vide_public/python_source/voidUtil/catalogUtil.py

723 lines
25 KiB
Python

#+
# VIDE -- Void IDentification and Examination -- ./python_tools/vide/voidUtil/catalogUtil.py
# Copyright (C) 2010-2014 Guilhem Lavaux
# Copyright (C) 2011-2014 P. M. Sutter
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#+
# Various utilities for loading and modifying particle datasets
import numpy as np
from netCDF4 import Dataset
import sys
from backend import *
import pickle
from .periodic_kdtree import PeriodicCKDTree
import os
NetCDFFile = Dataset
ncFloat = 'f8'
CATALOG_V1 = 1
CATALOG_V2 = 2
# -----------------------------------------------------------------------
def loadPart(sampleDir):
print(" Loading particle data...")
sys.stdout.flush()
with open(sampleDir+"/sample_info.dat", 'rb') as input:
sample = pickle.load(input)
infoFile = sampleDir+"/zobov_slice_"+sample.fullName+".par"
File = NetCDFFile(infoFile, 'r')
ranges = np.zeros((3,2))
ranges[0][0] = getattr(File, 'range_x_min')
ranges[0][1] = getattr(File, 'range_x_max')
ranges[1][0] = getattr(File, 'range_y_min')
ranges[1][1] = getattr(File, 'range_y_max')
ranges[2][0] = getattr(File, 'range_z_min')
ranges[2][1] = getattr(File, 'range_z_max')
isObservation = getattr(File, 'is_observation')
# old verison of VIDe includes the boundary tracers in the file
nGal = 0
if hasattr(File, 'mask_index'):
nGal = getattr(File, 'mask_index')
File.close()
mul = np.zeros((3))
mul[:] = ranges[:,1] - ranges[:,0]
partFile = sampleDir+"/zobov_slice_"+sample.fullName
iLine = 0
partData = []
part = np.zeros((3))
with open(partFile, mode="rb") as File:
chk = np.fromfile(File, dtype=np.int32,count=1)
Np = np.fromfile(File, dtype=np.int32,count=1)[0]
chk = np.fromfile(File, dtype=np.int32,count=1)
chk = np.fromfile(File, dtype=np.int32,count=1)
x = np.fromfile(File, dtype=np.float32,count=Np)
x *= mul[0]
if isObservation != 1:
x += ranges[0][0]
chk = np.fromfile(File, dtype=np.int32,count=1)
chk = np.fromfile(File, dtype=np.int32,count=1)
y = np.fromfile(File, dtype=np.float32,count=Np)
y *= mul[1]
if isObservation != 1:
y += ranges[1][0]
chk = np.fromfile(File, dtype=np.int32,count=1)
chk = np.fromfile(File, dtype=np.int32,count=1)
z = np.fromfile(File, dtype=np.float32,count=Np)
z *= mul[2]
if isObservation != 1:
z += ranges[2][0]
chk = np.fromfile(File, dtype=np.int32,count=1)
chk = np.fromfile(File, dtype=np.int32,count=1)
RA = np.fromfile(File, dtype=np.float32,count=Np)
chk = np.fromfile(File, dtype=np.int32,count=1)
chk = np.fromfile(File, dtype=np.int32,count=1)
Dec = np.fromfile(File, dtype=np.float32,count=Np)
chk = np.fromfile(File, dtype=np.int32,count=1)
chk = np.fromfile(File, dtype=np.int32,count=1)
redshift = np.fromfile(File, dtype=np.float32,count=Np)
chk = np.fromfile(File, dtype=np.int32,count=1)
chk = np.fromfile(File, dtype=np.int32,count=1)
uniqueID = np.fromfile(File, dtype=np.int64,count=Np)
chk = np.fromfile(File, dtype=np.int32,count=1)
# if it's an old catalog, trim it
if nGal > 0:
x = x[0:nGal]
y = y[0:nGal]
z = z[0:nGal]
RA = RA[0:nGal]
Dec = Dec[0:nGal]
redshift = redshift[0:nGal]
uniqueID = uniqueID[0:nGal]
partData = np.column_stack((x,y,z))
extraData = np.column_stack((RA,Dec,redshift,uniqueID))
boxLen = mul
boxVol = np.prod(boxLen)
volNorm = Np/boxVol # this is the zobov normalization
isObservationData = isObservation == 1
return partData, boxLen, volNorm, isObservationData, ranges, extraData
# -----------------------------------------------------------------------------
def loadPartVel(sampleDir):
#print " Loading particle velocities..."
