vide_public/external/cfitsio/eval_y.c

7333 lines
238 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* A Bison parser, made from eval.y
by GNU Bison version 1.25
*/
#define FFBISON 1 /* Identify Bison output. */
#define BOOLEAN 258
#define LONG 259
#define DOUBLE 260
#define STRING 261
#define BITSTR 262
#define FUNCTION 263
#define BFUNCTION 264
#define IFUNCTION 265
#define GTIFILTER 266
#define REGFILTER 267
#define COLUMN 268
#define BCOLUMN 269
#define SCOLUMN 270
#define BITCOL 271
#define ROWREF 272
#define NULLREF 273
#define SNULLREF 274
#define OR 275
#define AND 276
#define EQ 277
#define NE 278
#define GT 279
#define LT 280
#define LTE 281
#define GTE 282
#define POWER 283
#define NOT 284
#define INTCAST 285
#define FLTCAST 286
#define UMINUS 287
#define ACCUM 288
#define DIFF 289
#line 1 "eval.y"
/************************************************************************/
/* */
/* CFITSIO Lexical Parser */
/* */
/* This file is one of 3 files containing code which parses an */
/* arithmetic expression and evaluates it in the context of an input */
/* FITS file table extension. The CFITSIO lexical parser is divided */
/* into the following 3 parts/files: the CFITSIO "front-end", */
/* eval_f.c, contains the interface between the user/CFITSIO and the */
/* real core of the parser; the FLEX interpreter, eval_l.c, takes the */
/* input string and parses it into tokens and identifies the FITS */
/* information required to evaluate the expression (ie, keywords and */
/* columns); and, the BISON grammar and evaluation routines, eval_y.c, */
/* receives the FLEX output and determines and performs the actual */
/* operations. The files eval_l.c and eval_y.c are produced from */
/* running flex and bison on the files eval.l and eval.y, respectively. */
/* (flex and bison are available from any GNU archive: see www.gnu.org) */
/* */
/* The grammar rules, rather than evaluating the expression in situ, */
/* builds a tree, or Nodal, structure mapping out the order of */
/* operations and expression dependencies. This "compilation" process */
/* allows for much faster processing of multiple rows. This technique */
/* was developed by Uwe Lammers of the XMM Science Analysis System, */
/* although the CFITSIO implementation is entirely code original. */
/* */
/* */
/* Modification History: */
/* */
/* Kent Blackburn c1992 Original parser code developed for the */
/* FTOOLS software package, in particular, */
/* the fselect task. */
/* Kent Blackburn c1995 BIT column support added */
/* Peter D Wilson Feb 1998 Vector column support added */
/* Peter D Wilson May 1998 Ported to CFITSIO library. User */
/* interface routines written, in essence */
/* making fselect, fcalc, and maketime */
/* capabilities available to all tools */
/* via single function calls. */
/* Peter D Wilson Jun 1998 Major rewrite of parser core, so as to */
/* create a run-time evaluation tree, */
/* inspired by the work of Uwe Lammers, */
/* resulting in a speed increase of */
/* 10-100 times. */
/* Peter D Wilson Jul 1998 gtifilter(a,b,c,d) function added */
/* Peter D Wilson Aug 1998 regfilter(a,b,c,d) function added */
/* Peter D Wilson Jul 1999 Make parser fitsfile-independent, */
/* allowing a purely vector-based usage */
/* Craig B Markwardt Jun 2004 Add MEDIAN() function */
/* Craig B Markwardt Jun 2004 Add SUM(), and MIN/MAX() for bit arrays */
/* Craig B Markwardt Jun 2004 Allow subscripting of nX bit arrays */
/* Craig B Markwardt Jun 2004 Implement statistical functions */
/* NVALID(), AVERAGE(), and STDDEV() */
/* for integer and floating point vectors */
/* Craig B Markwardt Jun 2004 Use NULL values for range errors instead*/
/* of throwing a parse error */
/* Craig B Markwardt Oct 2004 Add ACCUM() and SEQDIFF() functions */
/* Craig B Markwardt Feb 2005 Add ANGSEP() function */
/* Craig B Markwardt Aug 2005 CIRCLE, BOX, ELLIPSE, NEAR and REGFILTER*/
/* functions now accept vector arguments */
/* Craig B Markwardt Sum 2006 Add RANDOMN() and RANDOMP() functions */
/* Craig B Markwardt Mar 2007 Allow arguments to RANDOM and RANDOMN to*/
/* determine the output dimensions */
/* Craig B Markwardt Aug 2009 Add substring STRMID() and string search*/
/* STRSTR() functions; more overflow checks*/
/* */
/************************************************************************/
#define APPROX 1.0e-7
#include "eval_defs.h"
#include "region.h"
#include <time.h>
#include <stdlib.h>
#ifndef alloca
#define alloca malloc
#endif
/* Shrink the initial stack depth to keep local data <32K (mac limit) */
/* yacc will allocate more space if needed, though. */
#define FFINITDEPTH 100
/***************************************************************/
/* Replace Bison's BACKUP macro with one that fixes a bug -- */
/* must update state after popping the stack -- and allows */
/* popping multiple terms at one time. */
/***************************************************************/
#define FFNEWBACKUP(token, value) \
do \
if (ffchar == FFEMPTY ) \
{ ffchar = (token); \
memcpy( &fflval, &(value), sizeof(value) ); \
ffchar1 = FFTRANSLATE (ffchar); \
while (fflen--) FFPOPSTACK; \
ffstate = *ffssp; \
goto ffbackup; \
} \
else \
{ fferror ("syntax error: cannot back up"); FFERROR; } \
while (0)
/***************************************************************/
/* Useful macros for accessing/testing Nodes */
/***************************************************************/
#define TEST(a) if( (a)<0 ) FFERROR
#define SIZE(a) gParse.Nodes[ a ].value.nelem
#define TYPE(a) gParse.Nodes[ a ].type
#define OPER(a) gParse.Nodes[ a ].operation
#define PROMOTE(a,b) if( TYPE(a) > TYPE(b) ) \
b = New_Unary( TYPE(a), 0, b ); \
else if( TYPE(a) < TYPE(b) ) \
a = New_Unary( TYPE(b), 0, a );
/***** Internal functions *****/
#ifdef __cplusplus
extern "C" {
#endif
static int Alloc_Node ( void );
static void Free_Last_Node( void );
static void Evaluate_Node ( int thisNode );
static int New_Const ( int returnType, void *value, long len );
static int New_Column( int ColNum );
static int New_Offset( int ColNum, int offset );
static int New_Unary ( int returnType, int Op, int Node1 );
static int New_BinOp ( int returnType, int Node1, int Op, int Node2 );
static int New_Func ( int returnType, funcOp Op, int nNodes,
int Node1, int Node2, int Node3, int Node4,
int Node5, int Node6, int Node7 );
static int New_FuncSize( int returnType, funcOp Op, int nNodes,
int Node1, int Node2, int Node3, int Node4,
int Node5, int Node6, int Node7, int Size);
static int New_Deref ( int Var, int nDim,
int Dim1, int Dim2, int Dim3, int Dim4, int Dim5 );
static int New_GTI ( char *fname, int Node1, char *start, char *stop );
static int New_REG ( char *fname, int NodeX, int NodeY, char *colNames );
static int New_Vector( int subNode );
static int Close_Vec ( int vecNode );
static int Locate_Col( Node *this );
static int Test_Dims ( int Node1, int Node2 );
static void Copy_Dims ( int Node1, int Node2 );
static void Allocate_Ptrs( Node *this );
static void Do_Unary ( Node *this );
static void Do_Offset ( Node *this );
static void Do_BinOp_bit ( Node *this );
static void Do_BinOp_str ( Node *this );
static void Do_BinOp_log ( Node *this );
static void Do_BinOp_lng ( Node *this );
static void Do_BinOp_dbl ( Node *this );
static void Do_Func ( Node *this );
static void Do_Deref ( Node *this );
static void Do_GTI ( Node *this );
static void Do_REG ( Node *this );
static void Do_Vector ( Node *this );
static long Search_GTI ( double evtTime, long nGTI, double *start,
double *stop, int ordered );
static char saobox (double xcen, double ycen, double xwid, double ywid,
double rot, double xcol, double ycol);
static char ellipse(double xcen, double ycen, double xrad, double yrad,
double rot, double xcol, double ycol);
static char circle (double xcen, double ycen, double rad,
double xcol, double ycol);
static char bnear (double x, double y, double tolerance);
static char bitcmp (char *bitstrm1, char *bitstrm2);
static char bitlgte(char *bits1, int oper, char *bits2);
static void bitand(char *result, char *bitstrm1, char *bitstrm2);
static void bitor (char *result, char *bitstrm1, char *bitstrm2);
static void bitnot(char *result, char *bits);
static int cstrmid(char *dest_str, int dest_len,
char *src_str, int src_len, int pos);
static void fferror(char *msg);
#ifdef __cplusplus
}
#endif
#line 189 "eval.y"
typedef union {
int Node; /* Index of Node */
double dbl; /* real value */
long lng; /* integer value */
char log; /* logical value */
char str[MAX_STRLEN]; /* string value */
} FFSTYPE;
#include <stdio.h>
#ifndef __cplusplus
#ifndef __STDC__
#define const
#endif
#endif
#define FFFINAL 290
#define FFFLAG -32768
#define FFNTBASE 54
#define FFTRANSLATE(x) ((unsigned)(x) <= 289 ? fftranslate[x] : 62)
static const char fftranslate[] = { 0,
2, 2, 2, 2, 2, 2, 2, 2, 2, 50,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 37, 41, 2, 52,
53, 38, 35, 20, 36, 2, 39, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 22, 2, 2,
21, 2, 25, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
47, 2, 51, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 23, 40, 24, 30, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 26, 27, 28, 29, 31, 32,
33, 34, 42, 43, 44, 45, 46, 48, 49
};
#if FFDEBUG != 0
static const short ffprhs[] = { 0,
0, 1, 4, 6, 9, 12, 15, 18, 21, 24,
28, 31, 35, 39, 43, 46, 49, 51, 53, 58,
62, 66, 70, 75, 82, 91, 102, 115, 118, 122,
124, 126, 128, 133, 135, 137, 141, 145, 149, 153,
157, 161, 164, 167, 171, 175, 179, 185, 191, 197,
200, 204, 208, 212, 216, 222, 228, 238, 243, 250,
259, 270, 283, 286, 289, 292, 295, 297, 299, 304,
308, 312, 316, 320, 324, 328, 332, 336, 340, 344,
348, 352, 356, 360, 364, 368, 372, 376, 380, 384,
388, 392, 396, 402, 408, 412, 416, 420, 426, 434,
446, 462, 465, 469, 475, 485, 489, 497, 507, 512,
519, 528, 539, 552, 555, 559, 561, 563, 568, 570,
574, 578, 584, 590
};
static const short ffrhs[] = { -1,
54, 55, 0, 50, 0, 58, 50, 0, 59, 50,
0, 61, 50, 0, 60, 50, 0, 1, 50, 0,
23, 59, 0, 56, 20, 59, 0, 23, 58, 0,
57, 20, 58, 0, 57, 20, 59, 0, 56, 20,
58, 0, 57, 24, 0, 56, 24, 0, 7, 0,
16, 0, 16, 23, 58, 24, 0, 60, 41, 60,
0, 60, 40, 60, 0, 60, 35, 60, 0, 60,
47, 58, 51, 0, 60, 47, 58, 20, 58, 51,
0, 60, 47, 58, 20, 58, 20, 58, 51, 0,
60, 47, 58, 20, 58, 20, 58, 20, 58, 51,
0, 60, 47, 58, 20, 58, 20, 58, 20, 58,
20, 58, 51, 0, 43, 60, 0, 52, 60, 53,
0, 4, 0, 5, 0, 13, 0, 13, 23, 58,
24, 0, 17, 0, 18, 0, 58, 37, 58, 0,
58, 35, 58, 0, 58, 36, 58, 0, 58, 38,
58, 0, 58, 39, 58, 0, 58, 42, 58, 0,
35, 58, 0, 36, 58, 0, 52, 58, 53, 0,
58, 38, 59, 0, 59, 38, 58, 0, 59, 25,
58, 22, 58, 0, 59, 25, 59, 22, 58, 0,
59, 25, 58, 22, 59, 0, 8, 53, 0, 8,
59, 53, 0, 8, 61, 53, 0, 8, 60, 53,
0, 8, 58, 53, 0, 10, 61, 20, 61, 53,
0, 8, 58, 20, 58, 53, 0, 8, 58, 20,
58, 20, 58, 20, 58, 53, 0, 58, 47, 58,
51, 0, 58, 47, 58, 20, 58, 51, 0, 58,
47, 58, 20, 58, 20, 58, 51, 0, 58, 47,
58, 20, 58, 20, 58, 20, 58, 51, 0, 58,
47, 58, 20, 58, 20, 58, 20, 58, 20, 58,
51, 0, 44, 58, 0, 44, 59, 0, 45, 58,
0, 45, 59, 0, 3, 0, 14, 0, 14, 23,
58, 24, 0, 60, 28, 60, 0, 60, 29, 60,
0, 60, 32, 60, 0, 60, 33, 60, 0, 60,
31, 60, 0, 60, 34, 60, 0, 58, 31, 58,
0, 58, 32, 58, 0, 58, 34, 58, 0, 58,
33, 58, 0, 58, 30, 58, 0, 58, 28, 58,
0, 58, 29, 58, 0, 61, 28, 61, 0, 61,
29, 61, 0, 61, 31, 61, 0, 61, 34, 61,
0, 61, 32, 61, 0, 61, 33, 61, 0, 59,
27, 59, 0, 59, 26, 59, 0, 59, 28, 59,
0, 59, 29, 59, 0, 58, 21, 58, 22, 58,
0, 59, 25, 59, 22, 59, 0, 9, 58, 53,
0, 9, 59, 53, 0, 9, 61, 53, 0, 8,
59, 20, 59, 53, 0, 9, 58, 20, 58, 20,
58, 53, 0, 9, 58, 20, 58, 20, 58, 20,
58, 20, 58, 53, 0, 9, 58, 20, 58, 20,
58, 20, 58, 20, 58, 20, 58, 20, 58, 53,
0, 11, 53, 0, 11, 6, 53, 0, 11, 6,
20, 58, 53, 0, 11, 6, 20, 58, 20, 6,
20, 6, 53, 0, 12, 6, 53, 0, 12, 6,
20, 58, 20, 58, 53, 0, 12, 6, 20, 58,
20, 58, 20, 6, 53, 0, 59, 47, 58, 51,
0, 59, 47, 58, 20, 58, 51, 0, 59, 47,
58, 20, 58, 20, 58, 51, 0, 59, 47, 58,
20, 58, 20, 58, 20, 58, 51, 0, 59, 47,
58, 20, 58, 20, 58, 20, 58, 20, 58, 51,
0, 43, 59, 0, 52, 59, 53, 0, 6, 0,
15, 0, 15, 23, 58, 24, 0, 19, 0, 52,
61, 53, 0, 61, 35, 61, 0, 59, 25, 61,
22, 61, 0, 8, 61, 20, 61, 53, 0, 8,
61, 20, 58, 20, 58, 53, 0
};
#endif
#if FFDEBUG != 0
static const short ffrline[] = { 0,
241, 242, 245, 246, 252, 258, 264, 270, 273, 275,
288, 290, 303, 314, 328, 332, 336, 340, 342, 351,
354, 357, 366, 368, 370, 372, 374, 376, 379, 383,
385, 387, 389, 398, 400, 402, 405, 408, 411, 414,
417, 420, 422, 424, 426, 430, 434, 453, 472, 491,
504, 518, 530, 561, 659, 667, 729, 753, 755, 757,
759, 761, 763, 765, 767, 769, 773, 775, 777, 786,
789, 792, 795, 798, 801, 804, 807, 810, 813, 816,
819, 822, 825, 828, 831, 834, 837, 840, 843, 845,
847, 849, 852, 859, 876, 889, 902, 913, 929, 953,
981, 1018, 1022, 1026, 1029, 1033, 1037, 1040, 1044, 1046,
1048, 1050, 1052, 1054, 1056, 1060, 1063, 1065, 1074, 1076,
1078, 1087, 1106, 1125
};
#endif
#if FFDEBUG != 0 || defined (FFERROR_VERBOSE)
static const char * const fftname[] = { "$","error","$undefined.","BOOLEAN",
"LONG","DOUBLE","STRING","BITSTR","FUNCTION","BFUNCTION","IFUNCTION","GTIFILTER",
"REGFILTER","COLUMN","BCOLUMN","SCOLUMN","BITCOL","ROWREF","NULLREF","SNULLREF",
"','","'='","':'","'{'","'}'","'?'","OR","AND","EQ","NE","'~'","GT","LT","LTE",
"GTE","'+'","'-'","'%'","'*'","'/'","'|'","'&'","POWER","NOT","INTCAST","FLTCAST",
"UMINUS","'['","ACCUM","DIFF","'\\n'","']'","'('","')'","lines","line","bvector",
"vector","expr","bexpr","bits","sexpr", NULL
};
#endif
static const short ffr1[] = { 0,
54, 54, 55, 55, 55, 55, 55, 55, 56, 56,
57, 57, 57, 57, 58, 59, 60, 60, 60, 60,
60, 60, 60, 60, 60, 60, 60, 60, 60, 58,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
58, 58, 58, 58, 58, 58, 58, 58, 58, 58,
58, 58, 58, 58, 58, 58, 59, 59, 59, 59,
59, 59, 59, 59, 59, 59, 59, 59, 59, 59,
59, 59, 59, 59, 59, 59, 59, 59, 59, 59,
59, 59, 59, 59, 59, 59, 59, 59, 59, 59,
59, 59, 59, 59, 59, 59, 59, 59, 59, 59,
59, 59, 59, 59, 59, 61, 61, 61, 61, 61,
61, 61, 61, 61
};
static const short ffr2[] = { 0,
0, 2, 1, 2, 2, 2, 2, 2, 2, 3,
2, 3, 3, 3, 2, 2, 1, 1, 4, 3,
3, 3, 4, 6, 8, 10, 12, 2, 3, 1,
1, 1, 4, 1, 1, 3, 3, 3, 3, 3,
3, 2, 2, 3, 3, 3, 5, 5, 5, 2,
3, 3, 3, 3, 5, 5, 9, 4, 6, 8,
10, 12, 2, 2, 2, 2, 1, 1, 4, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 5, 5, 3, 3, 3, 5, 7, 11,
15, 2, 3, 5, 9, 3, 7, 9, 4, 6,
8, 10, 12, 2, 3, 1, 1, 4, 1, 3,
3, 5, 5, 7
};
static const short ffdefact[] = { 1,
0, 0, 67, 30, 31, 116, 17, 0, 0, 0,
0, 0, 32, 68, 117, 18, 34, 35, 119, 0,
0, 0, 0, 0, 0, 3, 0, 2, 0, 0,
0, 0, 0, 0, 8, 50, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 102, 0,
0, 0, 0, 0, 11, 9, 0, 42, 43, 114,
28, 63, 64, 65, 66, 0, 0, 0, 0, 0,
16, 0, 15, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 4, 0,
0, 0, 0, 0, 0, 0, 5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 7, 0, 0,
0, 0, 0, 0, 0, 6, 0, 54, 0, 51,
53, 0, 52, 0, 95, 96, 97, 0, 0, 103,
0, 106, 0, 0, 0, 0, 44, 115, 29, 120,
14, 10, 12, 13, 0, 81, 82, 80, 76, 77,
79, 78, 37, 38, 36, 39, 45, 40, 41, 0,
0, 0, 0, 90, 89, 91, 92, 46, 0, 0,
0, 70, 71, 74, 72, 73, 75, 22, 21, 20,
0, 83, 84, 85, 87, 88, 86, 121, 0, 0,
0, 0, 0, 0, 0, 0, 33, 69, 118, 19,
0, 0, 58, 0, 0, 0, 0, 109, 28, 0,
0, 23, 0, 56, 98, 0, 123, 0, 55, 0,
104, 0, 93, 0, 47, 49, 48, 94, 122, 0,
0, 0, 0, 0, 0, 0, 0, 59, 0, 110,
0, 24, 0, 124, 0, 99, 0, 0, 107, 0,
0, 0, 0, 0, 0, 0, 0, 60, 0, 111,
0, 25, 57, 0, 105, 108, 0, 0, 0, 0,
0, 61, 0, 112, 0, 26, 0, 100, 0, 0,
0, 0, 62, 113, 27, 0, 0, 101, 0, 0
};
static const short ffdefgoto[] = { 1,
28, 29, 30, 45, 46, 43, 57
};
static const short ffpact[] = {-32768,
301, -41,-32768,-32768,-32768,-32768,-32768, 351, 402, 402,
-5, 12, 8, 33, 34, 41,-32768,-32768,-32768, 402,
402, 402, 402, 402, 402,-32768, 402,-32768, -18, 9,
1092, 403, 1438, 79,-32768,-32768, 428, 143, 294, 10,
456, 224, 1478, 125, 1390, 1436, 1523, -6,-32768, 2,
402, 402, 402, 402, 1390, 1436, 1129, 19, 19, 20,
21, 19, 20, 19, 20, 623, 240, 344, 1120, 402,
-32768, 402,-32768, 402, 402, 402, 402, 402, 402, 402,
402, 402, 402, 402, 402, 402, 402, 402,-32768, 402,
402, 402, 402, 402, 402, 402,-32768, -3, -3, -3,
-3, -3, -3, -3, -3, -3, 402,-32768, 402, 402,
402, 402, 402, 402, 402,-32768, 402,-32768, 402,-32768,
-32768, 402,-32768, 402,-32768,-32768,-32768, 402, 402,-32768,
402,-32768, 1266, 1286, 1306, 1326,-32768,-32768,-32768,-32768,
1390, 1436, 1390, 1436, 1348, 1503, 1503, 1503, 23, 23,
23, 23, 160, 160, 160, -15, 20, -15, -15, 732,
1370, 1413, 1531, 146, -13, -35, -35, -15, 756, -3,
-3, -30, -30, -30, -30, -30, -30, 50, 21, 21,
780, 67, 67, 11, 11, 11, 11,-32768, 484, 1118,
1146, 1415, 1166, 1424, 512, 1186,-32768,-32768,-32768,-32768,
402, 402,-32768, 402, 402, 402, 402,-32768, 21, 1480,
402,-32768, 402,-32768,-32768, 402,-32768, 402,-32768, 66,
-32768, 402, 1461, 804, 1461, 1436, 1461, 1436, 1129, 828,
852, 1206, 650, 540, 68, 568, 402,-32768, 402,-32768,
402,-32768, 402,-32768, 402,-32768, 86, 87,-32768, 876,
900, 924, 677, 1226, 52, 56, 402,-32768, 402,-32768,
402,-32768,-32768, 402,-32768,-32768, 948, 972, 996, 596,
402,-32768, 402,-32768, 402,-32768, 402,-32768, 1020, 1044,
1068, 1246,-32768,-32768,-32768, 402, 704,-32768, 126,-32768
};
static const short ffpgoto[] = {-32768,
-32768,-32768,-32768, -1, 95, 124, 27
};
#define FFLAST 1566
static const short fftable[] = { 31,
48, 70, 95, 7, 104, 71, 37, 41, 35, 105,
106, 96, 16, 129, 93, 94, 107, 50, 55, 58,
59, 131, 62, 64, 95, 66, 87, 34, 72, 122,
51, 88, 73, 96, 40, 44, 47, 109, 110, 170,
111, 112, 113, 114, 115, 115, 130, 49, 171, 133,
134, 135, 136, 69, 132, 52, 53, 82, 83, 84,
85, 86, 123, 54, 87, 88, 96, 107, 141, 88,
143, 235, 145, 146, 147, 148, 149, 150, 151, 152,
153, 154, 155, 156, 158, 159, 160, 247, 161, 105,
106, 255, 256, 168, 169, 32, 107, 111, 112, 113,
114, 115, 38, 42, 265, 181, 109, 110, 266, 111,
112, 113, 114, 115, 56, 189, 163, 60, 63, 65,
191, 67, 193, 0, 33, 290, 0, 195, 116, 196,
0, 39, 0, 0, 0, 182, 183, 184, 185, 186,
187, 188, 0, 0, 0, 0, 61, 0, 192, 0,
68, 0, 109, 110, 194, 111, 112, 113, 114, 115,
0, 0, 119, 0, 142, 0, 144, 90, 91, 92,
93, 94, 92, 93, 94, 0, 0, 127, 0, 157,
95, 0, 0, 95, 162, 164, 165, 166, 167, 96,
0, 0, 96, 0, 0, 120, 0, 85, 86, 223,
224, 87, 225, 227, 0, 230, 88, 0, 0, 231,
0, 232, 0, 190, 233, 0, 234, 0, 0, 0,
236, 172, 173, 174, 175, 176, 177, 178, 179, 180,
0, 0, 229, 0, 0, 250, 0, 251, 0, 252,
0, 253, 0, 254, 0, 0, 0, 0, 90, 91,
92, 93, 94, 0, 0, 267, 0, 268, 0, 269,
0, 95, 270, 0, 90, 91, 92, 93, 94, 279,
96, 280, 0, 281, 0, 282, 126, 95, 0, 0,
0, 0, 0, 0, 287, 0, 96, 0, 0, 0,
0, 0, 138, 209, 210, 0, 0, 0, 226, 228,
289, 2, 0, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
0, 98, 99, 20, 100, 101, 102, 103, 104, 0,
0, 0, 0, 105, 106, 21, 22, 0, 0, 0,
107, 0, 0, 23, 24, 25, 121, 0, 0, 0,
26, 0, 27, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
0, 98, 99, 20, 100, 101, 102, 103, 104, 0,
0, 0, 0, 105, 106, 21, 22, 0, 0, 0,
107, 0, 0, 23, 24, 25, 139, 0, 0, 0,
0, 0, 27, 36, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 0, 0, 0, 20, 0, 0, 90, 91, 92,
93, 94, 0, 0, 0, 0, 21, 22, 0, 0,
95, 0, 0, 0, 23, 24, 25, 117, 74, 96,
0, 0, 97, 27, 0, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 0, 0, 87,
0, 0, 0, 0, 88, 124, 74, 0, 0, 0,
118, 0, 0, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 0, 87, 0, 0,
0, 0, 88, 213, 74, 0, 0, 0, 125, 0,
0, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 0, 0, 87, 0, 0, 0, 0,
88, 220, 74, 0, 0, 0, 214, 0, 0, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 0, 0, 87, 0, 0, 0, 0, 88, 245,
74, 0, 0, 0, 221, 0, 0, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 0,
0, 87, 0, 0, 0, 0, 88, 248, 74, 0,
0, 0, 246, 0, 0, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 0, 0, 87,
0, 0, 0, 0, 88, 277, 74, 0, 0, 0,
249, 0, 0, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 0, 87, 0, 0,
0, 0, 88, 74, 0, 0, 0, 0, 278, 0,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 0, 0, 87, 0, 0, 0, 0, 88,
74, 0, 0, 0, 0, 137, 0, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 0,
