selfi_interface.html#selfisys.selfi_interface.PrintMessage"><code class="docutils literal notranslate"><span class="pre">PrintMessage()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.selfi_interface.html#selfisys.selfi_interface.indent"><code class="docutils literal notranslate"><span class="pre">indent()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.selfi_interface.html#selfisys.selfi_interface.unindent"><code class="docutils literal notranslate"><span class="pre">unindent()</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="selfisys.sbmy_interface.html">sbmy_interface</a><ul>
<li class="toctree-l2"><a class="reference internal" href="selfisys.sbmy_interface.html#selfisys.sbmy_interface.compute_Phi"><code class="docutils literal notranslate"><span class="pre">compute_Phi()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.sbmy_interface.html#selfisys.sbmy_interface.generate_white_noise_Field"><code class="docutils literal notranslate"><span class="pre">generate_white_noise_Field()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.sbmy_interface.html#selfisys.sbmy_interface.get_power_spectrum_from_cosmo"><code class="docutils literal notranslate"><span class="pre">get_power_spectrum_from_cosmo()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.sbmy_interface.html#selfisys.sbmy_interface.handle_time_stepping"><code class="docutils literal notranslate"><span class="pre">handle_time_stepping()</span></code></a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.sbmy_interface.html#selfisys.sbmy_interface.setup_sbmy_parfiles"><code class="docutils literal notranslate"><span class="pre">setup_sbmy_parfiles()</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="selfisys.grf.html">grf</a><ul>
<li class="toctree-l2"><a class="reference internal" href="selfisys.grf.html#selfisys.grf.primordial_grf"><code class="docutils literal notranslate"><span class="pre">primordial_grf()</span></code></a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="selfisys.utils.html">selfisys.utils package</a><ul>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#submodules">Submodules</a></li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.examples_utils">selfisys.utils.examples_utils module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.examples_utils.clear_large_plot"><code class="docutils literal notranslate"><span class="pre">clear_large_plot()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.logger">selfisys.utils.logger module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.CustomLogger"><code class="docutils literal notranslate"><span class="pre">CustomLogger</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.CustomLogger.diagnostic"><code class="docutils literal notranslate"><span class="pre">CustomLogger.diagnostic()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.CustomLoggerHandler"><code class="docutils literal notranslate"><span class="pre">CustomLoggerHandler</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.CustomLoggerHandler.emit"><code class="docutils literal notranslate"><span class="pre">CustomLoggerHandler.emit()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.INDENT"><code class="docutils literal notranslate"><span class="pre">INDENT()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.PrintDiagnostic"><code class="docutils literal notranslate"><span class="pre">PrintDiagnostic()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.PrintError"><code class="docutils literal notranslate"><span class="pre">PrintError()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.PrintInfo"><code class="docutils literal notranslate"><span class="pre">PrintInfo()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.PrintLeftType"><code class="docutils literal notranslate"><span class="pre">PrintLeftType()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.PrintWarning"><code class="docutils literal notranslate"><span class="pre">PrintWarning()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.UNINDENT"><code class="docutils literal notranslate"><span class="pre">UNINDENT()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.logger.getCustomLogger"><code class="docutils literal notranslate"><span class="pre">getCustomLogger()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.low_level">selfisys.utils.low_level module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.low_level.stderr_redirector"><code class="docutils literal notranslate"><span class="pre">stderr_redirector()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.low_level.stdout_redirector"><code class="docutils literal notranslate"><span class="pre">stdout_redirector()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.parser">selfisys.utils.parser module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.parser.bool_sh"><code class="docutils literal notranslate"><span class="pre">bool_sh()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.parser.check_files_exist"><code class="docutils literal notranslate"><span class="pre">check_files_exist()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.parser.intNone"><code class="docutils literal notranslate"><span class="pre">intNone()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.parser.joinstrs"><code class="docutils literal