mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 23:31:12 +00:00
100 lines
2.6 KiB
C
100 lines
2.6 KiB
C
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include "header.h"
|
|
|
|
double m_g3,r_g3;
|
|
|
|
double func_ng(double m);
|
|
|
|
/* The restr
|
|
*/
|
|
|
|
double restricted_number_density(double r)
|
|
{
|
|
static int flag=1;
|
|
static double *x,*y;
|
|
int i,n=50,j;
|
|
double mlimit,dlogm,logm,mmin,sum=0,t0,t1,s1,r1,r2,ng2;
|
|
|
|
r_g3=r;
|
|
ng2=GALAXY_DENSITY*GALAXY_DENSITY;
|
|
|
|
/* Calculate the maximum allowable halo mass.
|
|
*/
|
|
mlimit=log(4./3.*DELTA_HALO*RHO_CRIT*PI*r_g3*r_g3*r_g3*OMEGA_M);
|
|
mmin=log(HOD.M_low);
|
|
r1=pow(3*HOD.M_low/(4*PI*DELTA_HALO*RHO_CRIT*OMEGA_M),1.0/3.0);
|
|
|
|
/* Calculate the double integral at specified masses.
|
|
*/
|
|
dlogm=(mlimit-mmin)/(n-1);
|
|
for(i=1;i<=n;++i)
|
|
{
|
|
logm=(i-0.5)*dlogm+mmin;
|
|
m_g3=exp(logm);
|
|
r2 = pow(3*m_g3/(4*PI*DELTA_HALO*RHO_CRIT*OMEGA_M),1.0/3.0);
|
|
if(EXCLUSION==3) {
|
|
if(ellipsoidal_exclusion_probability(r1/r2,r_g3/(r1+r2))==0)break; }
|
|
else {
|
|
if(r1+r2>r_g3)break; }
|
|
s1=qtrap(func_ng,mmin,mlimit,1.0E-4);
|
|
sum+=s1*m_g3*dlogm;
|
|
if(s1==0)break;
|
|
if(sum>=ng2)break;
|
|
}
|
|
return sqrt(sum);
|
|
}
|
|
|
|
|
|
double func_ng(double m)
|
|
{
|
|
static double fac2=-1;
|
|
double s1,rv1,rv2,exfac=1,n,N;
|
|
|
|
m=exp(m);
|
|
if(fac2<0)
|
|
fac2=pow(3.0/(4*DELTA_HALO*PI*RHO_CRIT*OMEGA_M),1.0/3.0);
|
|
rv1=pow(m_g3,1.0/3.0)*fac2;
|
|
rv2=pow(m,1.0/3.0)*fac2;
|
|
|
|
if(EXCLUSION==3)
|
|
{
|
|
if(0.5*(rv1+rv2)>r_g3)return(0);
|
|
if(1.5*(rv1+rv2)>r_g3)exfac=ellipsoidal_exclusion_probability(rv2/rv1,r_g3/(rv2+rv1));
|
|
}
|
|
else
|
|
{
|
|
if(rv1+rv2>r_g3)return(0);
|
|
}
|
|
|
|
n=dndM_interp(m)*dndM_interp(m_g3);
|
|
N=N_avg(m)*N_avg(m_g3);
|
|
return(exfac*n*N*m);
|
|
}
|
|
|
|
/* This is the probability that two halos do not overlap, given their
|
|
* radii and separation. Of course, for spherical halos P(x) is a step function
|
|
* at x = (r1+r2)/r_sep = 1, but for ellipsoidal halos there is a chance
|
|
* that they could be closer. In detail, P(x) changes depending on the mass
|
|
* ratio of the halos, but using tabulated values does not appear to make
|
|
* significant difference in the results for xi_2h(r). The function below is
|
|
* a fit to Monte Carlo results for a halos with a distribution of axis ratios
|
|
* which is lognormal in e_b = (1-b/a) and e_c = (1-c/a) with dispersions of 0.2
|
|
* mean <b/a>=0.9 and <c/a>=0.8 (pretty reasonable values).
|
|
*/
|
|
double ellipsoidal_exclusion_probability(double rv, double r)
|
|
{
|
|
static int flag=0,nr=101,nratio=31;
|
|
static double **xprob,*rad,*ratio,rhi,rlo,mhi,mlo,dr,dm;
|
|
float x1,x2,x3;
|
|
int i,j,im,ir;
|
|
FILE *fp;
|
|
|
|
if(rv<1)rv=1.0/rv;
|
|
|
|
r=(r-0.8)/0.29;
|
|
if(r>1)return(1.0);
|
|
if(r<0)return(0.0);
|
|
return(3*r*r-2*r*r*r);
|
|
}
|