0, 87, 0, 0, 0, 0, 88, 74, 0, 0,
0, 0, 244, 0, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 0, 0, 87, 0,
0, 0, 0, 88, 74, 0, 0, 0, 0, 263,
0, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 0, 0, 87, 0, 0, 0, 0,
88, 202, 74, 0, 0, 0, 288, 0, 0, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 0, 0, 87, 0, 207, 74, 0, 88, 0,
0, 0, 203, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 0, 87, 0, 211,
74, 0, 88, 0, 0, 0, 208, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 0,
0, 87, 0, 237, 74, 0, 88, 0, 0, 0,
212, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 0, 0, 87, 0, 239, 74, 0,
88, 0, 0, 0, 238, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 0, 0, 87,
0, 241, 74, 0, 88, 0, 0, 0, 240, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 0, 0, 87, 0, 257, 74, 0, 88, 0,
0, 0, 242, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 0, 87, 0, 259,
74, 0, 88, 0, 0, 0, 258, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 0,
0, 87, 0, 261, 74, 0, 88, 0, 0, 0,
260, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 0, 0, 87, 0, 271, 74, 0,
88, 0, 0, 0, 262, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 0, 0, 87,
0, 273, 74, 0, 88, 0, 0, 0, 272, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 0, 0, 87, 0, 275, 74, 0, 88, 0,
0, 0, 274, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 0, 87, 0, 0,
74, 0, 88, 0, 0, 0, 276, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 0,
0, 87, 0, 0, 74, 0, 88, 0, 0, 0,
283, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 0, 0, 87, 0, 0, 74, 0,
88, 0, 0, 0, 284, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 0, 0, 87,
0, 0, 74, 0, 88, 0, 0, 0, 285, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85,
86, 0, 0, 87, 0, 0, 0, 0, 88, 0,
0, 89, 90, 91, 92, 93, 94, 109, 110, 0,
111, 112, 113, 114, 115, 95, 109, 110, 0, 111,
112, 113, 114, 115, 96, 216, 74, 0, 0, 0,
215, 0, 140, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 218, 74, 87, 0, 0,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 222, 74, 87, 0, 0,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 243, 74, 87, 0, 0,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 264, 74, 87, 0, 0,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 286, 74, 87, 0, 0,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 74, 87, 0, 197,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 74, 87, 0, 198,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 74, 87, 0, 199,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 74, 87, 0, 200,
0, 0, 88, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 0, 0, 87, 74, 201,
0, 0, 88, 0, 0, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 0, 0, 87,
74, 204, 0, 0, 88, 0, 0, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 0,
74, 87, 0, 0, 0, 0, 88, 75, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 0,
0, 87, 0, 0, 205, 0, 88, 90, 91, 92,
93, 94, 109, 110, 0, 111, 112, 113, 114, 115,
95, 109, 110, 0, 111, 112, 113, 114, 115, 96,
90, 91, 92, 93, 94, 98, 99, 217, 100, 101,
102, 103, 104, 95, 0, 0, 219, 105, 106, 0,
0, 0, 96, 0, 107, 0, 0, 108, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
0, 0, 87, 0, 0, 98, 99, 88, 100, 101,
102, 103, 104, 0, 104, 0, 0, 105, 106, 105,
106, 0, 0, 0, 107, 0, 107, 0, 0, 0,
0, 0, 139, 78, 79, 80, 81, 82, 83, 84,
85, 86, 128, 0, 87, 0, 0, 0, 0, 88,
109, 110, 206, 111, 112, 113, 114, 115, 109, 110,
0, 111, 112, 113, 114, 115
};
static const short ffcheck[] = { 1,
6, 20, 38, 7, 35, 24, 8, 9, 50, 40,
41, 47, 16, 20, 28, 29, 47, 6, 20, 21,
22, 20, 24, 25, 38, 27, 42, 1, 20, 20,
23, 47, 24, 47, 8, 9, 10, 28, 29, 43,
31, 32, 33, 34, 35, 35, 53, 53, 52, 51,
52, 53, 54, 27, 53, 23, 23, 35, 36, 37,
38, 39, 53, 23, 42, 47, 47, 47, 70, 47,
72, 6, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 20, 90, 40,
41, 6, 6, 95, 96, 1, 47, 31, 32, 33,
34, 35, 8, 9, 53, 107, 28, 29, 53, 31,
32, 33, 34, 35, 20, 117, 90, 23, 24, 25,
122, 27, 124, -1, 1, 0, -1, 129, 50, 131,
-1, 8, -1, -1, -1, 109, 110, 111, 112, 113,
114, 115, -1, -1, -1, -1, 23, -1, 122, -1,
27, -1, 28, 29, 128, 31, 32, 33, 34, 35,
-1, -1, 20, -1, 70, -1, 72, 25, 26, 27,
28, 29, 27, 28, 29, -1, -1, 53, -1, 85,
38, -1, -1, 38, 90, 91, 92, 93, 94, 47,
-1, -1, 47, -1, -1, 53, -1, 38, 39, 201,
202, 42, 204, 205, -1, 207, 47, -1, -1, 211,
-1, 213, -1, 119, 216, -1, 218, -1, -1, -1,
222, 98, 99, 100, 101, 102, 103, 104, 105, 106,
-1, -1, 206, -1, -1, 237, -1, 239, -1, 241,
-1, 243, -1, 245, -1, -1, -1, -1, 25, 26,
27, 28, 29, -1, -1, 257, -1, 259, -1, 261,
-1, 38, 264, -1, 25, 26, 27, 28, 29, 271,
47, 273, -1, 275, -1, 277, 53, 38, -1, -1,
-1, -1, -1, -1, 286, -1, 47, -1, -1, -1,
-1, -1, 53, 170, 171, -1, -1, -1, 204, 205,
0, 1, -1, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
-1, 28, 29, 23, 31, 32, 33, 34, 35, -1,
-1, -1, -1, 40, 41, 35, 36, -1, -1, -1,
47, -1, -1, 43, 44, 45, 53, -1, -1, -1,
50, -1, 52, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
-1, 28, 29, 23, 31, 32, 33, 34, 35, -1,
-1, -1, -1, 40, 41, 35, 36, -1, -1, -1,
47, -1, -1, 43, 44, 45, 53, -1, -1, -1,
-1, -1, 52, 53, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, -1, -1, -1, 23, -1, -1, 25, 26, 27,
28, 29, -1, -1, -1, -1, 35, 36, -1, -1,
38, -1, -1, -1, 43, 44, 45, 20, 21, 47,
-1, -1, 50, 52, -1, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, -1, -1, 42,
-1, -1, -1, -1, 47, 20, 21, -1, -1, -1,
53, -1, -1, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, -1, 42, -1, -1,
-1, -1, 47, 20, 21, -1, -1, -1, 53, -1,
-1, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, -1, -1, 42, -1, -1, -1, -1,
47, 20, 21, -1, -1, -1, 53, -1, -1, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, -1, -1, 42, -1, -1, -1, -1, 47, 20,
21, -1, -1, -1, 53, -1, -1, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, -1,
-1, 42, -1, -1, -1, -1, 47, 20, 21, -1,
-1, -1, 53, -1, -1, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, -1, -1, 42,
-1, -1, -1, -1, 47, 20, 21, -1, -1, -1,
53, -1, -1, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, -1, 42, -1, -1,
-1, -1, 47, 21, -1, -1, -1, -1, 53, -1,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, -1, -1, 42, -1, -1, -1, -1, 47,
21, -1, -1, -1, -1, 53, -1, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, -1,
-1, 42, -1, -1, -1, -1, 47, 21, -1, -1,
-1, -1, 53, -1, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, -1, -1, 42, -1,
-1, -1, -1, 47, 21, -1, -1, -1, -1, 53,
-1, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, -1, -1, 42, -1, -1, -1, -1,
47, 20, 21, -1, -1, -1, 53, -1, -1, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, -1, -1, 42, -1, 20, 21, -1, 47, -1,
-1, -1, 51, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, -1, 42, -1, 20,
21, -1, 47, -1, -1, -1, 51, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, -1,
-1, 42, -1, 20, 21, -1, 47, -1, -1, -1,
51, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, -1, -1, 42, -1, 20, 21, -1,
47, -1, -1, -1, 51, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, -1, -1, 42,
-1, 20, 21, -1, 47, -1, -1, -1, 51, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, -1, -1, 42, -1, 20, 21, -1, 47, -1,
-1, -1, 51, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, -1, 42, -1, 20,
21, -1, 47, -1, -1, -1, 51, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, -1,
-1, 42, -1, 20, 21, -1, 47, -1, -1, -1,
51, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, -1, -1, 42, -1, 20, 21, -1,
47, -1, -1, -1, 51, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, -1, -1, 42,
-1, 20, 21, -1, 47, -1, -1, -1, 51, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, -1, -1, 42, -1, 20, 21, -1, 47, -1,
-1, -1, 51, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, -1, 42, -1, -1,
21, -1, 47, -1, -1, -1, 51, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, -1,
-1, 42, -1, -1, 21, -1, 47, -1, -1, -1,
51, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, -1, -1, 42, -1, -1, 21, -1,
47, -1, -1, -1, 51, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, -1, -1, 42,
-1, -1, 21, -1, 47, -1, -1, -1, 51, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, -1, -1, 42, -1, -1, -1, -1, 47, -1,
-1, 50, 25, 26, 27, 28, 29, 28, 29, -1,
31, 32, 33, 34, 35, 38, 28, 29, -1, 31,
32, 33, 34, 35, 47, 20, 21, -1, -1, -1,
53, -1, 53, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 20, 21, 42, -1, -1,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 20, 21, 42, -1, -1,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 20, 21, 42, -1, -1,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 20, 21, 42, -1, -1,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 20, 21, 42, -1, -1,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, 21, 42, -1, 24,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, 21, 42, -1, 24,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, 21, 42, -1, 24,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, 21, 42, -1, 24,
-1, -1, 47, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, -1, -1, 42, 21, 22,
-1, -1, 47, -1, -1, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, -1, -1, 42,
21, 22, -1, -1, 47, -1, -1, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, -1,
21, 42, -1, -1, -1, -1, 47, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, -1,
-1, 42, -1, -1, 22, -1, 47, 25, 26, 27,
28, 29, 28, 29, -1, 31, 32, 33, 34, 35,
38, 28, 29, -1, 31, 32, 33, 34, 35, 47,
25, 26, 27, 28, 29, 28, 29, 53, 31, 32,
33, 34, 35, 38, -1, -1, 53, 40, 41, -1,
-1, -1, 47, -1, 47, -1, -1, 50, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
-1, -1, 42, -1, -1, 28, 29, 47, 31, 32,
33, 34, 35, -1, 35, -1, -1, 40, 41, 40,
41, -1, -1, -1, 47, -1, 47, -1, -1, -1,
-1, -1, 53, 31, 32, 33, 34, 35, 36, 37,
38, 39, 20, -1, 42, -1, -1, -1, -1, 47,
28, 29, 22, 31, 32, 33, 34, 35, 28, 29,
-1, 31, 32, 33, 34, 35
};
/* -*-C-*- Note some compilers choke on comments on `#line' lines. */
#line 3 "/usr1/local/share/bison.simple"
/* Skeleton output parser for bison,
Copyright (C) 1984, 1989, 1990 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* As a special exception, when this file is copied by Bison into a
Bison output file, you may use that output file without restriction.
This special exception was added by the Free Software Foundation
in version 1.24 of Bison. */
#ifndef alloca
#ifdef __GNUC__
#define alloca __builtin_alloca
#else /* not GNU C. */
#if (!defined (__STDC__) && defined (sparc)) || defined (__sparc__) || defined (__sparc) || defined (__sgi)
#include <alloca.h>
#else /* not sparc */
#if defined (MSDOS) && !defined (__TURBOC__)
#include <malloc.h>
#else /* not MSDOS, or __TURBOC__ */
#if defined(_AIX)
#include <malloc.h>
#pragma alloca
#else /* not MSDOS, __TURBOC__, or _AIX */
#ifdef __hpux
#ifdef __cplusplus
extern "C" {
void *alloca (unsigned int);
};
#else /* not __cplusplus */
void *alloca ();
#endif /* not __cplusplus */
#endif /* __hpux */
#endif /* not _AIX */
#endif /* not MSDOS, or __TURBOC__ */
#endif /* not sparc. */
#endif /* not GNU C. */
#endif /* alloca not defined. */
/* This is the parser code that is written into each bison parser
when the %semantic_parser declaration is not specified in the grammar.
It was written by Richard Stallman by simplifying the hairy parser
used when %semantic_parser is specified. */
/* Note: there must be only one dollar sign in this file.
It is replaced by the list of actions, each action
as one case of the switch. */
#define fferrok (fferrstatus = 0)
#define ffclearin (ffchar = FFEMPTY)
#define FFEMPTY -2
#define FFEOF 0
#define FFACCEPT return(0)
#define FFABORT return(1)
#define FFERROR goto fferrlab1
/* Like FFERROR except do call fferror.
This remains here temporarily to ease the
transition to the new meaning of FFERROR, for GCC.
Once GCC version 2 has supplanted version 1, this can go. */
#define FFFAIL goto fferrlab
#define FFRECOVERING() (!!fferrstatus)
#define FFBACKUP(token, value) \
do \
if (ffchar == FFEMPTY && fflen == 1) \
{ ffchar = (token), fflval = (value); \
ffchar1 = FFTRANSLATE (ffchar); \
FFPOPSTACK; \
goto ffbackup; \
} \
else \
{ fferror ("syntax error: cannot back up"); FFERROR; } \
while (0)
#define FFTERROR 1
#define FFERRCODE 256
#ifndef FFPURE
#define FFLEX fflex()
#endif
#ifdef FFPURE
#ifdef FFLSP_NEEDED
#ifdef FFLEX_PARAM
#define FFLEX fflex(&fflval, &fflloc, FFLEX_PARAM)
#else
#define FFLEX fflex(&fflval, &fflloc)
#endif
#else /* not FFLSP_NEEDED */
#ifdef FFLEX_PARAM
#define FFLEX fflex(&fflval, FFLEX_PARAM)
#else
#define FFLEX fflex(&fflval)
#endif
#endif /* not FFLSP_NEEDED */
#endif
/* If nonreentrant, generate the variables here */
#ifndef FFPURE
int ffchar; /* the lookahead symbol */
FFSTYPE fflval; /* the semantic value of the */
/* lookahead symbol */
#ifdef FFLSP_NEEDED
FFLTYPE fflloc; /* location data for the lookahead */
/* symbol */
#endif
int ffnerrs; /* number of parse errors so far */
#endif /* not FFPURE */
#if FFDEBUG != 0
int ffdebug; /* nonzero means print parse trace */
/* Since this is uninitialized, it does not stop multiple parsers
from coexisting. */
#endif
/* FFINITDEPTH indicates the initial size of the parser's stacks */
#ifndef FFINITDEPTH
#define FFINITDEPTH 200
#endif
/* FFMAXDEPTH is the maximum size the stacks can grow to
(effective only if the built-in stack extension method is used). */
#if FFMAXDEPTH == 0
#undef FFMAXDEPTH
#endif
#ifndef FFMAXDEPTH
#define FFMAXDEPTH 10000
#endif
/* Prevent warning if -Wstrict-prototypes. */
#ifdef __GNUC__
int ffparse (void);
#endif
#if __GNUC__ > 1 /* GNU C and GNU C++ define this. */
#define __ff_memcpy(TO,FROM,COUNT) __builtin_memcpy(TO,FROM,COUNT)
#else /* not GNU C or C++ */
#ifndef __cplusplus
/* This is the most reliable way to avoid incompatibilities
in available built-in functions on various systems. */
static void
__ff_memcpy (to, from, count)
char *to;
char *from;
int count;
{
register char *f = from;
register char *t = to;
register int i = count;
while (i-- > 0)
*t++ = *f++;
}
#else /* __cplusplus */
/* This is the most reliable way to avoid incompatibilities
in available built-in functions on various systems. */
static void
__ff_memcpy (char *to, char *from, int count)
{
register char *f = from;
register char *t = to;
register int i = count;
while (i-- > 0)
*t++ = *f++;
}
#endif
#endif
#line 196 "/usr1/local/share/bison.simple"
/* The user can define FFPARSE_PARAM as the name of an argument to be passed
into ffparse. The argument should have type void *.
It should actually point to an object.
Grammar actions can access the variable by casting it
to the proper pointer type. */
#ifdef FFPARSE_PARAM
#ifdef __cplusplus
#define FFPARSE_PARAM_ARG void *FFPARSE_PARAM
#define FFPARSE_PARAM_DECL
#else /* not __cplusplus */
#define FFPARSE_PARAM_ARG FFPARSE_PARAM
#define FFPARSE_PARAM_DECL void *FFPARSE_PARAM;
#endif /* not __cplusplus */
#else /* not FFPARSE_PARAM */
#define FFPARSE_PARAM_ARG
#define FFPARSE_PARAM_DECL
#endif /* not FFPARSE_PARAM */
int
ffparse(FFPARSE_PARAM_ARG)
FFPARSE_PARAM_DECL
{
register int ffstate;
register int ffn;
register short *ffssp;
register FFSTYPE *ffvsp;
int fferrstatus; /* number of tokens to shift before error messages enabled */
int ffchar1 = 0; /* lookahead token as an internal (translated) token number */
short ffssa[FFINITDEPTH]; /* the state stack */
FFSTYPE ffvsa[FFINITDEPTH]; /* the semantic value stack */
short *ffss = ffssa; /* refer to the stacks thru separate pointers */
FFSTYPE *ffvs = ffvsa; /* to allow ffoverflow to reallocate them elsewhere */
#ifdef FFLSP_NEEDED
FFLTYPE fflsa[FFINITDEPTH]; /* the location stack */
FFLTYPE *ffls = fflsa;
FFLTYPE *fflsp;
#define FFPOPSTACK (ffvsp--, ffssp--, fflsp--)
#else
#define FFPOPSTACK (ffvsp--, ffssp--)
#endif
int ffstacksize = FFINITDEPTH;
#ifdef FFPURE
int ffchar;
FFSTYPE fflval;
int ffnerrs;
#ifdef FFLSP_NEEDED
FFLTYPE fflloc;
#endif
#endif
FFSTYPE ffval; /* the variable used to return */
/* semantic values from the action */
/* routines */
int fflen;
#if FFDEBUG != 0
if (ffdebug)
fprintf(stderr, "Starting parse\n");
#endif
ffstate = 0;
fferrstatus = 0;
ffnerrs = 0;
ffchar = FFEMPTY; /* Cause a token to be read. */
/* Initialize stack pointers.
Waste one element of value and location stack
so that they stay on the same level as the state stack.
The wasted elements are never initialized. */
ffssp = ffss - 1;
ffvsp = ffvs;
#ifdef FFLSP_NEEDED
fflsp = ffls;
#endif
/* Push a new state, which is found in ffstate . */
/* In all cases, when you get here, the value and location stacks
have just been pushed. so pushing a state here evens the stacks. */
ffnewstate:
*++ffssp = ffstate;
if (ffssp >= ffss + ffstacksize - 1)
{
/* Give user a chance to reallocate the stack */
/* Use copies of these so that the &'s don't force the real ones into memory. */
FFSTYPE *ffvs1 = ffvs;
short *ffss1 = ffss;
#ifdef FFLSP_NEEDED
FFLTYPE *ffls1 = ffls;
#endif
/* Get the current used size of the three stacks, in elements. */
int size = ffssp - ffss + 1;
#ifdef ffoverflow
/* Each stack pointer address is followed by the size of
the data in use in that stack, in bytes. */
#ifdef FFLSP_NEEDED
/* This used to be a conditional around just the two extra args,
but that might be undefined if ffoverflow is a macro. */
ffoverflow("parser stack overflow",
&ffss1, size * sizeof (*ffssp),
&ffvs1, size * sizeof (*ffvsp),
&ffls1, size * sizeof (*fflsp),
&ffstacksize);
#else
ffoverflow("parser stack overflow",
&ffss1, size * sizeof (*ffssp),
&ffvs1, size * sizeof (*ffvsp),
&ffstacksize);
#endif
ffss = ffss1; ffvs = ffvs1;
#ifdef FFLSP_NEEDED
ffls = ffls1;
#endif
#else /* no ffoverflow */
/* Extend the stack our own way. */
if (ffstacksize >= FFMAXDEPTH)
{
fferror("parser stack overflow");
return 2;
}
ffstacksize *= 2;
if (ffstacksize > FFMAXDEPTH)
ffstacksize = FFMAXDEPTH;
ffss = (short *) alloca (ffstacksize * sizeof (*ffssp));
__ff_memcpy ((char *)ffss, (char *)ffss1, size * sizeof (*ffssp));
ffvs = (FFSTYPE *) alloca (ffstacksize * sizeof (*ffvsp));
__ff_memcpy ((char *)ffvs, (char *)ffvs1, size * sizeof (*ffvsp));
#ifdef FFLSP_NEEDED
ffls = (FFLTYPE *) alloca (ffstacksize * sizeof (*fflsp));
__ff_memcpy ((char *)ffls, (char *)ffls1, size * sizeof (*fflsp));
#endif
#endif /* no ffoverflow */
ffssp = ffss + size - 1;
ffvsp = ffvs + size - 1;
#ifdef FFLSP_NEEDED
fflsp = ffls + size - 1;
#endif
#if FFDEBUG != 0
if (ffdebug)
fprintf(stderr, "Stack size increased to %d\n", ffstacksize);
#endif
if (ffssp >= ffss + ffstacksize - 1)
FFABORT;
}
#if FFDEBUG != 0
if (ffdebug)
fprintf(stderr, "Entering state %d\n", ffstate);
#endif
goto ffbackup;
ffbackup:
/* Do appropriate processing given the current state. */
/* Read a lookahead token if we need one and don't already have one. */
/* ffresume: */
/* First try to decide what to do without reference to lookahead token. */
ffn = ffpact[ffstate];
if (ffn == FFFLAG)
goto ffdefault;
/* Not known => get a lookahead token if don't already have one. */
/* ffchar is either FFEMPTY or FFEOF
or a valid token in external form. */
if (ffchar == FFEMPTY)
{
#if FFDEBUG != 0
if (ffdebug)
fprintf(stderr, "Reading a token: ");
#endif
ffchar = FFLEX;
}
/* Convert token to internal form (in ffchar1) for indexing tables with */
if (ffchar <= 0) /* This means end of input. */
{
ffchar1 = 0;
ffchar = FFEOF; /* Don't call FFLEX any more */
#if FFDEBUG != 0
if (ffdebug)
fprintf(stderr, "Now at end of input.\n");
#endif
}
else
{
ffchar1 = FFTRANSLATE(ffchar);
#if FFDEBUG != 0
if (ffdebug)
{
fprintf (stderr, "Next token is %d (%s", ffchar, fftname[ffchar1]);
/* Give the individual parser a way to print the precise meaning
of a token, for further debugging info. */
#ifdef FFPRINT
FFPRINT (stderr, ffchar, fflval);
#endif
fprintf (stderr, ")\n");
}
#endif
}
ffn += ffchar1;
if (ffn < 0 || ffn > FFLAST || ffcheck[ffn] != ffchar1)
goto ffdefault;
ffn = fftable[ffn];
/* ffn is what to do for this token type in this state.
Negative => reduce, -ffn is rule number.
Positive => shift, ffn is new state.
New state is final state => don't bother to shift,
just return success.
