mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 07:11:12 +00:00
5837 lines
174 KiB
Text
5837 lines
174 KiB
Text
%{
|
|
/************************************************************************/
|
|
/* */
|
|
/* CFITSIO Lexical Parser */
|
|
/* */
|
|
/* This file is one of 3 files containing code which parses an */
|
|
/* arithmetic expression and evaluates it in the context of an input */
|
|
/* FITS file table extension. The CFITSIO lexical parser is divided */
|
|
/* into the following 3 parts/files: the CFITSIO "front-end", */
|
|
/* eval_f.c, contains the interface between the user/CFITSIO and the */
|
|
/* real core of the parser; the FLEX interpreter, eval_l.c, takes the */
|
|
/* input string and parses it into tokens and identifies the FITS */
|
|
/* information required to evaluate the expression (ie, keywords and */
|
|
/* columns); and, the BISON grammar and evaluation routines, eval_y.c, */
|
|
/* receives the FLEX output and determines and performs the actual */
|
|
/* operations. The files eval_l.c and eval_y.c are produced from */
|
|
/* running flex and bison on the files eval.l and eval.y, respectively. */
|
|
/* (flex and bison are available from any GNU archive: see www.gnu.org) */
|
|
/* */
|
|
/* The grammar rules, rather than evaluating the expression in situ, */
|
|
/* builds a tree, or Nodal, structure mapping out the order of */
|
|
/* operations and expression dependencies. This "compilation" process */
|
|
/* allows for much faster processing of multiple rows. This technique */
|
|
/* was developed by Uwe Lammers of the XMM Science Analysis System, */
|
|
/* although the CFITSIO implementation is entirely code original. */
|
|
/* */
|
|
/* */
|
|
/* Modification History: */
|
|
/* */
|
|
/* Kent Blackburn c1992 Original parser code developed for the */
|
|
/* FTOOLS software package, in particular, */
|
|
/* the fselect task. */
|
|
/* Kent Blackburn c1995 BIT column support added */
|
|
/* Peter D Wilson Feb 1998 Vector column support added */
|
|
/* Peter D Wilson May 1998 Ported to CFITSIO library. User */
|
|
/* interface routines written, in essence */
|
|
/* making fselect, fcalc, and maketime */
|
|
/* capabilities available to all tools */
|
|
/* via single function calls. */
|
|
/* Peter D Wilson Jun 1998 Major rewrite of parser core, so as to */
|
|
/* create a run-time evaluation tree, */
|
|
/* inspired by the work of Uwe Lammers, */
|
|
/* resulting in a speed increase of */
|
|
/* 10-100 times. */
|
|
/* Peter D Wilson Jul 1998 gtifilter(a,b,c,d) function added */
|
|
/* Peter D Wilson Aug 1998 regfilter(a,b,c,d) function added */
|
|
/* Peter D Wilson Jul 1999 Make parser fitsfile-independent, */
|
|
/* allowing a purely vector-based usage */
|
|
/* Craig B Markwardt Jun 2004 Add MEDIAN() function */
|
|
/* Craig B Markwardt Jun 2004 Add SUM(), and MIN/MAX() for bit arrays */
|
|
/* Craig B Markwardt Jun 2004 Allow subscripting of nX bit arrays */
|
|
/* Craig B Markwardt Jun 2004 Implement statistical functions */
|
|
/* NVALID(), AVERAGE(), and STDDEV() */
|
|
/* for integer and floating point vectors */
