vide_public/c_tools/mock/generateMock.cpp
Guilhem Lavaux affb56ff48 Merged in python3 (pull request #5)
Port to python3, large code cleanup

* Fixed command line for cosmotool

* Fix path

* Dump command line is log file

* Fix important typo

* Modify paths for example

* Fix path again

* Use an explicit constructor

* Change file to open (python 2->3)

* python3 fix for xrange in periodic_kdtree.py

* Fixed index for Np, numPart, numZones, numZonesTot, partID, zoneID in catalogUtil.py
2020-12-29 08:56:33 +00:00

791 lines
24 KiB
C++

/*+
VIDE -- Void IDentification and Examination -- ./c_tools/mock/generateMock.cpp
Copyright (C) 2010-2014 Guilhem Lavaux
Copyright (C) 2011-2014 P. M. Sutter
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+*/
#include <gsl/gsl_rng.h>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/format.hpp>
#include <cmath>
#include <cassert>
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <algorithm>
#include <CosmoTool/loadSimu.hpp>
#include <CosmoTool/interpolate.hpp>
#include <CosmoTool/fortran.hpp>
#include <CosmoTool/algo.hpp>
#include "generateMock_conf.h"
#include "gslIntegrate.hpp"
#include <netcdf>
#include "simulation_loader.hpp"
using namespace std;
using namespace CosmoTool;
using boost::format;
using namespace netCDF;
#define LIGHT_SPEED 299792.458
typedef boost::function2<void, SimuData*, double*> MetricFunctor;
struct TotalExpansion
{
double Omega_M, Omega_L;
double operator()(double z)
{
return 1/sqrt(Omega_M*cube(1+z) + Omega_L);
}
};
Interpolate make_cosmological_redshift(double OM, double OL, double z0, double z1, int N = 5000)
{
TotalExpansion e_computer;
double D_tilde, Q, Qprime;
InterpolatePairs pairs;
e_computer.Omega_M = OM;
e_computer.Omega_L = OL;
pairs.resize(N);
ofstream f("comoving_distance.txt");
for (int i = 0; i < N; i++)
{
double z = z0 + (z1-z0)/N*i;
pairs[i].second = z;
pairs[i].first = gslIntegrate(e_computer, 0, z, 1e-3);
f << z << " " << pairs[i].first << endl;
}
return buildFromVector(pairs);
}
void metricTransform(SimuData *data, int axis, bool reshift, bool pecvel, double* expfact, bool cosmo_flag)
{
int x0, x1, x2;
switch (axis) {
case 0:
x0 = 1; x1 = 2; x2 = 0;
break;
case 1:
x0 = 0; x1 = 2; x2 = 1;
break;
case 2:
x0 = 0; x1 = 1; x2 = 2;
break;
default:
abort();
}
double z0 = 1/data->time - 1;
Interpolate z_vs_D =
make_cosmological_redshift(data->Omega_M, data->Omega_Lambda,
0., z0+8*data->BoxSize*100/LIGHT_SPEED);
// Redshift 2*z0 should be sufficient ? This is fragile.
//A proper solver is needed here.
