mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
333 lines
11 KiB
Python
333 lines
11 KiB
Python
#+
|
|
# VIDE -- Void IDentification and Examination
|
|
# Copyright (C) 2010-2014 Guilhem Lavaux
|
|
# Copyright (C) 2011-2014 P. M. Sutter
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; version 2 of the License.
|
|
#
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
#+
|
|
# a suite of functions to compute expansion rates, angular diameter
|
|
# distances, and expected void stretching
|
|
|
|
import numpy as np
|
|
import scipy
|
|
import healpy as healpy
|
|
import os
|
|
from backend import *
|
|
from backend.cosmologyTools import *
|
|
import pickle
|
|
|
|
from netCDF4 import Dataset
|
|
NetCDFFile = Dataset
|
|
ncFloat = 'f8'
|
|
|
|
__all__=['getSurveyProps', 'getVolNorm', 'getNside', 'figureOutMask', 'findEdgeGalaxies']
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# returns the survey volume and scaled galaxy density for a given redshit slice
|
|
def getSurveyProps(sample):
|
|
|
|
maskFile = sample.maskFile
|
|
zmin = sample.zBoundary[0]
|
|
zmax = sample.zBoundary[1]
|
|
selFunMin = sample.zBoundary[0]
|
|
selFunMax = sample.zBoundary[1]
|
|
omegaM = sample.omegaM
|
|
selectionFuncFile = sample.selFunFile
|
|
useComoving = sample.useComoving
|
|
|
|
mask = healpy.read_map(maskFile)
|
|
area = (1.*np.size(np.where(mask > 0)) / np.size(mask)) * 4.*np.pi
|
|
|
|
if useComoving:
|
|
zmin = LIGHT_SPEED/100.*comovingDistance(zmin, Om=omegaM)
|
|
zmax = LIGHT_SPEED/100.*comovingDistance(zmax, Om=omegaM)
|
|
else:
|
|
zmin = zmin * LIGHT_SPEED/100.
|
|
zmax = zmax * LIGHT_SPEED/100.
|
|
|
|
volume = area * (zmax**3 - zmin**3) / 3
|
|
|
|
if selectionFuncFile == None:
|
|
nbar = 1.0
|
|
|
|
elif not os.access(selectionFuncFile, os.F_OK):
|
|
print(" Warning, selection function file %s not found, using default of uniform selection." % selectionFuncFile)
|
|
nbar = 1.0
|
|
|
|
else:
|
|
selfunc = np.genfromtxt(selectionFuncFile)
|
|
selfunc = np.array(selfunc)
|
|
selfunc[:,0] = selfunc[:,0]/100.
|
|
selfuncUnity = selfunc
|
|
selfuncUnity[:,1] = 1.0
|
|
selfuncMin = selfunc[0,0]
|
|
selfuncMax = selfunc[-1,0]
|
|
selfuncDx = selfunc[1,0] - selfunc[0,0]
|
|
selfuncN = np.size(selfunc[:,0])
|
|
|
|
selFunMin = max(selFunMin, selfuncMin)
|
|
selFunMax = min(selFunMax, selfuncMax)
|
|
|
|
|
|
def f(z): return selfunc[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2
|
|
def fTotal(z): return selfuncUnity[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2
|
|
|
|
zrange = np.linspace(selFunMin, selFunMax)
|
|
|
|
nbar = scipy.integrate.quad(f, selFunMin, selFunMax)
|
|
nbar = nbar[0]
|
|
|
|
ntotal = scipy.integrate.quad(fTotal, 0.0, max(selfuncUnity[:,0]))
|
|
ntotal = ntotal[0]
|
|
|
|
nbar = ntotal / area / nbar
|
|
|
|
|
|
return (volume, nbar)
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# returns the volume normalization factors:
|
|
# normalization used by zobov (assumes cubmic volume)
|
|
# normalization used in galaxy survey volume for observations
|
|
def getVolNorm(sampleDir):
|
|
|
|
with open(sampleDir+"/sample_info.dat", 'rb') as input:
|
|
sample = pickle.load(input)
|
|
|
|