|
|
/* Craig B Markwardt Jun 2004 Use NULL values for range errors instead*/
|
|
/* of throwing a parse error */
|
|
/* Craig B Markwardt Oct 2004 Add ACCUM() and SEQDIFF() functions */
|
|
/* Craig B Markwardt Feb 2005 Add ANGSEP() function */
|
|
/* Craig B Markwardt Aug 2005 CIRCLE, BOX, ELLIPSE, NEAR and REGFILTER*/
|
|
/* functions now accept vector arguments */
|
|
/* Craig B Markwardt Sum 2006 Add RANDOMN() and RANDOMP() functions */
|
|
/* Craig B Markwardt Mar 2007 Allow arguments to RANDOM and RANDOMN to*/
|
|
/* determine the output dimensions */
|
|
/* Craig B Markwardt Aug 2009 Add substring STRMID() and string search*/
|
|
/* STRSTR() functions; more overflow checks*/
|
|
/* */
|
|
/************************************************************************/
|
|
|
|
#define APPROX 1.0e-7
|
|
#include "eval_defs.h"
|
|
#include "region.h"
|
|
#include <time.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#ifndef alloca
|
|
#define alloca malloc
|
|
#endif
|
|
|
|
/* Shrink the initial stack depth to keep local data <32K (mac limit) */
|
|
/* yacc will allocate more space if needed, though. */
|
|
#define YYINITDEPTH 100
|
|
|
|
/***************************************************************/
|
|
/* Replace Bison's BACKUP macro with one that fixes a bug -- */
|
|
/* must update state after popping the stack -- and allows */
|
|
/* popping multiple terms at one time. */
|
|
/***************************************************************/
|
|
|
|
#define YYNEWBACKUP(token, value) \
|
|
do \
|
|
if (yychar == YYEMPTY ) \
|
|
{ yychar = (token); \
|
|
memcpy( &yylval, &(value), sizeof(value) ); \
|
|
yychar1 = YYTRANSLATE (yychar); \
|
|
while (yylen--) YYPOPSTACK; \
|
|
yystate = *yyssp; \
|
|
goto yybackup; \
|
|
} \
|
|
else \
|
|
{ yyerror ("syntax error: cannot back up"); YYERROR; } \
|
|
while (0)
|
|
|
|
/***************************************************************/
|
|
/* Useful macros for accessing/testing Nodes */
|
|
/***************************************************************/
|
|
|
|
#define TEST(a) if( (a)<0 ) YYERROR
|
|
#define SIZE(a) gParse.Nodes[ a ].value.nelem
|
|
#define TYPE(a) gParse.Nodes[ a ].type
|
|
#define OPER(a) gParse.Nodes[ a ].operation
|
|
#define PROMOTE(a,b) if( TYPE(a) > TYPE(b) ) \
|
|
b = New_Unary( TYPE(a), 0, b ); \
|
|
else if( TYPE(a) < TYPE(b) ) \
|
|
a = New_Unary( TYPE(b), 0, a );
|
|
|
|
/***** Internal functions *****/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
static int Alloc_Node ( void );
|
|
static void Free_Last_Node( void );
|
|
static void Evaluate_Node ( int thisNode );
|
|
|
|
static int New_Const ( int returnType, void *value, long len );
|
|
static int New_Column( int ColNum );
|
|
static int New_Offset( int ColNum, int offset );
|
|
static int New_Unary ( int returnType, int Op, int Node1 );
|
|
static int New_BinOp ( int returnType, int Node1, int Op, int Node2 );
|
|
static int New_Func ( int returnType, funcOp Op, int nNodes,
|
|
int Node1, int Node2, int Node3, int Node4,
|
|
int Node5, int Node6, int Node7 );
|
|
static int New_FuncSize( int returnType, funcOp Op, int nNodes,
