mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
112 lines
3.9 KiB
Python
112 lines
3.9 KiB
Python
#+
|
|
# VIDE -- Void IDentification and Examination -- ./python_tools/vide/apTools/chi2/cosmologyTools.py
|
|
# Copyright (C) 2010-2014 Guilhem Lavaux
|
|
# Copyright (C) 2011-2014 P. M. Sutter
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; version 2 of the License.
|
|
#
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
#+
|
|
# a suite of functions to compute expansion rates, angular diameter
|
|
# distances, and expected void stretching
|
|
|
|
import numpy as np
|
|
import scipy.integrate as integrate
|
|
import healpy as healpy
|
|
import os
|
|
from vide.backend import *
|
|
|
|
__all__=['expansion', 'angularDiameter', 'aveExpansion', 'getSurveyProps']
|
|
|
|
# returns 1/E(z) for the given cosmology
|
|
def expansion(z, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
|
ez = Om * (1+z)**3 + (Ot-Om)# * (1+z)**(3.+3*wz)
|
|
#ez = Om * (1+z)**3 + (Ot-Om)# * integrade.quad(eosDE, 0.0, z, args=(w0,wa))[0]
|
|
ez = 1./np.sqrt(ez)
|
|
return ez
|
|
|
|
# returns DE value at redshift z
|
|
def eosDE(z, w0 = -1.0, wa = 0.0):
|
|
return w0 + wa*z/(1+z)
|
|
|
|
# returns D_A(z) for the given cosmology
|
|
def angularDiameter(z, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
|
da = integrate.quad(expansion, 0.0, z, args=(Om, Ot, w0, wa))[0]
|
|
return da
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# returns average expected expansion for a given redshift range
|
|
def aveExpansion(zStart, zEnd, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
|
if zStart == 0.0: zStart = 1.e-6
|
|
ave = integrate.quad(expansion, zStart, zEnd, args=(Om, Ot, w0, wa))[0]
|
|
ave = (zEnd-zStart)/ave
|
|
return ave
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# returns the volume and galaxy density for a given redshit slice
|
|
def getSurveyProps(maskFile, zmin, zmax, selFunMin, selFunMax, portion, selectionFuncFile=None, useComoving=False):
|
|
|
|
LIGHT_SPEED = 299792.458
|
|
|
|
mask = healpy.read_map(maskFile)
|
|
area = (1.*np.size(np.where(mask > 0)) / np.size(mask)) * 4.*np.pi
|
|
|
|
if useComoving:
|
|
zmin = LIGHT_SPEED/100.*angularDiameter(zmin, Om=0.27)
|
|
zmax = LIGHT_SPEED/100.*angularDiameter(zmax, Om=0.27)
|
|
selFunMin = LIGHT_SPEED/100.*angularDiameter(selFunMin, Om=0.27)
|
|
selFunMax = LIGHT_SPEED/100.*angularDiameter(selFunMax, Om=0.27)
|
|
else:
|
|
zmin = zmin * 3000
|
|
zmax = zmax * 3000
|
|
selFunMin *= 3000
|
|
selFunMax *= 3000
|
|
volume = area * (zmax**3 - zmin**3) / 3
|
|
|
|
if selectionFuncFile == None:
|
|
nbar = 1.0
|
|
|
|
elif not os.access(selectionFuncFile, os.F_OK):
|
|
print(" Warning, selection function file %s not found, using default of uniform selection." % selectionFuncFile)
|
|
nbar = 1.0
|
|
|
|
else:
|
|
selfunc = np.genfromtxt(selectionFuncFile)
|
|
selfunc = np.array(selfunc)
|
|
selfunc[:,0] = selfunc[:,0]/100.
|
|
selfuncUnity = selfunc
|
|
selfuncUnity[:,1] = 1.0
|
|
selfuncMin = selfunc[0,0]
|
|
selfuncMax = selfunc[-1,0]
|
|
selfuncDx = selfunc[1,0] - selfunc[0,0]
|
|
selfuncN = np.size(selfunc[:,0])
|
|
|
|
selFunMin = max(selFunMin, selfuncMin)
|
|
selFunMax = min(selFunMax, selfuncMax)
|
|
|
|
|
|
def f(z): return selfunc[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2
|
|
def fTotal(z): return selfuncUnity[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2
|
|
|
|
zrange = np.linspace(selFunMin, selFunMax)
|
|
|
|
nbar = scipy.integrate.quad(f, selFunMin, selFunMax)
|
|
nbar = nbar[0]
|
|
|
|
ntotal = scipy.integrate.quad(fTotal, 0.0, max(selfuncUnity[:,0]))
|
|
ntotal = ntotal[0]
|
|
|
|
nbar = ntotal / area / nbar
|
|
|
|
|
|
return (volume, nbar)
|