0, or most negative number => error. */
if (ffn < 0)
{
if (ffn == FFFLAG)
goto fferrlab;
ffn = -ffn;
goto ffreduce;
}
else if (ffn == 0)
goto fferrlab;
if (ffn == FFFINAL)
FFACCEPT;
/* Shift the lookahead token. */
#if FFDEBUG != 0
if (ffdebug)
fprintf(stderr, "Shifting token %d (%s), ", ffchar, fftname[ffchar1]);
#endif
/* Discard the token being shifted unless it is eof. */
if (ffchar != FFEOF)
ffchar = FFEMPTY;
*++ffvsp = fflval;
#ifdef FFLSP_NEEDED
*++fflsp = fflloc;
#endif
/* count tokens shifted since error; after three, turn off error status. */
if (fferrstatus) fferrstatus--;
ffstate = ffn;
goto ffnewstate;
/* Do the default action for the current state. */
ffdefault:
ffn = ffdefact[ffstate];
if (ffn == 0)
goto fferrlab;
/* Do a reduction. ffn is the number of a rule to reduce with. */
ffreduce:
fflen = ffr2[ffn];
if (fflen > 0)
ffval = ffvsp[1-fflen]; /* implement default value of the action */
#if FFDEBUG != 0
if (ffdebug)
{
int i;
fprintf (stderr, "Reducing via rule %d (line %d), ",
ffn, ffrline[ffn]);
/* Print the symbols being reduced, and their result. */
for (i = ffprhs[ffn]; ffrhs[i] > 0; i++)
fprintf (stderr, "%s ", fftname[ffrhs[i]]);
fprintf (stderr, " -> %s\n", fftname[ffr1[ffn]]);
}
#endif
switch (ffn) {
case 3:
#line 245 "eval.y"
{;
break;}
case 4:
#line 247 "eval.y"
{ if( ffvsp[-1].Node<0 ) {
fferror("Couldn't build node structure: out of memory?");
FFERROR; }
gParse.resultNode = ffvsp[-1].Node;
;
break;}
case 5:
#line 253 "eval.y"
{ if( ffvsp[-1].Node<0 ) {
fferror("Couldn't build node structure: out of memory?");
FFERROR; }
gParse.resultNode = ffvsp[-1].Node;
;
break;}
case 6:
#line 259 "eval.y"
{ if( ffvsp[-1].Node<0 ) {
fferror("Couldn't build node structure: out of memory?");
FFERROR; }
gParse.resultNode = ffvsp[-1].Node;
;
break;}
case 7:
#line 265 "eval.y"
{ if( ffvsp[-1].Node<0 ) {
fferror("Couldn't build node structure: out of memory?");
FFERROR; }
gParse.resultNode = ffvsp[-1].Node;
;
break;}
case 8:
#line 270 "eval.y"
{ fferrok; ;
break;}
case 9:
#line 274 "eval.y"
{ ffval.Node = New_Vector( ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 10:
#line 276 "eval.y"
{
if( gParse.Nodes[ffvsp[-2].Node].nSubNodes >= MAXSUBS ) {
ffvsp[-2].Node = Close_Vec( ffvsp[-2].Node ); TEST(ffvsp[-2].Node);
ffval.Node = New_Vector( ffvsp[-2].Node ); TEST(ffval.Node);
} else {
ffval.Node = ffvsp[-2].Node;
}
gParse.Nodes[ffval.Node].SubNodes[ gParse.Nodes[ffval.Node].nSubNodes++ ]
= ffvsp[0].Node;
;
break;}
case 11:
#line 289 "eval.y"
{ ffval.Node = New_Vector( ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 12:
#line 291 "eval.y"
{
if( TYPE(ffvsp[-2].Node) < TYPE(ffvsp[0].Node) )
TYPE(ffvsp[-2].Node) = TYPE(ffvsp[0].Node);
if( gParse.Nodes[ffvsp[-2].Node].nSubNodes >= MAXSUBS ) {
ffvsp[-2].Node = Close_Vec( ffvsp[-2].Node ); TEST(ffvsp[-2].Node);
ffval.Node = New_Vector( ffvsp[-2].Node ); TEST(ffval.Node);
} else {
ffval.Node = ffvsp[-2].Node;
}
gParse.Nodes[ffval.Node].SubNodes[ gParse.Nodes[ffval.Node].nSubNodes++ ]
= ffvsp[0].Node;
;
break;}
case 13:
#line 304 "eval.y"
{
if( gParse.Nodes[ffvsp[-2].Node].nSubNodes >= MAXSUBS ) {
ffvsp[-2].Node = Close_Vec( ffvsp[-2].Node ); TEST(ffvsp[-2].Node);
ffval.Node = New_Vector( ffvsp[-2].Node ); TEST(ffval.Node);
} else {
ffval.Node = ffvsp[-2].Node;
}
gParse.Nodes[ffval.Node].SubNodes[ gParse.Nodes[ffval.Node].nSubNodes++ ]
= ffvsp[0].Node;
;
break;}
case 14:
#line 315 "eval.y"
{
TYPE(ffvsp[-2].Node) = TYPE(ffvsp[0].Node);
if( gParse.Nodes[ffvsp[-2].Node].nSubNodes >= MAXSUBS ) {
ffvsp[-2].Node = Close_Vec( ffvsp[-2].Node ); TEST(ffvsp[-2].Node);
ffval.Node = New_Vector( ffvsp[-2].Node ); TEST(ffval.Node);
} else {
ffval.Node = ffvsp[-2].Node;
}
gParse.Nodes[ffval.Node].SubNodes[ gParse.Nodes[ffval.Node].nSubNodes++ ]
= ffvsp[0].Node;
;
break;}
case 15:
#line 329 "eval.y"
{ ffval.Node = Close_Vec( ffvsp[-1].Node ); TEST(ffval.Node); ;
break;}
case 16:
#line 333 "eval.y"
{ ffval.Node = Close_Vec( ffvsp[-1].Node ); TEST(ffval.Node); ;
break;}
case 17:
#line 337 "eval.y"
{
ffval.Node = New_Const( BITSTR, ffvsp[0].str, strlen(ffvsp[0].str)+1 ); TEST(ffval.Node);
SIZE(ffval.Node) = strlen(ffvsp[0].str); ;
break;}
case 18:
#line 341 "eval.y"
{ ffval.Node = New_Column( ffvsp[0].lng ); TEST(ffval.Node); ;
break;}
case 19:
#line 343 "eval.y"
{
if( TYPE(ffvsp[-1].Node) != LONG
|| OPER(ffvsp[-1].Node) != CONST_OP ) {
fferror("Offset argument must be a constant integer");
FFERROR;
}
ffval.Node = New_Offset( ffvsp[-3].lng, ffvsp[-1].Node ); TEST(ffval.Node);
;
break;}
case 20:
#line 352 "eval.y"
{ ffval.Node = New_BinOp( BITSTR, ffvsp[-2].Node, '&', ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = ( SIZE(ffvsp[-2].Node)>SIZE(ffvsp[0].Node) ? SIZE(ffvsp[-2].Node) : SIZE(ffvsp[0].Node) ); ;
break;}
case 21:
#line 355 "eval.y"
{ ffval.Node = New_BinOp( BITSTR, ffvsp[-2].Node, '|', ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = ( SIZE(ffvsp[-2].Node)>SIZE(ffvsp[0].Node) ? SIZE(ffvsp[-2].Node) : SIZE(ffvsp[0].Node) ); ;
break;}
case 22:
#line 358 "eval.y"
{
if (SIZE(ffvsp[-2].Node)+SIZE(ffvsp[0].Node) >= MAX_STRLEN) {
fferror("Combined bit string size exceeds " MAX_STRLEN_S " bits");
FFERROR;
}
ffval.Node = New_BinOp( BITSTR, ffvsp[-2].Node, '+', ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = SIZE(ffvsp[-2].Node) + SIZE(ffvsp[0].Node);
;
break;}
case 23:
#line 367 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-3].Node, 1, ffvsp[-1].Node, 0, 0, 0, 0 ); TEST(ffval.Node); ;
break;}
case 24:
#line 369 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-5].Node, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0, 0 ); TEST(ffval.Node); ;
break;}
case 25:
#line 371 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-7].Node, 3, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0 ); TEST(ffval.Node); ;
break;}
case 26:
#line 373 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-9].Node, 4, ffvsp[-7].Node, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node, 0 ); TEST(ffval.Node); ;
break;}
case 27:
#line 375 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-11].Node, 5, ffvsp[-9].Node, ffvsp[-7].Node, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node ); TEST(ffval.Node); ;
break;}
case 28:
#line 377 "eval.y"
{ ffval.Node = New_Unary( BITSTR, NOT, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 29:
#line 380 "eval.y"
{ ffval.Node = ffvsp[-1].Node; ;
break;}
case 30:
#line 384 "eval.y"
{ ffval.Node = New_Const( LONG, &(ffvsp[0].lng), sizeof(long) ); TEST(ffval.Node); ;
break;}
case 31:
#line 386 "eval.y"
{ ffval.Node = New_Const( DOUBLE, &(ffvsp[0].dbl), sizeof(double) ); TEST(ffval.Node); ;
break;}
case 32:
#line 388 "eval.y"
{ ffval.Node = New_Column( ffvsp[0].lng ); TEST(ffval.Node); ;
break;}
case 33:
#line 390 "eval.y"
{
if( TYPE(ffvsp[-1].Node) != LONG
|| OPER(ffvsp[-1].Node) != CONST_OP ) {
fferror("Offset argument must be a constant integer");
FFERROR;
}
ffval.Node = New_Offset( ffvsp[-3].lng, ffvsp[-1].Node ); TEST(ffval.Node);
;
break;}
case 34:
#line 399 "eval.y"
{ ffval.Node = New_Func( LONG, row_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); ;
break;}
case 35:
#line 401 "eval.y"
{ ffval.Node = New_Func( LONG, null_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); ;
break;}
case 36:
#line 403 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( TYPE(ffvsp[-2].Node), ffvsp[-2].Node, '%', ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 37:
#line 406 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( TYPE(ffvsp[-2].Node), ffvsp[-2].Node, '+', ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 38:
#line 409 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( TYPE(ffvsp[-2].Node), ffvsp[-2].Node, '-', ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 39:
#line 412 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( TYPE(ffvsp[-2].Node), ffvsp[-2].Node, '*', ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 40:
#line 415 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( TYPE(ffvsp[-2].Node), ffvsp[-2].Node, '/', ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 41:
#line 418 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( TYPE(ffvsp[-2].Node), ffvsp[-2].Node, POWER, ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 42:
#line 421 "eval.y"
{ ffval.Node = ffvsp[0].Node; ;
break;}
case 43:
#line 423 "eval.y"
{ ffval.Node = New_Unary( TYPE(ffvsp[0].Node), UMINUS, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 44:
#line 425 "eval.y"
{ ffval.Node = ffvsp[-1].Node; ;
break;}
case 45:
#line 427 "eval.y"
{ ffvsp[0].Node = New_Unary( TYPE(ffvsp[-2].Node), 0, ffvsp[0].Node );
ffval.Node = New_BinOp( TYPE(ffvsp[-2].Node), ffvsp[-2].Node, '*', ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 46:
#line 431 "eval.y"
{ ffvsp[-2].Node = New_Unary( TYPE(ffvsp[0].Node), 0, ffvsp[-2].Node );
ffval.Node = New_BinOp( TYPE(ffvsp[0].Node), ffvsp[-2].Node, '*', ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 47:
#line 435 "eval.y"
{
PROMOTE(ffvsp[-2].Node,ffvsp[0].Node);
if( ! Test_Dims(ffvsp[-2].Node,ffvsp[0].Node) ) {
fferror("Incompatible dimensions in '?:' arguments");
FFERROR;
}
ffval.Node = New_Func( 0, ifthenelse_fct, 3, ffvsp[-2].Node, ffvsp[0].Node, ffvsp[-4].Node,
0, 0, 0, 0 );
TEST(ffval.Node);
if( SIZE(ffvsp[-2].Node)<SIZE(ffvsp[0].Node) ) Copy_Dims(ffval.Node, ffvsp[0].Node);
TYPE(ffvsp[-4].Node) = TYPE(ffvsp[-2].Node);
if( ! Test_Dims(ffvsp[-4].Node,ffval.Node) ) {
fferror("Incompatible dimensions in '?:' condition");
FFERROR;
}
TYPE(ffvsp[-4].Node) = BOOLEAN;
if( SIZE(ffval.Node)<SIZE(ffvsp[-4].Node) ) Copy_Dims(ffval.Node, ffvsp[-4].Node);
;
break;}
case 48:
#line 454 "eval.y"
{
PROMOTE(ffvsp[-2].Node,ffvsp[0].Node);
if( ! Test_Dims(ffvsp[-2].Node,ffvsp[0].Node) ) {
fferror("Incompatible dimensions in '?:' arguments");
FFERROR;
}
ffval.Node = New_Func( 0, ifthenelse_fct, 3, ffvsp[-2].Node, ffvsp[0].Node, ffvsp[-4].Node,
0, 0, 0, 0 );
TEST(ffval.Node);
if( SIZE(ffvsp[-2].Node)<SIZE(ffvsp[0].Node) ) Copy_Dims(ffval.Node, ffvsp[0].Node);
TYPE(ffvsp[-4].Node) = TYPE(ffvsp[-2].Node);
if( ! Test_Dims(ffvsp[-4].Node,ffval.Node) ) {
fferror("Incompatible dimensions in '?:' condition");
FFERROR;
}
TYPE(ffvsp[-4].Node) = BOOLEAN;
if( SIZE(ffval.Node)<SIZE(ffvsp[-4].Node) ) Copy_Dims(ffval.Node, ffvsp[-4].Node);
;
break;}
case 49:
#line 473 "eval.y"
{
PROMOTE(ffvsp[-2].Node,ffvsp[0].Node);
if( ! Test_Dims(ffvsp[-2].Node,ffvsp[0].Node) ) {
fferror("Incompatible dimensions in '?:' arguments");
FFERROR;
}
ffval.Node = New_Func( 0, ifthenelse_fct, 3, ffvsp[-2].Node, ffvsp[0].Node, ffvsp[-4].Node,
0, 0, 0, 0 );
TEST(ffval.Node);
if( SIZE(ffvsp[-2].Node)<SIZE(ffvsp[0].Node) ) Copy_Dims(ffval.Node, ffvsp[0].Node);
TYPE(ffvsp[-4].Node) = TYPE(ffvsp[-2].Node);
if( ! Test_Dims(ffvsp[-4].Node,ffval.Node) ) {
fferror("Incompatible dimensions in '?:' condition");
FFERROR;
}
TYPE(ffvsp[-4].Node) = BOOLEAN;
if( SIZE(ffval.Node)<SIZE(ffvsp[-4].Node) ) Copy_Dims(ffval.Node, ffvsp[-4].Node);
;
break;}
case 50:
#line 492 "eval.y"
{ if (FSTRCMP(ffvsp[-1].str,"RANDOM(") == 0) { /* Scalar RANDOM() */
srand( (unsigned int) time(NULL) );
ffval.Node = New_Func( DOUBLE, rnd_fct, 0, 0, 0, 0, 0, 0, 0, 0 );
} else if (FSTRCMP(ffvsp[-1].str,"RANDOMN(") == 0) {/*Scalar RANDOMN()*/
srand( (unsigned int) time(NULL) );
ffval.Node = New_Func( DOUBLE, gasrnd_fct, 0, 0, 0, 0, 0, 0, 0, 0 );
} else {
fferror("Function() not supported");
FFERROR;
}
TEST(ffval.Node);
;
break;}
case 51:
#line 505 "eval.y"
{ if (FSTRCMP(ffvsp[-2].str,"SUM(") == 0) {
ffval.Node = New_Func( LONG, sum_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
} else if (FSTRCMP(ffvsp[-2].str,"NELEM(") == 0) {
ffval.Node = New_Const( LONG, &( SIZE(ffvsp[-1].Node) ), sizeof(long) );
} else if (FSTRCMP(ffvsp[-2].str,"ACCUM(") == 0) {
long zero = 0;
ffval.Node = New_BinOp( LONG , ffvsp[-1].Node, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
} else {
fferror("Function(bool) not supported");
FFERROR;
}
TEST(ffval.Node);
;
break;}
case 52:
#line 519 "eval.y"
{ if (FSTRCMP(ffvsp[-2].str,"NELEM(") == 0) {
ffval.Node = New_Const( LONG, &( SIZE(ffvsp[-1].Node) ), sizeof(long) );
} else if (FSTRCMP(ffvsp[-2].str,"NVALID(") == 0) {
ffval.Node = New_Func( LONG, nonnull_fct, 1, ffvsp[-1].Node,
0, 0, 0, 0, 0, 0 );
} else {
fferror("Function(str) not supported");
FFERROR;
}
TEST(ffval.Node);
;
break;}
case 53:
#line 531 "eval.y"
{ if (FSTRCMP(ffvsp[-2].str,"NELEM(") == 0) {
ffval.Node = New_Const( LONG, &( SIZE(ffvsp[-1].Node) ), sizeof(long) );
} else if (FSTRCMP(ffvsp[-2].str,"NVALID(") == 0) { /* Bit arrays do not have NULL */
ffval.Node = New_Const( LONG, &( SIZE(ffvsp[-1].Node) ), sizeof(long) );
} else if (FSTRCMP(ffvsp[-2].str,"SUM(") == 0) {
ffval.Node = New_Func( LONG, sum_fct, 1, ffvsp[-1].Node,
0, 0, 0, 0, 0, 0 );
} else if (FSTRCMP(ffvsp[-2].str,"MIN(") == 0) {
ffval.Node = New_Func( TYPE(ffvsp[-1].Node), /* Force 1D result */
min1_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
/* Note: $2 is a vector so the result can never
be a constant. Therefore it will never be set
inside New_Func(), and it is safe to set SIZE() */
SIZE(ffval.Node) = 1;
} else if (FSTRCMP(ffvsp[-2].str,"ACCUM(") == 0) {
long zero = 0;
ffval.Node = New_BinOp( LONG , ffvsp[-1].Node, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
} else if (FSTRCMP(ffvsp[-2].str,"MAX(") == 0) {
ffval.Node = New_Func( TYPE(ffvsp[-1].Node), /* Force 1D result */
max1_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
/* Note: $2 is a vector so the result can never
be a constant. Therefore it will never be set
inside New_Func(), and it is safe to set SIZE() */
SIZE(ffval.Node) = 1;
} else {
fferror("Function(bits) not supported");
FFERROR;
}
TEST(ffval.Node);
;
break;}
case 54:
#line 562 "eval.y"
{ if (FSTRCMP(ffvsp[-2].str,"SUM(") == 0)
ffval.Node = New_Func( TYPE(ffvsp[-1].Node), sum_fct, 1, ffvsp[-1].Node,
0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"AVERAGE(") == 0)
ffval.Node = New_Func( DOUBLE, average_fct, 1, ffvsp[-1].Node,
0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"STDDEV(") == 0)
ffval.Node = New_Func( DOUBLE, stddev_fct, 1, ffvsp[-1].Node,
0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"MEDIAN(") == 0)
ffval.Node = New_Func( TYPE(ffvsp[-1].Node), median_fct, 1, ffvsp[-1].Node,
0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"NELEM(") == 0)
ffval.Node = New_Const( LONG, &( SIZE(ffvsp[-1].Node) ), sizeof(long) );
else if (FSTRCMP(ffvsp[-2].str,"NVALID(") == 0)
ffval.Node = New_Func( LONG, nonnull_fct, 1, ffvsp[-1].Node,
0, 0, 0, 0, 0, 0 );
else if ((FSTRCMP(ffvsp[-2].str,"ACCUM(") == 0) && (TYPE(ffvsp[-1].Node) == LONG)) {
long zero = 0;
ffval.Node = New_BinOp( LONG , ffvsp[-1].Node, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
} else if ((FSTRCMP(ffvsp[-2].str,"ACCUM(") == 0) && (TYPE(ffvsp[-1].Node) == DOUBLE)) {
double zero = 0;
ffval.Node = New_BinOp( DOUBLE , ffvsp[-1].Node, ACCUM, New_Const( DOUBLE, &zero, sizeof(zero) ));
} else if ((FSTRCMP(ffvsp[-2].str,"SEQDIFF(") == 0) && (TYPE(ffvsp[-1].Node) == LONG)) {
long zero = 0;
ffval.Node = New_BinOp( LONG , ffvsp[-1].Node, DIFF, New_Const( LONG, &zero, sizeof(zero) ));
} else if ((FSTRCMP(ffvsp[-2].str,"SEQDIFF(") == 0) && (TYPE(ffvsp[-1].Node) == DOUBLE)) {
double zero = 0;
ffval.Node = New_BinOp( DOUBLE , ffvsp[-1].Node, DIFF, New_Const( DOUBLE, &zero, sizeof(zero) ));
} else if (FSTRCMP(ffvsp[-2].str,"ABS(") == 0)
ffval.Node = New_Func( 0, abs_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"MIN(") == 0)
ffval.Node = New_Func( TYPE(ffvsp[-1].Node), /* Force 1D result */
min1_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"MAX(") == 0)
ffval.Node = New_Func( TYPE(ffvsp[-1].Node), /* Force 1D result */
max1_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"RANDOM(") == 0) { /* Vector RANDOM() */
srand( (unsigned int) time(NULL) );
ffval.Node = New_Func( 0, rnd_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
TEST(ffval.Node);
TYPE(ffval.Node) = DOUBLE;
} else if (FSTRCMP(ffvsp[-2].str,"RANDOMN(") == 0) {
srand( (unsigned int) time(NULL) ); /* Vector RANDOMN() */
ffval.Node = New_Func( 0, gasrnd_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
TEST(ffval.Node);
TYPE(ffval.Node) = DOUBLE;
}
else { /* These all take DOUBLE arguments */
if( TYPE(ffvsp[-1].Node) != DOUBLE ) ffvsp[-1].Node = New_Unary( DOUBLE, 0, ffvsp[-1].Node );
if (FSTRCMP(ffvsp[-2].str,"SIN(") == 0)
ffval.Node = New_Func( 0, sin_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"COS(") == 0)
ffval.Node = New_Func( 0, cos_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"TAN(") == 0)
ffval.Node = New_Func( 0, tan_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"ARCSIN(") == 0
|| FSTRCMP(ffvsp[-2].str,"ASIN(") == 0)
ffval.Node = New_Func( 0, asin_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"ARCCOS(") == 0
|| FSTRCMP(ffvsp[-2].str,"ACOS(") == 0)
ffval.Node = New_Func( 0, acos_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"ARCTAN(") == 0
|| FSTRCMP(ffvsp[-2].str,"ATAN(") == 0)
ffval.Node = New_Func( 0, atan_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"SINH(") == 0)
ffval.Node = New_Func( 0, sinh_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"COSH(") == 0)
ffval.Node = New_Func( 0, cosh_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"TANH(") == 0)
ffval.Node = New_Func( 0, tanh_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"EXP(") == 0)
ffval.Node = New_Func( 0, exp_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"LOG(") == 0)
ffval.Node = New_Func( 0, log_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"LOG10(") == 0)
ffval.Node = New_Func( 0, log10_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"SQRT(") == 0)
ffval.Node = New_Func( 0, sqrt_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"ROUND(") == 0)
ffval.Node = New_Func( 0, round_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"FLOOR(") == 0)
ffval.Node = New_Func( 0, floor_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"CEIL(") == 0)
ffval.Node = New_Func( 0, ceil_fct, 1, ffvsp[-1].Node, 0, 0, 0, 0, 0, 0 );
else if (FSTRCMP(ffvsp[-2].str,"RANDOMP(") == 0) {
srand( (unsigned int) time(NULL) );
ffval.Node = New_Func( 0, poirnd_fct, 1, ffvsp[-1].Node,
0, 0, 0, 0, 0, 0 );
TYPE(ffval.Node) = LONG;
} else {
fferror("Function(expr) not supported");
FFERROR;
}
}
TEST(ffval.Node);
;
break;}
case 55:
#line 660 "eval.y"
{
if (FSTRCMP(ffvsp[-4].str,"STRSTR(") == 0) {
ffval.Node = New_Func( LONG, strpos_fct, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0,
0, 0, 0, 0 );
TEST(ffval.Node);
}
;
break;}
case 56:
#line 668 "eval.y"
{
if (FSTRCMP(ffvsp[-4].str,"DEFNULL(") == 0) {
if( SIZE(ffvsp[-3].Node)>=SIZE(ffvsp[-1].Node) && Test_Dims( ffvsp[-3].Node, ffvsp[-1].Node ) ) {
PROMOTE(ffvsp[-3].Node,ffvsp[-1].Node);
ffval.Node = New_Func( 0, defnull_fct, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0,
0, 0, 0, 0 );
TEST(ffval.Node);
} else {
fferror("Dimensions of DEFNULL arguments "
"are not compatible");
FFERROR;
}
} else if (FSTRCMP(ffvsp[-4].str,"ARCTAN2(") == 0) {
if( TYPE(ffvsp[-3].Node) != DOUBLE ) ffvsp[-3].Node = New_Unary( DOUBLE, 0, ffvsp[-3].Node );
if( TYPE(ffvsp[-1].Node) != DOUBLE ) ffvsp[-1].Node = New_Unary( DOUBLE, 0, ffvsp[-1].Node );
if( Test_Dims( ffvsp[-3].Node, ffvsp[-1].Node ) ) {
ffval.Node = New_Func( 0, atan2_fct, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0, 0, 0, 0 );
TEST(ffval.Node);
if( SIZE(ffvsp[-3].Node)<SIZE(ffvsp[-1].Node) ) Copy_Dims(ffval.Node, ffvsp[-1].Node);
} else {
fferror("Dimensions of arctan2 arguments "
"are not compatible");
FFERROR;
}
} else if (FSTRCMP(ffvsp[-4].str,"MIN(") == 0) {
PROMOTE( ffvsp[-3].Node, ffvsp[-1].Node );
if( Test_Dims( ffvsp[-3].Node, ffvsp[-1].Node ) ) {
ffval.Node = New_Func( 0, min2_fct, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0, 0, 0, 0 );
TEST(ffval.Node);
if( SIZE(ffvsp[-3].Node)<SIZE(ffvsp[-1].Node) ) Copy_Dims(ffval.Node, ffvsp[-1].Node);
} else {
fferror("Dimensions of min(a,b) arguments "
"are not compatible");
FFERROR;
}
} else if (FSTRCMP(ffvsp[-4].str,"MAX(") == 0) {
PROMOTE( ffvsp[-3].Node, ffvsp[-1].Node );
if( Test_Dims( ffvsp[-3].Node, ffvsp[-1].Node ) ) {
ffval.Node = New_Func( 0, max2_fct, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0, 0, 0, 0 );
TEST(ffval.Node);
if( SIZE(ffvsp[-3].Node)<SIZE(ffvsp[-1].Node) ) Copy_Dims(ffval.Node, ffvsp[-1].Node);
} else {
fferror("Dimensions of max(a,b) arguments "
"are not compatible");
FFERROR;
}
#if 0
} else if (FSTRCMP(ffvsp[-4].str,"STRSTR(") == 0) {
if( TYPE(ffvsp[-3].Node) != STRING || TYPE(ffvsp[-1].Node) != STRING) {
fferror("Arguments to strstr(s,r) must be strings");
FFERROR;
}
ffval.Node = New_Func( LONG, strpos_fct, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0,
0, 0, 0, 0 );
TEST(ffval.Node);
#endif
} else {
fferror("Function(expr,expr) not supported");
FFERROR;
}
;
break;}
case 57:
#line 730 "eval.y"
{
if (FSTRCMP(ffvsp[-8].str,"ANGSEP(") == 0) {
if( TYPE(ffvsp[-7].Node) != DOUBLE ) ffvsp[-7].Node = New_Unary( DOUBLE, 0, ffvsp[-7].Node );
if( TYPE(ffvsp[-5].Node) != DOUBLE ) ffvsp[-5].Node = New_Unary( DOUBLE, 0, ffvsp[-5].Node );
if( TYPE(ffvsp[-3].Node) != DOUBLE ) ffvsp[-3].Node = New_Unary( DOUBLE, 0, ffvsp[-3].Node );
if( TYPE(ffvsp[-1].Node) != DOUBLE ) ffvsp[-1].Node = New_Unary( DOUBLE, 0, ffvsp[-1].Node );
if( Test_Dims( ffvsp[-7].Node, ffvsp[-5].Node ) && Test_Dims( ffvsp[-5].Node, ffvsp[-3].Node ) &&
Test_Dims( ffvsp[-3].Node, ffvsp[-1].Node ) ) {
ffval.Node = New_Func( 0, angsep_fct, 4, ffvsp[-7].Node, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node,0,0,0 );
TEST(ffval.Node);
if( SIZE(ffvsp[-7].Node)<SIZE(ffvsp[-5].Node) ) Copy_Dims(ffval.Node, ffvsp[-5].Node);
if( SIZE(ffvsp[-5].Node)<SIZE(ffvsp[-3].Node) ) Copy_Dims(ffval.Node, ffvsp[-3].Node);
if( SIZE(ffvsp[-3].Node)<SIZE(ffvsp[-1].Node) ) Copy_Dims(ffval.Node, ffvsp[-1].Node);
} else {
fferror("Dimensions of ANGSEP arguments "
"are not compatible");
FFERROR;
}
} else {
fferror("Function(expr,expr,expr,expr) not supported");
FFERROR;
}
;
break;}
case 58:
#line 754 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-3].Node, 1, ffvsp[-1].Node, 0, 0, 0, 0 ); TEST(ffval.Node); ;
break;}
case 59:
#line 756 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-5].Node, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0, 0 ); TEST(ffval.Node); ;
break;}
case 60:
#line 758 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-7].Node, 3, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0 ); TEST(ffval.Node); ;
break;}
case 61:
#line 760 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-9].Node, 4, ffvsp[-7].Node, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node, 0 ); TEST(ffval.Node); ;
break;}
case 62:
#line 762 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-11].Node, 5, ffvsp[-9].Node, ffvsp[-7].Node, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node ); TEST(ffval.Node); ;
break;}
case 63:
#line 764 "eval.y"
{ ffval.Node = New_Unary( LONG, INTCAST, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 64:
#line 766 "eval.y"
{ ffval.Node = New_Unary( LONG, INTCAST, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 65:
#line 768 "eval.y"
{ ffval.Node = New_Unary( DOUBLE, FLTCAST, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 66:
#line 770 "eval.y"
{ ffval.Node = New_Unary( DOUBLE, FLTCAST, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 67:
#line 774 "eval.y"
{ ffval.Node = New_Const( BOOLEAN, &(ffvsp[0].log), sizeof(char) ); TEST(ffval.Node); ;
break;}
case 68:
#line 776 "eval.y"
{ ffval.Node = New_Column( ffvsp[0].lng ); TEST(ffval.Node); ;
break;}
case 69:
#line 778 "eval.y"
{
if( TYPE(ffvsp[-1].Node) != LONG
|| OPER(ffvsp[-1].Node) != CONST_OP ) {
fferror("Offset argument must be a constant integer");
FFERROR;
}
ffval.Node = New_Offset( ffvsp[-3].lng, ffvsp[-1].Node ); TEST(ffval.Node);
;
break;}
case 70:
#line 787 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, EQ, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 71:
#line 790 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, NE, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 72:
#line 793 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, LT, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 73:
#line 796 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, LTE, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 74:
#line 799 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, GT, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 75:
#line 802 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, GTE, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 76:
#line 805 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, GT, ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 77:
#line 808 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, LT, ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 78:
#line 811 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, GTE, ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 79:
#line 814 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, LTE, ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 80:
#line 817 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, '~', ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 81:
#line 820 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, EQ, ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 82:
#line 823 "eval.y"
{ PROMOTE(ffvsp[-2].Node,ffvsp[0].Node); ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, NE, ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 83:
#line 826 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, EQ, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 84:
#line 829 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, NE, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 85:
#line 832 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, GT, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 86:
#line 835 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, GTE, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 87:
#line 838 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, LT, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 88:
#line 841 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, LTE, ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = 1; ;
break;}
case 89:
#line 844 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, AND, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 90:
#line 846 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, OR, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 91:
#line 848 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, EQ, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 92:
#line 850 "eval.y"
{ ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, NE, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 93:
#line 853 "eval.y"
{ PROMOTE(ffvsp[-4].Node,ffvsp[-2].Node); PROMOTE(ffvsp[-4].Node,ffvsp[0].Node); PROMOTE(ffvsp[-2].Node,ffvsp[0].Node);
ffvsp[-2].Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, LTE, ffvsp[-4].Node );
ffvsp[0].Node = New_BinOp( BOOLEAN, ffvsp[-4].Node, LTE, ffvsp[0].Node );
ffval.Node = New_BinOp( BOOLEAN, ffvsp[-2].Node, AND, ffvsp[0].Node );
TEST(ffval.Node); ;
break;}
case 94:
#line 860 "eval.y"
{
if( ! Test_Dims(ffvsp[-2].Node,ffvsp[0].Node) ) {
fferror("Incompatible dimensions in '?:' arguments");
FFERROR;
}
ffval.Node = New_Func( 0, ifthenelse_fct, 3, ffvsp[-2].Node, ffvsp[0].Node, ffvsp[-4].Node,
0, 0, 0, 0 );
TEST(ffval.Node);
if( SIZE(ffvsp[-2].Node)<SIZE(ffvsp[0].Node) ) Copy_Dims(ffval.Node, ffvsp[0].Node);
if( ! Test_Dims(ffvsp[-4].Node,ffval.Node) ) {
fferror("Incompatible dimensions in '?:' condition");
FFERROR;
}
if( SIZE(ffval.Node)<SIZE(ffvsp[-4].Node) ) Copy_Dims(ffval.Node, ffvsp[-4].Node);
;
break;}
case 95:
#line 877 "eval.y"
{
if (FSTRCMP(ffvsp[-2].str,"ISNULL(") == 0) {
ffval.Node = New_Func( 0, isnull_fct, 1, ffvsp[-1].Node, 0, 0,
0, 0, 0, 0 );
TEST(ffval.Node);
/* Use expression's size, but return BOOLEAN */
TYPE(ffval.Node) = BOOLEAN;
} else {
fferror("Boolean Function(expr) not supported");
FFERROR;
}
;
break;}
case 96:
#line 890 "eval.y"
{
if (FSTRCMP(ffvsp[-2].str,"ISNULL(") == 0) {
ffval.Node = New_Func( 0, isnull_fct, 1, ffvsp[-1].Node, 0, 0,
0, 0, 0, 0 );
TEST(ffval.Node);
/* Use expression's size, but return BOOLEAN */
TYPE(ffval.Node) = BOOLEAN;
} else {
fferror("Boolean Function(expr) not supported");
FFERROR;
}
;
break;}
case 97:
#line 903 "eval.y"
{
if (FSTRCMP(ffvsp[-2].str,"ISNULL(") == 0) {
ffval.Node = New_Func( BOOLEAN, isnull_fct, 1, ffvsp[-1].Node, 0, 0,
0, 0, 0, 0 );
TEST(ffval.Node);
} else {
fferror("Boolean Function(expr) not supported");
FFERROR;
}
;
break;}
case 98:
#line 914 "eval.y"
{
if (FSTRCMP(ffvsp[-4].str,"DEFNULL(") == 0) {
if( SIZE(ffvsp[-3].Node)>=SIZE(ffvsp[-1].Node) && Test_Dims( ffvsp[-3].Node, ffvsp[-1].Node ) ) {
ffval.Node = New_Func( 0, defnull_fct, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0,
0, 0, 0, 0 );
TEST(ffval.Node);
} else {
fferror("Dimensions of DEFNULL arguments are not compatible");
FFERROR;
}
} else {
fferror("Boolean Function(expr,expr) not supported");
FFERROR;
}
;
break;}
case 99:
#line 930 "eval.y"
{
if( TYPE(ffvsp[-5].Node) != DOUBLE ) ffvsp[-5].Node = New_Unary( DOUBLE, 0, ffvsp[-5].Node );
if( TYPE(ffvsp[-3].Node) != DOUBLE ) ffvsp[-3].Node = New_Unary( DOUBLE, 0, ffvsp[-3].Node );
if( TYPE(ffvsp[-1].Node) != DOUBLE ) ffvsp[-1].Node = New_Unary( DOUBLE, 0, ffvsp[-1].Node );
if( ! (Test_Dims( ffvsp[-5].Node, ffvsp[-3].Node ) && Test_Dims( ffvsp[-3].Node, ffvsp[-1].Node ) ) ) {
fferror("Dimensions of NEAR arguments "
"are not compatible");
FFERROR;
} else {
if (FSTRCMP(ffvsp[-6].str,"NEAR(") == 0) {
ffval.Node = New_Func( BOOLEAN, near_fct, 3, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node,
0, 0, 0, 0 );
} else {
fferror("Boolean Function not supported");
FFERROR;
}
TEST(ffval.Node);
if( SIZE(ffval.Node)<SIZE(ffvsp[-5].Node) ) Copy_Dims(ffval.Node, ffvsp[-5].Node);
if( SIZE(ffvsp[-5].Node)<SIZE(ffvsp[-3].Node) ) Copy_Dims(ffval.Node, ffvsp[-3].Node);
if( SIZE(ffvsp[-3].Node)<SIZE(ffvsp[-1].Node) ) Copy_Dims(ffval.Node, ffvsp[-1].Node);
}
;
break;}
case 100:
#line 954 "eval.y"
{
if( TYPE(ffvsp[-9].Node) != DOUBLE ) ffvsp[-9].Node = New_Unary( DOUBLE, 0, ffvsp[-9].Node );
if( TYPE(ffvsp[-7].Node) != DOUBLE ) ffvsp[-7].Node = New_Unary( DOUBLE, 0, ffvsp[-7].Node );
if( TYPE(ffvsp[-5].Node) != DOUBLE ) ffvsp[-5].Node = New_Unary( DOUBLE, 0, ffvsp[-5].Node );
if( TYPE(ffvsp[-3].Node) != DOUBLE ) ffvsp[-3].Node = New_Unary( DOUBLE, 0, ffvsp[-3].Node );
if( TYPE(ffvsp[-1].Node)!= DOUBLE ) ffvsp[-1].Node= New_Unary( DOUBLE, 0, ffvsp[-1].Node);
if( ! (Test_Dims( ffvsp[-9].Node, ffvsp[-7].Node ) && Test_Dims( ffvsp[-7].Node, ffvsp[-5].Node ) &&
Test_Dims( ffvsp[-5].Node, ffvsp[-3].Node ) && Test_Dims( ffvsp[-3].Node, ffvsp[-1].Node )) ) {
fferror("Dimensions of CIRCLE arguments "
"are not compatible");
FFERROR;
} else {
if (FSTRCMP(ffvsp[-10].str,"CIRCLE(") == 0) {
ffval.Node = New_Func( BOOLEAN, circle_fct, 5, ffvsp[-9].Node, ffvsp[-7].Node, ffvsp[-5].Node, ffvsp[-3].Node,
ffvsp[-1].Node, 0, 0 );
} else {
fferror("Boolean Function not supported");
FFERROR;
}
TEST(ffval.Node);
if( SIZE(ffval.Node)<SIZE(ffvsp[-9].Node) ) Copy_Dims(ffval.Node, ffvsp[-9].Node);
if( SIZE(ffvsp[-9].Node)<SIZE(ffvsp[-7].Node) ) Copy_Dims(ffval.Node, ffvsp[-7].Node);
if( SIZE(ffvsp[-7].Node)<SIZE(ffvsp[-5].Node) ) Copy_Dims(ffval.Node, ffvsp[-5].Node);
if( SIZE(ffvsp[-5].Node)<SIZE(ffvsp[-3].Node) ) Copy_Dims(ffval.Node, ffvsp[-3].Node);
if( SIZE(ffvsp[-3].Node)<SIZE(ffvsp[-1].Node) ) Copy_Dims(ffval.Node, ffvsp[-1].Node);
}
;
break;}
case 101:
#line 982 "eval.y"
{
if( TYPE(ffvsp[-13].Node) != DOUBLE ) ffvsp[-13].Node = New_Unary( DOUBLE, 0, ffvsp[-13].Node );
if( TYPE(ffvsp[-11].Node) != DOUBLE ) ffvsp[-11].Node = New_Unary( DOUBLE, 0, ffvsp[-11].Node );
if( TYPE(ffvsp[-9].Node) != DOUBLE ) ffvsp[-9].Node = New_Unary( DOUBLE, 0, ffvsp[-9].Node );
if( TYPE(ffvsp[-7].Node) != DOUBLE ) ffvsp[-7].Node = New_Unary( DOUBLE, 0, ffvsp[-7].Node );
if( TYPE(ffvsp[-5].Node)!= DOUBLE ) ffvsp[-5].Node= New_Unary( DOUBLE, 0, ffvsp[-5].Node);
if( TYPE(ffvsp[-3].Node)!= DOUBLE ) ffvsp[-3].Node= New_Unary( DOUBLE, 0, ffvsp[-3].Node);
if( TYPE(ffvsp[-1].Node)!= DOUBLE ) ffvsp[-1].Node= New_Unary( DOUBLE, 0, ffvsp[-1].Node);
if( ! (Test_Dims( ffvsp[-13].Node, ffvsp[-11].Node ) && Test_Dims( ffvsp[-11].Node, ffvsp[-9].Node ) &&
Test_Dims( ffvsp[-9].Node, ffvsp[-7].Node ) && Test_Dims( ffvsp[-7].Node, ffvsp[-5].Node ) &&
Test_Dims(ffvsp[-5].Node,ffvsp[-3].Node ) && Test_Dims(ffvsp[-3].Node, ffvsp[-1].Node ) ) ) {
fferror("Dimensions of BOX or ELLIPSE arguments "
"are not compatible");
FFERROR;
} else {
if (FSTRCMP(ffvsp[-14].str,"BOX(") == 0) {
ffval.Node = New_Func( BOOLEAN, box_fct, 7, ffvsp[-13].Node, ffvsp[-11].Node, ffvsp[-9].Node, ffvsp[-7].Node,
ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node );
} else if (FSTRCMP(ffvsp[-14].str,"ELLIPSE(") == 0) {
ffval.Node = New_Func( BOOLEAN, elps_fct, 7, ffvsp[-13].Node, ffvsp[-11].Node, ffvsp[-9].Node, ffvsp[-7].Node,
ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node );
} else {
fferror("SAO Image Function not supported");
FFERROR;
}
TEST(ffval.Node);
if( SIZE(ffval.Node)<SIZE(ffvsp[-13].Node) ) Copy_Dims(ffval.Node, ffvsp[-13].Node);
if( SIZE(ffvsp[-13].Node)<SIZE(ffvsp[-11].Node) ) Copy_Dims(ffval.Node, ffvsp[-11].Node);
if( SIZE(ffvsp[-11].Node)<SIZE(ffvsp[-9].Node) ) Copy_Dims(ffval.Node, ffvsp[-9].Node);
if( SIZE(ffvsp[-9].Node)<SIZE(ffvsp[-7].Node) ) Copy_Dims(ffval.Node, ffvsp[-7].Node);
if( SIZE(ffvsp[-7].Node)<SIZE(ffvsp[-5].Node) ) Copy_Dims(ffval.Node, ffvsp[-5].Node);
if( SIZE(ffvsp[-5].Node)<SIZE(ffvsp[-3].Node) ) Copy_Dims(ffval.Node, ffvsp[-3].Node);
if( SIZE(ffvsp[-3].Node)<SIZE(ffvsp[-1].Node) ) Copy_Dims(ffval.Node, ffvsp[-1].Node);
}
;
break;}
case 102:
#line 1019 "eval.y"
{ /* Use defaults for all elements */
ffval.Node = New_GTI( "", -99, "*START*", "*STOP*" );
TEST(ffval.Node); ;
break;}
case 103:
#line 1023 "eval.y"
{ /* Use defaults for all except filename */
ffval.Node = New_GTI( ffvsp[-1].str, -99, "*START*", "*STOP*" );
TEST(ffval.Node); ;
break;}
case 104:
#line 1027 "eval.y"
{ ffval.Node = New_GTI( ffvsp[-3].str, ffvsp[-1].Node, "*START*", "*STOP*" );
TEST(ffval.Node); ;
break;}
case 105:
#line 1030 "eval.y"
{ ffval.Node = New_GTI( ffvsp[-7].str, ffvsp[-5].Node, ffvsp[-3].str, ffvsp[-1].str );
TEST(ffval.Node); ;
break;}
case 106:
#line 1034 "eval.y"
{ /* Use defaults for all except filename */
ffval.Node = New_REG( ffvsp[-1].str, -99, -99, "" );
TEST(ffval.Node); ;
break;}
case 107:
#line 1038 "eval.y"
{ ffval.Node = New_REG( ffvsp[-5].str, ffvsp[-3].Node, ffvsp[-1].Node, "" );
TEST(ffval.Node); ;
break;}
case 108:
#line 1041 "eval.y"
{ ffval.Node = New_REG( ffvsp[-7].str, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].str );
TEST(ffval.Node); ;
break;}
case 109:
#line 1045 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-3].Node, 1, ffvsp[-1].Node, 0, 0, 0, 0 ); TEST(ffval.Node); ;
break;}
case 110:
#line 1047 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-5].Node, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0, 0 ); TEST(ffval.Node); ;
break;}
case 111:
#line 1049 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-7].Node, 3, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node, 0, 0 ); TEST(ffval.Node); ;
break;}
case 112:
#line 1051 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-9].Node, 4, ffvsp[-7].Node, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node, 0 ); TEST(ffval.Node); ;
break;}
case 113:
#line 1053 "eval.y"
{ ffval.Node = New_Deref( ffvsp[-11].Node, 5, ffvsp[-9].Node, ffvsp[-7].Node, ffvsp[-5].Node, ffvsp[-3].Node, ffvsp[-1].Node ); TEST(ffval.Node); ;
break;}
case 114:
#line 1055 "eval.y"
{ ffval.Node = New_Unary( BOOLEAN, NOT, ffvsp[0].Node ); TEST(ffval.Node); ;
break;}
case 115:
#line 1057 "eval.y"
{ ffval.Node = ffvsp[-1].Node; ;
break;}
case 116:
#line 1061 "eval.y"
{ ffval.Node = New_Const( STRING, ffvsp[0].str, strlen(ffvsp[0].str)+1 ); TEST(ffval.Node);
SIZE(ffval.Node) = strlen(ffvsp[0].str); ;
break;}
case 117:
#line 1064 "eval.y"
{ ffval.Node = New_Column( ffvsp[0].lng ); TEST(ffval.Node); ;
break;}
case 118:
#line 1066 "eval.y"
{
if( TYPE(ffvsp[-1].Node) != LONG
|| OPER(ffvsp[-1].Node) != CONST_OP ) {
fferror("Offset argument must be a constant integer");
FFERROR;
}
ffval.Node = New_Offset( ffvsp[-3].lng, ffvsp[-1].Node ); TEST(ffval.Node);
;
break;}
case 119:
#line 1075 "eval.y"
{ ffval.Node = New_Func( STRING, null_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); ;
break;}
case 120:
#line 1077 "eval.y"
{ ffval.Node = ffvsp[-1].Node; ;
break;}
case 121:
#line 1079 "eval.y"
{
if (SIZE(ffvsp[-2].Node)+SIZE(ffvsp[0].Node) >= MAX_STRLEN) {
fferror("Combined string size exceeds " MAX_STRLEN_S " characters");
FFERROR;
}
ffval.Node = New_BinOp( STRING, ffvsp[-2].Node, '+', ffvsp[0].Node ); TEST(ffval.Node);
SIZE(ffval.Node) = SIZE(ffvsp[-2].Node) + SIZE(ffvsp[0].Node);
;
break;}
case 122:
#line 1088 "eval.y"
{
int outSize;
if( SIZE(ffvsp[-4].Node)!=1 ) {
fferror("Cannot have a vector string column");
FFERROR;
}
/* Since the output can be calculated now, as a constant
scalar, we must precalculate the output size, in
order to avoid an overflow. */
outSize = SIZE(ffvsp[-2].Node);
if (SIZE(ffvsp[0].Node) > outSize) outSize = SIZE(ffvsp[0].Node);
ffval.Node = New_FuncSize( 0, ifthenelse_fct, 3, ffvsp[-2].Node, ffvsp[0].Node, ffvsp[-4].Node,
0, 0, 0, 0, outSize);
TEST(ffval.Node);
if( SIZE(ffvsp[-2].Node)<SIZE(ffvsp[0].Node) ) Copy_Dims(ffval.Node, ffvsp[0].Node);
;
break;}
case 123:
#line 1107 "eval.y"
{
if (FSTRCMP(ffvsp[-4].str,"DEFNULL(") == 0) {
int outSize;
/* Since the output can be calculated now, as a constant
scalar, we must precalculate the output size, in
order to avoid an overflow. */
outSize = SIZE(ffvsp[-3].Node);
if (SIZE(ffvsp[-1].Node) > outSize) outSize = SIZE(ffvsp[-1].Node);
ffval.Node = New_FuncSize( 0, defnull_fct, 2, ffvsp[-3].Node, ffvsp[-1].Node, 0,
0, 0, 0, 0, outSize );
TEST(ffval.Node);
if( SIZE(ffvsp[-1].Node)>SIZE(ffvsp[-3].Node) ) SIZE(ffval.Node) = SIZE(ffvsp[-1].Node);
} else {
fferror("Function(string,string) not supported");
FFERROR;
}
;
break;}
case 124:
#line 1126 "eval.y"
{
if (FSTRCMP(ffvsp[-6].str,"STRMID(") == 0) {
int len;
if( TYPE(ffvsp[-3].Node) != LONG || SIZE(ffvsp[-3].Node) != 1 ||
TYPE(ffvsp[-1].Node) != LONG || SIZE(ffvsp[-1].Node) != 1) {
fferror("When using STRMID(S,P,N), P and N must be integers (and not vector columns)");
FFERROR;
}
if (OPER(ffvsp[-1].Node) == CONST_OP) {
/* Constant value: use that directly */
len = (gParse.Nodes[ffvsp[-1].Node].value.data.lng);
} else {
/* Variable value: use the maximum possible (from $2) */
len = SIZE(ffvsp[-5].Node);
}
if (len <= 0 || len >= MAX_STRLEN) {
fferror("STRMID(S,P,N), N must be 1-" MAX_STRLEN_S);
FFERROR;
}
ffval.Node = New_FuncSize( 0, strmid_fct, 3, ffvsp[-5].Node, ffvsp[-3].Node,ffvsp[-1].Node,0,0,0,0,len);
TEST(ffval.Node);
} else {
fferror("Function(string,expr,expr) not supported");
FFERROR;
}
;
break;}
}
/* the action file gets copied in in place of this dollarsign */
#line 498 "/usr1/local/share/bison.simple"
ffvsp -= fflen;
ffssp -= fflen;
#ifdef FFLSP_NEEDED
fflsp -= fflen;
#endif
#if FFDEBUG != 0
if (ffdebug)
{
short *ssp1 = ffss - 1;
fprintf (stderr, "state stack now");
while (ssp1 != ffssp)
fprintf (stderr, " %d", *++ssp1);
fprintf (stderr, "\n");
}
#endif
*++ffvsp = ffval;
#ifdef FFLSP_NEEDED
fflsp++;
if (fflen == 0)
{
fflsp->first_line = fflloc.first_line;
fflsp->first_column = fflloc.first_column;
fflsp->last_line = (fflsp-1)->last_line;
fflsp->last_column = (fflsp-1)->last_column;
fflsp->text = 0;
}
else
{
fflsp->last_line = (fflsp+fflen-1)->last_line;
fflsp->last_column = (fflsp+fflen-1)->last_column;
}
#endif
/* Now "shift" the result of the reduction.
Determine what state that goes to,
based on the state we popped back to
and the rule number reduced by. */
ffn = ffr1[ffn];
ffstate = ffpgoto[ffn - FFNTBASE] + *ffssp;
if (ffstate >= 0 && ffstate <= FFLAST && ffcheck[ffstate] == *ffssp)
ffstate = fftable[ffstate];
else
ffstate = ffdefgoto[ffn - FFNTBASE];
goto ffnewstate;
fferrlab: /* here on detecting error */
if (! fferrstatus)
/* If not already recovering from an error, report this error. */
{
++ffnerrs;
#ifdef FFERROR_VERBOSE
ffn = ffpact[ffstate];
if (ffn > FFFLAG && ffn < FFLAST)
{
int size = 0;
char *msg;
int x, count;
count = 0;
/* Start X at -ffn if nec to avoid negative indexes in ffcheck. */
for (x = (ffn < 0 ? -ffn : 0);
x < (sizeof(fftname) / sizeof(char *)); x++)
if (ffcheck[x + ffn] == x)
size += strlen(fftname[x]) + 15, count++;
msg = (char *) malloc(size + 15);
if (msg != 0)
{
strcpy(msg, "parse error");
if (count < 5)
{
count = 0;
for (x = (ffn < 0 ? -ffn : 0);
x < (sizeof(fftname) / sizeof(char *)); x++)
if (ffcheck[x + ffn] == x)
{
strcat(msg, count == 0 ? ", expecting `" : " or `");
strcat(msg, fftname[x]);
strcat(msg, "'");
count++;
}
}
fferror(msg);
free(msg);
}
else
fferror ("parse error; also virtual memory exceeded");
}
else
#endif /* FFERROR_VERBOSE */
fferror("parse error");
}
goto fferrlab1;
fferrlab1: /* here on error raised explicitly by an action */
if (fferrstatus == 3)
{
/* if just tried and failed to reuse lookahead token after an error, discard it. */
/* return failure if at end of input */
if (ffchar == FFEOF)
FFABORT;
#if FFDEBUG != 0
if (ffdebug)
fprintf(stderr, "Discarding token %d (%s).\n", ffchar, fftname[ffchar1]);
#endif
ffchar = FFEMPTY;
}
/* Else will try to reuse lookahead token
after shifting the error token. */
fferrstatus = 3; /* Each real token shifted decrements this */
goto fferrhandle;
fferrdefault: /* current state does not do anything special for the error token. */
#if 0
/* This is wrong; only states that explicitly want error tokens
should shift them. */
ffn = ffdefact[ffstate]; /* If its default is to accept any token, ok. Otherwise pop it.*/
if (ffn) goto ffdefault;
#endif
fferrpop: /* pop the current state because it cannot handle the error token */
if (ffssp == ffss) FFABORT;
ffvsp--;
ffstate = *--ffssp;
#ifdef FFLSP_NEEDED
fflsp--;
#endif
#if FFDEBUG != 0
if (ffdebug)
{
short *ssp1 = ffss - 1;
fprintf (stderr, "Error: state stack now");
while (ssp1 != ffssp)
fprintf (stderr, " %d", *++ssp1);
fprintf (stderr, "\n");
}
#endif
fferrhandle:
ffn = ffpact[ffstate];
if (ffn == FFFLAG)
goto fferrdefault;
ffn += FFTERROR;
if (ffn < 0 || ffn > FFLAST || ffcheck[ffn] != FFTERROR)
goto fferrdefault;
ffn = fftable[ffn];
if (ffn < 0)
{
if (ffn == FFFLAG)
goto fferrpop;
ffn = -ffn;
goto ffreduce;
}
else if (ffn == 0)
goto fferrpop;
if (ffn == FFFINAL)
FFACCEPT;
#if FFDEBUG != 0
if (ffdebug)
fprintf(stderr, "Shifting error token, ");
#endif
*++ffvsp = fflval;
#ifdef FFLSP_NEEDED
*++fflsp = fflloc;
#endif
ffstate = ffn;
goto ffnewstate;
}
#line 1155 "eval.y"
/*************************************************************************/
/* Start of "New" routines which build the expression Nodal structure */
/*************************************************************************/
static int Alloc_Node( void )
{
/* Use this for allocation to guarantee *Nodes */
Node *newNodePtr; /* survives on failure, making it still valid */
/* while working our way out of this error */
if( gParse.nNodes == gParse.nNodesAlloc ) {
if( gParse.Nodes ) {
gParse.nNodesAlloc += gParse.nNodesAlloc;
newNodePtr = (Node *)realloc( gParse.Nodes,
sizeof(Node)*gParse.nNodesAlloc );
} else {
gParse.nNodesAlloc = 100;
newNodePtr = (Node *)malloc ( sizeof(Node)*gParse.nNodesAlloc );
}
if( newNodePtr ) {
gParse.Nodes = newNodePtr;
} else {
gParse.status = MEMORY_ALLOCATION;
return( -1 );
}
}
return ( gParse.nNodes++ );
}
static void Free_Last_Node( void )
{
if( gParse.nNodes ) gParse.nNodes--;
}
static int New_Const( int returnType, void *value, long len )
{
Node *this;
int n;
n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = CONST_OP; /* Flag a constant */
this->DoOp = NULL;
this->nSubNodes = 0;
this->type = returnType;
memcpy( &(this->value.data), value, len );
this->value.undef = NULL;
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
}
return(n);
}
static int New_Column( int ColNum )
{
Node *this;
int n, i;
n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = -ColNum;
this->DoOp = NULL;
this->nSubNodes = 0;
this->type = gParse.varData[ColNum].type;
this->value.nelem = gParse.varData[ColNum].nelem;
this->value.naxis = gParse.varData[ColNum].naxis;
for( i=0; i<gParse.varData[ColNum].naxis; i++ )
this->value.naxes[i] = gParse.varData[ColNum].naxes[i];
}
return(n);
}
static int New_Offset( int ColNum, int offsetNode )
{
Node *this;
int n, i, colNode;
colNode = New_Column( ColNum );
if( colNode<0 ) return(-1);
n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = '{';
this->DoOp = Do_Offset;
this->nSubNodes = 2;
this->SubNodes[0] = colNode;
this->SubNodes[1] = offsetNode;
this->type = gParse.varData[ColNum].type;
this->value.nelem = gParse.varData[ColNum].nelem;
this->value.naxis = gParse.varData[ColNum].naxis;
for( i=0; i<gParse.varData[ColNum].naxis; i++ )
this->value.naxes[i] = gParse.varData[ColNum].naxes[i];
}
return(n);
}
static int New_Unary( int returnType, int Op, int Node1 )
{
Node *this, *that;
int i,n;
if( Node1<0 ) return(-1);
that = gParse.Nodes + Node1;
if( !Op ) Op = returnType;
if( (Op==DOUBLE || Op==FLTCAST) && that->type==DOUBLE ) return( Node1 );
if( (Op==LONG || Op==INTCAST) && that->type==LONG ) return( Node1 );
if( (Op==BOOLEAN ) && that->type==BOOLEAN ) return( Node1 );
n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = Op;
this->DoOp = Do_Unary;
this->nSubNodes = 1;
this->SubNodes[0] = Node1;
this->type = returnType;
that = gParse.Nodes + Node1; /* Reset in case .Nodes mv'd */
this->value.nelem = that->value.nelem;
this->value.naxis = that->value.naxis;
for( i=0; i<that->value.naxis; i++ )
this->value.naxes[i] = that->value.naxes[i];
if( that->operation==CONST_OP ) this->DoOp( this );
}
return( n );
}
static int New_BinOp( int returnType, int Node1, int Op, int Node2 )
{
Node *this,*that1,*that2;
int n,i,constant;
if( Node1<0 || Node2<0 ) return(-1);
n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = Op;
this->nSubNodes = 2;
this->SubNodes[0]= Node1;
this->SubNodes[1]= Node2;
this->type = returnType;
that1 = gParse.Nodes + Node1;
that2 = gParse.Nodes + Node2;
constant = (that1->operation==CONST_OP
&& that2->operation==CONST_OP);
if( that1->type!=STRING && that1->type!=BITSTR )