double z_base = reshift ? z0 : 0;
TotalExpansion e_computer;
double baseComovingDistance;
cout << "Using base redshift z=" << z0 << " " << z0+8*data->BoxSize*100/LIGHT_SPEED << endl;
e_computer.Omega_M = data->Omega_M;
e_computer.Omega_L = data->Omega_Lambda;
baseComovingDistance = LIGHT_SPEED/100.* gslIntegrate(e_computer, 0, z0, 1e-3);
cout << "Comoving distance = " << baseComovingDistance << " Mpc/h" << endl;
if (cosmo_flag) cout << "Will place particles on a lightcone..." << endl;
float minZ = 1.e99;
float maxZ = 0;
for (uint32_t i = 0; i < data->NumPart; i++)
{
float& x = data->Pos[x0][i];
float& y = data->Pos[x1][i];
float& z = data->Pos[x2][i];
float& v = data->Vel[2][i];
float z_old = z;
double reduced_red = (z + baseComovingDistance)*100./LIGHT_SPEED;
double reduced_base = (reshift ? (baseComovingDistance*100./LIGHT_SPEED) : 0);
try
{
// Distorted redshift
if (reduced_red == 0)
z = 0;
else if (cosmo_flag)
z = (z_vs_D.compute(reduced_red)-z_base)*LIGHT_SPEED/100.;
else
z = (reduced_red-reduced_base)*LIGHT_SPEED/100.0;
if (expfact)
expfact[i] = z / z_old;
// Add peculiar velocity
if (pecvel)
z += v/(100*e_computer(z0));
}
catch(const InvalidRangeException& e) {
cout << "Trying to interpolate out of the tabulated range." << endl;
cout << "The offending value is z=" << reduced_red << endl;
abort();
}
if (z > maxZ) maxZ = z;
if (z < minZ) minZ = z;
}
printf("Range of z: %.2f - %.2f\n", minZ, maxZ);
}
// slightly perturb particle positions
void joggleParticles(SimuData *data) {
cout << "Joggling particle positions..." << endl;
gsl_rng *myRng = gsl_rng_alloc(gsl_rng_taus);
int seed = 314159;
gsl_rng_set(myRng, seed);
for (uint32_t i = 0; i < data->NumPart; i++) {
data->Pos[0][i] += 1.e-3*gsl_rng_uniform(myRng);
data->Pos[1][i] += 1.e-3*gsl_rng_uniform(myRng);
data->Pos[2][i] += 1.e-3*gsl_rng_uniform(myRng);
data->Pos[0][i] -= 1.e-3*gsl_rng_uniform(myRng);
data->Pos[1][i] -= 1.e-3*gsl_rng_uniform(myRng);
data->Pos[2][i] -= 1.e-3*gsl_rng_uniform(myRng);
}
} // end joggleParticles
void generateOutput(SimuData *data, int axis,
const std::string& fname)
{
UnformattedWrite f(fname);
cout << "Generating output particles to " << fname << endl;
int x0, x1, x2;
switch (axis) {
case 0:
x0 = 1; x1 = 2; x2 = 0;
break;
case 1:
x0 = 0; x1 = 2; x2 = 1;
break;
case 2:
x0 = 0; x1 = 1; x2 = 2;
break;
default:
abort();
}
f.beginCheckpoint();
f.writeInt32(data->NumPart);
f.endCheckpoint();
cout << "Writing X components..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x0][i]);
}
f.endCheckpoint();
cout << "Writing Y components..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x1][i]);
}
f.endCheckpoint();
cout << "Writing Z components..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x2][i]);
}
f.endCheckpoint();
cout << "Writing RA..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x0][i]);
}
f.endCheckpoint();
cout << "Writing Dec..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x1][i]);
}
f.endCheckpoint();
cout << "Writing redshift..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeReal32(data->Pos[x2][i]*LIGHT_SPEED);
}
f.endCheckpoint();
long *uniqueID = data->as<long>("uniqueID");
if (uniqueID != 0)
{
cout << "Writing unique ID..." << endl;
f.beginCheckpoint();
for (uint32_t i = 0; i < data->NumPart; i++)
{
f.writeInt64(uniqueID[i]);
}
f.endCheckpoint();
}
}
// This function prepares the list of targets for the specified snapshot. The target list is not
// cleared. That way new particles can be appended if this is a multi-file snapshot.