notranslate"><span class="pre">joinstrs()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.parser.joinstrs_only"><code class="docutils literal notranslate"><span class="pre">joinstrs_only()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.parser.none_or_bool_or_str"><code class="docutils literal notranslate"><span class="pre">none_or_bool_or_str()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.parser.safe_npload"><code class="docutils literal notranslate"><span class="pre">safe_npload()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.path_utils">selfisys.utils.path_utils module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.path_utils.file_names_evaluate"><code class="docutils literal notranslate"><span class="pre">file_names_evaluate()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.path_utils.get_file_names"><code class="docutils literal notranslate"><span class="pre">get_file_names()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.plot_examples">selfisys.utils.plot_examples module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_examples.plot_comoving_distance_redshift"><code class="docutils literal notranslate"><span class="pre">plot_comoving_distance_redshift()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_examples.plot_galaxy_field_slice"><code class="docutils literal notranslate"><span class="pre">plot_galaxy_field_slice()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_examples.plot_power_spectrum"><code class="docutils literal notranslate"><span class="pre">plot_power_spectrum()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_examples.plot_selection_functions_def_in_z"><code class="docutils literal notranslate"><span class="pre">plot_selection_functions_def_in_z()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_examples.redshift_distance_conversion"><code class="docutils literal notranslate"><span class="pre">redshift_distance_conversion()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_examples.relative_error_analysis"><code class="docutils literal notranslate"><span class="pre">relative_error_analysis()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.plot_params">selfisys.utils.plot_params module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.ScalarFormatterForceFormat_11"><code class="docutils literal notranslate"><span class="pre">ScalarFormatterForceFormat_11</span></code></a><ul>
<li class="toctree-l4"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.ScalarFormatterForceFormat_11.get_offset"><code class="docutils literal notranslate"><span class="pre">ScalarFormatterForceFormat_11.get_offset()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.ScalarFormatterForceFormat_11.set_scientific"><code class="docutils literal notranslate"><span class="pre">ScalarFormatterForceFormat_11.set_scientific()</span></code></a></li>
<li class="toctree-l4"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.ScalarFormatterForceFormat_11.set_useOffset"><code class="docutils literal notranslate"><span class="pre">ScalarFormatterForceFormat_11.set_useOffset()</span></code></a></li>
</ul>
</li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.create_all_colormaps"><code class="docutils literal notranslate"><span class="pre">create_all_colormaps()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.create_colormap"><code class="docutils literal notranslate"><span class="pre">create_colormap()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.dynamic_text_scaling"><code class="docutils literal notranslate"><span class="pre">dynamic_text_scaling()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.get_contours"><code class="docutils literal notranslate"><span class="pre">get_contours()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.reset_plotting"><code class="docutils literal notranslate"><span class="pre">reset_plotting()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_params.setup_plotting"><code class="docutils literal notranslate"><span class="pre">setup_plotting()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.plot_utils">selfisys.utils.plot_utils module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_C"><code class="docutils literal notranslate"><span class="pre">plot_C()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_fisher"><code class="docutils literal notranslate"><span class="pre">plot_fisher()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_gradients"><code class="docutils literal notranslate"><span class="pre">plot_gradients()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_histogram"><code class="docutils literal notranslate"><span class="pre">plot_histogram()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_mocks"><code class="docutils literal notranslate"><span class="pre">plot_mocks()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_mocks_compact"><code class="docutils literal notranslate"><span class="pre">plot_mocks_compact()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_observations"><code class="docutils literal notranslate"><span class="pre">plot_observations()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_prior_and_posterior_covariances"><code class="docutils literal notranslate"><span class="pre">plot_prior_and_posterior_covariances()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_reconstruction"><code