vide_public/mytools/generateMock.cpp
2011-03-03 10:06:28 -06:00

348 lines
8.3 KiB
C++

#include <cmath>
#include <cassert>
#include <iostream>
#include <fstream>
#include <string>
#include <CosmoTool/loadSimu.hpp>
#include <CosmoTool/loadRamses.hpp>
#include <CosmoTool/interpolate.hpp>
#include <CosmoTool/fortran.hpp>
#include "generateMock_conf.h"
#include "gslIntegrate.hpp"
#include <netcdfcpp.h>
using namespace std;
using namespace CosmoTool;
#define LIGHT_SPEED 299792.458
SimuData *doLoadRamses(const char *basename, int baseid, int velAxis, bool goRedshift)
{
SimuData *d, *outd;
d = loadRamsesSimu(basename, baseid, -1, 0);
outd = new SimuData;
outd->NumPart = d->TotalNumPart;
outd->BoxSize = d->BoxSize;
outd->TotalNumPart = outd->NumPart;
outd->Hubble = d->Hubble;
outd->Omega_Lambda = d->Omega_Lambda;
outd->Omega_M = d->Omega_M;
outd->time = d->time;
for (int k = 0; k < 3; k++)
outd->Pos[k] = new float[outd->NumPart];
outd->Vel[2] = new float[outd->NumPart];
delete d;
int curCpu = 0;
cout << "loading cpu 0 " << endl;
while (d = loadRamsesSimu(basename, baseid, curCpu, NEED_POSITION|NEED_VELOCITY|NEED_GADGET_ID))
{
for (int k = 0; k < 3; k++)
for (int i = 0; i < d->NumPart; i++)
{
assert(d->Id[i] >= 1);
assert(d->Id[i] <= outd->TotalNumPart);
outd->Pos[k][d->Id[i]-1] = d->Pos[k][i];
outd->Vel[2][d->Id[i]-1] = d->Vel[velAxis][i];
}
if (goRedshift)
for (int i = 0; i < d->NumPart; i++)
outd->Pos[velAxis][d->Id[i]-1] += d->Vel[velAxis][i]/100.;
delete d;
curCpu++;
cout << "loading cpu " << curCpu << endl;
}
return outd;
}
static double cubic(double a)
{
return a*a*a;
}
struct TotalExpansion
{
double Omega_M, Omega_L;
double operator()(double z)
{
return 1/sqrt(Omega_M*cubic(1+z) + Omega_L);
}
};
Interpolate make_cosmological_redshift(double OM, double OL, double z0, double z1, int N = 1000)
{
TotalExpansion e_computer;
double D_tilde, Q, Qprime;
InterpolatePairs pairs;
e_computer.Omega_M = OM;
e_computer.Omega_L = OL;
pairs.resize(N);
ofstream f("comoving_distance.txt");
for (int i = 0; i < N; i++)
{
double z = z0 + (z1-z0)/N*i;
pairs[i].second = z;
pairs[i].first = gslIntegrate(e_computer, 0, z, 1e-3);
f << z << " " << pairs[i].first << endl;
}
return buildFromVector(pairs);
}
void metricTransform(SimuData *data, int axis, bool reshift, bool pecvel, double*& expfact)
{
int x0, x1, x2;
switch (axis) {
case 0:
x0 = 1; x1 = 2; x2 = 0;
break;
case 1:
x0 = 0; x1 = 2; x2 = 1;
break;
case 2:
x0 = 0; x1 = 1; x2 = 2;
break;
default:
abort();
}
Interpolate z_vs_D = make_cosmological_redshift(data->Omega_M, data->Omega_Lambda, 0., 2.0); // Redshift 2 should be sufficient ?