void selectBox(SimuData *simu, std::vector<long>& targets, generateMock_info& args_info, SimulationPreprocessor *preselect)
{
double ranges[3][2] = {
{ args_info.rangeX_min_arg, args_info.rangeX_max_arg },
{ args_info.rangeY_min_arg, args_info.rangeY_max_arg },
{ args_info.rangeZ_min_arg, args_info.rangeZ_max_arg }
};
long numAccepted =0;
for (uint32_t i = 0; i < simu->NumPart; i++)
{
bool acceptance = true;
SingleParticle p;
for (int j = 0; j < 3; j++) {
acceptance =
acceptance &&
(simu->Pos[j][i] > ranges[j][0]) &&
(simu->Pos[j][i] <= ranges[j][1]);
p.Pos[j] = simu->Pos[j][i];
p.Vel[j] = (simu->Vel[j] != 0) ? simu->Vel[j][i] : 0;
}
p.ID = (simu->Id != 0) ? simu->Id[i] : -1;
if (preselect != 0)
acceptance = acceptance && preselect->accept(p);
if (acceptance) {
targets.push_back(i);
numAccepted++;
}
}
cout << "SELECTBOX: Num accepted here = " << numAccepted << " / input = " << simu->NumPart << " (after resubsampling)" << endl;
}
class PreselectParticles: public SimulationPreprocessor
{
private:
gsl_rng *rng;
double subsample;
int seed;
public:
PreselectParticles(double s, int seed_value)
: subsample(s), seed(seed_value), rng(gsl_rng_alloc(gsl_rng_default))
{
gsl_rng_set(rng, seed);
}
virtual ~PreselectParticles()
{
gsl_rng_free(rng);
}
bool accept(const SingleParticle& p)
{
return gsl_rng_uniform(rng) < subsample;
}
void reset()
{
gsl_rng_set(rng, seed);
}
};
void createBox(SimuData *simu, vector<long>& targets, vector<long>& snapshot_split, SimuData *& boxed, generateMock_info& args_info)
{
double *ranges = new double[6];
double *mul = new double[3];
long *simu_uniqueID = simu->as<long>("uniqueID");
ranges[0] = args_info.rangeX_min_arg;
ranges[1] = args_info.rangeX_max_arg;
ranges[2] = args_info.rangeY_min_arg;
ranges[3] = args_info.rangeY_max_arg;
ranges[4] = args_info.rangeZ_min_arg;
ranges[5] = args_info.rangeZ_max_arg;
boxed = new SimuData;
boxed->Hubble = simu->Hubble;
boxed->Omega_M = simu->Omega_M;
boxed->Omega_Lambda = simu->Omega_Lambda;
boxed->time = simu->time;
boxed->BoxSize = simu->BoxSize;
boxed->NumPart = targets.size();
for (int j = 0; j < 3; j++)
{
boxed->Pos[j] = new float[boxed->NumPart];
boxed->Vel[j] = new float[boxed->NumPart];
//boxed->Vel[j] = 0;
mul[j] = 1.0/(ranges[2*j+1] - ranges[2*j+0]);
}
cout << "Min range = " << ranges[0] << " " << ranges[2] << " " << ranges[4] << endl;
cout << "Max range = " << ranges[1] << " " << ranges[3] << " " << ranges[5] << endl;
cout << "Number of accepted particles: " << boxed->NumPart << endl;
cout << "Rescaling factors = " << mul[0] << " " << mul[1] << " " << mul[2] << endl;
// PMS
FILE *fp = fopen("mask_index.txt", "w");
fprintf(fp, "%ld", boxed->NumPart);
fclose(fp);
fp = fopen("total_particles.txt", "w");
fprintf(fp, "%ld", boxed->NumPart);
fclose(fp);
printf("Done!\n");
// END PMS
long *uniqueID = new long[boxed->NumPart];
long *particle_id = new long[boxed->NumPart];
double *expansion_fac = new double[boxed->NumPart];
long *snap_split = new long[snapshot_split.size()];
int *numsnap_info = new int[1];
copy(targets.begin(), targets.end(), particle_id);