|
|
int Node1, int Node2, int Node3, int Node4,
|
|
int Node5, int Node6, int Node7, int Size);
|
|
static int New_Deref ( int Var, int nDim,
|
|
int Dim1, int Dim2, int Dim3, int Dim4, int Dim5 );
|
|
static int New_GTI ( char *fname, int Node1, char *start, char *stop );
|
|
static int New_REG ( char *fname, int NodeX, int NodeY, char *colNames );
|
|
static int New_Vector( int subNode );
|
|
static int Close_Vec ( int vecNode );
|
|
static int Locate_Col( Node *this );
|
|
static int Test_Dims ( int Node1, int Node2 );
|
|
static void Copy_Dims ( int Node1, int Node2 );
|
|
|
|
static void Allocate_Ptrs( Node *this );
|
|
static void Do_Unary ( Node *this );
|
|
static void Do_Offset ( Node *this );
|
|
static void Do_BinOp_bit ( Node *this );
|
|
static void Do_BinOp_str ( Node *this );
|
|
static void Do_BinOp_log ( Node *this );
|
|
static void Do_BinOp_lng ( Node *this );
|
|
static void Do_BinOp_dbl ( Node *this );
|
|
static void Do_Func ( Node *this );
|
|
static void Do_Deref ( Node *this );
|
|
static void Do_GTI ( Node *this );
|
|
static void Do_REG ( Node *this );
|
|
static void Do_Vector ( Node *this );
|
|
|
|
static long Search_GTI ( double evtTime, long nGTI, double *start,
|
|
double *stop, int ordered );
|
|
|
|
static char saobox (double xcen, double ycen, double xwid, double ywid,
|
|
double rot, double xcol, double ycol);
|
|
static char ellipse(double xcen, double ycen, double xrad, double yrad,
|
|
double rot, double xcol, double ycol);
|
|
static char circle (double xcen, double ycen, double rad,
|
|
double xcol, double ycol);
|
|
static char bnear (double x, double y, double tolerance);
|
|
static char bitcmp (char *bitstrm1, char *bitstrm2);
|
|
static char bitlgte(char *bits1, int oper, char *bits2);
|
|
|
|
static void bitand(char *result, char *bitstrm1, char *bitstrm2);
|
|
static void bitor (char *result, char *bitstrm1, char *bitstrm2);
|
|
static void bitnot(char *result, char *bits);
|
|
static int cstrmid(char *dest_str, int dest_len,
|
|
char *src_str, int src_len, int pos);
|
|
|
|
static void yyerror(char *msg);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
%}
|
|
|
|
%union {
|
|
int Node; /* Index of Node */
|
|
double dbl; /* real value */
|
|
long lng; /* integer value */
|
|
char log; /* logical value */
|
|
char str[MAX_STRLEN]; /* string value */
|
|
}
|
|
|
|
%token <log> BOOLEAN /* First 3 must be in order of */
|
|
%token <lng> LONG /* increasing promotion for later use */
|
|
%token <dbl> DOUBLE
|
|
%token <str> STRING
|
|
%token <str> BITSTR
|
|
%token <str> FUNCTION
|
|
%token <str> BFUNCTION /* Bit function */
|
|
%token <str> IFUNCTION /* Integer function */
|
|
%token <str> GTIFILTER
|
|
%token <str> REGFILTER
|
|
%token <lng> COLUMN
|
|
%token <lng> BCOLUMN
|
|
%token <lng> SCOLUMN
|
|
%token <lng> BITCOL
|
|
%token <lng> ROWREF
|
|
%token <lng> NULLREF
|
|
%token <lng> SNULLREF
|
|
|
|
%type <Node> expr
|
|
%type <Node> bexpr
|
|
%type <Node> sexpr
|
|
%type <Node> bits
|
|
%type <Node> vector
|
|
%type <Node> bvector
|
|
|
|
%left ',' '=' ':' '{' '}'
|
|
%right '?'
