mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
298 lines
9.1 KiB
Python
298 lines
9.1 KiB
Python
#+
|
|
# VIDE -- Void IDEntification pipeline -- ./python_tools/void_python_tools/plotting/plotTools.py
|
|
# Copyright (C) 2010-2013 Guilhem Lavaux
|
|
# Copyright (C) 2011-2013 Paul M. Sutter
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along
|
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
#+
|
|
__all__=['plotRedshiftDistribution', 'plotSizeDistribution', 'plot1dProfiles',
|
|
'plotMarg1d', 'plotNumberDistribution']
|
|
|
|
from void_python_tools.backend.classes import *
|
|
from plotDefs import *
|
|
import numpy as np
|
|
import os
|
|
import pylab as plt
|
|
import void_python_tools.apTools as vp
|
|
|
|
# -----------------------------------------------------------------------------
|
|
def plotRedshiftDistribution(workDir=None, sampleList=None, figDir=None,
|
|
plotNameBase="zdist",
|
|
showPlot=False, dataPortion=None, setName=None):
|
|
|
|
plt.clf()
|
|
plt.xlabel("Redshift")
|
|
plt.ylabel("Number of Voids")
|
|
|
|
plotTitle = setName
|
|
|
|
plotName = plotNameBase
|
|
|
|
xMin = 1.e00
|
|
xMax = 0
|
|
|
|
for (iSample,sample) in enumerate(sampleList):
|
|
|
|
sampleName = sample.fullName
|
|
lineTitle = sampleName
|
|
|
|
filename = workDir+"/sample_"+sampleName+"/centers_"+dataPortion+"_"+\
|
|
sampleName+".out"
|
|
if not os.access(filename, os.F_OK):
|
|
print "File not found: ", filename
|
|
continue
|
|
|
|
data = np.loadtxt(filename, comments="#")
|
|
if data.ndim == 1:
|
|
print " Too few!"
|
|
continue
|
|
|
|
zMin = sample.zRange[0]
|
|
zMax = sample.zRange[1]
|
|
|
|
range = (zMin, zMax)
|
|
nbins = np.ceil((zMax-zMin)/0.02)
|
|
|
|
thisMax = np.max(data[:,5])
|
|
thisMin = np.min(data[:,5])
|
|
if thisMax > xMax: xMax = thisMax
|
|
if thisMin < xMin: xMin = thisMin
|
|
|
|
plt.hist(data[:,5], bins=nbins,
|
|
label=lineTitle, color=colorList[iSample],
|
|
histtype = "step", range=range,
|
|
linewidth=linewidth)
|
|
|
|
#plt.legend(title = "Samples", loc = "upper right")
|
|
plt.title(plotTitle)
|
|
|
|
plt.xlim(xMin, xMax)
|
|
#plt.xlim(xMin, xMax*1.4) # make room for legend
|
|
|
|
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
|
|
|
if showPlot:
|
|
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
def plotSizeDistribution(workDir=None, sampleList=None, figDir=None,
|
|
plotNameBase="sizedist",
|
|
showPlot=False, dataPortion=None, setName=None):
|
|
|
|
plt.clf()
|
|
plt.xlabel("Void Radius (Mpc/h)")
|
|
plt.ylabel("Number of Voids")
|
|
|
|
plotTitle = setName
|
|
|
|
plotName = plotNameBase
|
|
|
|
xMin = 1.e00
|
|
xMax = 0
|
|
|
|
for (iSample,sample) in enumerate(sampleList):
|
|
|
|
sampleName = sample.fullName
|
|
lineTitle = sampleName
|
|
|
|
filename = workDir+"/sample_"+sampleName+"/centers_"+dataPortion+"_"+\
|
|
sampleName+".out"
|
|
if not os.access(filename, os.F_OK):
|
|
print "File not found: ", filename
|
|
continue
|
|
|
|
data = np.loadtxt(filename, comments="#")
|
|
if data.ndim == 1:
|
|
print " Too few!"