class="docutils literal notranslate"><span class="pre">plot_reconstruction()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plot_selection_functions"><code class="docutils literal notranslate"><span class="pre">plot_selection_functions()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.plot_utils.plotly_3d"><code class="docutils literal notranslate"><span class="pre">plotly_3d()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.timestepping">selfisys.utils.timestepping module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.timestepping.merge_nTS"><code class="docutils literal notranslate"><span class="pre">merge_nTS()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.tools">selfisys.utils.tools module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.cosmo_vector_to_Simbelmyne_dict"><code class="docutils literal notranslate"><span class="pre">cosmo_vector_to_Simbelmyne_dict()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.cosmo_vector_to_class_dict"><code class="docutils literal notranslate"><span class="pre">cosmo_vector_to_class_dict()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.custom_stat"><code class="docutils literal notranslate"><span class="pre">custom_stat()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.fisher_rao"><code class="docutils literal notranslate"><span class="pre">fisher_rao()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.get_k_max"><code class="docutils literal notranslate"><span class="pre">get_k_max()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.get_summary"><code class="docutils literal notranslate"><span class="pre">get_summary()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.none_or_bool_or_str"><code class="docutils literal notranslate"><span class="pre">none_or_bool_or_str()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.params_ids_to_Simbelmyne_dict"><code class="docutils literal notranslate"><span class="pre">params_ids_to_Simbelmyne_dict()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.sample_omega_from_prior"><code class="docutils literal notranslate"><span class="pre">sample_omega_from_prior()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.tools.summary_to_score"><code class="docutils literal notranslate"><span class="pre">summary_to_score()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils.workers">selfisys.utils.workers module</a><ul>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.workers.Simbelmyne_worker"><code class="docutils literal notranslate"><span class="pre">Simbelmyne_worker()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.workers.evaluate_gradient_of_Symbelmyne"><code class="docutils literal notranslate"><span class="pre">evaluate_gradient_of_Symbelmyne()</span></code></a></li>
<li class="toctree-l3"><a class="reference internal" href="selfisys.utils.html#selfisys.utils.workers.worker_gradient_Symbelmyne"><code class="docutils literal notranslate"><span class="pre">worker_gradient_Symbelmyne()</span></code></a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="selfisys.utils.html#module-selfisys.utils">Module contents</a></li>
</ul>
</li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Contribute</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="CONTRIBUTING.html">Contributing to SelfiSys</a><ul>
<li class="toctree-l2"><a class="reference internal" href="CONTRIBUTING.html#reporting-issues">Reporting Issues</a></li>
<li class="toctree-l2"><a class="reference internal" href="CONTRIBUTING.html#submitting-contributions">Submitting Contributions</a></li>
<li class="toctree-l2"><a class="reference internal" href="CONTRIBUTING.html#style-guidelines">Style Guidelines</a><ul>
<li class="toctree-l3"><a class="reference internal" href="CONTRIBUTING.html#python-code">Python code</a></li>
<li class="toctree-l3"><a class="reference internal" href="CONTRIBUTING.html#jupyter-notebooks">Jupyter Notebooks</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="CONTRIBUTING.html#questions">Questions?</a></li>
</ul>
</li>
</ul>
<p class="caption" role="heading"><span class="caption-text">References</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="REFERENCES.html">References</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">SelfiSys</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content style-external-links">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">prior</li>
<li class="wy-breadcrumbs-aside">
<a href="https://github.com/hoellin/selfisys_public/blob/main/docs/source/selfisys.prior.rst" class="fa fa-github"> Edit on GitHub</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="module-selfisys.prior">
<span id="prior"></span><h1>prior<a class="headerlink" href="#module-selfisys.prior" title="Link to this heading"></a></h1>
<dl class="py function">
<dt class="sig sig-object py" id="selfisys.prior.get_summary">
<span class="sig-prename descclassname"><span class="pre">selfisys.prior.</span></span><span class="sig-name descname"><span class="pre">get_summary</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bins</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">normalisation</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kmax</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1.4</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#get_summary"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.get_summary" title="Link to this definition"></a></dt>