|
|
%left OR
|
|
%left AND
|
|
%left EQ NE '~'
|
|
%left GT LT LTE GTE
|
|
%left '+' '-' '%'
|
|
%left '*' '/'
|
|
%left '|' '&'
|
|
%right POWER
|
|
%left NOT
|
|
%left INTCAST FLTCAST
|
|
%left UMINUS
|
|
%left '['
|
|
|
|
%right ACCUM DIFF
|
|
|
|
%%
|
|
|
|
lines: /* nothing ; was | lines line */
|
|
| lines line
|
|
;
|
|
|
|
line: '\n' {}
|
|
| expr '\n'
|
|
{ if( $1<0 ) {
|
|
yyerror("Couldn't build node structure: out of memory?");
|
|
YYERROR; }
|
|
gParse.resultNode = $1;
|
|
}
|
|
| bexpr '\n'
|
|
{ if( $1<0 ) {
|
|
yyerror("Couldn't build node structure: out of memory?");
|
|
YYERROR; }
|
|
gParse.resultNode = $1;
|
|
}
|
|
| sexpr '\n'
|
|
{ if( $1<0 ) {
|
|
yyerror("Couldn't build node structure: out of memory?");
|
|
YYERROR; }
|
|
gParse.resultNode = $1;
|
|
}
|
|
| bits '\n'
|
|
{ if( $1<0 ) {
|
|
yyerror("Couldn't build node structure: out of memory?");
|
|
YYERROR; }
|
|
gParse.resultNode = $1;
|
|
}
|
|
| error '\n' { yyerrok; }
|
|
;
|
|
|
|
bvector: '{' bexpr
|
|
{ $$ = New_Vector( $2 ); TEST($$); }
|
|
| bvector ',' bexpr
|
|
{
|
|
if( gParse.Nodes[$1].nSubNodes >= MAXSUBS ) {
|
|
$1 = Close_Vec( $1 ); TEST($1);
|
|
$$ = New_Vector( $1 ); TEST($$);
|
|
} else {
|
|
$$ = $1;
|
|
}
|
|
gParse.Nodes[$$].SubNodes[ gParse.Nodes[$$].nSubNodes++ ]
|
|
= $3;
|
|
}
|
|
;
|
|
|
|
vector: '{' expr
|
|
{ $$ = New_Vector( $2 ); TEST($$); }
|
|
| vector ',' expr
|
|
{
|
|
if( TYPE($1) < TYPE($3) )
|
|
TYPE($1) = TYPE($3);
|
|
if( gParse.Nodes[$1].nSubNodes >= MAXSUBS ) {
|
|
$1 = Close_Vec( $1 ); TEST($1);
|
|
$$ = New_Vector( $1 ); TEST($$);
|
|
} else {
|
|
$$ = $1;
|
|
}
|
|
gParse.Nodes[$$].SubNodes[ gParse.Nodes[$$].nSubNodes++ ]
|
|
= $3;
|
|
}
|
|
| vector ',' bexpr
|
|
{
|
|
if( gParse.Nodes[$1].nSubNodes >= MAXSUBS ) {
|
|
$1 = Close_Vec( $1 ); TEST($1);
|
|
$$ = New_Vector( $1 ); TEST($$);
|
|
} else {
|
|
$$ = $1;
|
|
}
|
|
gParse.Nodes[$$].SubNodes[ gParse.Nodes[$$].nSubNodes++ ]
|
|
= $3;
|
|
}
|
|
| bvector ',' expr
|
|
{
|
|
TYPE($1) = TYPE($3);
|
|
if( gParse.Nodes[$1].nSubNodes >= MAXSUBS ) {
|
|
$1 = Close_Vec( $1 ); TEST($1);
|
|
$$ = New_Vector( $1 ); TEST($$);
|
|
} else {
|
|
$$ = $1;
|
|
}
|
|
gParse.Nodes[$$].SubNodes[ gParse.Nodes[$$].nSubNodes++ ]
|
|
= $3;
|
|
}
|
|
;
|
|
|
|
expr: vector '}'
|
|
{ $$ = Close_Vec( $1 ); TEST($$); }
|
|
;
|
|
|
|
bexpr: bvector '}'
|
|
{ $$ = Close_Vec( $1 ); TEST($$); }
|
|
;
|
|
|
|
bits: BITSTR
|
|
{
|
|
$$ = New_Const( BITSTR, $1, strlen($1)+1 ); TEST($$);
|
|
SIZE($$) = strlen($1); }
|
|
| BITCOL
|
|
{ $$ = New_Column( $1 ); TEST($$); }
|
|
| BITCOL '{' expr '}'
|
|
{
|
|
if( TYPE($3) != LONG
|
|
|| OPER($3) != CONST_OP ) {
|
|
yyerror("Offset argument must be a constant integer");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Offset( $1, $3 ); TEST($$);
|
|
}
|
|
| bits '&' bits
|
|
{ $$ = New_BinOp( BITSTR, $1, '&', $3 ); TEST($$);
|
|
SIZE($$) = ( SIZE($1)>SIZE($3) ? SIZE($1) : SIZE($3) ); }
|
|
| bits '|' bits
|
|