sys.stdout.flush()
with open(sampleDir+"/sample_info.dat", 'rb') as input:
sample = pickle.load(input)
infoFile = sampleDir+"/zobov_slice_"+sample.fullName+".par"
File = NetCDFFile(infoFile, 'r')
isObservation = getattr(File, 'is_observation')
if isObservation:
print("No velocities for observations!")
return -1
vx = File.variables['vel_x'][0:]
vy = File.variables['vel_y'][0:]
vz = File.variables['vel_z'][0:]
File.close()
partVel = np.column_stack((vx,vy,vz))
return partVel
# -----------------------------------------------------------------------------
def getPartTree(catalog):
sample = catalog.sampleInfo
partData = catalog.partPos
boxLen = catalog.boxLen
periodicLine = getPeriodic(sample)
periodic = 1.*boxLen
if not "x" in periodicLine: periodic[0] = -1
if not "y" in periodicLine: periodic[1] = -1
if not "z" in periodicLine: periodic[2] = -1
return PeriodicCKDTree(periodic, partData)
# -----------------------------------------------------------------------------
def getBall(partTree, center, radius):
return partTree.query_ball_point(center, r=radius)
# -----------------------------------------------------------------------------
def shiftPart(inPart, center, periodicLine, ranges):
part = inPart.copy()
newCenter = 1.*center;
boxLen = np.zeros((3))
boxLen[0] = ranges[0][1] - ranges[0][0]
boxLen[1] = ranges[1][1] - ranges[1][0]
boxLen[2] = ranges[2][1] - ranges[2][0]
# shift to box coordinates
part[:,0] -= ranges[0][0]
part[:,1] -= ranges[1][0]
part[:,2] -= ranges[2][0]
newCenter[:] -= ranges[:,0]
part[:,0] -= newCenter[0]
part[:,1] -= newCenter[1]
part[:,2] -= newCenter[2]
shiftUs = np.abs(part[:,0]) > boxLen[0]/2.
if ("x" in periodicLine): part[shiftUs,0] -= \
np.copysign(boxLen[0], part[shiftUs,0])
shiftUs = np.abs(part[:,1]) > boxLen[1]/2.
if ("y" in periodicLine): part[shiftUs,1] -= \
np.copysign(boxLen[1], part[shiftUs,1])
shiftUs = np.abs(part[:,2]) > boxLen[2]/2.
if ("z" in periodicLine): part[shiftUs,2] -= \
np.copysign(boxLen[2], part[shiftUs,2])
#part[:,0] += ranges[0][0]
#part[:,1] += ranges[1][0]
#part[:,2] += ranges[2][0]
return part
# -----------------------------------------------------------------------------
class Bunch:
def __init__(self, **kwds):
self.__dict__.update(kwds)
class Catalog:
numVoids = 0
numPartTot = 0
numZonesTot = 0
volNormZobov = 0 # normalization used by zobov across entire volumne
volNormObs = 0 # normalization based on average density of survey volume
boxLen = np.zeros((3))
ranges = np.zeros((3,2))
part = None
partPos = None
zones2Parts = None
void2Zones = None
voids = None
sampleInfo = None
# -----------------------------------------------------------------------------
def loadVoidCatalog(sampleDir,
loadParticles = False,
loadAdjacencies = False,
clearEdges = False,
clearTree = False,
clearNearBoundaries = False,
maxCentralDen = -1,
replicateOldCentralVoids = False,
):
# loads a void catalog
# sampleDir: path to VIDE output directory
# loadParticles: if True, also load particle information
# loadAdjacencies: if True, also load particle adjacency information
# clearEdges: if True, remove voids with any edge contamination
# clearTree: if True, remove all non-leaf voids
# clearNearBoundaries: remove voids where the maximum extent is
# greater than the distance to nearest edge
# maxHighCentralDen: if != -1, filters based on based on central density
# NOTE: we are moving away from the cumbersome void catalog outputs of
# older versions, and will eventually just output a single catalog.
# To replicate the old "central" catalog, choose:
# clearEdges = True
# clearTree = True
# clearNearBoundaries = True
# maxCentralDen = 1.e-9
#
# ~or~ set replicateOldCentralVoids = True
sys.stdout.flush()
print("Loading catalog from ", sampleDir)
if os.path.exists(sampleDir+"/mask_index.txt"):
version = CATALOG_V1
else:
version = CATALOG_V2
if version == CATALOG_V1 and clearNearBoundaries:
print("WARNING: Old catalog. Unable to clear near boundaries.")