<dd><p>Compute a power-spectrum summary for given cosmological parameters.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>x</strong> (<em>array-like</em>) Cosmological parameters [h, Omega_b, Omega_m, n_s, sigma_8].</p></li>
<li><p><strong>bins</strong> (<em>array-like</em>) Wavenumber bins.</p></li>
<li><p><strong>normalisation</strong> (<em>float</em><em> or </em><em>None</em><em>, </em><em>optional</em>) Normalisation constant to scale the resulting spectrum.</p></li>
<li><p><strong>kmax</strong> (<em>float</em><em>, </em><em>optional</em>) Maximum wavenumber for get_Pk.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p><strong>theta</strong> The computed power-spectrum values, optionally normalised.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>ndarray</p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><strong>RuntimeError</strong> If the power-spectrum computation fails unexpectedly.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="selfisys.prior.logposterior_hyperparameters_parallel">
<span class="sig-prename descclassname"><span class="pre">selfisys.prior.</span></span><span class="sig-name descname"><span class="pre">logposterior_hyperparameters_parallel</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">selfi</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_fiducial</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Nbin_min</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Nbin_max</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_norm</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k_corr</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">alpha_cv</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#logposterior_hyperparameters_parallel"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.logposterior_hyperparameters_parallel" title="Link to this definition"></a></dt>
<dd><p>Compute the log-posterior for the hyperparameters of the prior from
[leclercq2019primordial], for use within the SelfiSys pipeline.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>selfi</strong> (<em>object</em>) The selfi object.</p></li>
<li><p><strong>theta_fiducial</strong> (<em>ndarray</em>) Fiducial spectrum.</p></li>
<li><p><strong>Nbin_min</strong> (<em>int</em>) Minimum bin index for the wavenumber range.</p></li>
<li><p><strong>Nbin_max</strong> (<em>int</em>) Maximum bin index for the wavenumber range.</p></li>
<li><p><strong>theta_norm</strong> (<em>float</em>) Hyperparameter controlling the overall uncertainty.</p></li>
<li><p><strong>k_corr</strong> (<em>float</em>) Hyperparameter controlling correlation scale.</p></li>
<li><p><strong>alpha_cv</strong> (<em>float</em>) Cosmic variance strength.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>The log-posterior value for the given hyperparameters.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>float</p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><strong>RuntimeError</strong> If the log-posterior computation fails unexpectedly.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="selfisys.prior.perform_prior_optimisation_and_plot">
<span class="sig-prename descclassname"><span class="pre">selfisys.prior.</span></span><span class="sig-name descname"><span class="pre">perform_prior_optimisation_and_plot</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">selfi</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_fiducial</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_norm_mean</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_norm_std</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.3</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k_corr_mean</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.02</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k_corr_std</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.015</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k_opt_min</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k_opt_max</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1.4</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_norm_min</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.04</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_norm_max</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.12</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k_corr_min</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.012</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k_corr_max</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.02</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">meshsize</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">30</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Nbin_min</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Nbin_max</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">100</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_norm</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.05</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">k_corr</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.015</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">alpha_cv</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.00065</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">plot</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">savepath</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#perform_prior_optimisation_and_plot"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.perform_prior_optimisation_and_plot" title="Link to this definition"></a></dt>