copy(snapshot_split.begin(), snapshot_split.end(), snap_split);
*numsnap_info = snapshot_split.size();
boxed->new_attribute("particle_id", particle_id, delete_adaptor<long>);
boxed->new_attribute("expansion_fac", expansion_fac, delete_adaptor<double>);
boxed->new_attribute("uniqueID", uniqueID, delete_adaptor<long>);
boxed->new_attribute("mul", mul, delete_adaptor<double>);
boxed->new_attribute("ranges", ranges, delete_adaptor<double>);
boxed->new_attribute("snapshot_split", snap_split, delete_adaptor<long>);
boxed->new_attribute("num_snapshots", numsnap_info, delete_adaptor<int>);
}
void buildBox(SimuData *simu, long num_targets, long loaded,
SimuData *boxed, double *efac)
{
uint32_t k = 0;
long *uniqueID = boxed->as<long>("uniqueID");
long *simu_uniqueID = simu->as<long>("uniqueID");
double *expansion_fac = boxed->as<double>("expansion_fac");
double *mul = boxed->as<double>("mul");
double *ranges = boxed->as<double>("ranges");
long *particle_id = boxed->as<long>("particle_id");
for (uint32_t i = 0; i < num_targets; i++, loaded++)
{
long pid = particle_id[loaded];
//assert(pid < simu->NumPart);
assert(loaded < boxed->NumPart);
for (int j = 0; j < 3; j++)
{
boxed->Pos[j][loaded] = max(min((simu->Pos[j][pid]-ranges[j*2])*mul[j], double(1)), double(0));
boxed->Vel[j][loaded] = simu->Vel[j][pid];
assert(boxed->Pos[j][loaded] >= 0);
assert(boxed->Pos[j][loaded] <= 1);
}
uniqueID[loaded] = (simu_uniqueID != 0) ? simu_uniqueID[pid] : 0;
expansion_fac[loaded] = efac[pid];
}
}
void saveBox(SimuData *&boxed, const std::string& outbox, generateMock_info& args_info)
{
double *ranges = boxed->as<double>("ranges");
NcFile f(outbox.c_str(), NcFile::replace);
long *particle_id = boxed->as<long>("particle_id");
double *expansion_fac = boxed->as<double>("expansion_fac");
long *snapshot_split = boxed->as<long>("snapshot_split");
int num_snapshots = *boxed->as<int>("num_snapshots");
long *uniqueID = boxed->as<long>("uniqueID");
float *velX = boxed->Vel[0];
float *velY = boxed->Vel[1];
float *velZ = boxed->Vel[2];
f.putAtt("range_x_min", ncDouble, ranges[0]);
f.putAtt("range_x_max", ncDouble, ranges[1]);
f.putAtt("range_y_min", ncDouble, ranges[2]);
f.putAtt("range_y_max", ncDouble, ranges[3]);
f.putAtt("range_z_min", ncDouble, ranges[4]);
f.putAtt("range_z_max", ncDouble, ranges[5]);
f.putAtt("mask_index", ncInt, -1);
f.putAtt("is_observation", ncInt, 0);
f.putAtt("data_subsampling", ncInt, args_info.subsample_arg);
NcDim NumPart_dim = f.addDim("numpart_dim", boxed->NumPart);
NcDim NumSnap_dim = f.addDim("numsnap_dim", num_snapshots);
NcVar v = f.addVar("particle_ids", ncInt64, NumPart_dim);
NcVar v2 = f.addVar("expansion", ncDouble, NumPart_dim);
NcVar v3 = f.addVar("snapshot_split", ncInt64, NumSnap_dim);
v.putVar({0}, {size_t(boxed->NumPart)}, particle_id);
v2.putVar({0}, {size_t(boxed->NumPart)}, expansion_fac);
v3.putVar({0}, {size_t(boxed->NumPart)}, snapshot_split);
if (uniqueID != 0)
{
NcVar v4 = f.addVar("unique_ids_lsb", ncInt, NumPart_dim);
NcVar v5 = f.addVar("unique_ids_msb", ncInt, NumPart_dim);