if( !Test_Dims( Node1, Node2 ) ) {
Free_Last_Node();
fferror("Array sizes/dims do not match for binary operator");
return(-1);
}
if( that1->value.nelem == 1 ) that1 = that2;
this->value.nelem = that1->value.nelem;
this->value.naxis = that1->value.naxis;
for( i=0; i<that1->value.naxis; i++ )
this->value.naxes[i] = that1->value.naxes[i];
if ( Op == ACCUM && that1->type == BITSTR ) {
/* ACCUM is rank-reducing on bit strings */
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
}
/* Both subnodes should be of same time */
switch( that1->type ) {
case BITSTR: this->DoOp = Do_BinOp_bit; break;
case STRING: this->DoOp = Do_BinOp_str; break;
case BOOLEAN: this->DoOp = Do_BinOp_log; break;
case LONG: this->DoOp = Do_BinOp_lng; break;
case DOUBLE: this->DoOp = Do_BinOp_dbl; break;
}
if( constant ) this->DoOp( this );
}
return( n );
}
static int New_Func( int returnType, funcOp Op, int nNodes,
int Node1, int Node2, int Node3, int Node4,
int Node5, int Node6, int Node7 )
{
return New_FuncSize(returnType, Op, nNodes,
Node1, Node2, Node3, Node4,
Node5, Node6, Node7, 0);
}
static int New_FuncSize( int returnType, funcOp Op, int nNodes,
int Node1, int Node2, int Node3, int Node4,
int Node5, int Node6, int Node7, int Size )
/* If returnType==0 , use Node1's type and vector sizes as returnType, */
/* else return a single value of type returnType */
{
Node *this, *that;
int i,n,constant;
if( Node1<0 || Node2<0 || Node3<0 || Node4<0 ||
Node5<0 || Node6<0 || Node7<0 ) return(-1);
n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->operation = (int)Op;
this->DoOp = Do_Func;
this->nSubNodes = nNodes;
this->SubNodes[0] = Node1;
this->SubNodes[1] = Node2;
this->SubNodes[2] = Node3;
this->SubNodes[3] = Node4;
this->SubNodes[4] = Node5;
this->SubNodes[5] = Node6;
this->SubNodes[6] = Node7;
i = constant = nNodes; /* Functions with zero params are not const */
if (Op == poirnd_fct) constant = 0; /* Nor is Poisson deviate */
while( i-- )
constant = ( constant && OPER(this->SubNodes[i]) == CONST_OP );
if( returnType ) {
this->type = returnType;
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
} else {
that = gParse.Nodes + Node1;
this->type = that->type;
this->value.nelem = that->value.nelem;
this->value.naxis = that->value.naxis;
for( i=0; i<that->value.naxis; i++ )
this->value.naxes[i] = that->value.naxes[i];
}
/* Force explicit size before evaluating */
if (Size > 0) this->value.nelem = Size;
if( constant ) this->DoOp( this );
}
return( n );
}
static int New_Deref( int Var, int nDim,
int Dim1, int Dim2, int Dim3, int Dim4, int Dim5 )
{
int n, idx, constant;
long elem=0;
Node *this, *theVar, *theDim[MAXDIMS];
if( Var<0 || Dim1<0 || Dim2<0 || Dim3<0 || Dim4<0 || Dim5<0 ) return(-1);
theVar = gParse.Nodes + Var;
if( theVar->operation==CONST_OP || theVar->value.nelem==1 ) {
fferror("Cannot index a scalar value");
return(-1);
}
n = Alloc_Node();
if( n>=0 ) {
this = gParse.Nodes + n;
this->nSubNodes = nDim+1;
theVar = gParse.Nodes + (this->SubNodes[0]=Var);
theDim[0] = gParse.Nodes + (this->SubNodes[1]=Dim1);
theDim[1] = gParse.Nodes + (this->SubNodes[2]=Dim2);
theDim[2] = gParse.Nodes + (this->SubNodes[3]=Dim3);
theDim[3] = gParse.Nodes + (this->SubNodes[4]=Dim4);
theDim[4] = gParse.Nodes + (this->SubNodes[5]=Dim5);
constant = theVar->operation==CONST_OP;
for( idx=0; idx<nDim; idx++ )
constant = (constant && theDim[idx]->operation==CONST_OP);
for( idx=0; idx<nDim; idx++ )
if( theDim[idx]->value.nelem>1 ) {
Free_Last_Node();
fferror("Cannot use an array as an index value");
return(-1);
} else if( theDim[idx]->type!=LONG ) {
Free_Last_Node();
fferror("Index value must be an integer type");
return(-1);
}
this->operation = '[';
this->DoOp = Do_Deref;
this->type = theVar->type;
if( theVar->value.naxis == nDim ) { /* All dimensions specified */
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
} else if( nDim==1 ) { /* Dereference only one dimension */
elem=1;
this->value.naxis = theVar->value.naxis-1;
for( idx=0; idx<this->value.naxis; idx++ ) {
elem *= ( this->value.naxes[idx] = theVar->value.naxes[idx] );
}
this->value.nelem = elem;
} else {
Free_Last_Node();
fferror("Must specify just one or all indices for vector");
return(-1);
}
if( constant ) this->DoOp( this );
}
return(n);
}
extern int ffGetVariable( char *varName, FFSTYPE *varVal );
static int New_GTI( char *fname, int Node1, char *start, char *stop )
{
fitsfile *fptr;
Node *this, *that0, *that1;
int type,i,n, startCol, stopCol, Node0;
int hdutype, hdunum, evthdu, samefile, extvers, movetotype, tstat;
char extname[100];
long nrows;
double timeZeroI[2], timeZeroF[2], dt, timeSpan;
char xcol[20], xexpr[20];
FFSTYPE colVal;
if( Node1==-99 ) {
type = ffGetVariable( "TIME", &colVal );
if( type==COLUMN ) {
Node1 = New_Column( (int)colVal.lng );
} else {
fferror("Could not build TIME column for GTIFILTER");
return(-1);
}
}
Node1 = New_Unary( DOUBLE, 0, Node1 );
Node0 = Alloc_Node(); /* This will hold the START/STOP times */
if( Node1<0 || Node0<0 ) return(-1);
/* Record current HDU number in case we need to move within this file */
fptr = gParse.def_fptr;
ffghdn( fptr, &evthdu );
/* Look for TIMEZERO keywords in current extension */
tstat = 0;
if( ffgkyd( fptr, "TIMEZERO", timeZeroI, NULL, &tstat ) ) {
tstat = 0;
if( ffgkyd( fptr, "TIMEZERI", timeZeroI, NULL, &tstat ) ) {
timeZeroI[0] = timeZeroF[0] = 0.0;
} else if( ffgkyd( fptr, "TIMEZERF", timeZeroF, NULL, &tstat ) ) {
timeZeroF[0] = 0.0;
}
} else {
timeZeroF[0] = 0.0;
}
/* Resolve filename parameter */
switch( fname[0] ) {
case '\0':
samefile = 1;
hdunum = 1;
break;
case '[':
samefile = 1;
i = 1;
while( fname[i] != '\0' && fname[i] != ']' ) i++;
if( fname[i] ) {
fname[i] = '\0';
fname++;
ffexts( fname, &hdunum, extname, &extvers, &movetotype,
xcol, xexpr, &gParse.status );
if( *extname ) {
ffmnhd( fptr, movetotype, extname, extvers, &gParse.status );
ffghdn( fptr, &hdunum );
} else if( hdunum ) {
ffmahd( fptr, ++hdunum, &hdutype, &gParse.status );
} else if( !gParse.status ) {
fferror("Cannot use primary array for GTI filter");
return( -1 );
}
} else {
fferror("File extension specifier lacks closing ']'");
return( -1 );
}
break;
case '+':
samefile = 1;
hdunum = atoi( fname ) + 1;
if( hdunum>1 )
ffmahd( fptr, hdunum, &hdutype, &gParse.status );
else {
fferror("Cannot use primary array for GTI filter");
return( -1 );
}
break;
default:
samefile = 0;
if( ! ffopen( &fptr, fname, READONLY, &gParse.status ) )
ffghdn( fptr, &hdunum );
break;
}
if( gParse.status ) return(-1);
/* If at primary, search for GTI extension */
if( hdunum==1 ) {
while( 1 ) {
hdunum++;
if( ffmahd( fptr, hdunum, &hdutype, &gParse.status ) ) break;
if( hdutype==IMAGE_HDU ) continue;
tstat = 0;
if( ffgkys( fptr, "EXTNAME", extname, NULL, &tstat ) ) continue;
ffupch( extname );
if( strstr( extname, "GTI" ) ) break;
}
if( gParse.status ) {
if( gParse.status==END_OF_FILE )
fferror("GTI extension not found in this file");
return(-1);
}
}
/* Locate START/STOP Columns */
ffgcno( fptr, CASEINSEN, start, &startCol, &gParse.status );
ffgcno( fptr, CASEINSEN, stop, &stopCol, &gParse.status );
if( gParse.status ) return(-1);
/* Look for TIMEZERO keywords in GTI extension */
tstat = 0;
if( ffgkyd( fptr, "TIMEZERO", timeZeroI+1, NULL, &tstat ) ) {
tstat = 0;
if( ffgkyd( fptr, "TIMEZERI", timeZeroI+1, NULL, &tstat ) ) {
timeZeroI[1] = timeZeroF[1] = 0.0;
} else if( ffgkyd( fptr, "TIMEZERF", timeZeroF+1, NULL, &tstat ) ) {
timeZeroF[1] = 0.0;
}
} else {
timeZeroF[1] = 0.0;
}
n = Alloc_Node();
if( n >= 0 ) {
this = gParse.Nodes + n;
this->nSubNodes = 2;
this->SubNodes[1] = Node1;
this->operation = (int)gtifilt_fct;
this->DoOp = Do_GTI;
this->type = BOOLEAN;
that1 = gParse.Nodes + Node1;
this->value.nelem = that1->value.nelem;
this->value.naxis = that1->value.naxis;
for( i=0; i < that1->value.naxis; i++ )
this->value.naxes[i] = that1->value.naxes[i];
/* Init START/STOP node to be treated as a "constant" */
this->SubNodes[0] = Node0;
that0 = gParse.Nodes + Node0;
that0->operation = CONST_OP;
that0->DoOp = NULL;
that0->value.data.ptr= NULL;
/* Read in START/STOP times */
if( ffgkyj( fptr, "NAXIS2", &nrows, NULL, &gParse.status ) )
return(-1);
that0->value.nelem = nrows;
if( nrows ) {
that0->value.data.dblptr = (double*)malloc( 2*nrows*sizeof(double) );
if( !that0->value.data.dblptr ) {
gParse.status = MEMORY_ALLOCATION;
return(-1);
}
ffgcvd( fptr, startCol, 1L, 1L, nrows, 0.0,
that0->value.data.dblptr, &i, &gParse.status );
ffgcvd( fptr, stopCol, 1L, 1L, nrows, 0.0,
that0->value.data.dblptr+nrows, &i, &gParse.status );
if( gParse.status ) {
free( that0->value.data.dblptr );
return(-1);
}
/* Test for fully time-ordered GTI... both START && STOP */
that0->type = 1; /* Assume yes */
i = nrows;
while( --i )
if( that0->value.data.dblptr[i-1]
>= that0->value.data.dblptr[i]
|| that0->value.data.dblptr[i-1+nrows]
>= that0->value.data.dblptr[i+nrows] ) {
that0->type = 0;
break;
}
/* Handle TIMEZERO offset, if any */
dt = (timeZeroI[1] - timeZeroI[0]) + (timeZeroF[1] - timeZeroF[0]);
timeSpan = that0->value.data.dblptr[nrows+nrows-1]
- that0->value.data.dblptr[0];
if( fabs( dt / timeSpan ) > 1e-12 ) {
for( i=0; i<(nrows+nrows); i++ )
that0->value.data.dblptr[i] += dt;
}
}
if( OPER(Node1)==CONST_OP )
this->DoOp( this );
}
if( samefile )
ffmahd( fptr, evthdu, &hdutype, &gParse.status );
else
ffclos( fptr, &gParse.status );
return( n );
}
static int New_REG( char *fname, int NodeX, int NodeY, char *colNames )
{
Node *this, *that0;
int type, n, Node0;
int Xcol, Ycol, tstat;
WCSdata wcs;
SAORegion *Rgn;
char *cX, *cY;
FFSTYPE colVal;
if( NodeX==-99 ) {
type = ffGetVariable( "X", &colVal );
if( type==COLUMN ) {
NodeX = New_Column( (int)colVal.lng );
} else {
fferror("Could not build X column for REGFILTER");
return(-1);
}
}
if( NodeY==-99 ) {
type = ffGetVariable( "Y", &colVal );
if( type==COLUMN ) {
NodeY = New_Column( (int)colVal.lng );
} else {
fferror("Could not build Y column for REGFILTER");
return(-1);
}
}
NodeX = New_Unary( DOUBLE, 0, NodeX );
NodeY = New_Unary( DOUBLE, 0, NodeY );
Node0 = Alloc_Node(); /* This will hold the Region Data */
if( NodeX<0 || NodeY<0 || Node0<0 ) return(-1);
if( ! (Test_Dims( NodeX, NodeY ) ) ) {
fferror("Dimensions of REGFILTER arguments are not compatible");
return (-1);
}
n = Alloc_Node();
if( n >= 0 ) {
this = gParse.Nodes + n;
this->nSubNodes = 3;
this->SubNodes[0] = Node0;
this->SubNodes[1] = NodeX;
this->SubNodes[2] = NodeY;
this->operation = (int)regfilt_fct;
this->DoOp = Do_REG;
this->type = BOOLEAN;
this->value.nelem = 1;
this->value.naxis = 1;
this->value.naxes[0] = 1;
Copy_Dims(n, NodeX);
if( SIZE(NodeX)<SIZE(NodeY) ) Copy_Dims(n, NodeY);
/* Init Region node to be treated as a "constant" */
that0 = gParse.Nodes + Node0;
that0->operation = CONST_OP;
that0->DoOp = NULL;
/* Identify what columns to use for WCS information */
Xcol = Ycol = 0;
if( *colNames ) {
/* Use the column names in this string for WCS info */
while( *colNames==' ' ) colNames++;
cX = cY = colNames;
while( *cY && *cY!=' ' && *cY!=',' ) cY++;
if( *cY )
*(cY++) = '\0';
while( *cY==' ' ) cY++;
if( !*cY ) {
fferror("Could not extract valid pair of column names from REGFILTER");
Free_Last_Node();
return( -1 );
}
fits_get_colnum( gParse.def_fptr, CASEINSEN, cX, &Xcol,
&gParse.status );
fits_get_colnum( gParse.def_fptr, CASEINSEN, cY, &Ycol,
&gParse.status );
if( gParse.status ) {
fferror("Could not locate columns indicated for WCS info");
Free_Last_Node();
return( -1 );
}
} else {
/* Try to find columns used in X/Y expressions */
Xcol = Locate_Col( gParse.Nodes + NodeX );
Ycol = Locate_Col( gParse.Nodes + NodeY );
if( Xcol<0 || Ycol<0 ) {
fferror("Found multiple X/Y column references in REGFILTER");
Free_Last_Node();
return( -1 );
}
}
/* Now, get the WCS info, if it exists, from the indicated columns */
wcs.exists = 0;
if( Xcol>0 && Ycol>0 ) {
tstat = 0;
ffgtcs( gParse.def_fptr, Xcol, Ycol,
&wcs.xrefval, &wcs.yrefval,
&wcs.xrefpix, &wcs.yrefpix,
&wcs.xinc, &wcs.yinc,
&wcs.rot, wcs.type,
&tstat );
if( tstat==NO_WCS_KEY ) {
wcs.exists = 0;
} else if( tstat ) {
gParse.status = tstat;
Free_Last_Node();
return( -1 );
} else {
wcs.exists = 1;
}
}
/* Read in Region file */
fits_read_rgnfile( fname, &wcs, &Rgn, &gParse.status );
if( gParse.status ) {
Free_Last_Node();
return( -1 );
}
that0->value.data.ptr = Rgn;
if( OPER(NodeX)==CONST_OP && OPER(NodeY)==CONST_OP )
this->DoOp( this );
}
return( n );
}
static int New_Vector( int subNode )
{
Node *this, *that;
int n;
n = Alloc_Node();
if( n >= 0 ) {
this = gParse.Nodes + n;
that = gParse.Nodes + subNode;
this->type = that->type;
this->nSubNodes = 1;
this->SubNodes[0] = subNode;
this->operation = '{';
this->DoOp = Do_Vector;
}
return( n );
}
static int Close_Vec( int vecNode )
{
Node *this;
int n, nelem=0;
this = gParse.Nodes + vecNode;
for( n=0; n < this->nSubNodes; n++ ) {
if( TYPE( this->SubNodes[n] ) != this->type ) {
this->SubNodes[n] = New_Unary( this->type, 0, this->SubNodes[n] );
if( this->SubNodes[n]<0 ) return(-1);
}
nelem += SIZE(this->SubNodes[n]);
}
this->value.naxis = 1;
this->value.nelem = nelem;
this->value.naxes[0] = nelem;
return( vecNode );
}
static int Locate_Col( Node *this )
/* Locate the TABLE column number of any columns in "this" calculation. */
/* Return ZERO if none found, or negative if more than 1 found. */
{
Node *that;
int i, col=0, newCol, nfound=0;
if( this->nSubNodes==0
&& this->operation<=0 && this->operation!=CONST_OP )
return gParse.colData[ - this->operation].colnum;
for( i=0; i<this->nSubNodes; i++ ) {
that = gParse.Nodes + this->SubNodes[i];
if( that->operation>0 ) {
newCol = Locate_Col( that );
if( newCol<=0 ) {
nfound += -newCol;
} else {
if( !nfound ) {
col = newCol;
nfound++;
} else if( col != newCol ) {
nfound++;
}
}
} else if( that->operation!=CONST_OP ) {
/* Found a Column */
newCol = gParse.colData[- that->operation].colnum;
if( !nfound ) {
col = newCol;
nfound++;
} else if( col != newCol ) {
nfound++;
}
}
}
if( nfound!=1 )
return( - nfound );
else
return( col );
}
static int Test_Dims( int Node1, int Node2 )
{
Node *that1, *that2;
int valid, i;
if( Node1<0 || Node2<0 ) return(0);
that1 = gParse.Nodes + Node1;
that2 = gParse.Nodes + Node2;
if( that1->value.nelem==1 || that2->value.nelem==1 )
valid = 1;
else if( that1->type==that2->type
&& that1->value.nelem==that2->value.nelem
&& that1->value.naxis==that2->value.naxis ) {
valid = 1;
for( i=0; i<that1->value.naxis; i++ ) {
if( that1->value.naxes[i]!=that2->value.naxes[i] )
valid = 0;
}
} else
valid = 0;
return( valid );
}
static void Copy_Dims( int Node1, int Node2 )
{
Node *that1, *that2;
int i;
if( Node1<0 || Node2<0 ) return;
that1 = gParse.Nodes + Node1;
that2 = gParse.Nodes + Node2;
that1->value.nelem = that2->value.nelem;
that1->value.naxis = that2->value.naxis;
for( i=0; i<that2->value.naxis; i++ )
that1->value.naxes[i] = that2->value.naxes[i];
}
/********************************************************************/
/* Routines for actually evaluating the expression start here */
/********************************************************************/
void Evaluate_Parser( long firstRow, long nRows )
/***********************************************************************/
/* Reset the parser for processing another batch of data... */
/* firstRow: Row number of the first element to evaluate */
/* nRows: Number of rows to be processed */
/* Initialize each COLUMN node so that its UNDEF and DATA pointers */
/* point to the appropriate column arrays. */
/* Finally, call Evaluate_Node for final node. */
/***********************************************************************/
{
int i, column;
long offset, rowOffset;
gParse.firstRow = firstRow;
gParse.nRows = nRows;
/* Reset Column Nodes' pointers to point to right data and UNDEF arrays */
rowOffset = firstRow - gParse.firstDataRow;
for( i=0; i<gParse.nNodes; i++ ) {
if( OPER(i) > 0 || OPER(i) == CONST_OP ) continue;
column = -OPER(i);
offset = gParse.varData[column].nelem * rowOffset;
gParse.Nodes[i].value.undef = gParse.varData[column].undef + offset;
switch( gParse.Nodes[i].type ) {
case BITSTR:
gParse.Nodes[i].value.data.strptr =
(char**)gParse.varData[column].data + rowOffset;
gParse.Nodes[i].value.undef = NULL;
break;
case STRING:
gParse.Nodes[i].value.data.strptr =
(char**)gParse.varData[column].data + rowOffset;
gParse.Nodes[i].value.undef = gParse.varData[column].undef + rowOffset;
break;
case BOOLEAN:
gParse.Nodes[i].value.data.logptr =
(char*)gParse.varData[column].data + offset;
break;
case LONG:
gParse.Nodes[i].value.data.lngptr =
(long*)gParse.varData[column].data + offset;
break;
case DOUBLE:
gParse.Nodes[i].value.data.dblptr =
(double*)gParse.varData[column].data + offset;
break;
}
}
Evaluate_Node( gParse.resultNode );
}
static void Evaluate_Node( int thisNode )
/**********************************************************************/
/* Recursively evaluate thisNode's subNodes, then call one of the */
/* Do_<Action> functions pointed to by thisNode's DoOp element. */
/**********************************************************************/
{
Node *this;
int i;
if( gParse.status ) return;
this = gParse.Nodes + thisNode;
if( this->operation>0 ) { /* <=0 indicate constants and columns */
i = this->nSubNodes;
while( i-- ) {
Evaluate_Node( this->SubNodes[i] );
if( gParse.status ) return;
}
this->DoOp( this );
}
}
static void Allocate_Ptrs( Node *this )
{
long elem, row, size;
if( this->type==BITSTR || this->type==STRING ) {
this->value.data.strptr = (char**)malloc( gParse.nRows
* sizeof(char*) );
if( this->value.data.strptr ) {
this->value.data.strptr[0] = (char*)malloc( gParse.nRows
* (this->value.nelem+2)
* sizeof(char) );
if( this->value.data.strptr[0] ) {
row = 0;
while( (++row)<gParse.nRows ) {
this->value.data.strptr[row] =
this->value.data.strptr[row-1] + this->value.nelem+1;
}
if( this->type==STRING ) {
this->value.undef = this->value.data.strptr[row-1]
+ this->value.nelem+1;
} else {
this->value.undef = NULL; /* BITSTRs don't use undef array */
}
} else {
gParse.status = MEMORY_ALLOCATION;
free( this->value.data.strptr );
}
} else {
gParse.status = MEMORY_ALLOCATION;
}
} else {
elem = this->value.nelem * gParse.nRows;
switch( this->type ) {
case DOUBLE: size = sizeof( double ); break;
case LONG: size = sizeof( long ); break;
case BOOLEAN: size = sizeof( char ); break;
default: size = 1; break;
}
this->value.data.ptr = calloc(size+1, elem);
if( this->value.data.ptr==NULL ) {
gParse.status = MEMORY_ALLOCATION;
} else {
this->value.undef = (char *)this->value.data.ptr + elem*size;
}
}
}
static void Do_Unary( Node *this )
{
Node *that;
long elem;
that = gParse.Nodes + this->SubNodes[0];
if( that->operation==CONST_OP ) { /* Operating on a constant! */
switch( this->operation ) {
case DOUBLE:
case FLTCAST:
if( that->type==LONG )
this->value.data.dbl = (double)that->value.data.lng;
else if( that->type==BOOLEAN )
this->value.data.dbl = ( that->value.data.log ? 1.0 : 0.0 );
break;
case LONG:
case INTCAST:
if( that->type==DOUBLE )
this->value.data.lng = (long)that->value.data.dbl;
else if( that->type==BOOLEAN )
this->value.data.lng = ( that->value.data.log ? 1L : 0L );
break;
case BOOLEAN:
if( that->type==DOUBLE )
this->value.data.log = ( that->value.data.dbl != 0.0 );
else if( that->type==LONG )
this->value.data.log = ( that->value.data.lng != 0L );
break;
case UMINUS:
if( that->type==DOUBLE )
this->value.data.dbl = - that->value.data.dbl;
else if( that->type==LONG )
this->value.data.lng = - that->value.data.lng;
break;
case NOT:
if( that->type==BOOLEAN )
this->value.data.log = ( ! that->value.data.log );
else if( that->type==BITSTR )
bitnot( this->value.data.str, that->value.data.str );
break;
}
this->operation = CONST_OP;
} else {
Allocate_Ptrs( this );
if( !gParse.status ) {
if( this->type!=BITSTR ) {
elem = gParse.nRows;
if( this->type!=STRING )
elem *= this->value.nelem;
while( elem-- )
this->value.undef[elem] = that->value.undef[elem];
}
elem = gParse.nRows * this->value.nelem;
switch( this->operation ) {
case BOOLEAN:
if( that->type==DOUBLE )
while( elem-- )
this->value.data.logptr[elem] =
( that->value.data.dblptr[elem] != 0.0 );
else if( that->type==LONG )
while( elem-- )
this->value.data.logptr[elem] =
( that->value.data.lngptr[elem] != 0L );
break;
case DOUBLE:
case FLTCAST:
if( that->type==LONG )
while( elem-- )
this->value.data.dblptr[elem] =
(double)that->value.data.lngptr[elem];
else if( that->type==BOOLEAN )
while( elem-- )
this->value.data.dblptr[elem] =
( that->value.data.logptr[elem] ? 1.0 : 0.0 );
break;
case LONG:
case INTCAST:
if( that->type==DOUBLE )
while( elem-- )
this->value.data.lngptr[elem] =
(long)that->value.data.dblptr[elem];
else if( that->type==BOOLEAN )
while( elem-- )
this->value.data.lngptr[elem] =
( that->value.data.logptr[elem] ? 1L : 0L );
break;
case UMINUS:
if( that->type==DOUBLE ) {
while( elem-- )
this->value.data.dblptr[elem] =
- that->value.data.dblptr[elem];
} else if( that->type==LONG ) {
while( elem-- )
this->value.data.lngptr[elem] =
- that->value.data.lngptr[elem];
}
break;
case NOT:
if( that->type==BOOLEAN ) {
while( elem-- )
this->value.data.logptr[elem] =
( ! that->value.data.logptr[elem] );
} else if( that->type==BITSTR ) {
elem = gParse.nRows;
while( elem-- )
bitnot( this->value.data.strptr[elem],
that->value.data.strptr[elem] );
}
break;
}
}
}
if( that->operation>0 ) {
free( that->value.data.ptr );
}
}
static void Do_Offset( Node *this )
{
Node *col;
long fRow, nRowOverlap, nRowReload, rowOffset;
long nelem, elem, offset, nRealElem;
int status;
col = gParse.Nodes + this->SubNodes[0];
rowOffset = gParse.Nodes[ this->SubNodes[1] ].value.data.lng;
Allocate_Ptrs( this );
fRow = gParse.firstRow + rowOffset;
if( this->type==STRING || this->type==BITSTR )
nRealElem = 1;
else
nRealElem = this->value.nelem;
nelem = nRealElem;
if( fRow < gParse.firstDataRow ) {
/* Must fill in data at start of array */
nRowReload = gParse.firstDataRow - fRow;
if( nRowReload > gParse.nRows ) nRowReload = gParse.nRows;
nRowOverlap = gParse.nRows - nRowReload;
offset = 0;
/* NULLify any values falling out of bounds */
while( fRow<1 && nRowReload>0 ) {
if( this->type == BITSTR ) {
nelem = this->value.nelem;
this->value.data.strptr[offset][ nelem ] = '\0';
while( nelem-- ) this->value.data.strptr[offset][nelem] = '0';
offset++;
} else {
while( nelem-- )
this->value.undef[offset++] = 1;
}
nelem = nRealElem;
fRow++;
nRowReload--;
}
} else if( fRow + gParse.nRows > gParse.firstDataRow + gParse.nDataRows ) {
/* Must fill in data at end of array */
nRowReload = (fRow+gParse.nRows) - (gParse.firstDataRow+gParse.nDataRows);
if( nRowReload>gParse.nRows ) {
nRowReload = gParse.nRows;
} else {
fRow = gParse.firstDataRow + gParse.nDataRows;
}
nRowOverlap = gParse.nRows - nRowReload;
offset = nRowOverlap * nelem;
/* NULLify any values falling out of bounds */
elem = gParse.nRows * nelem;
while( fRow+nRowReload>gParse.totalRows && nRowReload>0 ) {
if( this->type == BITSTR ) {
nelem = this->value.nelem;
elem--;
this->value.data.strptr[elem][ nelem ] = '\0';
while( nelem-- ) this->value.data.strptr[elem][nelem] = '0';
} else {
while( nelem-- )
this->value.undef[--elem] = 1;
}
nelem = nRealElem;
nRowReload--;
}
} else {
nRowReload = 0;
nRowOverlap = gParse.nRows;
offset = 0;
}
if( nRowReload>0 ) {
switch( this->type ) {
case BITSTR:
case STRING:
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