<dd><p>Optimise the hyperparameters for the selfi2019 prior (from
[leclercq2019primordial]).</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>selfi</strong> (<em>object</em>) The selfi object.</p></li>
<li><p><strong>theta_fiducial</strong> (<em>ndarray</em>) Fiducial spectrum.</p></li>
<li><p><strong>theta_norm_mean</strong> (<em>float</em><em>, </em><em>optional</em>) Mean of the Gaussian hyperprior on theta_norm. Default 0.1.</p></li>
<li><p><strong>theta_norm_std</strong> (<em>float</em><em>, </em><em>optional</em>) Standard deviation of the hyperprior on theta_norm. Default 0.3.</p></li>
<li><p><strong>k_corr_mean</strong> (<em>float</em><em>, </em><em>optional</em>) Mean of the Gaussian hyperprior on k_corr. Default 0.020.</p></li>
<li><p><strong>k_corr_std</strong> (<em>float</em><em>, </em><em>optional</em>) Standard deviation of the hyperprior on k_corr. Default 0.015.</p></li>
<li><p><strong>k_opt_min</strong> (<em>float</em><em>, </em><em>optional</em>) Minimum wavenumber for the prior optimisation. Default 0.0.</p></li>
<li><p><strong>k_opt_max</strong> (<em>float</em><em>, </em><em>optional</em>) Maximum wavenumber for the prior optimisation. Default 1.4.</p></li>
<li><p><strong>theta_norm_min</strong> (<em>float</em><em>, </em><em>optional</em>) Lower bound for theta_norm in the mesh. Default 0.04.</p></li>
<li><p><strong>theta_norm_max</strong> (<em>float</em><em>, </em><em>optional</em>) Upper bound for theta_norm in the mesh. Default 0.12.</p></li>
<li><p><strong>k_corr_min</strong> (<em>float</em><em>, </em><em>optional</em>) Lower bound for k_corr in the mesh. Default 0.012.</p></li>
<li><p><strong>k_corr_max</strong> (<em>float</em><em>, </em><em>optional</em>) Upper bound for k_corr in the mesh. Default 0.02.</p></li>
<li><p><strong>meshsize</strong> (<em>int</em><em>, </em><em>optional</em>) Number of points in each dimension of the plot mesh. Default 30.</p></li>
<li><p><strong>Nbin_min</strong> (<em>int</em><em>, </em><em>optional</em>) Minimum bin index for restricting the prior. Default 0.</p></li>
<li><p><strong>Nbin_max</strong> (<em>int</em><em>, </em><em>optional</em>) Maximum bin index for restricting the prior. Default 100.</p></li>
<li><p><strong>theta_norm</strong> (<em>float</em><em>, </em><em>optional</em>) Initial or default guess of theta_norm. Default 0.05.</p></li>
<li><p><strong>k_corr</strong> (<em>float</em><em>, </em><em>optional</em>) Initial or default guess of k_corr. Default 0.015.</p></li>
<li><p><strong>alpha_cv</strong> (<em>float</em><em>, </em><em>optional</em>) Cosmic variance term or similar. Default 0.00065.</p></li>
<li><p><strong>plot</strong> (<em>bool</em><em>, </em><em>optional</em>) If True, generate and show/save a 2D contour plot. Default True.</p></li>
<li><p><strong>savepath</strong> (<em>str</em><em>, </em><em>optional</em>) File path to save the plot. If None, the plot is displayed.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>(theta_norm, k_corr) after optimisation.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>tuple</p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><ul class="simple">
<li><p><strong>OSError</strong> If file operations fail during saving the prior or posterior.</p></li>
<li><p><strong>RuntimeError</strong> If the optimisation fails unexpectedly.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">selfisys.prior.</span></span><span class="sig-name descname"><span class="pre">planck_prior</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">Omega_mean</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">Omega_cov</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">bins</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">normalisation</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">kmax</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nsamples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10000</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">nthreads</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">-1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">EPS_K</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1e-07</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">EPS_residual</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0.001</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">filename</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#planck_prior"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.planck_prior" title="Link to this definition"></a></dt>
<dd><p>Bases: <code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></p>
<p>Custom prior for the SelfiSys pipeline. This is the prior used in
[hoellinger2024diagnosing], based on the Planck 2018 cosmological
parameters.</p>
<p>This class provides methods to compute a power-spectrum prior from a
prior distribution of cosmological parameters, using a Gaussian fit.