if version == CATALOG_V1 and maxCentralDen != -1:
print("WARNING: Old catalog. Central density cuts already applied.")
if replicateOldCentralVoids:
clearEdges = True
clearTree = True
clearNearBoundaries = True
maxCentralDen = 1.e-9
catalog = Catalog()
with open(sampleDir+"/sample_info.dat", 'rb') as input:
sample = pickle.load(input)
catalog.sampleInfo = sample
print("Loading info...")
infoFile = sampleDir+"/zobov_slice_"+sample.fullName+".par"
File = NetCDFFile(infoFile, 'r')
ranges = np.zeros((3,2))
ranges[0][0] = getattr(File, 'range_x_min')
ranges[0][1] = getattr(File, 'range_x_max')
ranges[1][0] = getattr(File, 'range_y_min')
ranges[1][1] = getattr(File, 'range_y_max')
ranges[2][0] = getattr(File, 'range_z_min')
ranges[2][1] = getattr(File, 'range_z_max')
catalog.boxLen[0] = ranges[0][1] - ranges[0][0]
catalog.boxLen[1] = ranges[1][1] - ranges[1][0]
catalog.boxLen[2] = ranges[2][1] - ranges[2][0]
catalog.ranges = ranges
File.close()
volNormZobov, volNormObs = getVolNorm(sampleDir)
catalog.volNormZobov = volNormZobov
catalog.volNormObs = volNormObs
# for new catalogs, we will load by default the whole shebang, then
# apply filters later. for old catalogs, we need to pick the right file
if version == CATALOG_V1:
if clearTree:
prefix = ""
else:
prefix = "untrimmed_"
if clearEdges:
dataPortion = "central"
else:
dataPortion = "all"
print("Loading version-1 voids...")
fileName = sampleDir+"/"+prefix+"voidDesc_"+dataPortion+"_"+sample.fullName+".out"
catData = np.loadtxt(fileName, comments="#", skiprows=2)
catalog.voids = []
for line in catData:
catalog.voids.append(Bunch(iVoid = int(line[0]),
voidID = int(line[1]),
coreParticle = line[2],
coreDens = line[3],
zoneVol = line[4],
zoneNumPart = line[5],
numZones = int(line[6]),
voidVol = line[7],
numPart = int(line[8]),
densCon = line[9],
voidProb = line[10],
# below values to be read in or computed later
radius = 0.,
redshift = 0,
RA = 0,
Dec = 0,
parentID = 0,
treeLevel = 0,
numChildren = 0,
centralDen = 0.,
ellipticity = 0.,
eigenVals = np.zeros((3)),
eigenVecs = np.zeros((3,3)),
voidType = CENTRAL_VOID,
maxRadius = 0.,
nearestEdge = 0.
))
catalog.numVoids = len(catalog.voids)
print(" Read %d voids" % catalog.numVoids)
print("Loading macrocenters...")
iLine = 0
for line in open(sampleDir+"/"+prefix+"macrocenters_"+dataPortion+"_"+sample.fullName+".out"):
line = line.split()
catalog.voids[iLine].macrocenter[0] = float(line[1])
catalog.voids[iLine].macrocenter[1] = float(line[2])
catalog.voids[iLine].macrocenter[2] = float(line[3])
iLine += 1
iLine = 0
fileName = sampleDir+"/"+prefix+"sky_positions_"+dataPortion+"_"+sample.fullName+".out"
catData = np.loadtxt(fileName, comments="#")
for line in catData:
catalog.voids[iLine].RA = float(line[0])
catalog.voids[iLine].Dec = float(line[1])
iLine += 1
print("Loading derived void information...")