nclong *tmp_int = new nclong[boxed->NumPart];
for (long i = 0; i < boxed->NumPart; i++)
tmp_int[i] = (nclong)(((unsigned long)uniqueID[i]) & 0xffffffff);
v4.putVar({0}, {size_t(boxed->NumPart)}, tmp_int);
for (long i = 0; i < boxed->NumPart; i++)
tmp_int[i] = (nclong)((((unsigned long)uniqueID[i]) & 0xffffffff) >> 32);
v5.putVar({0}, {size_t(boxed->NumPart)}, tmp_int);
delete[] tmp_int;
}
NcVar v6 = f.addVar("vel_x", ncFloat, NumPart_dim);
NcVar v7 = f.addVar("vel_y", ncFloat, NumPart_dim);
NcVar v8 = f.addVar("vel_z", ncFloat, NumPart_dim);
v6.putVar({0}, {size_t(boxed->NumPart)}, velX);
v7.putVar({0}, {size_t(boxed->NumPart)}, velY);
v8.putVar({0}, {size_t(boxed->NumPart)}, velZ);
}
void makeBoxFromParameter(SimuData *simu, SimuData* &boxed, generateMock_info& args_info)
{
NcFile f(args_info.inputParameter_arg, NcFile::read);
NcVar *v;
long *particle_id;
double *expansion_fac;
long *uniqueID;
long *snapshot_split;
int *num_snapshots = new int[1];
boxed = new SimuData;
boxed->Hubble = simu->Hubble;
boxed->Omega_M = simu->Omega_M;
boxed->Omega_Lambda = simu->Omega_Lambda;
boxed->time = simu->time;
boxed->BoxSize = simu->BoxSize;
NcGroupAtt d_sub = f.getAtt("data_subsampling");
auto checkAtt = [&args_info](NcGroupAtt a) {
if (a.isNull())
return true;
double subsampling;
a.getValues(&subsampling);
return subsampling/args_info.subsample_arg - 1 > 1e-5;
};
if (checkAtt(d_sub))
{
cerr << "Parameter file was not generated with the same simulation subsampling argument. Particles will be different. Stop here." <<endl;
exit(1);
}
NcVar v_id = f.getVar("particle_ids");
NcVar v_snap = f.getVar("snapshot_split");
double *ranges;
double *mul;
std::vector<NcDim> edges1 = v_id.getDims();
std::vector<NcDim> dim_snap = v_snap.getDims();
assert(edges1.size()==1);
assert(dim_snap.size()==1);
boxed->NumPart = edges1[0].getSize();
*num_snapshots = dim_snap[0].getSize();
particle_id = new long[boxed->NumPart];
uniqueID = new long[boxed->NumPart];
mul = new double[3];
ranges = new double[6];
snapshot_split = new long[*num_snapshots];
expansion_fac = new double[boxed->NumPart];
boxed->new_attribute("uniqueID", uniqueID, delete_adaptor<long>);
boxed->new_attribute("mul", mul, delete_adaptor<double>);
boxed->new_attribute("ranges", ranges, delete_adaptor<double>);
boxed->new_attribute("particle_id", particle_id, delete_adaptor<long>);
boxed->new_attribute("num_snapshots", num_snapshots, delete_adaptor<int>);
boxed->new_attribute("snapshot_split", snapshot_split, delete_adaptor<long>);
boxed->new_attribute("expansion_fac", expansion_fac, delete_adaptor<double>);
v_id.getVar(particle_id);
v_snap.getVar(snapshot_split);
f.getAtt("range_x_min").getValues(&ranges[0]);
f.getAtt("range_x_max").getValues(&ranges[1]);
f.getAtt("range_y_min").getValues(&ranges[2]);
f.getAtt("range_y_max").getValues(&ranges[3]);
f.getAtt("range_z_min").getValues(&ranges[4]);
f.getAtt("range_z_max").getValues(&ranges[5]);
for (int j = 0; j < 3; j++)
{
boxed->Pos[j] = new float[boxed->NumPart];
boxed->Vel[j] = new float[boxed->NumPart];
//boxed->Vel[j] = 0;