See equation (7) in [hoellinger2024diagnosing].</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>Omega_mean</strong> (<em>array-like</em>) Mean of the prior distribution on cosmological parameters.</p></li>
<li><p><strong>Omega_cov</strong> (<em>array-like</em>) Covariance matrix of the prior distribution on cosmological
parameters.</p></li>
<li><p><strong>bins</strong> (<em>array-like</em>) Wavenumbers where the power spectrum is evaluated.</p></li>
<li><p><strong>normalisation</strong> (<em>float</em><em> or </em><em>None</em>) If not None, divide the power spectra by the normalisation.</p></li>
<li><p><strong>kmax</strong> (<em>float</em>) Maximum wavenumber for computations.</p></li>
<li><p><strong>nsamples</strong> (<em>int</em><em>, </em><em>optional</em>) Number of samples drawn from the prior on the cosmological
parameters. Default is 10,000.</p></li>
<li><p><strong>nthreads</strong> (<em>int</em><em>, </em><em>optional</em>) Number of CPU threads for parallel tasks. Default is -1, that
is, auto-detect the number of available threads.</p></li>
<li><p><strong>EPS_K</strong> (<em>float</em><em>, </em><em>optional</em>) Regularisation parameter for covariance inversion. Default 1e-7.</p></li>
<li><p><strong>EPS_residual</strong> (<em>float</em><em>, </em><em>optional</em>) Additional cutoff for matrix inversion. Default 1e-3.</p></li>
<li><p><strong>filename</strong> (<em>str</em><em> or </em><em>None</em><em>, </em><em>optional</em>) Path to a .npy file to store or load precomputed power spectra.</p></li>
</ul>
</dd>
</dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.mean">
<span class="sig-name descname"><span class="pre">mean</span></span><a class="headerlink" href="#selfisys.prior.planck_prior.mean" title="Link to this definition"></a></dt>
<dd><p>Mean of the computed power spectra.</p>
<dl class="field-list simple">
<dt class="field-odd">Type<span class="colon">:</span></dt>
<dd class="field-odd"><p>ndarray</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.covariance">
<span class="sig-name descname"><span class="pre">covariance</span></span><a class="headerlink" href="#selfisys.prior.planck_prior.covariance" title="Link to this definition"></a></dt>
<dd><p>Covariance matrix of the computed power spectra.</p>
<dl class="field-list simple">
<dt class="field-odd">Type<span class="colon">:</span></dt>
<dd class="field-odd"><p>ndarray</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.inv_covariance">
<span class="sig-name descname"><span class="pre">inv_covariance</span></span><a class="headerlink" href="#selfisys.prior.planck_prior.inv_covariance" title="Link to this definition"></a></dt>
<dd><p>Inverse of the covariance matrix.</p>
<dl class="field-list simple">
<dt class="field-odd">Type<span class="colon">:</span></dt>
<dd class="field-odd"><p>ndarray</p>
</dd>
</dl>
</dd></dl>
<dl class="field-list simple">
<dt class="field-odd">Raises<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>OSError</strong> If file reading or writing fails.</p></li>
<li><p><strong>RuntimeError</strong> For unexpected HPC or multi-processing errors.</p></li>
</ul>
</dd>
</dl>
<dl class="py property">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.Nbin_max">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Nbin_max</span></span><a class="headerlink" href="#selfisys.prior.planck_prior.Nbin_max" title="Link to this definition"></a></dt>
<dd><p>Index of the maximal wavenumber given self.kmax.</p>
</dd></dl>
<dl class="py property">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.Nbin_min">
<em class="property"><span class="pre">property</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">Nbin_min</span></span><a class="headerlink" href="#selfisys.prior.planck_prior.Nbin_min" title="Link to this definition"></a></dt>
<dd><p>Index of the minimal wavenumber given k_min.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.compute">
<span class="sig-name descname"><span class="pre">compute</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#planck_prior.compute"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.planck_prior.compute" title="Link to this definition"></a></dt>
<dd><p>Compute the prior (mean, covariance, and inverse covariance).</p>
<p>If <cite>self.filename</cite> exists, tries to load the prior. Otherwise,
samples from the prior distribution on cosmological parameters
and evaluates the power spectra in parallel.</p>
<dl class="field-list simple">
<dt class="field-odd">Raises<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>OSError</strong> If self.filename is not writable/accessible.</p></li>
<li><p><strong>RuntimeError</strong> If multi-processing or power-spectra computations fail.</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.load">
<em class="property"><span class="pre">classmethod</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">load</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fname</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#planck_prior.load"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.planck_prior.load" title="Link to this definition"></a></dt>