fileName = sampleDir+"/"+prefix+"centers_"+dataPortion+"_"+sample.fullName+".out"
catData = np.loadtxt(fileName, comments="#")
for (iLine,line) in enumerate(catData):
catalog.voids[iLine].volume = float(line[6])
catalog.voids[iLine].radius = float(line[4])
catalog.voids[iLine].redshift = float(line[5])
catalog.voids[iLine].parentID = float(line[10])
catalog.voids[iLine].treeLevel = float(line[11])
catalog.voids[iLine].numChildren = float(line[12])
catalog.voids[iLine].centralDen = float(line[13])
iLine += 1
fileName = sampleDir+"/"+prefix+"shapes_"+dataPortion+"_"+sample.fullName+".out"
catData = np.loadtxt(fileName, comments="#")
for (iLine,line) in enumerate(catData):
catalog.voids[iLine].ellipticity = float(line[1])
catalog.voids[iLine].eigenVals[0] = float(line[2])
catalog.voids[iLine].eigenVals[1] = float(line[3])
catalog.voids[iLine].eigenVals[2] = float(line[4])
catalog.voids[iLine].eigenVecs[0][0] = float(line[5])
catalog.voids[iLine].eigenVecs[0][1] = float(line[6])
catalog.voids[iLine].eigenVecs[0][2] = float(line[7])
catalog.voids[iLine].eigenVecs[1][0] = float(line[8])
catalog.voids[iLine].eigenVecs[1][1] = float(line[9])
catalog.voids[iLine].eigenVecs[1][2] = float(line[10])
catalog.voids[iLine].eigenVecs[2][0] = float(line[11])
catalog.voids[iLine].eigenVecs[2][1] = float(line[12])
catalog.voids[iLine].eigenVecs[2][2] = float(line[13])
iLine += 1
else:
print("Loading version-2 voids...")
fileName = sampleDir+"/"+prefix+"voidDatabase_"+sample.fullName+".out"
catalog.voids = []
for line in catData:
macrocenter = np.zeros((3))
macrocenter[0] = float(line[2])
macrocenter[1] = float(line[3])
macrocenter[2] = float(line[4])
eigenVals = np.zeros((3))
eigenVecs = np.zeros((3,3))
eigenVals[0] = float(line[26])
eigenVals[1] = float(line[27])
eigenVals[2] = float(line[28])
eigenVecs[0][0] = float(line[29])
eigenVecs[0][1] = float(line[30])
eigenVecs[0][2] = float(line[31])
eigenVecs[1][0] = float(line[32])
eigenVecs[1][1] = float(line[33])
eigenVecs[1][2] = float(line[34])
eigenVecs[2][0] = float(line[35])
eigenVecs[2][1] = float(line[36])
eigenVecs[2][2] = float(line[37])
catalog.voids.append(Bunch(
voidID = int(line[0]),
voidType = int(line[1]),
macrocenter = macrocenter,
voidVol = float(line[5]),
volume = float(line[6]),
radius = float(line[7]),
redshift = float(line[8]),
RA = float(line[9]),
Dec = float(line[10]),
densCon = float(line[11]),
maxRadius = float(line[12]),
nearestEdge = float(line[13]),
numPart = int(line[14]),
parentID = int(line[15]),
treeLevel = int(line[16]),
numChildren = int(line[17]),
centralDen = float(line[18]),
coreParticle = int(line[19]),
coreDens = float(line[20]),
zoneVol = float(line[21]),
zoneNumPart = int(line[22]),
numZones = int(line[23]),
voidProb = float(line[24]),
ellipticity = float(line[25]),
eigenVals = eigenVals,
eigenVecs = eigenVecs
))
catalog.numVoids = len(catalog.voids)
print(" Read %d voids" % catalog.numVoids)
# apply filters to new catalogs
if version != CATALOG_V1:
print("Filtering catalog...")
if clearEdges: catalog = filterOnType(catalog, CENTRAL_VOID)
if clearTree: catalog = filterOnTreeLevel(catalog, level=-1)
if clearNearBoundaries: catalog = filterOnNearestEdge(catalog)
if maxCentralDen != -1: catalog = filterOnCentralDen(catalog, maxCentralDen)
print(" After filtering there are %d voids remaining" % catalog.numVoids)
if loadParticles:
print("Loading all particles...")