{ $$ = New_BinOp( BITSTR, $1, '|', $3 ); TEST($$);
|
|
SIZE($$) = ( SIZE($1)>SIZE($3) ? SIZE($1) : SIZE($3) ); }
|
|
| bits '+' bits
|
|
{
|
|
if (SIZE($1)+SIZE($3) >= MAX_STRLEN) {
|
|
yyerror("Combined bit string size exceeds " MAX_STRLEN_S " bits");
|
|
YYERROR;
|
|
}
|
|
$$ = New_BinOp( BITSTR, $1, '+', $3 ); TEST($$);
|
|
SIZE($$) = SIZE($1) + SIZE($3);
|
|
}
|
|
| bits '[' expr ']'
|
|
{ $$ = New_Deref( $1, 1, $3, 0, 0, 0, 0 ); TEST($$); }
|
|
| bits '[' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 2, $3, $5, 0, 0, 0 ); TEST($$); }
|
|
| bits '[' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 3, $3, $5, $7, 0, 0 ); TEST($$); }
|
|
| bits '[' expr ',' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 4, $3, $5, $7, $9, 0 ); TEST($$); }
|
|
| bits '[' expr ',' expr ',' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 5, $3, $5, $7, $9, $11 ); TEST($$); }
|
|
| NOT bits
|
|
{ $$ = New_Unary( BITSTR, NOT, $2 ); TEST($$); }
|
|
|
|
| '(' bits ')'
|
|
{ $$ = $2; }
|
|
;
|
|
|
|
expr: LONG
|
|
{ $$ = New_Const( LONG, &($1), sizeof(long) ); TEST($$); }
|
|
| DOUBLE
|
|
{ $$ = New_Const( DOUBLE, &($1), sizeof(double) ); TEST($$); }
|
|
| COLUMN
|
|
{ $$ = New_Column( $1 ); TEST($$); }
|
|
| COLUMN '{' expr '}'
|
|
{
|
|
if( TYPE($3) != LONG
|
|
|| OPER($3) != CONST_OP ) {
|
|
yyerror("Offset argument must be a constant integer");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Offset( $1, $3 ); TEST($$);
|
|
}
|
|
| ROWREF
|
|
{ $$ = New_Func( LONG, row_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); }
|
|
| NULLREF
|
|
{ $$ = New_Func( LONG, null_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); }
|
|
| expr '%' expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '%', $3 );
|
|
TEST($$); }
|
|
| expr '+' expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '+', $3 );
|
|
TEST($$); }
|
|
| expr '-' expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '-', $3 );
|
|
TEST($$); }
|
|
| expr '*' expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '*', $3 );
|
|
TEST($$); }
|
|
| expr '/' expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, '/', $3 );
|
|
TEST($$); }
|
|
| expr POWER expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( TYPE($1), $1, POWER, $3 );
|
|
TEST($$); }
|
|
| '+' expr %prec UMINUS
|
|
{ $$ = $2; }
|
|
| '-' expr %prec UMINUS
|
|
{ $$ = New_Unary( TYPE($2), UMINUS, $2 ); TEST($$); }
|
|
| '(' expr ')'
|
|
{ $$ = $2; }
|
|
| expr '*' bexpr
|
|
{ $3 = New_Unary( TYPE($1), 0, $3 );
|
|
$$ = New_BinOp( TYPE($1), $1, '*', $3 );
|
|
TEST($$); }
|
|
| bexpr '*' expr
|
|
{ $1 = New_Unary( TYPE($3), 0, $1 );
|
|
$$ = New_BinOp( TYPE($3), $1, '*', $3 );
|
|
TEST($$); }
|
|
| bexpr '?' expr ':' expr
|
|
{
|
|
PROMOTE($3,$5);
|
|
if( ! Test_Dims($3,$5) ) {
|
|
yyerror("Incompatible dimensions in '?:' arguments");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Func( 0, ifthenelse_fct, 3, $3, $5, $1,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