mul[j] = 1.0/(ranges[2*j+1] - ranges[2*j+0]);
}
uint32_t k = 0;
NcVar v_uniq_lsb = f.getVar("unique_ids_lsb");
NcVar v_uniq_msb = f.getVar("unique_ids_lsb");
nclong *tmp_int;
tmp_int = new nclong[boxed->NumPart];
v_uniq_lsb.getVar(tmp_int);
for (long i = 0; i < boxed->NumPart; i++)
uniqueID[i] = tmp_int[i];
v_uniq_msb.getVar(tmp_int);
for (long i = 0; i < boxed->NumPart; i++)
uniqueID[i] |= (unsigned long)(tmp_int[i]) << 32;
delete[] tmp_int;
PreselectParticles *preselect = 0;
if (args_info.resubsample_given)
{
preselect = new PreselectParticles(args_info.resubsample_arg, args_info.resubsample_seed_arg);
preselect->reset();
}
if (preselect == 0)
return;
long pid_read = 0, pid_write = 0;
for (int s_id = 0; s_id < *num_snapshots; s_id++)
{
long previous_write = pid_write;
for (long q = 0; q < snapshot_split[s_id]; q++)
{
SingleParticle p;
p.ID = -1;
assert(pid_read < boxed->NumPart);
if (preselect->accept(p))
{
particle_id[pid_write] = particle_id[pid_read];
uniqueID[pid_write] = uniqueID[pid_read];
expansion_fac[pid_write] = expansion_fac[pid_read];
pid_write++;
}
pid_read++;
}
snapshot_split[s_id] = pid_write - previous_write;
}
boxed->NumPart = pid_write;
delete preselect;
cout << "Num accepted here = " << pid_write << " / input = " << pid_read << endl;
}
void makeBoxFromSimulation(SimulationLoader *loader, SimuData* &boxed, MetricFunctor metric, generateMock_info& args_info)
{
vector<long> targets, split;
long previous_target_num = 0;
PreselectParticles *preselect = 0;
if (args_info.resubsample_given)
{
preselect = new PreselectParticles(args_info.resubsample_arg, args_info.resubsample_seed_arg);
preselect->reset();
}
for (int nf = 0; nf < loader->num_files(); nf++)
{
SimuData *simu;
double *expfact;
cout << format("Analyzing and selecting targets in file number %d / %d") % (nf+1) % loader->num_files() << endl;
simu = loader->loadFile(nf);
metric(simu, 0);
selectBox(simu, targets, args_info, preselect);
split.push_back(targets.size() - previous_target_num);
previous_target_num = targets.size();
delete simu;
}
createBox(loader->getHeader(), targets, split, boxed, args_info);
if (preselect)
delete preselect;
}
int main(int argc, char **argv)
{
generateMock_info args_info;
generateMock_conf_params args_params;
SimuData *simu, *simuOut;
SimulationLoader *loader;
generateMock_conf_init(&args_info);
generateMock_conf_params_init(&args_params);
args_params.check_required = 0;
if (generateMock_conf_ext (argc, argv, &args_info, &args_params))
return 1;
if (!args_info.configFile_given)
{
if (generateMock_conf_required (&args_info, GENERATEMOCK_CONF_PACKAGE))
return 1;
}
else
{
args_params.check_required = 1;
args_params.initialize = 0;
if (generateMock_conf_config_file (args_info.configFile_arg,
&args_info,
&args_params))
return 1;
}
generateMock_conf_print_version();
SimulationPreprocessor *preselector = new PreselectParticles(args_info.subsample_arg, args_info.subsample_seed_arg);
if (args_info.ramsesBase_given || args_info.ramsesId_given)
{
if (args_info.ramsesBase_given && args_info.ramsesId_given) {
loader = ramsesLoader(args_info.ramsesBase_arg,