this->value.data.strptr+offset,
this->value.undef+offset );
break;
case BOOLEAN:
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
this->value.data.logptr+offset,
this->value.undef+offset );
break;
case LONG:
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
this->value.data.lngptr+offset,
this->value.undef+offset );
break;
case DOUBLE:
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
this->value.data.dblptr+offset,
this->value.undef+offset );
break;
}
}
/* Now copy over the overlapping region, if any */
if( nRowOverlap <= 0 ) return;
if( rowOffset>0 )
elem = nRowOverlap * nelem;
else
elem = gParse.nRows * nelem;
offset = nelem * rowOffset;
while( nRowOverlap-- && !gParse.status ) {
while( nelem-- && !gParse.status ) {
elem--;
if( this->type != BITSTR )
this->value.undef[elem] = col->value.undef[elem+offset];
switch( this->type ) {
case BITSTR:
strcpy( this->value.data.strptr[elem ],
col->value.data.strptr[elem+offset] );
break;
case STRING:
strcpy( this->value.data.strptr[elem ],
col->value.data.strptr[elem+offset] );
break;
case BOOLEAN:
this->value.data.logptr[elem] = col->value.data.logptr[elem+offset];
break;
case LONG:
this->value.data.lngptr[elem] = col->value.data.lngptr[elem+offset];
break;
case DOUBLE:
this->value.data.dblptr[elem] = col->value.data.dblptr[elem+offset];
break;
}
}
nelem = nRealElem;
}
}
static void Do_BinOp_bit( Node *this )
{
Node *that1, *that2;
char *sptr1=NULL, *sptr2=NULL;
int const1, const2;
long rows;
that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];
const1 = ( that1->operation==CONST_OP );
const2 = ( that2->operation==CONST_OP );
sptr1 = ( const1 ? that1->value.data.str : NULL );
sptr2 = ( const2 ? that2->value.data.str : NULL );
if( const1 && const2 ) {
switch( this->operation ) {
case NE:
this->value.data.log = !bitcmp( sptr1, sptr2 );
break;
case EQ:
this->value.data.log = bitcmp( sptr1, sptr2 );
break;
case GT:
case LT:
case LTE:
case GTE:
this->value.data.log = bitlgte( sptr1, this->operation, sptr2 );
break;
case '|':
bitor( this->value.data.str, sptr1, sptr2 );
break;
case '&':
bitand( this->value.data.str, sptr1, sptr2 );
break;
case '+':
strcpy( this->value.data.str, sptr1 );
strcat( this->value.data.str, sptr2 );
break;
case ACCUM:
this->value.data.lng = 0;
while( *sptr1 ) {
if ( *sptr1 == '1' ) this->value.data.lng ++;
sptr1 ++;
}
break;
}
this->operation = CONST_OP;
} else {
Allocate_Ptrs( this );
if( !gParse.status ) {
rows = gParse.nRows;
switch( this->operation ) {
/* BITSTR comparisons */
case NE:
case EQ:
case GT:
case LT:
case LTE:
case GTE:
while( rows-- ) {
if( !const1 )
sptr1 = that1->value.data.strptr[rows];
if( !const2 )
sptr2 = that2->value.data.strptr[rows];
switch( this->operation ) {
case NE: this->value.data.logptr[rows] =
!bitcmp( sptr1, sptr2 );
break;
case EQ: this->value.data.logptr[rows] =
bitcmp( sptr1, sptr2 );
break;
case GT:
case LT:
case LTE:
case GTE: this->value.data.logptr[rows] =
bitlgte( sptr1, this->operation, sptr2 );
break;
}
this->value.undef[rows] = 0;
}
break;
/* BITSTR AND/ORs ... no UNDEFS in or out */
case '|':
case '&':
case '+':
while( rows-- ) {
if( !const1 )
sptr1 = that1->value.data.strptr[rows];
if( !const2 )
sptr2 = that2->value.data.strptr[rows];
if( this->operation=='|' )
bitor( this->value.data.strptr[rows], sptr1, sptr2 );
else if( this->operation=='&' )
bitand( this->value.data.strptr[rows], sptr1, sptr2 );
else {
strcpy( this->value.data.strptr[rows], sptr1 );
strcat( this->value.data.strptr[rows], sptr2 );
}
}
break;
/* Accumulate 1 bits */
case ACCUM:
{
long i, previous, curr;
previous = that2->value.data.lng;
/* Cumulative sum of this chunk */
for (i=0; i<rows; i++) {
sptr1 = that1->value.data.strptr[i];
for (curr = 0; *sptr1; sptr1 ++) {
if ( *sptr1 == '1' ) curr ++;
}
previous += curr;
this->value.data.lngptr[i] = previous;
this->value.undef[i] = 0;
}
/* Store final cumulant for next pass */
that2->value.data.lng = previous;
}
}
}
}
if( that1->operation>0 ) {
free( that1->value.data.strptr[0] );
free( that1->value.data.strptr );
}
if( that2->operation>0 ) {
free( that2->value.data.strptr[0] );
free( that2->value.data.strptr );
}
}
static void Do_BinOp_str( Node *this )
{
Node *that1, *that2;
char *sptr1, *sptr2, null1=0, null2=0;
int const1, const2, val;
long rows;
that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];
const1 = ( that1->operation==CONST_OP );
const2 = ( that2->operation==CONST_OP );
sptr1 = ( const1 ? that1->value.data.str : NULL );
sptr2 = ( const2 ? that2->value.data.str : NULL );
if( const1 && const2 ) { /* Result is a constant */
switch( this->operation ) {
/* Compare Strings */
case NE:
case EQ:
val = ( FSTRCMP( sptr1, sptr2 ) == 0 );
this->value.data.log = ( this->operation==EQ ? val : !val );
break;
case GT:
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) > 0 );
break;
case LT:
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) < 0 );
break;
case GTE:
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) >= 0 );
break;
case LTE:
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) <= 0 );
break;
/* Concat Strings */
case '+':
strcpy( this->value.data.str, sptr1 );
strcat( this->value.data.str, sptr2 );
break;
}
this->operation = CONST_OP;
} else { /* Not a constant */
Allocate_Ptrs( this );
if( !gParse.status ) {
rows = gParse.nRows;
switch( this->operation ) {
/* Compare Strings */
case NE:
case EQ:
while( rows-- ) {
if( !const1 ) null1 = that1->value.undef[rows];
if( !const2 ) null2 = that2->value.undef[rows];
this->value.undef[rows] = (null1 || null2);
if( ! this->value.undef[rows] ) {
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
val = ( FSTRCMP( sptr1, sptr2 ) == 0 );
this->value.data.logptr[rows] =
( this->operation==EQ ? val : !val );
}
}
break;
case GT:
case LT:
while( rows-- ) {
if( !const1 ) null1 = that1->value.undef[rows];
if( !const2 ) null2 = that2->value.undef[rows];
this->value.undef[rows] = (null1 || null2);
if( ! this->value.undef[rows] ) {
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
val = ( FSTRCMP( sptr1, sptr2 ) );
this->value.data.logptr[rows] =
( this->operation==GT ? val>0 : val<0 );
}
}
break;
case GTE:
case LTE:
while( rows-- ) {
if( !const1 ) null1 = that1->value.undef[rows];
if( !const2 ) null2 = that2->value.undef[rows];
this->value.undef[rows] = (null1 || null2);
if( ! this->value.undef[rows] ) {
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
val = ( FSTRCMP( sptr1, sptr2 ) );
this->value.data.logptr[rows] =
( this->operation==GTE ? val>=0 : val<=0 );
}
}
break;
/* Concat Strings */
case '+':
while( rows-- ) {
if( !const1 ) null1 = that1->value.undef[rows];
if( !const2 ) null2 = that2->value.undef[rows];
this->value.undef[rows] = (null1 || null2);
if( ! this->value.undef[rows] ) {
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
strcpy( this->value.data.strptr[rows], sptr1 );
strcat( this->value.data.strptr[rows], sptr2 );
}
}
break;
}
}
}
if( that1->operation>0 ) {
free( that1->value.data.strptr[0] );
free( that1->value.data.strptr );
}
if( that2->operation>0 ) {
free( that2->value.data.strptr[0] );
free( that2->value.data.strptr );
}
}
static void Do_BinOp_log( Node *this )
{
Node *that1, *that2;
int vector1, vector2;
char val1=0, val2=0, null1=0, null2=0;
long rows, nelem, elem;
that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];
vector1 = ( that1->operation!=CONST_OP );
if( vector1 )
vector1 = that1->value.nelem;
else {
val1 = that1->value.data.log;
}
vector2 = ( that2->operation!=CONST_OP );
if( vector2 )
vector2 = that2->value.nelem;
else {
val2 = that2->value.data.log;
}
if( !vector1 && !vector2 ) { /* Result is a constant */
switch( this->operation ) {
case OR:
this->value.data.log = (val1 || val2);
break;
case AND:
this->value.data.log = (val1 && val2);
break;
case EQ:
this->value.data.log = ( (val1 && val2) || (!val1 && !val2) );
break;
case NE:
this->value.data.log = ( (val1 && !val2) || (!val1 && val2) );
break;
case ACCUM:
this->value.data.lng = val1;
break;
}
this->operation=CONST_OP;
} else if (this->operation == ACCUM) {
long i, previous, curr;
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;
Allocate_Ptrs( this );
if( !gParse.status ) {
previous = that2->value.data.lng;
/* Cumulative sum of this chunk */
for (i=0; i<elem; i++) {
if (!that1->value.undef[i]) {
curr = that1->value.data.logptr[i];
previous += curr;
}
this->value.data.lngptr[i] = previous;
this->value.undef[i] = 0;
}
/* Store final cumulant for next pass */
that2->value.data.lng = previous;
}
} else {
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;
Allocate_Ptrs( this );
if( !gParse.status ) {
if (this->operation == ACCUM) {
long i, previous, curr;
previous = that2->value.data.lng;
/* Cumulative sum of this chunk */
for (i=0; i<elem; i++) {
if (!that1->value.undef[i]) {
curr = that1->value.data.logptr[i];
previous += curr;
}
this->value.data.lngptr[i] = previous;
this->value.undef[i] = 0;
}
/* Store final cumulant for next pass */
that2->value.data.lng = previous;
}
while( rows-- ) {
while( nelem-- ) {
elem--;
if( vector1>1 ) {
val1 = that1->value.data.logptr[elem];
null1 = that1->value.undef[elem];
} else if( vector1 ) {
val1 = that1->value.data.logptr[rows];
null1 = that1->value.undef[rows];
}
if( vector2>1 ) {
val2 = that2->value.data.logptr[elem];
null2 = that2->value.undef[elem];
} else if( vector2 ) {
val2 = that2->value.data.logptr[rows];
null2 = that2->value.undef[rows];
}
this->value.undef[elem] = (null1 || null2);
switch( this->operation ) {
case OR:
/* This is more complicated than others to suppress UNDEFs */
/* in those cases where the other argument is DEF && TRUE */
if( !null1 && !null2 ) {
this->value.data.logptr[elem] = (val1 || val2);
} else if( (null1 && !null2 && val2)
|| ( !null1 && null2 && val1 ) ) {
this->value.data.logptr[elem] = 1;
this->value.undef[elem] = 0;
}
break;
case AND:
/* This is more complicated than others to suppress UNDEFs */
/* in those cases where the other argument is DEF && FALSE */
if( !null1 && !null2 ) {
this->value.data.logptr[elem] = (val1 && val2);
} else if( (null1 && !null2 && !val2)
|| ( !null1 && null2 && !val1 ) ) {
this->value.data.logptr[elem] = 0;
this->value.undef[elem] = 0;
}
break;
case EQ:
this->value.data.logptr[elem] =
( (val1 && val2) || (!val1 && !val2) );
break;
case NE:
this->value.data.logptr[elem] =
( (val1 && !val2) || (!val1 && val2) );
break;
}
}
nelem = this->value.nelem;
}
}
}
if( that1->operation>0 ) {
free( that1->value.data.ptr );
}
if( that2->operation>0 ) {
free( that2->value.data.ptr );
}
}
static void Do_BinOp_lng( Node *this )
{
Node *that1, *that2;
int vector1, vector2;
long val1=0, val2=0;
char null1=0, null2=0;
long rows, nelem, elem;
that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];
vector1 = ( that1->operation!=CONST_OP );
if( vector1 )
vector1 = that1->value.nelem;
else {
val1 = that1->value.data.lng;
}
vector2 = ( that2->operation!=CONST_OP );
if( vector2 )
vector2 = that2->value.nelem;
else {
val2 = that2->value.data.lng;
}
if( !vector1 && !vector2 ) { /* Result is a constant */
switch( this->operation ) {
case '~': /* Treat as == for LONGS */
case EQ: this->value.data.log = (val1 == val2); break;
case NE: this->value.data.log = (val1 != val2); break;
case GT: this->value.data.log = (val1 > val2); break;
case LT: this->value.data.log = (val1 < val2); break;
case LTE: this->value.data.log = (val1 <= val2); break;
case GTE: this->value.data.log = (val1 >= val2); break;
case '+': this->value.data.lng = (val1 + val2); break;
case '-': this->value.data.lng = (val1 - val2); break;
case '*': this->value.data.lng = (val1 * val2); break;
case '%':
if( val2 ) this->value.data.lng = (val1 % val2);
else fferror("Divide by Zero");
break;
case '/':
if( val2 ) this->value.data.lng = (val1 / val2);
else fferror("Divide by Zero");
break;
case POWER:
this->value.data.lng = (long)pow((double)val1,(double)val2);
break;
case ACCUM:
this->value.data.lng = val1;
break;
case DIFF:
this->value.data.lng = 0;
break;
}
this->operation=CONST_OP;
} else if ((this->operation == ACCUM) || (this->operation == DIFF)) {
long i, previous, curr;
long undef;
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;
Allocate_Ptrs( this );
if( !gParse.status ) {
previous = that2->value.data.lng;
undef = (long) that2->value.undef;
if (this->operation == ACCUM) {
/* Cumulative sum of this chunk */
for (i=0; i<elem; i++) {
if (!that1->value.undef[i]) {
curr = that1->value.data.lngptr[i];
previous += curr;
}
this->value.data.lngptr[i] = previous;
this->value.undef[i] = 0;
}
} else {
/* Sequential difference for this chunk */
for (i=0; i<elem; i++) {
curr = that1->value.data.lngptr[i];
if (that1->value.undef[i] || undef) {
/* Either this, or previous, value was undefined */
this->value.data.lngptr[i] = 0;
this->value.undef[i] = 1;
} else {
/* Both defined, we are okay! */
this->value.data.lngptr[i] = curr - previous;
this->value.undef[i] = 0;
}
previous = curr;
undef = that1->value.undef[i];
}
}
/* Store final cumulant for next pass */
that2->value.data.lng = previous;
that2->value.undef = (char *) undef; /* XXX evil, but no harm here */
}
} else {
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;
Allocate_Ptrs( this );
while( rows-- && !gParse.status ) {
while( nelem-- && !gParse.status ) {
elem--;
if( vector1>1 ) {
val1 = that1->value.data.lngptr[elem];
null1 = that1->value.undef[elem];
} else if( vector1 ) {
val1 = that1->value.data.lngptr[rows];
null1 = that1->value.undef[rows];
}
if( vector2>1 ) {
val2 = that2->value.data.lngptr[elem];
null2 = that2->value.undef[elem];
} else if( vector2 ) {
val2 = that2->value.data.lngptr[rows];
null2 = that2->value.undef[rows];
}
this->value.undef[elem] = (null1 || null2);
switch( this->operation ) {
case '~': /* Treat as == for LONGS */
case EQ: this->value.data.logptr[elem] = (val1 == val2); break;
case NE: this->value.data.logptr[elem] = (val1 != val2); break;
case GT: this->value.data.logptr[elem] = (val1 > val2); break;
case LT: this->value.data.logptr[elem] = (val1 < val2); break;
case LTE: this->value.data.logptr[elem] = (val1 <= val2); break;
case GTE: this->value.data.logptr[elem] = (val1 >= val2); break;
case '+': this->value.data.lngptr[elem] = (val1 + val2); break;
case '-': this->value.data.lngptr[elem] = (val1 - val2); break;
case '*': this->value.data.lngptr[elem] = (val1 * val2); break;
case '%':
if( val2 ) this->value.data.lngptr[elem] = (val1 % val2);
else {
this->value.data.lngptr[elem] = 0;
this->value.undef[elem] = 1;
}
break;
case '/':
if( val2 ) this->value.data.lngptr[elem] = (val1 / val2);
else {
this->value.data.lngptr[elem] = 0;
this->value.undef[elem] = 1;
}
break;
case POWER:
this->value.data.lngptr[elem] = (long)pow((double)val1,(double)val2);
break;
}
}
nelem = this->value.nelem;
}
}
if( that1->operation>0 ) {
free( that1->value.data.ptr );
}
if( that2->operation>0 ) {
free( that2->value.data.ptr );
}
}
static void Do_BinOp_dbl( Node *this )
{
Node *that1, *that2;
int vector1, vector2;
double val1=0.0, val2=0.0;
char null1=0, null2=0;
long rows, nelem, elem;
that1 = gParse.Nodes + this->SubNodes[0];
that2 = gParse.Nodes + this->SubNodes[1];
vector1 = ( that1->operation!=CONST_OP );
if( vector1 )
vector1 = that1->value.nelem;
else {
val1 = that1->value.data.dbl;
}
vector2 = ( that2->operation!=CONST_OP );
if( vector2 )
vector2 = that2->value.nelem;
else {
val2 = that2->value.data.dbl;
}
if( !vector1 && !vector2 ) { /* Result is a constant */
switch( this->operation ) {
case '~': this->value.data.log = ( fabs(val1-val2) < APPROX ); break;
case EQ: this->value.data.log = (val1 == val2); break;
case NE: this->value.data.log = (val1 != val2); break;
case GT: this->value.data.log = (val1 > val2); break;
case LT: this->value.data.log = (val1 < val2); break;
case LTE: this->value.data.log = (val1 <= val2); break;
case GTE: this->value.data.log = (val1 >= val2); break;
case '+': this->value.data.dbl = (val1 + val2); break;
case '-': this->value.data.dbl = (val1 - val2); break;
case '*': this->value.data.dbl = (val1 * val2); break;
case '%':
if( val2 ) this->value.data.dbl = val1 - val2*((int)(val1/val2));
else fferror("Divide by Zero");
break;
case '/':
if( val2 ) this->value.data.dbl = (val1 / val2);
else fferror("Divide by Zero");
break;
case POWER:
this->value.data.dbl = (double)pow(val1,val2);
break;
case ACCUM:
this->value.data.dbl = val1;
break;
case DIFF:
this->value.data.dbl = 0;
break;
}
this->operation=CONST_OP;
} else if ((this->operation == ACCUM) || (this->operation == DIFF)) {
long i;
long undef;
double previous, curr;
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;
Allocate_Ptrs( this );
if( !gParse.status ) {
previous = that2->value.data.dbl;
undef = (long) that2->value.undef;
if (this->operation == ACCUM) {
/* Cumulative sum of this chunk */
for (i=0; i<elem; i++) {
if (!that1->value.undef[i]) {
curr = that1->value.data.dblptr[i];
previous += curr;
}
this->value.data.dblptr[i] = previous;
this->value.undef[i] = 0;
}
} else {
/* Sequential difference for this chunk */
for (i=0; i<elem; i++) {
curr = that1->value.data.dblptr[i];
if (that1->value.undef[i] || undef) {
/* Either this, or previous, value was undefined */
this->value.data.dblptr[i] = 0;
this->value.undef[i] = 1;
} else {
/* Both defined, we are okay! */
this->value.data.dblptr[i] = curr - previous;
this->value.undef[i] = 0;
}
previous = curr;
undef = that1->value.undef[i];
}
}
/* Store final cumulant for next pass */
that2->value.data.dbl = previous;
that2->value.undef = (char *) undef; /* XXX evil, but no harm here */
}
} else {
rows = gParse.nRows;
nelem = this->value.nelem;
elem = this->value.nelem * rows;
Allocate_Ptrs( this );
while( rows-- && !gParse.status ) {
while( nelem-- && !gParse.status ) {
elem--;
if( vector1>1 ) {
val1 = that1->value.data.dblptr[elem];
null1 = that1->value.undef[elem];
} else if( vector1 ) {
val1 = that1->value.data.dblptr[rows];
null1 = that1->value.undef[rows];
}
if( vector2>1 ) {
val2 = that2->value.data.dblptr[elem];
null2 = that2->value.undef[elem];
} else if( vector2 ) {
val2 = that2->value.data.dblptr[rows];
null2 = that2->value.undef[rows];
}
this->value.undef[elem] = (null1 || null2);
switch( this->operation ) {
case '~': this->value.data.logptr[elem] =
( fabs(val1-val2) < APPROX ); break;
case EQ: this->value.data.logptr[elem] = (val1 == val2); break;
case NE: this->value.data.logptr[elem] = (val1 != val2); break;
case GT: this->value.data.logptr[elem] = (val1 > val2); break;
case LT: this->value.data.logptr[elem] = (val1 < val2); break;
case LTE: this->value.data.logptr[elem] = (val1 <= val2); break;
case GTE: this->value.data.logptr[elem] = (val1 >= val2); break;
case '+': this->value.data.dblptr[elem] = (val1 + val2); break;
case '-': this->value.data.dblptr[elem] = (val1 - val2); break;
case '*': this->value.data.dblptr[elem] = (val1 * val2); break;
case '%':
if( val2 ) this->value.data.dblptr[elem] =
val1 - val2*((int)(val1/val2));
else {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
}
break;
case '/':
if( val2 ) this->value.data.dblptr[elem] = (val1 / val2);
else {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
}
break;
case POWER:
this->value.data.dblptr[elem] = (double)pow(val1,val2);
break;
}
}
nelem = this->value.nelem;
}
}
if( that1->operation>0 ) {
free( that1->value.data.ptr );
}
if( that2->operation>0 ) {
free( that2->value.data.ptr );
}
}
/*
* This Quickselect routine is based on the algorithm described in
* "Numerical recipes in C", Second Edition,
* Cambridge University Press, 1992, Section 8.5, ISBN 0-521-43108-5
* This code by Nicolas Devillard - 1998. Public domain.
* http://ndevilla.free.fr/median/median/src/quickselect.c
*/
#define ELEM_SWAP(a,b) { register long t=(a);(a)=(b);(b)=t; }
/*
* qselect_median_lng - select the median value of a long array
*
* This routine selects the median value of the long integer array
* arr[]. If there are an even number of elements, the "lower median"
* is selected.
*
* The array arr[] is scrambled, so users must operate on a scratch
* array if they wish the values to be preserved.
*
* long arr[] - array of values
* int n - number of elements in arr
*
* RETURNS: the lower median value of arr[]
*
*/
long qselect_median_lng(long arr[], int n)
{
int low, high ;
int median;
int middle, ll, hh;
low = 0 ; high = n-1 ; median = (low + high) / 2;
for (;;) {
if (high <= low) { /* One element only */
return arr[median];
}
if (high == low + 1) { /* Two elements only */
if (arr[low] > arr[high])
ELEM_SWAP(arr[low], arr[high]) ;
return arr[median];
}
/* Find median of low, middle and high items; swap into position low */
middle = (low + high) / 2;
if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]) ;
if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ;
if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ;
/* Swap low item (now in position middle) into position (low+1) */
ELEM_SWAP(arr[middle], arr[low+1]) ;
/* Nibble from each end towards middle, swapping items when stuck */
ll = low + 1;
hh = high;
for (;;) {
do ll++; while (arr[low] > arr[ll]) ;
do hh--; while (arr[hh] > arr[low]) ;
if (hh < ll)
break;
ELEM_SWAP(arr[ll], arr[hh]) ;
}
/* Swap middle item (in position low) back into correct position */
ELEM_SWAP(arr[low], arr[hh]) ;
/* Re-set active partition */
if (hh <= median)
low = ll;
if (hh >= median)
high = hh - 1;
}
}
#undef ELEM_SWAP
#define ELEM_SWAP(a,b) { register double t=(a);(a)=(b);(b)=t; }
/*
* qselect_median_dbl - select the median value of a double array
*
* This routine selects the median value of the double array
* arr[]. If there are an even number of elements, the "lower median"
* is selected.
*
* The array arr[] is scrambled, so users must operate on a scratch
* array if they wish the values to be preserved.
*
* double arr[] - array of values
* int n - number of elements in arr
*
* RETURNS: the lower median value of arr[]
*
*/
double qselect_median_dbl(double arr[], int n)
{
int low, high ;
int median;
int middle, ll, hh;
low = 0 ; high = n-1 ; median = (low + high) / 2;
for (;;) {
if (high <= low) { /* One element only */
return arr[median] ;
}
if (high == low + 1) { /* Two elements only */
if (arr[low] > arr[high])
ELEM_SWAP(arr[low], arr[high]) ;
return arr[median] ;
}
/* Find median of low, middle and high items; swap into position low */
middle = (low + high) / 2;
if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]) ;
if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ;
if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ;
/* Swap low item (now in position middle) into position (low+1) */
ELEM_SWAP(arr[middle], arr[low+1]) ;
/* Nibble from each end towards middle, swapping items when stuck */
ll = low + 1;
hh = high;
for (;;) {
do ll++; while (arr[low] > arr[ll]) ;
do hh--; while (arr[hh] > arr[low]) ;
if (hh < ll)
break;
ELEM_SWAP(arr[ll], arr[hh]) ;
}
/* Swap middle item (in position low) back into correct position */
ELEM_SWAP(arr[low], arr[hh]) ;
/* Re-set active partition */
if (hh <= median)
low = ll;
if (hh >= median)
high = hh - 1;
}
}
#undef ELEM_SWAP
/*
* angsep_calc - compute angular separation between celestial coordinates
*
* This routine computes the angular separation between to coordinates
* on the celestial sphere (i.e. RA and Dec). Note that all units are
* in DEGREES, unlike the other trig functions in the calculator.