infoFile = sampleDir+"/zobov_slice_"+sample.fullName+".par"
|
|
File = NetCDFFile(infoFile, 'r')
|
|
ranges = np.zeros((3,2))
|
|
ranges[0][0] = getattr(File, 'range_x_min')
|
|
ranges[0][1] = getattr(File, 'range_x_max')
|
|
ranges[1][0] = getattr(File, 'range_y_min')
|
|
ranges[1][1] = getattr(File, 'range_y_max')
|
|
ranges[2][0] = getattr(File, 'range_z_min')
|
|
ranges[2][1] = getattr(File, 'range_z_max')
|
|
isObservation = getattr(File, 'is_observation')
|
|
File.close()
|
|
mul = np.zeros((3))
|
|
mul[:] = ranges[:,1] - ranges[:,0]
|
|
|
|
# getting the total number of tracers is an adventure depending
|
|
# on which verison of VIDE we're pulling up
|
|
maskIndexFile = sampleDir+"/mask_index.txt"
|
|
totalPartFile = sampleDir+"/total_particles.txt"
|
|
|
|
if os.path.exists(maskIndexFile):
|
|
nTot = float(open(totalPartFile, "r").read())
|
|
nGal = float(open(maskIndexFile, "r").read())
|
|
else:
|
|
nTot = float(open(totalPartFile, "r").read())
|
|
nGal = nTot
|
|
|
|
boxLen = mul
|
|
|
|
boxVol = np.prod(boxLen)
|
|
volNormZobov = nTot/boxVol
|
|
volNormObs = volNormZobov
|
|
|
|
if isObservation == 1:
|
|
if os.access(sample.maskFile, os.F_OK):
|
|
maskFile = sample.maskFile
|
|
else:
|
|
maskFile = sampleDir+"/"+os.path.basename(sample.maskFile)
|
|
print("Using maskfile found in: " + maskFile)
|
|
|
|
props = getSurveyProps(sample)
|
|
surveyVol = props[0]
|
|
volNormObs = nGal/surveyVol
|
|
|
|
return volNormZobov, volNormObs
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# returns the nside resolution from the given maskfile
|
|
def getNside(maskFile):
|
|
|
|
mask = healpy.read_map(maskFile)
|
|
return healpy.get_nside(mask)
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# helper function to convert RA,dec to phi,theta
|
|
def convertAngle(RA, Dec):
|
|
|
|
phi = np.pi/180.*RA
|
|
theta = Dec*np.pi/180.
|
|
theta = np.pi/2. - Dec*np.pi/180.
|
|
|
|
return (phi, theta)
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# computes the mask from a given galaxy datafile and writes it to a file
|
|
def figureOutMask(galFile, nside, outMaskFile):
|
|
|
|
npix = healpy.nside2npix(nside)
|
|
mask = np.zeros((npix))
|
|
|
|
for line in open(galFile):
|
|
line = line.split()
|
|
RA = float(line[3])
|
|
Dec = float(line[4])
|
|
z = float(line[5])
|
|
|
|
phi, theta = convertAngle(RA, Dec)
|
|
|
|
pix = healpy.ang2pix(nside, theta, phi)
|
|
mask[pix] = 1.
|
|
|
|
healpy.write_map(outMaskFile, mask, overwrite=True, dtype=np.dtype('float64'))
|
|
|
|
return mask
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# figures out which galaxies live on a mask or redshift edge
|
|
def findEdgeGalaxies(galFile, maskFile, edgeGalFile, contourFile,
|
|
zmin, zmax, omegaM, useComoving,
|
|
meanPartSep, outputDir, log):
|
|
|
|
if useComoving:
|
|
zmin = comovingDistance(zmin, Om=omegaM)*LIGHT_SPEED
|
|
zmax = comovingDistance(zmax, Om=omegaM)*LIGHT_SPEED
|
|
else:
|
|
zmin *= LIGHT_SPEED
|
|
zmax *= LIGHT_SPEED
|
|
|
|
log.write(" Reading contour map...\n")
|
|
contourMap = healpy.read_map(contourFile)
|
|
nside = healpy.get_nside(contourMap)
|
|
npix = healpy.nside2npix(nside)
|
|
|
|
# load in galaxies
|
|
log.write(" Loading galaxies...\n")