args_info.ramsesId_arg,
true, // double precision with ramses... set this to false if you are dealing with single precision
NEED_POSITION|NEED_VELOCITY|NEED_GADGET_ID, preselector);
}
else
{
cerr << "Both ramsesBase and ramsesId are required to be able to load snapshots" << endl;
return 1;
}
}
else if (args_info.gadget_given)
{
loader = gadgetLoader(args_info.gadget_arg, 1/args_info.gadgetUnit_arg, NEED_POSITION|NEED_VELOCITY|NEED_GADGET_ID, 1, preselector);
}
else if (args_info.gadget2_given)
{
loader = gadgetLoader(args_info.gadget2_arg, 1/args_info.gadgetUnit_arg, NEED_POSITION|NEED_VELOCITY|NEED_GADGET_ID, 2, preselector);
}
else if (args_info.flash_given)
{
loader = flashLoader(args_info.flash_arg, NEED_POSITION|NEED_VELOCITY|NEED_GADGET_ID, preselector);
}
#ifdef SDF_SUPPORT
else if (args_info.multidark_given)
{
loader = multidarkLoader(args_info.multidark_arg, preselector);
}
else if (args_info.sdf_given)
{
loader = sdfLoader(args_info.sdf_arg, NEED_POSITION|NEED_VELOCITY|NEED_GADGET_ID, args_info.sdf_splitting_arg, preselector);
}
#endif
else
{
cerr << "A simulation snapshot is required to generate a mock catalog." << endl;
return 1;
}
if (loader == 0)
{
cerr << "Error while loading " << endl;
return 1;
}
simu = loader->getHeader();
{
SimuData *header = loader->getHeader();
cout << "Hubble = " << header->Hubble << endl;
cout << "Boxsize = " << header->BoxSize << endl;
cout << "Omega_M = " << header->Omega_M << endl;
cout << "Omega_Lambda = " << header->Omega_Lambda << endl;
cout << "Subsample fraction: " << (args_info.subsample_given ? args_info.subsample_arg : 1.0) << endl;
}
double *expfact;
boost::function2<void, SimuData*, double*> metricOperation=
boost::bind(metricTransform, _1, args_info.axis_arg, args_info.preReShift_flag,
args_info.peculiarVelocities_flag, _2,
args_info.cosmo_flag);
if (args_info.inputParameter_given)
makeBoxFromParameter(loader->getHeader(), simuOut, args_info);
else
makeBoxFromSimulation(loader, simuOut, metricOperation, args_info);
// Reset the random number generator
preselector->reset();
long loaded = 0;
for (int nf = 0; nf < loader->num_files(); nf++)
{
long num_targets = simuOut->as<long>("snapshot_split")[nf];
cout << format("Building box from particles in %d / %d") % (nf+1) % loader->num_files() << endl;
if (num_targets == 0)
{
cout << "No particles selected there. Skipping." << endl;
continue;
}
SimuData *simu = loader->loadFile(nf);
double *efac = new double[simu->NumPart];
metricOperation(simu, efac);
buildBox(simu, num_targets, loaded, simuOut, efac);
loaded += num_targets;
assert(loaded <= simuOut->NumPart);
delete simu;
delete[] efac;
}
if (args_info.joggleParticles_flag)
joggleParticles(simuOut);
saveBox(simuOut, args_info.outputParameter_arg, args_info);
generateOutput(simuOut, args_info.axis_arg,
args_info.output_arg);
delete preselector;
double subsample = 1.0;
if (args_info.subsample_given) subsample = args_info.subsample_arg;
if (args_info.resubsample_given) subsample = args_info.resubsample_arg;
printf("Done! %5.2e\n", subsample);
return 0;
}