|
|
continue
|
|
|
|
xMin = 5
|
|
xMax = 140
|
|
|
|
range = (xMin, xMax)
|
|
nbins = np.ceil((xMax-xMin)/5)
|
|
|
|
#thisMax = np.max(data[:,5])
|
|
#thisMin = np.min(data[:,5])
|
|
#if thisMax > xMax: xMax = thisMax
|
|
#if thisMin < xMin: xMin = thisMin
|
|
|
|
plt.hist(data[:,4], bins=nbins,
|
|
label=lineTitle, color=colorList[iSample],
|
|
histtype = "step", range=range,
|
|
linewidth=linewidth)
|
|
|
|
plt.legend(title = "Samples", loc = "upper right")
|
|
plt.title(plotTitle)
|
|
|
|
plt.xlim(xMin, xMax)
|
|
#plt.xlim(xMin, xMax*1.4) # make room for legend
|
|
|
|
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
|
|
|
if showPlot:
|
|
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
def plot1dProfiles(workDir=None, sampleList=None, figDir=None,
|
|
plotNameBase="1dprofile",
|
|
showPlot=False, dataPortion=None, setName=None):
|
|
|
|
plt.clf()
|
|
plt.xlabel(r"$R/R_{v,\mathrm{max}}$")
|
|
plt.ylabel(r"$n / \bar n$")
|
|
|
|
for (iSample,sample) in enumerate(sampleList):
|
|
|
|
sampleName = sample.fullName
|
|
|
|
for (iStack,stack) in enumerate(sample.stacks):
|
|
|
|
plotTitle = setName
|
|
plotName = plotNameBase
|
|
|
|
runSuffix = getStackSuffix(stack.zMin, stack.zMax, stack.rMin,
|
|
stack.rMax, dataPortion)
|
|
|
|
plotTitle = sampleName + ", z = "+str(stack.zMin)+"-"+str(stack.zMax)+", R = "+str(stack.rMin)+"-"+str(stack.rMax)+ r" $h^{-1}$ Mpc"
|
|
|
|
filename = workDir+"/sample_"+sampleName+"/stacks_"+runSuffix+\
|
|
"profile_1d.txt"
|
|
|
|
if not os.access(filename, os.F_OK):
|
|
print "File not found: ", filename
|
|
continue
|
|
|
|
data = np.loadtxt(filename, comments="#")
|
|
if data.ndim == 1:
|
|
print " Too few!"
|
|
continue
|
|
|
|
data[:,1] /= stack.rMax
|
|
plt.ylim(ymin=0.0, ymax=np.amax(data[:,2])+0.1)
|
|
plt.xlim(xmin=0.0, xmax=2.1)
|
|
plt.plot(data[:,1], data[:,2], label=lineTitle, color=colorList[0],
|
|
linewidth=linewidth)
|
|
|
|
plt.title(plotTitle)
|
|
|
|
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
|
|
|
if showPlot:
|
|
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
def plotMarg1d(workDir=None, sampleList=None, figDir=None,
|
|
plotNameBase="marg1d",
|
|
showPlot=False, dataPortion=None, setName=None):
|
|
|
|
plotNames = ("Om", "w0", "wa")
|
|
plotTitles = ("$\Omega_M$", "$w_0$", "$w_a$")
|
|
files = ("Om", "w0", "wa")
|
|
|
|
for iPlot in range(len(plotNames)):
|
|
|
|
plt.clf()
|
|
|
|
plotName = plotNameBase+"_"+plotNames[iPlot]+"_"+dataPortion
|
|
plotTitle = plotTitles[iPlot]
|
|
dataFile = workDir + "/likelihoods_"+dataPortion+"_"+files[iPlot]+".dat"
|
|
|
|
plt.xlabel(plotTitle, fontsize="20")
|
|
plt.ylabel("Likelihood", fontsize="20")
|
|
plt.ylim(0.0, 1.0)
|
|
|
|
data = np.loadtxt(dataFile, comments="#")
|
|
plt.plot(data[:,0], data[:,1], color='k', linewidth=linewidth)
|
|
|
|
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
|
|
|
if showPlot:
|
|
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
def plotNumberDistribution(workDir=None, sampleList=None, figDir=None,
|
|
plotNameBase="numberdist",
|
|
showPlot=False, dataPortion=None, setName=None):
|
|
|
|
plt.clf()
|
|
plt.xlabel("Void Radius (Mpc/h)")
|
|
plt.ylabel(r"N > R [$h^3$ Mpc$^{-3}$]")
|
|
|
|
plotTitle = setName
|
|
|
|
plotName = plotNameBase
|
|
|
|
plt.yscale('log')
|
|
|
|
for (iSample,sample) in enumerate(sampleList):
|
|
|
|
sampleName = sample.fullName
|
|
lineTitle = sampleName
|
|
|
|
if sample.dataType == "observation":
|
|
boxVol = vp.getSurveyProps(sample.maskFile,
|
|
sample.zBoundary[0], sample.zBoundary[1],
|
|
sample.zRange[0], sample.zRange[1], "all",
|
|
selectionFuncFile=None)[0]
|
|
else:
|
|
boxVol = sample.boxLen*sample.boxLen*(sample.zBoundaryMpc[1] -
|
|
sample.zBoundaryMpc[0])
|
|
|
|
boxVol *= 1.e-9
|
|
|
|
filename = workDir+"/sample_"+sampleName+"/centers_"+dataPortion+"_"+\
|
|
sampleName+".out"
|
|
if not os.access(filename, os.F_OK):
|
|
print "File not found: ", filename
|
|
continue
|
|
|
|
data = np.loadtxt(filename, comments="#")
|
|
if data.ndim == 1:
|
|
print " Too few!"
|
|
continue
|
|
data = data[:,4]
|
|
indices = np.arange(0, len(data), 1)
|
|
sorted = np.sort(data)
|
|
|
|
plt.plot(sorted, indices[::-1]/boxVol, '-',
|
|
label=lineTitle, color=colorList[iSample],
|
|
linewidth=linewidth)
|
|
|
|
plt.legend(title = "Samples", loc = "upper right")
|
|
plt.title(plotTitle)
|
|
|
|
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
|
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
|
|
|
if showPlot:
|
|
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
|
|
|
|
|
|