|
|
# TODO - WHY IS THIS FASTER THAN np.column_stack???
|
|
galPos = np.genfromtxt(outputDir+"/galaxies.txt")
|
|
with open(galFile, 'rb') as File:
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
Np = np.fromfile(File, dtype=np.int32,count=1)[0]
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
x = np.fromfile(File, dtype=np.float32,count=Np)
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
y = np.fromfile(File, dtype=np.float32,count=Np)
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
z = np.fromfile(File, dtype=np.float32,count=Np)
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
RA = np.fromfile(File, dtype=np.float32,count=Np)
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
Dec = np.fromfile(File, dtype=np.float32,count=Np)
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
redshift = np.fromfile(File, dtype=np.float32,count=Np)
|
|
chk = np.fromfile(File, dtype=np.int32,count=1)
|
|
|
|
#print(galPos.shape)
|
|
#galPos = np.column_stack((x,y,z))
|
|
#print(galPos.shape)
|
|
|
|
log.write(" Building k-d tree...\n")
|
|
flagList = np.zeros(len(galPos[:,0]))
|
|
galTree = scipy.spatial.cKDTree(galPos)
|
|
|
|
# flag galaxies near mask edges
|
|
# using the "ray marching" algorithm: follow rays along lines of sight
|
|
# of all mask edges, flagging nearest neighbor galaxies as we go
|
|
|
|
log.write(" Begin ray-marching...\n")
|
|
rayDist = meanPartSep
|
|
raySteps = np.arange(zmin, zmax, rayDist)
|
|
log.write(" Will take %d steps per ray with %.2e distance between steps\n" % (len(raySteps), rayDist))
|
|
|
|
contourPixels = np.nonzero(contourMap)[0]
|
|
log.write(" We have %d rays to work with\n" % (len(contourPixels)))
|
|
for pixel in contourPixels:
|
|
#print("Working with pixel %d" % pixel)
|
|
vec = healpy.pix2vec(nside,pixel)
|
|
x = raySteps * vec[0]
|
|
y = raySteps * vec[1]
|
|
z = raySteps * vec[2]
|
|
ray = np.array((x,y,z)).T
|
|
|
|
dist, nearest = galTree.query(ray)
|
|
flagList[nearest] = 1
|
|
|
|
# flag galaxies near redsfhit boundaries
|
|
|
|
log.write(" Flagging galaxies near redshift bounds...\n")
|
|
sphereIndices = np.arange(len(contourMap))
|
|
vec = healpy.pix2vec(nside, sphereIndices)
|
|
vec = np.asarray(vec)
|
|
maxEdge = zmax * vec
|
|
maxEdge = maxEdge.T
|
|
dist, nearest = galTree.query(maxEdge)
|
|
flagList[nearest] = 2
|
|
|
|
minEdge = zmin * vec
|
|
minEdge = minEdge.T
|
|
dist, nearest = galTree.query(minEdge)
|
|
flagList[nearest] = 3
|
|
|
|
log.write(" Flagging statistics:\n")
|
|
log.write(" %d original galaxies\n" % len(flagList))
|
|
log.write(" %d near edges\n" % len(flagList[flagList==1]))
|
|
log.write(" %d near redshift bounds\n" % len(flagList[flagList==2]))
|
|
log.write(" %d remaining\n" % len(flagList[flagList==0]))
|
|
# output flag information
|
|
log.write(" Saving galaxy flags to file...\n")
|
|
np.savetxt(edgeGalFile, flagList, fmt="%d")
|
|
|
|
# paint galaxy flags onto healpix map for diagnostics
|
|
# TODO - drop this when done testing
|
|
log.write(" Saving diagnostic maps to file...\n")
|
|
flagMap = np.zeros(len(contourMap))
|
|
justEdgeRA = RA[flagList == 1]
|
|
justEdgeDec = Dec[flagList == 1]
|
|
|
|
phi, theta = convertAngle(justEdgeRA, justEdgeDec)
|
|
|
|
ipix = healpy.ang2pix(nside, theta, phi)
|
|
for i in ipix:
|
|
flagMap[i] += 1
|
|
#np.put(flagMap, ipix, 1)
|
|
|
|
healpy.write_map(outputDir+"/flagged_galaxies.fits", flagMap,
|
|
overwrite=True,
|
|
dtype=np.dtype('float64'))
|
|
|
|
|
|
allGalMap = np.zeros(len(contourMap))
|
|
phi, theta = convertAngle(RA, Dec)
|
|
|
|
ipix = healpy.ang2pix(nside, theta, phi)
|
|
for i in ipix:
|
|
allGalMap[i] += 1
|
|
#np.put(allGalMap, ipix, 1)
|
|
|
|
healpy.write_map(outputDir+"/all_galaxies.fits", allGalMap,
|
|
overwrite=True,
|
|
dtype=np.dtype('float64'))
|
|
|
|
return
|