*
* double ra1, dec1 - RA and Dec of the first position in degrees
* double ra2, dec2 - RA and Dec of the second position in degrees
*
* RETURNS: (double) angular separation in degrees
*
*/
double angsep_calc(double ra1, double dec1, double ra2, double dec2)
{
double cd;
static double deg = 0;
double a, sdec, sra;
if (deg == 0) deg = ((double)4)*atan((double)1)/((double)180);
/* deg = 1.0; **** UNCOMMENT IF YOU WANT RADIANS */
/*
This (commented out) algorithm uses the Low of Cosines, which becomes
unstable for angles less than 0.1 arcsec.
cd = sin(dec1*deg)*sin(dec2*deg)
+ cos(dec1*deg)*cos(dec2*deg)*cos((ra1-ra2)*deg);
if (cd < (-1)) cd = -1;
if (cd > (+1)) cd = +1;
return acos(cd)/deg;
*/
/* The algorithm is the law of Haversines. This algorithm is
stable even when the points are close together. The normal
Law of Cosines fails for angles around 0.1 arcsec. */
sra = sin( (ra2 - ra1)*deg / 2 );
sdec = sin( (dec2 - dec1)*deg / 2);
a = sdec*sdec + cos(dec1*deg)*cos(dec2*deg)*sra*sra;
/* Sanity checking to avoid a range error in the sqrt()'s below */
if (a < 0) { a = 0; }
if (a > 1) { a = 1; }
return 2.0*atan2(sqrt(a), sqrt(1.0 - a)) / deg;
}
static double ran1()
{
static double dval = 0.0;
double rndVal;
if (dval == 0.0) {
if( rand()<32768 && rand()<32768 )
dval = 32768.0;
else
dval = 2147483648.0;
}
rndVal = (double)rand();
while( rndVal > dval ) dval *= 2.0;
return rndVal/dval;
}
/* Gaussian deviate routine from Numerical Recipes */
static double gasdev()
{
static int iset = 0;
static double gset;
double fac, rsq, v1, v2;
if (iset == 0) {
do {
v1 = 2.0*ran1()-1.0;
v2 = 2.0*ran1()-1.0;
rsq = v1*v1 + v2*v2;
} while (rsq >= 1.0 || rsq == 0.0);
fac = sqrt(-2.0*log(rsq)/rsq);
gset = v1*fac;
iset = 1;
return v2*fac;
} else {
iset = 0;
return gset;
}
}
/* lgamma function - from Numerical Recipes */
float gammaln(float xx)
/* Returns the value ln Gamma[(xx)] for xx > 0. */
{
/*
Internal arithmetic will be done in double precision, a nicety
that you can omit if five-figure accuracy is good enough. */
double x,y,tmp,ser;
static double cof[6]={76.18009172947146,-86.50532032941677,
24.01409824083091,-1.231739572450155,
0.1208650973866179e-2,-0.5395239384953e-5};
int j;
y=x=xx;
tmp=x+5.5;
tmp -= (x+0.5)*log(tmp);
ser=1.000000000190015;
for (j=0;j<=5;j++) ser += cof[j]/++y;
return (float) -tmp+log(2.5066282746310005*ser/x);
}
/* Poisson deviate - derived from Numerical Recipes */
static long poidev(double xm)
{
static double sq, alxm, g, oldm = -1.0;
static double pi = 0;
double em, t, y;
if (pi == 0) pi = ((double)4)*atan((double)1);
if (xm < 20.0) {
if (xm != oldm) {
oldm = xm;
g = exp(-xm);
}
em = -1;
t = 1.0;
do {
em += 1;
t *= ran1();
} while (t > g);
} else {
if (xm != oldm) {
oldm = xm;
sq = sqrt(2.0*xm);
alxm = log(xm);
g = xm*alxm-gammaln( (float) (xm+1.0));
}
do {
do {
y = tan(pi*ran1());
em = sq*y+xm;
} while (em < 0.0);
em = floor(em);
t = 0.9*(1.0+y*y)*exp(em*alxm-gammaln( (float) (em+1.0) )-g);
} while (ran1() > t);
}
/* Return integer version */
return (long int) floor(em+0.5);
}
static void Do_Func( Node *this )
{
Node *theParams[MAXSUBS];
int vector[MAXSUBS], allConst;
lval pVals[MAXSUBS];
char pNull[MAXSUBS];
long ival;
double dval;
int i, valInit;
long row, elem, nelem;
i = this->nSubNodes;
allConst = 1;
while( i-- ) {
theParams[i] = gParse.Nodes + this->SubNodes[i];
vector[i] = ( theParams[i]->operation!=CONST_OP );
if( vector[i] ) {
allConst = 0;
vector[i] = theParams[i]->value.nelem;
} else {
if( theParams[i]->type==DOUBLE ) {
pVals[i].data.dbl = theParams[i]->value.data.dbl;
} else if( theParams[i]->type==LONG ) {
pVals[i].data.lng = theParams[i]->value.data.lng;
} else if( theParams[i]->type==BOOLEAN ) {
pVals[i].data.log = theParams[i]->value.data.log;
} else
strcpy(pVals[i].data.str, theParams[i]->value.data.str);
pNull[i] = 0;
}
}
if( this->nSubNodes==0 ) allConst = 0; /* These do produce scalars */
/* Random numbers are *never* constant !! */
if( this->operation == poirnd_fct ) allConst = 0;
if( this->operation == gasrnd_fct ) allConst = 0;
if( this->operation == rnd_fct ) allConst = 0;
if( allConst ) {
switch( this->operation ) {
/* Non-Trig single-argument functions */
case sum_fct:
if( theParams[0]->type==BOOLEAN )
this->value.data.lng = ( pVals[0].data.log ? 1 : 0 );
else if( theParams[0]->type==LONG )
this->value.data.lng = pVals[0].data.lng;
else if( theParams[0]->type==DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
else if( theParams[0]->type==BITSTR )
strcpy(this->value.data.str, pVals[0].data.str);
break;
case average_fct:
if( theParams[0]->type==LONG )
this->value.data.dbl = pVals[0].data.lng;
else if( theParams[0]->type==DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
break;
case stddev_fct:
this->value.data.dbl = 0; /* Standard deviation of a constant = 0 */
break;
case median_fct:
if( theParams[0]->type==BOOLEAN )
this->value.data.lng = ( pVals[0].data.log ? 1 : 0 );
else if( theParams[0]->type==LONG )
this->value.data.lng = pVals[0].data.lng;
else
this->value.data.dbl = pVals[0].data.dbl;
break;
case poirnd_fct:
if( theParams[0]->type==DOUBLE )
this->value.data.lng = poidev(pVals[0].data.dbl);
else
this->value.data.lng = poidev(pVals[0].data.lng);
break;
case abs_fct:
if( theParams[0]->type==DOUBLE ) {
dval = pVals[0].data.dbl;
this->value.data.dbl = (dval>0.0 ? dval : -dval);
} else {
ival = pVals[0].data.lng;
this->value.data.lng = (ival> 0 ? ival : -ival);
}
break;
/* Special Null-Handling Functions */
case nonnull_fct:
this->value.data.lng = 1; /* Constants are always 1-element and defined */
break;
case isnull_fct: /* Constants are always defined */
this->value.data.log = 0;
break;
case defnull_fct:
if( this->type==BOOLEAN )
this->value.data.log = pVals[0].data.log;
else if( this->type==LONG )
this->value.data.lng = pVals[0].data.lng;
else if( this->type==DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
else if( this->type==STRING )
strcpy(this->value.data.str,pVals[0].data.str);
break;
/* Math functions with 1 double argument */
case sin_fct:
this->value.data.dbl = sin( pVals[0].data.dbl );
break;
case cos_fct:
this->value.data.dbl = cos( pVals[0].data.dbl );
break;
case tan_fct:
this->value.data.dbl = tan( pVals[0].data.dbl );
break;
case asin_fct:
dval = pVals[0].data.dbl;
if( dval<-1.0 || dval>1.0 )
fferror("Out of range argument to arcsin");
else
this->value.data.dbl = asin( dval );
break;
case acos_fct:
dval = pVals[0].data.dbl;
if( dval<-1.0 || dval>1.0 )
fferror("Out of range argument to arccos");
else
this->value.data.dbl = acos( dval );
break;
case atan_fct:
this->value.data.dbl = atan( pVals[0].data.dbl );
break;
case sinh_fct:
this->value.data.dbl = sinh( pVals[0].data.dbl );
break;
case cosh_fct:
this->value.data.dbl = cosh( pVals[0].data.dbl );
break;
case tanh_fct:
this->value.data.dbl = tanh( pVals[0].data.dbl );
break;
case exp_fct:
this->value.data.dbl = exp( pVals[0].data.dbl );
break;
case log_fct:
dval = pVals[0].data.dbl;
if( dval<=0.0 )
fferror("Out of range argument to log");
else
this->value.data.dbl = log( dval );
break;
case log10_fct:
dval = pVals[0].data.dbl;
if( dval<=0.0 )
fferror("Out of range argument to log10");
else
this->value.data.dbl = log10( dval );
break;
case sqrt_fct:
dval = pVals[0].data.dbl;
if( dval<0.0 )
fferror("Out of range argument to sqrt");
else
this->value.data.dbl = sqrt( dval );
break;
case ceil_fct:
this->value.data.dbl = ceil( pVals[0].data.dbl );
break;
case floor_fct:
this->value.data.dbl = floor( pVals[0].data.dbl );
break;
case round_fct:
this->value.data.dbl = floor( pVals[0].data.dbl + 0.5 );
break;
/* Two-argument Trig Functions */
case atan2_fct:
this->value.data.dbl =
atan2( pVals[0].data.dbl, pVals[1].data.dbl );
break;
/* Four-argument ANGSEP function */
case angsep_fct:
this->value.data.dbl =
angsep_calc(pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl);
/* Min/Max functions taking 1 or 2 arguments */
case min1_fct:
/* No constant vectors! */
if( this->type == DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
else if( this->type == LONG )
this->value.data.lng = pVals[0].data.lng;
else if( this->type == BITSTR )
strcpy(this->value.data.str, pVals[0].data.str);
break;
case min2_fct:
if( this->type == DOUBLE )
this->value.data.dbl =
minvalue( pVals[0].data.dbl, pVals[1].data.dbl );
else if( this->type == LONG )
this->value.data.lng =
minvalue( pVals[0].data.lng, pVals[1].data.lng );
break;
case max1_fct:
/* No constant vectors! */
if( this->type == DOUBLE )
this->value.data.dbl = pVals[0].data.dbl;
else if( this->type == LONG )
this->value.data.lng = pVals[0].data.lng;
else if( this->type == BITSTR )
strcpy(this->value.data.str, pVals[0].data.str);
break;
case max2_fct:
if( this->type == DOUBLE )
this->value.data.dbl =
maxvalue( pVals[0].data.dbl, pVals[1].data.dbl );
else if( this->type == LONG )
this->value.data.lng =
maxvalue( pVals[0].data.lng, pVals[1].data.lng );
break;
/* Boolean SAO region Functions... scalar or vector dbls */
case near_fct:
this->value.data.log = bnear( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl );
break;
case circle_fct:
this->value.data.log = circle( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl );
break;
case box_fct:
this->value.data.log = saobox( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl, pVals[5].data.dbl,
pVals[6].data.dbl );
break;
case elps_fct:
this->value.data.log =
ellipse( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl, pVals[5].data.dbl,
pVals[6].data.dbl );
break;
/* C Conditional expression: bool ? expr : expr */
case ifthenelse_fct:
switch( this->type ) {
case BOOLEAN:
this->value.data.log = ( pVals[2].data.log ?
pVals[0].data.log : pVals[1].data.log );
break;
case LONG:
this->value.data.lng = ( pVals[2].data.log ?
pVals[0].data.lng : pVals[1].data.lng );
break;
case DOUBLE:
this->value.data.dbl = ( pVals[2].data.log ?
pVals[0].data.dbl : pVals[1].data.dbl );
break;
case STRING:
strcpy(this->value.data.str, ( pVals[2].data.log ?
pVals[0].data.str :
pVals[1].data.str ) );
break;
}
break;
/* String functions */
case strmid_fct:
cstrmid(this->value.data.str, this->value.nelem,
pVals[0].data.str, pVals[0].nelem,
pVals[1].data.lng);
break;
case strpos_fct:
{
char *res = strstr(pVals[0].data.str, pVals[1].data.str);
if (res == NULL) {
this->value.data.lng = 0;
} else {
this->value.data.lng = (res - pVals[0].data.str) + 1;
}
break;
}
}
this->operation = CONST_OP;
} else {
Allocate_Ptrs( this );
row = gParse.nRows;
elem = row * this->value.nelem;
if( !gParse.status ) {
switch( this->operation ) {
/* Special functions with no arguments */
case row_fct:
while( row-- ) {
this->value.data.lngptr[row] = gParse.firstRow + row;
this->value.undef[row] = 0;
}
break;
case null_fct:
if( this->type==LONG ) {
while( row-- ) {
this->value.data.lngptr[row] = 0;
this->value.undef[row] = 1;
}
} else if( this->type==STRING ) {
while( row-- ) {
this->value.data.strptr[row][0] = '\0';
this->value.undef[row] = 1;
}
}
break;
case rnd_fct:
while( elem-- ) {
this->value.data.dblptr[elem] = ran1();
this->value.undef[elem] = 0;
}
break;
case gasrnd_fct:
while( elem-- ) {
this->value.data.dblptr[elem] = gasdev();
this->value.undef[elem] = 0;
}
break;
case poirnd_fct:
if( theParams[0]->type==DOUBLE ) {
if (theParams[0]->operation == CONST_OP) {
while( elem-- ) {
this->value.undef[elem] = (pVals[0].data.dbl < 0);
if (! this->value.undef[elem]) {
this->value.data.lngptr[elem] = poidev(pVals[0].data.dbl);
}
}
} else {
while( elem-- ) {
this->value.undef[elem] = theParams[0]->value.undef[elem];
if (theParams[0]->value.data.dblptr[elem] < 0)
this->value.undef[elem] = 1;
if (! this->value.undef[elem]) {
this->value.data.lngptr[elem] =
poidev(theParams[0]->value.data.dblptr[elem]);
}
} /* while */
} /* ! CONST_OP */
} else {
/* LONG */
if (theParams[0]->operation == CONST_OP) {
while( elem-- ) {
this->value.undef[elem] = (pVals[0].data.lng < 0);
if (! this->value.undef[elem]) {
this->value.data.lngptr[elem] = poidev(pVals[0].data.lng);
}
}
} else {
while( elem-- ) {
this->value.undef[elem] = theParams[0]->value.undef[elem];
if (theParams[0]->value.data.lngptr[elem] < 0)
this->value.undef[elem] = 1;
if (! this->value.undef[elem]) {
this->value.data.lngptr[elem] =
poidev(theParams[0]->value.data.lngptr[elem]);
}
} /* while */
} /* ! CONST_OP */
} /* END LONG */
break;
/* Non-Trig single-argument functions */
case sum_fct:
elem = row * theParams[0]->value.nelem;
if( theParams[0]->type==BOOLEAN ) {
while( row-- ) {
this->value.data.lngptr[row] = 0;
/* Default is UNDEF until a defined value is found */
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( ! theParams[0]->value.undef[elem] ) {
this->value.data.lngptr[row] +=
( theParams[0]->value.data.logptr[elem] ? 1 : 0 );
this->value.undef[row] = 0;
}
}
}
} else if( theParams[0]->type==LONG ) {
while( row-- ) {
this->value.data.lngptr[row] = 0;
/* Default is UNDEF until a defined value is found */
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( ! theParams[0]->value.undef[elem] ) {
this->value.data.lngptr[row] +=
theParams[0]->value.data.lngptr[elem];
this->value.undef[row] = 0;
}
}
}
} else if( theParams[0]->type==DOUBLE ){
while( row-- ) {
this->value.data.dblptr[row] = 0.0;
/* Default is UNDEF until a defined value is found */
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( ! theParams[0]->value.undef[elem] ) {
this->value.data.dblptr[row] +=
theParams[0]->value.data.dblptr[elem];
this->value.undef[row] = 0;
}
}
}
} else { /* BITSTR */
nelem = theParams[0]->value.nelem;
while( row-- ) {
char *sptr1 = theParams[0]->value.data.strptr[row];
this->value.data.lngptr[row] = 0;
this->value.undef[row] = 0;
while (*sptr1) {
if (*sptr1 == '1') this->value.data.lngptr[row] ++;
sptr1++;
}
}
}
break;
case average_fct:
elem = row * theParams[0]->value.nelem;
if( theParams[0]->type==LONG ) {
while( row-- ) {
int count = 0;
this->value.data.dblptr[row] = 0;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
this->value.data.dblptr[row] +=
theParams[0]->value.data.lngptr[elem];
count ++;
}
}
if (count == 0) {
this->value.undef[row] = 1;
} else {
this->value.undef[row] = 0;
this->value.data.dblptr[row] /= count;
}
}
} else if( theParams[0]->type==DOUBLE ){
while( row-- ) {
int count = 0;
this->value.data.dblptr[row] = 0;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
this->value.data.dblptr[row] +=
theParams[0]->value.data.dblptr[elem];
count ++;
}
}
if (count == 0) {
this->value.undef[row] = 1;
} else {
this->value.undef[row] = 0;
this->value.data.dblptr[row] /= count;
}
}
}
break;
case stddev_fct:
elem = row * theParams[0]->value.nelem;
if( theParams[0]->type==LONG ) {
/* Compute the mean value */
while( row-- ) {
int count = 0;
double sum = 0, sum2 = 0;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
sum += theParams[0]->value.data.lngptr[elem];
count ++;
}
}
if (count > 1) {
sum /= count;
/* Compute the sum of squared deviations */
nelem = theParams[0]->value.nelem;
elem += nelem; /* Reset elem for second pass */
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
double dx = (theParams[0]->value.data.lngptr[elem] - sum);
sum2 += (dx*dx);
}
}
sum2 /= (double)count-1;
this->value.undef[row] = 0;
this->value.data.dblptr[row] = sqrt(sum2);
} else {
this->value.undef[row] = 0; /* STDDEV => 0 */
this->value.data.dblptr[row] = 0;
}
}
} else if( theParams[0]->type==DOUBLE ){
/* Compute the mean value */
while( row-- ) {
int count = 0;
double sum = 0, sum2 = 0;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
sum += theParams[0]->value.data.dblptr[elem];
count ++;
}
}
if (count > 1) {
sum /= count;
/* Compute the sum of squared deviations */
nelem = theParams[0]->value.nelem;
elem += nelem; /* Reset elem for second pass */
while( nelem-- ) {
elem--;
if (theParams[0]->value.undef[elem] == 0) {
double dx = (theParams[0]->value.data.dblptr[elem] - sum);
sum2 += (dx*dx);
}
}
sum2 /= (double)count-1;
this->value.undef[row] = 0;
this->value.data.dblptr[row] = sqrt(sum2);
} else {
this->value.undef[row] = 0; /* STDDEV => 0 */
this->value.data.dblptr[row] = 0;
}
}
}
break;
case median_fct:
elem = row * theParams[0]->value.nelem;
nelem = theParams[0]->value.nelem;
if( theParams[0]->type==LONG ) {
long *dptr = theParams[0]->value.data.lngptr;
char *uptr = theParams[0]->value.undef;
long *mptr = (long *) malloc(sizeof(long)*nelem);
int irow;
/* Allocate temporary storage for this row, since the
quickselect function will scramble the contents */
if (mptr == 0) {
fferror("Could not allocate temporary memory in median function");
free( this->value.data.ptr );
break;
}
for (irow=0; irow<row; irow++) {
long *p = mptr;
int nelem1 = nelem;
int count = 0;
while ( nelem1-- ) {
if (*uptr == 0) {
*p++ = *dptr; /* Only advance the dest pointer if we copied */
}
dptr ++; /* Advance the source pointer ... */
uptr ++; /* ... and source "undef" pointer */
}
nelem1 = (p - mptr); /* Number of accepted data points */
if (nelem1 > 0) {
this->value.undef[irow] = 0;
this->value.data.lngptr[irow] = qselect_median_lng(mptr, nelem1);
} else {
this->value.undef[irow] = 1;
this->value.data.lngptr[irow] = 0;
}
}
free(mptr);
} else {
double *dptr = theParams[0]->value.data.dblptr;
char *uptr = theParams[0]->value.undef;
double *mptr = (double *) malloc(sizeof(double)*nelem);
int irow;
/* Allocate temporary storage for this row, since the
quickselect function will scramble the contents */
if (mptr == 0) {
fferror("Could not allocate temporary memory in median function");
free( this->value.data.ptr );
break;
}
for (irow=0; irow<row; irow++) {
double *p = mptr;
int nelem1 = nelem;
while ( nelem1-- ) {
if (*uptr == 0) {
*p++ = *dptr; /* Only advance the dest pointer if we copied */
}
dptr ++; /* Advance the source pointer ... */
uptr ++; /* ... and source "undef" pointer */
}
nelem1 = (p - mptr); /* Number of accepted data points */
if (nelem1 > 0) {
this->value.undef[irow] = 0;
this->value.data.dblptr[irow] = qselect_median_dbl(mptr, nelem1);
} else {
this->value.undef[irow] = 1;
this->value.data.dblptr[irow] = 0;
}
}
free(mptr);
}
break;
case abs_fct:
if( theParams[0]->type==DOUBLE )
while( elem-- ) {
dval = theParams[0]->value.data.dblptr[elem];
this->value.data.dblptr[elem] = (dval>0.0 ? dval : -dval);
this->value.undef[elem] = theParams[0]->value.undef[elem];
}
else
while( elem-- ) {
ival = theParams[0]->value.data.lngptr[elem];
this->value.data.lngptr[elem] = (ival> 0 ? ival : -ival);
this->value.undef[elem] = theParams[0]->value.undef[elem];
}
break;
/* Special Null-Handling Functions */
case nonnull_fct:
nelem = theParams[0]->value.nelem;
if ( theParams[0]->type==STRING ) nelem = 1;
elem = row * nelem;
while( row-- ) {
int nelem1 = nelem;
this->value.undef[row] = 0; /* Initialize to 0 (defined) */
this->value.data.lngptr[row] = 0;
while( nelem1-- ) {
elem --;
if ( theParams[0]->value.undef[elem] == 0 ) this->value.data.lngptr[row] ++;
}
}
break;
case isnull_fct:
if( theParams[0]->type==STRING ) elem = row;
while( elem-- ) {
this->value.data.logptr[elem] = theParams[0]->value.undef[elem];
this->value.undef[elem] = 0;
}
break;
case defnull_fct:
switch( this->type ) {
case BOOLEAN:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pNull[i] = theParams[i]->value.undef[elem];
pVals[i].data.log =
theParams[i]->value.data.logptr[elem];
} else if( vector[i] ) {
pNull[i] = theParams[i]->value.undef[row];
pVals[i].data.log =
theParams[i]->value.data.logptr[row];
}
if( pNull[0] ) {
this->value.undef[elem] = pNull[1];
this->value.data.logptr[elem] = pVals[1].data.log;
} else {
this->value.undef[elem] = 0;
this->value.data.logptr[elem] = pVals[0].data.log;
}
}
}
break;
case LONG:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pNull[i] = theParams[i]->value.undef[elem];
pVals[i].data.lng =
theParams[i]->value.data.lngptr[elem];
} else if( vector[i] ) {
pNull[i] = theParams[i]->value.undef[row];
pVals[i].data.lng =
theParams[i]->value.data.lngptr[row];
}
if( pNull[0] ) {
this->value.undef[elem] = pNull[1];
this->value.data.lngptr[elem] = pVals[1].data.lng;
} else {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[0].data.lng;
}
}
}
break;
case DOUBLE:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pNull[i] = theParams[i]->value.undef[elem];
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
} else if( vector[i] ) {
pNull[i] = theParams[i]->value.undef[row];
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
}
if( pNull[0] ) {
this->value.undef[elem] = pNull[1];
this->value.data.dblptr[elem] = pVals[1].data.dbl;
} else {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[0].data.dbl;
}
}
}
break;
case STRING:
while( row-- ) {
i=2; while( i-- )
if( vector[i] ) {
pNull[i] = theParams[i]->value.undef[row];
strcpy(pVals[i].data.str,
theParams[i]->value.data.strptr[row]);
}
if( pNull[0] ) {
this->value.undef[row] = pNull[1];
strcpy(this->value.data.strptr[row],pVals[1].data.str);
} else {
this->value.undef[elem] = 0;
strcpy(this->value.data.strptr[row],pVals[0].data.str);
}
}
}
break;
/* Math functions with 1 double argument */
case sin_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
sin( theParams[0]->value.data.dblptr[elem] );
}
break;
case cos_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
cos( theParams[0]->value.data.dblptr[elem] );
}
break;
case tan_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
tan( theParams[0]->value.data.dblptr[elem] );
}
break;
case asin_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<-1.0 || dval>1.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = asin( dval );
}
break;
case acos_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<-1.0 || dval>1.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = acos( dval );
}
break;
case atan_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
this->value.data.dblptr[elem] = atan( dval );
}
break;
case sinh_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
sinh( theParams[0]->value.data.dblptr[elem] );
}
break;
case cosh_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
cosh( theParams[0]->value.data.dblptr[elem] );
}
break;
case tanh_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
tanh( theParams[0]->value.data.dblptr[elem] );
}
break;
case exp_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
this->value.data.dblptr[elem] = exp( dval );
}
break;
case log_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<=0.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = log( dval );
}
break;
case log10_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<=0.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = log10( dval );
}
break;
case sqrt_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
dval = theParams[0]->value.data.dblptr[elem];
if( dval<0.0 ) {
this->value.data.dblptr[elem] = 0.0;
this->value.undef[elem] = 1;
} else
this->value.data.dblptr[elem] = sqrt( dval );
}
break;
case ceil_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
ceil( theParams[0]->value.data.dblptr[elem] );
}
break;
case floor_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
floor( theParams[0]->value.data.dblptr[elem] );
}
break;
case round_fct:
while( elem-- )
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
this->value.data.dblptr[elem] =
floor( theParams[0]->value.data.dblptr[elem] + 0.5);
}
break;
/* Two-argument Trig Functions */
case atan2_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1]) ) )
this->value.data.dblptr[elem] =
atan2( pVals[0].data.dbl, pVals[1].data.dbl );
}
}
break;
/* Four-argument ANGSEP Function */
case angsep_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=4; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2] || pNull[3]) ) )
this->value.data.dblptr[elem] =
angsep_calc(pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl);
}
}
break;
/* Min/Max functions taking 1 or 2 arguments */
case min1_fct:
elem = row * theParams[0]->value.nelem;
if( this->type==LONG ) {
long minVal=0;
while( row-- ) {
valInit = 1;
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( !theParams[0]->value.undef[elem] ) {
if ( valInit ) {
valInit = 0;
minVal = theParams[0]->value.data.lngptr[elem];
} else {
minVal = minvalue( minVal,
theParams[0]->value.data.lngptr[elem] );
}
this->value.undef[row] = 0;
}
}
this->value.data.lngptr[row] = minVal;
}
} else if( this->type==DOUBLE ) {
double minVal=0.0;
while( row-- ) {
valInit = 1;
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( !theParams[0]->value.undef[elem] ) {
if ( valInit ) {
valInit = 0;
minVal = theParams[0]->value.data.dblptr[elem];
} else {
minVal = minvalue( minVal,
theParams[0]->value.data.dblptr[elem] );
}
this->value.undef[row] = 0;
}
}
this->value.data.dblptr[row] = minVal;
}
} else if( this->type==BITSTR ) {
char minVal;
while( row-- ) {
char *sptr1 = theParams[0]->value.data.strptr[row];
minVal = '1';
while (*sptr1) {
if (*sptr1 == '0') minVal = '0';
sptr1++;
}
this->value.data.strptr[row][0] = minVal;
this->value.data.strptr[row][1] = 0; /* Null terminate */
}
}
break;
case min2_fct:
if( this->type==LONG ) {
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( pNull[0] && pNull[1] ) {
this->value.undef[elem] = 1;
this->value.data.lngptr[elem] = 0;
} else if (pNull[0]) {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[1].data.lng;
} else if (pNull[1]) {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[0].data.lng;
} else {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] =
minvalue( pVals[0].data.lng, pVals[1].data.lng );
}
}
}
} else if( this->type==DOUBLE ) {
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( pNull[0] && pNull[1] ) {
this->value.undef[elem] = 1;