double z0 = 1/data->time - 1;
double z_base = reshift ? z0 : 0;
TotalExpansion e_computer;
double baseComovingDistance;
expfact = new double[data->NumPart];
cout << "Using base redshift z=" << z0 << endl;
e_computer.Omega_M = data->Omega_M;
e_computer.Omega_L = data->Omega_Lambda;
baseComovingDistance = LIGHT_SPEED/100.* gslIntegrate(e_computer, 0, z0, 1e-3);
cout << "Comoving distance = " << baseComovingDistance << " Mpc/h" << endl;
for (uint32_t i = 0; i < data->NumPart; i++)
{
float& x = data->Pos[x0][i];
float& y = data->Pos[x1][i];
float& z = data->Pos[x2][i];
float& v = data->Vel[2][i];
float z_old = z;
double reduced_red = (z + baseComovingDistance)*100./LIGHT_SPEED;
// Distorted redshift
z = (z_vs_D.compute(reduced_red)-z_base)*LIGHT_SPEED/100.;
expfact[i] = z / z_old;
// Add peculiar velocity
if (pecvel)
z += v/100;
}
}
void generateOutput(SimuData *data, int axis,
const std::string& fname)
{
UnformattedWrite f(fname);
cout << "Generating output particles to " << fname << endl;
int x0, x1, x2;
switch (axis) {
case 0:
x0 = 1; x1 = 2; x2 = 0;
break;
case 1:
x0 = 0; x1 = 2; x2 = 1;
break;
case 2:
x0 = 0; x1 = 1; x2 = 2;
break;
default:
abort();
}
f.beginCheckpoint();
f.writeInt32(data->NumPart);
f.endCheckpoint();
cout << "Writing X components..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x0][i]);
}
f.endCheckpoint();
cout << "Writing Y components..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x1][i]);
}
f.endCheckpoint();
cout << "Writing Z components..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x2][i]);
}
f.endCheckpoint();
}
void makeBox(SimuData *simu, double *efac, SimuData *&boxed, generateMock_info& args_info)
{
uint32_t goodParticles = 0;
double ranges[3][2] = {
{ args_info.rangeX_min_arg, args_info.rangeX_max_arg },
{ args_info.rangeY_min_arg, args_info.rangeY_max_arg },
{ args_info.rangeZ_min_arg, args_info.rangeZ_max_arg }
};
double mul[3];
int *particle_id;
boxed = new SimuData;
boxed->Hubble = simu->Hubble;
boxed->Omega_M = simu->Omega_M;
boxed->Omega_Lambda = simu->Omega_Lambda;
boxed->time = simu->time;
boxed->BoxSize = simu->BoxSize;
for (uint32_t i = 0; i < simu->NumPart; i++)
{
bool acceptance = true;
for (int j = 0; j < 3; j++)
acceptance =
acceptance &&
(simu->Pos[j][i] > ranges[j][0]) &&
(simu->Pos[j][i] < ranges[j][1]);
if (acceptance)
goodParticles++;
}
for (int j = 0; j < 3; j++)
{
boxed->Pos[j] = new float[goodParticles];
boxed->Vel[j] = 0;
mul[j] = 1.0/(ranges[j][1] - ranges[j][0]);
}
boxed->NumPart = goodParticles;
particle_id = new int[goodParticles];
double *expansion_fac = new double[goodParticles];
uint32_t k = 0;
for (uint32_t i = 0; i < simu->NumPart; i++)
{
bool acceptance = true;
for (int j = 0; j < 3; j++)
acceptance =
acceptance &&
(simu->Pos[j][i] > ranges[j][0]) &&
(simu->Pos[j][i] < ranges[j][1]);
if (acceptance)
{
for (int j = 0; j < 3; j++)
{
boxed->Pos[j][k] = (simu->Pos[j][i]-ranges[j][0])*mul[j];
assert(boxed->Pos[j][k] > 0);
assert(boxed->Pos[j][k] < 1);
}
particle_id[k] = i;
expansion_fac[k] = efac[i];
k++;
}
}
NcFile f(args_info.outputParameter_arg, NcFile::Replace);
f.add_att("range_x_min", ranges[0][0]);
f.add_att("range_x_max", ranges[0][1]);
f.add_att("range_y_min", ranges[1][0]);
f.add_att("range_y_max", ranges[1][1]);
f.add_att("range_z_min", ranges[2][0]);
f.add_att("range_z_max", ranges[2][1]);
NcDim *NumPart_dim = f.add_dim("numpart_dim", boxed->NumPart);
NcVar *v = f.add_var("particle_ids", ncInt, NumPart_dim);
NcVar *v2 = f.add_var("expansion", ncDouble, NumPart_dim);
v->put(particle_id, boxed->NumPart);
v2->put(expansion_fac, boxed->NumPart);
delete[] particle_id;
delete[] expansion_fac;
}
int main(int argc, char **argv)
{
generateMock_info args_info;
generateMock_conf_params args_params;
SimuData *simu, *simuOut;
generateMock_conf_init(&args_info);
generateMock_conf_params_init(&args_params);
args_params.check_required = 0;
if (generateMock_conf_ext (argc, argv, &args_info, &args_params))
return 1;
if (!args_info.configFile_given)
{
if (generateMock_conf_required (&args_info, GENERATEMOCK_CONF_PACKAGE))
return 1;
}
else
{
args_params.check_required = 1;
args_params.initialize = 0;
if (generateMock_conf_config_file (args_info.configFile_arg,
&args_info,
&args_params))
return 1;
}
generateMock_conf_print_version();
simu = doLoadRamses(args_info.ramsesBase_arg,
args_info.ramsesId_arg,
args_info.axis_arg, false);
cout << "Hubble = " << simu->Hubble << endl;
cout << "Boxsize = " << simu->BoxSize << endl;
cout << "Omega_M = " << simu->Omega_M << endl;
cout << "Omega_Lambda = " << simu->Omega_Lambda << endl;
double *expfact;
metricTransform(simu, args_info.axis_arg, args_info.preReShift_flag, args_info.peculiarVelocities_flag, expfact);
makeBox(simu, expfact, simuOut, args_info);
delete simu;
generateOutput(simuOut, args_info.axis_arg, args_info.output_arg);
delete simuOut;
return 0;
}