partData, boxLen, volNorm, isObservationData, ranges, extraData = loadPart(sampleDir)
numPartTot = len(partData)
catalog.numPartTot = numPartTot
catalog.partPos = partData
catalog.part = []
for i in range(len(partData)):
catalog.part.append(Bunch(x = partData[i][0],
y = partData[i][1],
z = partData[i][2],
volume = 0,
nadjs = 0,
adjs = [],
ra = extraData[i][0],
dec = extraData[i][1],
redshift = extraData[i][2],
uniqueID = extraData[i][3],
voidID = -1,
edgeFlag = 0))
if isObservationData:
print(" Loading edge flags...")
edgeFlagFile = sampleDir+"/galaxy_edge_flags.txt"
if os.path.isfile(edgeFlagFile):
edgeFlags = np.loadtxt(edgeFlagFile, dtype=np.int32)
for iEdge in range(len(edgeFlags)):
catalog.part[iEdge].edgeFlag = edgeFlags[iEdge]
else:
print(" Edge file not found!")
#catalog.part[:].edgeFlags = 0
print(" Loading volumes...")
if hasattr(sample, "hasWeightedVolumes") and sample.hasWeightedVolumes:
volFile = sampleDir+"/vol_weighted_"+sample.fullName+".dat"
else:
volFile = sampleDir+"/vol_"+sample.fullName+".dat"
with open(volFile, mode="rb") as File:
chk = np.fromfile(File, dtype=np.int32,count=1)
vols = np.fromfile(File, dtype=np.float32,count=numPartTot)
for ivol in range(len(vols)):
catalog.part[ivol].volume = vols[ivol] / volNorm
if loadAdjacencies:
print(" Loading adjacencies...")
adjFile = sampleDir+"adj_"+sample.fullName+".dat"
with open(adjFile, mode="rb") as File:
numPart = np.fromfile(File, dtype=np.int32,count=1)[0]
# this the total number of adjancies per particle
nadjPerPart = np.fromfile(File, dtype=np.int32,count=numPart)
# but the file only stores one half of each pair,
# so we need to match
for p in range(numPart):
nin = np.fromfile(File, dtype=np.int32, count=1)[0]
for n in range(nin):
pAdj = np.fromfile(File, dtype=np.int32, count=1)[0]
if (p < pAdj):
catalog.part[p].adjs.append(pAdj)
catalog.part[pAdj].adjs.append(p)
print(" Sanity checking adjacenies...")
for p in range(numPart):
catalog.part[p].nadjs = len(catalog.part[p].adjs)
nHave = len(catalog.part[p].adjs)
nExpected = nadjPerPart[p]
# interior galaxies should not connect to
if (nHave != nExpected and catalog.part[p].edgeFlag == 0):
print(" Error for particle %d: Have %d adj, expected %d (flag: %d)" % (p, nHave, nExpected, catalog.part[p].edgeFlag))
# end load adjacencies
print(" Loading zone-void membership info...")
zoneFile = sampleDir+"/voidZone_"+sample.fullName+".dat"
catalog.void2Zones = []
with open(zoneFile, mode="rb") as File:
numVoidsTot = np.fromfile(File, dtype=np.int32,count=1)[0]
catalog.numVoidsTot = numVoidsTot
for iVoid in range(numVoidsTot):
numZones = np.fromfile(File, dtype=np.int32,count=1)[0]
catalog.void2Zones.append(Bunch(numZones = numZones,
zoneIDs = []))
for iZ in range(numZones):
zoneID = np.fromfile(File, dtype=np.int32,count=1)[0]
catalog.void2Zones[iVoid].zoneIDs.append(zoneID)
print(" Loading particle-zone membership info...")
zonePartFile = sampleDir+"/voidPart_"+sample.fullName+".dat"
catalog.zones2Parts = []
with open(zonePartFile) as File:
chk = np.fromfile(File, dtype=np.int32,count=1)
numZonesTot = np.fromfile(File, dtype=np.int32,count=1)[0]
for iZ in range(numZonesTot):
numPart = np.fromfile(File, dtype=np.int32,count=1)[0]
catalog.zones2Parts.append(Bunch(numPart = numPart,
partIDs = []))
for p in range(numPart):
partID = np.fromfile(File, dtype=np.int32,count=1)[0]
catalog.zones2Parts[iZ].partIDs.append(partID)
print(" Matching particles to voids...")