this->value.data.dblptr[elem] = 0;
} else if (pNull[0]) {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[1].data.dbl;
} else if (pNull[1]) {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[0].data.dbl;
} else {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] =
minvalue( pVals[0].data.dbl, pVals[1].data.dbl );
}
}
}
}
break;
case max1_fct:
elem = row * theParams[0]->value.nelem;
if( this->type==LONG ) {
long maxVal=0;
while( row-- ) {
valInit = 1;
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( !theParams[0]->value.undef[elem] ) {
if ( valInit ) {
valInit = 0;
maxVal = theParams[0]->value.data.lngptr[elem];
} else {
maxVal = maxvalue( maxVal,
theParams[0]->value.data.lngptr[elem] );
}
this->value.undef[row] = 0;
}
}
this->value.data.lngptr[row] = maxVal;
}
} else if( this->type==DOUBLE ) {
double maxVal=0.0;
while( row-- ) {
valInit = 1;
this->value.undef[row] = 1;
nelem = theParams[0]->value.nelem;
while( nelem-- ) {
elem--;
if ( !theParams[0]->value.undef[elem] ) {
if ( valInit ) {
valInit = 0;
maxVal = theParams[0]->value.data.dblptr[elem];
} else {
maxVal = maxvalue( maxVal,
theParams[0]->value.data.dblptr[elem] );
}
this->value.undef[row] = 0;
}
}
this->value.data.dblptr[row] = maxVal;
}
} else if( this->type==BITSTR ) {
char maxVal;
while( row-- ) {
char *sptr1 = theParams[0]->value.data.strptr[row];
maxVal = '0';
while (*sptr1) {
if (*sptr1 == '1') maxVal = '1';
sptr1++;
}
this->value.data.strptr[row][0] = maxVal;
this->value.data.strptr[row][1] = 0; /* Null terminate */
}
}
break;
case max2_fct:
if( this->type==LONG ) {
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( pNull[0] && pNull[1] ) {
this->value.undef[elem] = 1;
this->value.data.lngptr[elem] = 0;
} else if (pNull[0]) {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[1].data.lng;
} else if (pNull[1]) {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] = pVals[0].data.lng;
} else {
this->value.undef[elem] = 0;
this->value.data.lngptr[elem] =
maxvalue( pVals[0].data.lng, pVals[1].data.lng );
}
}
}
} else if( this->type==DOUBLE ) {
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( pNull[0] && pNull[1] ) {
this->value.undef[elem] = 1;
this->value.data.dblptr[elem] = 0;
} else if (pNull[0]) {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[1].data.dbl;
} else if (pNull[1]) {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] = pVals[0].data.dbl;
} else {
this->value.undef[elem] = 0;
this->value.data.dblptr[elem] =
maxvalue( pVals[0].data.dbl, pVals[1].data.dbl );
}
}
}
}
break;
/* Boolean SAO region Functions... scalar or vector dbls */
case near_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=3; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2]) ) )
this->value.data.logptr[elem] =
bnear( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl );
}
}
break;
case circle_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=5; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2] || pNull[3] ||
pNull[4]) ) )
this->value.data.logptr[elem] =
circle( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl );
}
}
break;
case box_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=7; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2] || pNull[3] ||
pNull[4] || pNull[5] ||
pNull[6] ) ) )
this->value.data.logptr[elem] =
saobox( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl, pVals[5].data.dbl,
pVals[6].data.dbl );
}
}
break;
case elps_fct:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
i=7; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
pNull[2] || pNull[3] ||
pNull[4] || pNull[5] ||
pNull[6] ) ) )
this->value.data.logptr[elem] =
ellipse( pVals[0].data.dbl, pVals[1].data.dbl,
pVals[2].data.dbl, pVals[3].data.dbl,
pVals[4].data.dbl, pVals[5].data.dbl,
pVals[6].data.dbl );
}
}
break;
/* C Conditional expression: bool ? expr : expr */
case ifthenelse_fct:
switch( this->type ) {
case BOOLEAN:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
if( vector[2]>1 ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[elem];
pNull[2] = theParams[2]->value.undef[elem];
} else if( vector[2] ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[row];
pNull[2] = theParams[2]->value.undef[row];
}
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.log =
theParams[i]->value.data.logptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.log =
theParams[i]->value.data.logptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = pNull[2]) ) {
if( pVals[2].data.log ) {
this->value.data.logptr[elem] = pVals[0].data.log;
this->value.undef[elem] = pNull[0];
} else {
this->value.data.logptr[elem] = pVals[1].data.log;
this->value.undef[elem] = pNull[1];
}
}
}
}
break;
case LONG:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
if( vector[2]>1 ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[elem];
pNull[2] = theParams[2]->value.undef[elem];
} else if( vector[2] ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[row];
pNull[2] = theParams[2]->value.undef[row];
}
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.lng =
theParams[i]->value.data.lngptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = pNull[2]) ) {
if( pVals[2].data.log ) {
this->value.data.lngptr[elem] = pVals[0].data.lng;
this->value.undef[elem] = pNull[0];
} else {
this->value.data.lngptr[elem] = pVals[1].data.lng;
this->value.undef[elem] = pNull[1];
}
}
}
}
break;
case DOUBLE:
while( row-- ) {
nelem = this->value.nelem;
while( nelem-- ) {
elem--;
if( vector[2]>1 ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[elem];
pNull[2] = theParams[2]->value.undef[elem];
} else if( vector[2] ) {
pVals[2].data.log =
theParams[2]->value.data.logptr[row];
pNull[2] = theParams[2]->value.undef[row];
}
i=2; while( i-- )
if( vector[i]>1 ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[elem];
pNull[i] = theParams[i]->value.undef[elem];
} else if( vector[i] ) {
pVals[i].data.dbl =
theParams[i]->value.data.dblptr[row];
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[elem] = pNull[2]) ) {
if( pVals[2].data.log ) {
this->value.data.dblptr[elem] = pVals[0].data.dbl;
this->value.undef[elem] = pNull[0];
} else {
this->value.data.dblptr[elem] = pVals[1].data.dbl;
this->value.undef[elem] = pNull[1];
}
}
}
}
break;
case STRING:
while( row-- ) {
if( vector[2] ) {
pVals[2].data.log = theParams[2]->value.data.logptr[row];
pNull[2] = theParams[2]->value.undef[row];
}
i=2; while( i-- )
if( vector[i] ) {
strcpy( pVals[i].data.str,
theParams[i]->value.data.strptr[row] );
pNull[i] = theParams[i]->value.undef[row];
}
if( !(this->value.undef[row] = pNull[2]) ) {
if( pVals[2].data.log ) {
strcpy( this->value.data.strptr[row],
pVals[0].data.str );
this->value.undef[row] = pNull[0];
} else {
strcpy( this->value.data.strptr[row],
pVals[1].data.str );
this->value.undef[row] = pNull[1];
}
} else {
this->value.data.strptr[row][0] = '\0';
}
}
break;
}
break;
/* String functions */
case strmid_fct:
{
int strconst = theParams[0]->operation == CONST_OP;
int posconst = theParams[1]->operation == CONST_OP;
int lenconst = theParams[2]->operation == CONST_OP;
int dest_len = this->value.nelem;
int src_len = theParams[0]->value.nelem;
while (row--) {
int pos;
int len;
char *str;
int undef = 0;
if (posconst) {
pos = theParams[1]->value.data.lng;
} else {
pos = theParams[1]->value.data.lngptr[row];
if (theParams[1]->value.undef[row]) undef = 1;
}
if (strconst) {
str = theParams[0]->value.data.str;
if (src_len == 0) src_len = strlen(str);
} else {
str = theParams[0]->value.data.strptr[row];
if (theParams[0]->value.undef[row]) undef = 1;
}
if (lenconst) {
len = dest_len;
} else {
len = theParams[2]->value.data.lngptr[row];
if (theParams[2]->value.undef[row]) undef = 1;
}
this->value.data.strptr[row][0] = '\0';
if (pos == 0) undef = 1;
if (! undef ) {
if (cstrmid(this->value.data.strptr[row], len,
str, src_len, pos) < 0) break;
}
this->value.undef[row] = undef;
}
}
break;
/* String functions */
case strpos_fct:
{
int const1 = theParams[0]->operation == CONST_OP;
int const2 = theParams[1]->operation == CONST_OP;
while (row--) {
char *str1, *str2;
int undef = 0;
if (const1) {
str1 = theParams[0]->value.data.str;
} else {
str1 = theParams[0]->value.data.strptr[row];
if (theParams[0]->value.undef[row]) undef = 1;
}
if (const2) {
str2 = theParams[1]->value.data.str;
} else {
str2 = theParams[1]->value.data.strptr[row];
if (theParams[1]->value.undef[row]) undef = 1;
}
this->value.data.lngptr[row] = 0;
if (! undef ) {
char *res = strstr(str1, str2);
if (res == NULL) {
undef = 1;
this->value.data.lngptr[row] = 0;
} else {
this->value.data.lngptr[row] = (res - str1) + 1;
}
}
this->value.undef[row] = undef;
}
}
break;
} /* End switch(this->operation) */
} /* End if (!gParse.status) */
} /* End non-constant operations */
i = this->nSubNodes;
while( i-- ) {
if( theParams[i]->operation>0 ) {
/* Currently only numeric params allowed */
free( theParams[i]->value.data.ptr );
}
}
}
static void Do_Deref( Node *this )
{
Node *theVar, *theDims[MAXDIMS];
int isConst[MAXDIMS], allConst;
long dimVals[MAXDIMS];
int i, nDims;
long row, elem, dsize;
theVar = gParse.Nodes + this->SubNodes[0];
i = nDims = this->nSubNodes-1;
allConst = 1;
while( i-- ) {
theDims[i] = gParse.Nodes + this->SubNodes[i+1];
isConst[i] = ( theDims[i]->operation==CONST_OP );
if( isConst[i] )
dimVals[i] = theDims[i]->value.data.lng;
else
allConst = 0;
}
if( this->type==DOUBLE ) {
dsize = sizeof( double );
} else if( this->type==LONG ) {
dsize = sizeof( long );
} else if( this->type==BOOLEAN ) {
dsize = sizeof( char );
} else
dsize = 0;
Allocate_Ptrs( this );
if( !gParse.status ) {
if( allConst && theVar->value.naxis==nDims ) {
/* Dereference completely using constant indices */
elem = 0;
i = nDims;
while( i-- ) {
if( dimVals[i]<1 || dimVals[i]>theVar->value.naxes[i] ) break;
elem = theVar->value.naxes[i]*elem + dimVals[i]-1;
}
if( i<0 ) {
for( row=0; row<gParse.nRows; row++ ) {
if( this->type==STRING )
this->value.undef[row] = theVar->value.undef[row];
else if( this->type==BITSTR )
this->value.undef; /* Dummy - BITSTRs do not have undefs */
else
this->value.undef[row] = theVar->value.undef[elem];
if( this->type==DOUBLE )
this->value.data.dblptr[row] =
theVar->value.data.dblptr[elem];
else if( this->type==LONG )
this->value.data.lngptr[row] =
theVar->value.data.lngptr[elem];
else if( this->type==BOOLEAN )
this->value.data.logptr[row] =
theVar->value.data.logptr[elem];
else {
/* XXX Note, the below expression uses knowledge of
the layout of the string format, namely (nelem+1)
characters per string, followed by (nelem+1)
"undef" values. */
this->value.data.strptr[row][0] =
theVar->value.data.strptr[0][elem+row];
this->value.data.strptr[row][1] = 0; /* Null terminate */
}
elem += theVar->value.nelem;
}
} else {
fferror("Index out of range");
free( this->value.data.ptr );
}
} else if( allConst && nDims==1 ) {
/* Reduce dimensions by 1, using a constant index */
if( dimVals[0] < 1 ||
dimVals[0] > theVar->value.naxes[ theVar->value.naxis-1 ] ) {
fferror("Index out of range");
free( this->value.data.ptr );
} else if ( this->type == BITSTR || this->type == STRING ) {
elem = this->value.nelem * (dimVals[0]-1);
for( row=0; row<gParse.nRows; row++ ) {
if (this->value.undef)
this->value.undef[row] = theVar->value.undef[row];
memcpy( (char*)this->value.data.strptr[0]
+ row*sizeof(char)*(this->value.nelem+1),
(char*)theVar->value.data.strptr[0] + elem*sizeof(char),
this->value.nelem * sizeof(char) );
/* Null terminate */
this->value.data.strptr[row][this->value.nelem] = 0;
elem += theVar->value.nelem+1;
}
} else {
elem = this->value.nelem * (dimVals[0]-1);
for( row=0; row<gParse.nRows; row++ ) {
memcpy( this->value.undef + row*this->value.nelem,
theVar->value.undef + elem,
this->value.nelem * sizeof(char) );
memcpy( (char*)this->value.data.ptr
+ row*dsize*this->value.nelem,
(char*)theVar->value.data.ptr + elem*dsize,
this->value.nelem * dsize );
elem += theVar->value.nelem;
}
}
} else if( theVar->value.naxis==nDims ) {
/* Dereference completely using an expression for the indices */
for( row=0; row<gParse.nRows; row++ ) {
for( i=0; i<nDims; i++ ) {
if( !isConst[i] ) {
if( theDims[i]->value.undef[row] ) {
fferror("Null encountered as vector index");
free( this->value.data.ptr );
break;
} else
dimVals[i] = theDims[i]->value.data.lngptr[row];
}
}
if( gParse.status ) break;
elem = 0;
i = nDims;
while( i-- ) {
if( dimVals[i]<1 || dimVals[i]>theVar->value.naxes[i] ) break;
elem = theVar->value.naxes[i]*elem + dimVals[i]-1;
}
if( i<0 ) {
elem += row*theVar->value.nelem;
if( this->type==STRING )
this->value.undef[row] = theVar->value.undef[row];
else if( this->type==BITSTR )
this->value.undef; /* Dummy - BITSTRs do not have undefs */
else
this->value.undef[row] = theVar->value.undef[elem];
if( this->type==DOUBLE )
this->value.data.dblptr[row] =
theVar->value.data.dblptr[elem];
else if( this->type==LONG )
this->value.data.lngptr[row] =
theVar->value.data.lngptr[elem];
else if( this->type==BOOLEAN )
this->value.data.logptr[row] =
theVar->value.data.logptr[elem];
else {
/* XXX Note, the below expression uses knowledge of
the layout of the string format, namely (nelem+1)
characters per string, followed by (nelem+1)
"undef" values. */
this->value.data.strptr[row][0] =
theVar->value.data.strptr[0][elem+row];
this->value.data.strptr[row][1] = 0; /* Null terminate */
}
} else {
fferror("Index out of range");
free( this->value.data.ptr );
}
}
} else {
/* Reduce dimensions by 1, using a nonconstant expression */
for( row=0; row<gParse.nRows; row++ ) {
/* Index cannot be a constant */
if( theDims[0]->value.undef[row] ) {
fferror("Null encountered as vector index");
free( this->value.data.ptr );
break;
} else
dimVals[0] = theDims[0]->value.data.lngptr[row];
if( dimVals[0] < 1 ||
dimVals[0] > theVar->value.naxes[ theVar->value.naxis-1 ] ) {
fferror("Index out of range");
free( this->value.data.ptr );
} else if ( this->type == BITSTR || this->type == STRING ) {
elem = this->value.nelem * (dimVals[0]-1);
elem += row*(theVar->value.nelem+1);
if (this->value.undef)
this->value.undef[row] = theVar->value.undef[row];
memcpy( (char*)this->value.data.strptr[0]
+ row*sizeof(char)*(this->value.nelem+1),
(char*)theVar->value.data.strptr[0] + elem*sizeof(char),
this->value.nelem * sizeof(char) );
/* Null terminate */
this->value.data.strptr[row][this->value.nelem] = 0;
} else {
elem = this->value.nelem * (dimVals[0]-1);
elem += row*theVar->value.nelem;
memcpy( this->value.undef + row*this->value.nelem,
theVar->value.undef + elem,
this->value.nelem * sizeof(char) );
memcpy( (char*)this->value.data.ptr
+ row*dsize*this->value.nelem,
(char*)theVar->value.data.ptr + elem*dsize,
this->value.nelem * dsize );
}
}
}
}
if( theVar->operation>0 ) {
if (theVar->type == STRING || theVar->type == BITSTR)
free(theVar->value.data.strptr[0] );
else
free( theVar->value.data.ptr );
}
for( i=0; i<nDims; i++ )
if( theDims[i]->operation>0 ) {
free( theDims[i]->value.data.ptr );
}
}
static void Do_GTI( Node *this )
{
Node *theExpr, *theTimes;
double *start, *stop, *times;
long elem, nGTI, gti;
int ordered;
theTimes = gParse.Nodes + this->SubNodes[0];
theExpr = gParse.Nodes + this->SubNodes[1];
nGTI = theTimes->value.nelem;
start = theTimes->value.data.dblptr;
stop = theTimes->value.data.dblptr + nGTI;
ordered = theTimes->type;
if( theExpr->operation==CONST_OP ) {
this->value.data.log =
(Search_GTI( theExpr->value.data.dbl, nGTI, start, stop, ordered )>=0);
this->operation = CONST_OP;
} else {
Allocate_Ptrs( this );
times = theExpr->value.data.dblptr;
if( !gParse.status ) {
elem = gParse.nRows * this->value.nelem;
if( nGTI ) {
gti = -1;
while( elem-- ) {
if( (this->value.undef[elem] = theExpr->value.undef[elem]) )
continue;
/* Before searching entire GTI, check the GTI found last time */
if( gti<0 || times[elem]<start[gti] || times[elem]>stop[gti] ) {
gti = Search_GTI( times[elem], nGTI, start, stop, ordered );
}
this->value.data.logptr[elem] = ( gti>=0 );
}
} else
while( elem-- ) {
this->value.data.logptr[elem] = 0;
this->value.undef[elem] = 0;
}
}
}
if( theExpr->operation>0 )
free( theExpr->value.data.ptr );
}
static long Search_GTI( double evtTime, long nGTI, double *start,
double *stop, int ordered )
{
long gti, step;
if( ordered && nGTI>15 ) { /* If time-ordered and lots of GTIs, */
/* use "FAST" Binary search algorithm */
if( evtTime>=start[0] && evtTime<=stop[nGTI-1] ) {
gti = step = (nGTI >> 1);
while(1) {
if( step>1L ) step >>= 1;
if( evtTime>stop[gti] ) {
if( evtTime>=start[gti+1] )
gti += step;
else {
gti = -1L;
break;
}
} else if( evtTime<start[gti] ) {
if( evtTime<=stop[gti-1] )
gti -= step;
else {
gti = -1L;
break;
}
} else {
break;
}
}
} else
gti = -1L;
} else { /* Use "SLOW" linear search */
gti = nGTI;
while( gti-- )
if( evtTime>=start[gti] && evtTime<=stop[gti] )
break;
}
return( gti );
}
static void Do_REG( Node *this )
{
Node *theRegion, *theX, *theY;
double Xval=0.0, Yval=0.0;
char Xnull=0, Ynull=0;
int Xvector, Yvector;
long nelem, elem, rows;
theRegion = gParse.Nodes + this->SubNodes[0];
theX = gParse.Nodes + this->SubNodes[1];
theY = gParse.Nodes + this->SubNodes[2];
Xvector = ( theX->operation!=CONST_OP );
if( Xvector )
Xvector = theX->value.nelem;
else {
Xval = theX->value.data.dbl;
}
Yvector = ( theY->operation!=CONST_OP );
if( Yvector )
Yvector = theY->value.nelem;
else {
Yval = theY->value.data.dbl;
}
if( !Xvector && !Yvector ) {
this->value.data.log =
( fits_in_region( Xval, Yval, (SAORegion *)theRegion->value.data.ptr )
!= 0 );
this->operation = CONST_OP;
} else {
Allocate_Ptrs( this );
if( !gParse.status ) {
rows = gParse.nRows;
nelem = this->value.nelem;
elem = rows*nelem;
while( rows-- ) {
while( nelem-- ) {
elem--;
if( Xvector>1 ) {
Xval = theX->value.data.dblptr[elem];
Xnull = theX->value.undef[elem];
} else if( Xvector ) {
Xval = theX->value.data.dblptr[rows];
Xnull = theX->value.undef[rows];
}
if( Yvector>1 ) {
Yval = theY->value.data.dblptr[elem];
Ynull = theY->value.undef[elem];
} else if( Yvector ) {
Yval = theY->value.data.dblptr[rows];
Ynull = theY->value.undef[rows];
}
this->value.undef[elem] = ( Xnull || Ynull );
if( this->value.undef[elem] )
continue;
this->value.data.logptr[elem] =
( fits_in_region( Xval, Yval,
(SAORegion *)theRegion->value.data.ptr )
!= 0 );
}
nelem = this->value.nelem;
}
}
}
if( theX->operation>0 )
free( theX->value.data.ptr );
if( theY->operation>0 )
free( theY->value.data.ptr );
}
static void Do_Vector( Node *this )
{
Node *that;
long row, elem, idx, jdx, offset=0;
int node;
Allocate_Ptrs( this );
if( !gParse.status ) {
for( node=0; node<this->nSubNodes; node++ ) {
that = gParse.Nodes + this->SubNodes[node];
if( that->operation == CONST_OP ) {
idx = gParse.nRows*this->value.nelem + offset;
while( (idx-=this->value.nelem)>=0 ) {
this->value.undef[idx] = 0;
switch( this->type ) {
case BOOLEAN:
this->value.data.logptr[idx] = that->value.data.log;
break;
case LONG:
this->value.data.lngptr[idx] = that->value.data.lng;
break;
case DOUBLE:
this->value.data.dblptr[idx] = that->value.data.dbl;
break;
}
}
} else {
row = gParse.nRows;
idx = row * that->value.nelem;
while( row-- ) {
elem = that->value.nelem;
jdx = row*this->value.nelem + offset;
while( elem-- ) {
this->value.undef[jdx+elem] =
that->value.undef[--idx];
switch( this->type ) {
case BOOLEAN:
this->value.data.logptr[jdx+elem] =
that->value.data.logptr[idx];
break;
case LONG:
this->value.data.lngptr[jdx+elem] =
that->value.data.lngptr[idx];
break;
case DOUBLE:
this->value.data.dblptr[jdx+elem] =
that->value.data.dblptr[idx];
break;
}
}
}
}
offset += that->value.nelem;
}
}
for( node=0; node < this->nSubNodes; node++ )
if( OPER(this->SubNodes[node])>0 )
free( gParse.Nodes[this->SubNodes[node]].value.data.ptr );
}
/*****************************************************************************/
/* Utility routines which perform the calculations on bits and SAO regions */
/*****************************************************************************/
static char bitlgte(char *bits1, int oper, char *bits2)
{
int val1, val2, nextbit;
char result;
int i, l1, l2, length, ldiff;
char stream[256];
char chr1, chr2;
l1 = strlen(bits1);
l2 = strlen(bits2);
if (l1 < l2)
{
length = l2;
ldiff = l2 - l1;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l1-- ) stream[i++] = *(bits1++);
stream[i] = '\0';
bits1 = stream;
}
else if (l2 < l1)
{
length = l1;
ldiff = l1 - l2;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l2-- ) stream[i++] = *(bits2++);
stream[i] = '\0';
bits2 = stream;
}
else
length = l1;
val1 = val2 = 0;
nextbit = 1;
while( length-- )
{
chr1 = bits1[length];
chr2 = bits2[length];
if ((chr1 != 'x')&&(chr1 != 'X')&&(chr2 != 'x')&&(chr2 != 'X'))
{
if (chr1 == '1') val1 += nextbit;
if (chr2 == '1') val2 += nextbit;
nextbit *= 2;
}
}
result = 0;
switch (oper)
{
case LT:
if (val1 < val2) result = 1;
break;
case LTE:
if (val1 <= val2) result = 1;
break;
case GT:
if (val1 > val2) result = 1;
break;
case GTE:
if (val1 >= val2) result = 1;
break;
}
return (result);
}
static void bitand(char *result,char *bitstrm1,char *bitstrm2)
{
int i, l1, l2, ldiff;
char stream[256];
char chr1, chr2;
l1 = strlen(bitstrm1);
l2 = strlen(bitstrm2);
if (l1 < l2)
{
ldiff = l2 - l1;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l1-- ) stream[i++] = *(bitstrm1++);
stream[i] = '\0';
bitstrm1 = stream;
}
else if (l2 < l1)
{
ldiff = l1 - l2;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l2-- ) stream[i++] = *(bitstrm2++);
stream[i] = '\0';
bitstrm2 = stream;
}
while ( (chr1 = *(bitstrm1++)) )
{
chr2 = *(bitstrm2++);
if ((chr1 == 'x') || (chr2 == 'x'))
*result = 'x';
else if ((chr1 == '1') && (chr2 == '1'))
*result = '1';
else
*result = '0';
result++;
}
*result = '\0';
}
static void bitor(char *result,char *bitstrm1,char *bitstrm2)
{
int i, l1, l2, ldiff;
char stream[256];
char chr1, chr2;
l1 = strlen(bitstrm1);
l2 = strlen(bitstrm2);
if (l1 < l2)
{
ldiff = l2 - l1;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l1-- ) stream[i++] = *(bitstrm1++);
stream[i] = '\0';
bitstrm1 = stream;
}
else if (l2 < l1)
{
ldiff = l1 - l2;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l2-- ) stream[i++] = *(bitstrm2++);
stream[i] = '\0';
bitstrm2 = stream;
}
while ( (chr1 = *(bitstrm1++)) )
{
chr2 = *(bitstrm2++);
if ((chr1 == '1') || (chr2 == '1'))
*result = '1';
else if ((chr1 == '0') || (chr2 == '0'))
*result = '0';
else
*result = 'x';
result++;
}
*result = '\0';
}
static void bitnot(char *result,char *bits)
{
int length;
char chr;
length = strlen(bits);
while( length-- ) {
chr = *(bits++);
*(result++) = ( chr=='1' ? '0' : ( chr=='0' ? '1' : chr ) );
}
*result = '\0';
}
static char bitcmp(char *bitstrm1, char *bitstrm2)
{
int i, l1, l2, ldiff;
char stream[256];
char chr1, chr2;
l1 = strlen(bitstrm1);
l2 = strlen(bitstrm2);
if (l1 < l2)
{
ldiff = l2 - l1;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l1-- ) stream[i++] = *(bitstrm1++);
stream[i] = '\0';
bitstrm1 = stream;
}
else if (l2 < l1)
{
ldiff = l1 - l2;
i=0;
while( ldiff-- ) stream[i++] = '0';
while( l2-- ) stream[i++] = *(bitstrm2++);
stream[i] = '\0';
bitstrm2 = stream;
}
while( (chr1 = *(bitstrm1++)) )
{
chr2 = *(bitstrm2++);
if ( ((chr1 == '0') && (chr2 == '1'))
|| ((chr1 == '1') && (chr2 == '0')) )
return( 0 );
}
return( 1 );
}
static char bnear(double x, double y, double tolerance)
{
if (fabs(x - y) < tolerance)
return ( 1 );
else
return ( 0 );
}
static char saobox(double xcen, double ycen, double xwid, double ywid,
double rot, double xcol, double ycol)
{
double x,y,xprime,yprime,xmin,xmax,ymin,ymax,theta;
theta = (rot / 180.0) * myPI;
xprime = xcol - xcen;
yprime = ycol - ycen;
x = xprime * cos(theta) + yprime * sin(theta);
y = -xprime * sin(theta) + yprime * cos(theta);
xmin = - 0.5 * xwid; xmax = 0.5 * xwid;
ymin = - 0.5 * ywid; ymax = 0.5 * ywid;
if ((x >= xmin) && (x <= xmax) && (y >= ymin) && (y <= ymax))
return ( 1 );
else
return ( 0 );
}
static char circle(double xcen, double ycen, double rad,
double xcol, double ycol)
{
double r2,dx,dy,dlen;
dx = xcol - xcen;
dy = ycol - ycen;
dx *= dx; dy *= dy;
dlen = dx + dy;
r2 = rad * rad;
if (dlen <= r2)
return ( 1 );
else
return ( 0 );
}
static char ellipse(double xcen, double ycen, double xrad, double yrad,
double rot, double xcol, double ycol)
{
double x,y,xprime,yprime,dx,dy,dlen,theta;
theta = (rot / 180.0) * myPI;
xprime = xcol - xcen;
yprime = ycol - ycen;
x = xprime * cos(theta) + yprime * sin(theta);
y = -xprime * sin(theta) + yprime * cos(theta);
dx = x / xrad; dy = y / yrad;
dx *= dx; dy *= dy;
dlen = dx + dy;
if (dlen <= 1.0)
return ( 1 );
else
return ( 0 );
}
/*
* Extract substring
*/
int cstrmid(char *dest_str, int dest_len,
char *src_str, int src_len,
int pos)
{
/* char fill_char = ' '; */
char fill_char = '\0';
if (src_len == 0) { src_len = strlen(src_str); } /* .. if constant */
/* Fill destination with blanks */
if (pos < 0) {
fferror("STRMID(S,P,N) P must be 0 or greater");
return -1;
}
if (pos > src_len || pos == 0) {
/* pos==0: blank string requested */
memset(dest_str, fill_char, dest_len);
} else if (pos+dest_len > src_len) {
/* Copy a subset */
int nsub = src_len-pos+1;
int npad = dest_len - nsub;
memcpy(dest_str, src_str+pos-1, nsub);
/* Fill remaining string with blanks */
memset(dest_str+nsub, fill_char, npad);
} else {
/* Full string copy */
memcpy(dest_str, src_str+pos-1, dest_len);
}
dest_str[dest_len] = '\0'; /* Null-terminate */
return 0;
}
static void fferror(char *s)
{
char msg[80];
if( !gParse.status ) gParse.status = PARSE_SYNTAX_ERR;
strncpy(msg, s, 80);
msg[79] = '\0';
ffpmsg(msg);
}