<dd><p>Load the prior from input file.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>fname</strong> (<em>str</em>) Input HDF5 filename.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>The prior object.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>prior</p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><strong>OSError</strong> If the file cannot be read or is invalid.</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.logpdf">
<span class="sig-name descname"><span class="pre">logpdf</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">theta</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_mean</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_covariance</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">theta_icov</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#planck_prior.logpdf"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.planck_prior.logpdf" title="Link to this definition"></a></dt>
<dd><p>Return the log prior probability at a given point in parameter
space.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>theta</strong> (<em>ndarray</em>) Evaluation point in parameter space.</p></li>
<li><p><strong>theta_mean</strong> (<em>ndarray</em>) Prior mean vector.</p></li>
<li><p><strong>theta_covariance</strong> (<em>ndarray</em>) Prior covariance matrix.</p></li>
<li><p><strong>theta_icov</strong> (<em>ndarray</em>) Inverse of the prior covariance matrix.</p></li>
</ul>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>Log prior probability value.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>float</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.sample">
<span class="sig-name descname"><span class="pre">sample</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">seedsample</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#planck_prior.sample"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.planck_prior.sample" title="Link to this definition"></a></dt>
<dd><p>Draw a random sample from the prior distribution.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>seedsample</strong> (<em>int</em><em>, </em><em>optional</em>) Seed for the random number generator.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p>A single sample from the prior distribution.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>ndarray</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="selfisys.prior.planck_prior.save">
<span class="sig-name descname"><span class="pre">save</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fname</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#planck_prior.save"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.planck_prior.save" title="Link to this definition"></a></dt>
<dd><p>Save the prior to an output file.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>fname</strong> (<em>str</em>) Output HDF5 filename to store the prior data.</p>
</dd>
<dt class="field-even">Raises<span class="colon">:</span></dt>
<dd class="field-even"><p><strong>OSError</strong> If the file cannot be accessed or written.</p>
</dd>
</dl>
</dd></dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="selfisys.prior.worker_class">
<span class="sig-prename descclassname"><span class="pre">selfisys.prior.</span></span><span class="sig-name descname"><span class="pre">worker_class</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">params</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/selfisys/prior.html#worker_class"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#selfisys.prior.worker_class" title="Link to this definition"></a></dt>
<dd><p>Worker function to compute power spectra with CLASS, compatible with
Python multiprocessing.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters<span class="colon">:</span></dt>
<dd class="field-odd"><p><strong>params</strong> (<em>tuple</em>) (x, bins, normalisation, kmax) where x is an array-like of
cosmological parameters, bins is the wavenumber array,
normalisation is a float or None, and kmax is a float.</p>
</dd>
<dt class="field-even">Returns<span class="colon">:</span></dt>
<dd class="field-even"><p><strong>theta</strong> Power-spectrum summary from <cite>get_summary</cite>.</p>
</dd>
<dt class="field-odd">Return type<span class="colon">:</span></dt>
<dd class="field-odd"><p>ndarray</p>
</dd>
</dl>
</dd></dl>
</section>
</div>
</div>
<footer><div class="rst-footer-buttons" role="navigation" aria-label="Footer">
<a href="selfisys.normalise_hb.html" class="btn btn-neutral float-left" title="normalise_hb" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
<a href="selfisys.selection_functions.html" class="btn btn-neutral float-right" title="selection_functions" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>&#169; Copyright 2025, Tristan Hoellinger.</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>