for void in catalog.voids:
voidID = void.voidID
for iZ in range(catalog.void2Zones[voidID].numZones):
zoneID = catalog.void2Zones[voidID].zoneIDs[iZ]
for p in range(catalog.zones2Parts[zoneID].numPart):
partID = catalog.zones2Parts[zoneID].partIDs[p]
catalog.part[partID].voidID = voidID
print("Done loading catalog.")
return catalog
# -----------------------------------------------------------------------------
def getArray(objectList, attr):
if hasattr(objectList[0], attr):
ndim = np.shape( np.atleast_1d( getattr(objectList[0], attr) ) )[0]
attrArr = np.zeros(( len(objectList), ndim ))
for idim in range(ndim):
attrArr[:,idim] = np.fromiter((np.atleast_1d(getattr(v, attr))[idim] \
for v in objectList), float )
if ndim == 1: attrArr = attrArr[:,0]
return attrArr
else:
print(" Attribute", attr, "not found!")
return -1
# -----------------------------------------------------------------------------
def getVoidPart(catalog, voidID):
partOut = []
for iZ in range(catalog.void2Zones[voidID].numZones):
zoneID = catalog.void2Zones[voidID].zoneIDs[iZ]
for p in range(catalog.zones2Parts[zoneID].numPart):
partID = catalog.zones2Parts[zoneID].partIDs[p]
partOut.append(catalog.part[partID])
return partOut
# -----------------------------------------------------------------------------
# various handy catalog filtering routines
def filterOnSize(catalog, rMin):
catalog.voids = [v for v in catalog.voids if v.radius >= rMin]
catalog.numVoids = len(catalog.voids)
return catalog
def filterOnTreeLevel(catalog, level):
if level == -1:
catalog.voids = [v for v in catalog.voids if v.numChildren == 0]
else:
catalog.voids = [v for v in catalog.voids if v.treeLevel == level]
catalog.numVoids = len(catalog.voids)
return catalog
def filterOnCentralDen(catalog, maxCentralDen):
catalog.voids = [v for v in catalog.voids if v.centralDen <= maxCentralDen]
catalog.numVoids = len(catalog.voids)
return catalog
def filterOnCoreDen(catalog, maxCoreDen):
catalog.voids = [v for v in catalog.voids if v.coreDens <= maxCoreDen]
catalog.numVoids = len(catalog.voids)
return catalog
def filterOnDensCon(catalog, minDenCon):
catalog.voids = [v for v in catalog.voids if v.densCon >= minDenCon]
catalog.numVoids = len(catalog.voids)
return catalog
def filterOnType(catalog, voidType):
catalog.voids = [v for v in catalog.voids if v.voidType == voidType]
catalog.numVoids = len(catalog.voids)
return catalog
def filterOnNearestEdge(catalog, factor=1.0):
catalog.voids = [v for v in catalog.voids if \
factor*v.maxRadius <= v.nearestEdge]
catalog.numVoids = len(catalog.voids)
return catalog
# -----------------------------------------------------------------------------
def stackVoids(catalog, stackMode = "ball"):
# builds a stack of voids from the given catalog
# catalog: void catalog
# stackMode:
# "ball": spherical cut
# "voronoi": only void member particles
#
# returns:
# stackedPart: array of relative particle positions in the stack
rMax = 100.
periodicLine = getPeriodic(catalog.sampleInfo)
if stackMode == "ball":
partTree = getPartTree(catalog)
stackedPart = []
for void in catalog.voids:
center = void.macrocenter
if stackMode == "ball":
localPart = catalog.partPos[ getBall(partTree, center, rMax) ]
else:
voidPart = getVoidPart(catalog, void.voidID)
localPart = np.zeros((len(voidPart),3))
localPart[:,0] = getArray(voidPart, 'x')
localPart[:,1] = getArray(voidPart, 'y')
localPart[:,2] = getArray(voidPart, 'z')
shiftedPart = shiftPart(localPart, center, periodicLine, catalog.ranges)
stackedPart.extend(shiftedPart)
return stackedPart