if( SIZE($3)<SIZE($5) ) Copy_Dims($$, $5);
|
|
TYPE($1) = TYPE($3);
|
|
if( ! Test_Dims($1,$$) ) {
|
|
yyerror("Incompatible dimensions in '?:' condition");
|
|
YYERROR;
|
|
}
|
|
TYPE($1) = BOOLEAN;
|
|
if( SIZE($$)<SIZE($1) ) Copy_Dims($$, $1);
|
|
}
|
|
| bexpr '?' bexpr ':' expr
|
|
{
|
|
PROMOTE($3,$5);
|
|
if( ! Test_Dims($3,$5) ) {
|
|
yyerror("Incompatible dimensions in '?:' arguments");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Func( 0, ifthenelse_fct, 3, $3, $5, $1,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
if( SIZE($3)<SIZE($5) ) Copy_Dims($$, $5);
|
|
TYPE($1) = TYPE($3);
|
|
if( ! Test_Dims($1,$$) ) {
|
|
yyerror("Incompatible dimensions in '?:' condition");
|
|
YYERROR;
|
|
}
|
|
TYPE($1) = BOOLEAN;
|
|
if( SIZE($$)<SIZE($1) ) Copy_Dims($$, $1);
|
|
}
|
|
| bexpr '?' expr ':' bexpr
|
|
{
|
|
PROMOTE($3,$5);
|
|
if( ! Test_Dims($3,$5) ) {
|
|
yyerror("Incompatible dimensions in '?:' arguments");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Func( 0, ifthenelse_fct, 3, $3, $5, $1,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
if( SIZE($3)<SIZE($5) ) Copy_Dims($$, $5);
|
|
TYPE($1) = TYPE($3);
|
|
if( ! Test_Dims($1,$$) ) {
|
|
yyerror("Incompatible dimensions in '?:' condition");
|
|
YYERROR;
|
|
}
|
|
TYPE($1) = BOOLEAN;
|
|
if( SIZE($$)<SIZE($1) ) Copy_Dims($$, $1);
|
|
}
|
|
| FUNCTION ')'
|
|
{ if (FSTRCMP($1,"RANDOM(") == 0) { /* Scalar RANDOM() */
|
|
srand( (unsigned int) time(NULL) );
|
|
$$ = New_Func( DOUBLE, rnd_fct, 0, 0, 0, 0, 0, 0, 0, 0 );
|
|
} else if (FSTRCMP($1,"RANDOMN(") == 0) {/*Scalar RANDOMN()*/
|
|
srand( (unsigned int) time(NULL) );
|
|
$$ = New_Func( DOUBLE, gasrnd_fct, 0, 0, 0, 0, 0, 0, 0, 0 );
|
|
} else {
|
|
yyerror("Function() not supported");
|
|
YYERROR;
|
|
}
|
|
TEST($$);
|
|
}
|
|
| FUNCTION bexpr ')'
|
|
{ if (FSTRCMP($1,"SUM(") == 0) {
|
|
$$ = New_Func( LONG, sum_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
} else if (FSTRCMP($1,"NELEM(") == 0) {
|
|
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
|
|
} else if (FSTRCMP($1,"ACCUM(") == 0) {
|
|
long zero = 0;
|
|
$$ = New_BinOp( LONG , $2, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
|
|
} else {
|
|
yyerror("Function(bool) not supported");
|
|
YYERROR;
|
|
}
|
|
TEST($$);
|
|
}
|
|
| FUNCTION sexpr ')'
|
|
{ if (FSTRCMP($1,"NELEM(") == 0) {
|
|
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
|
|
} else if (FSTRCMP($1,"NVALID(") == 0) {
|
|
$$ = New_Func( LONG, nonnull_fct, 1, $2,
|
|
0, 0, 0, 0, 0, 0 );
|
|
} else {
|
|
yyerror("Function(str) not supported");
|
|
YYERROR;
|
|
}
|
|
TEST($$);
|
|
}
|
|
| FUNCTION bits ')'
|
|
{ if (FSTRCMP($1,"NELEM(") == 0) {
|
|
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
|
|
} else if (FSTRCMP($1,"NVALID(") == 0) { /* Bit arrays do not have NULL */
|
|
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
|
|
} else if (FSTRCMP($1,"SUM(") == 0) {
|
|
$$ = New_Func( LONG, sum_fct, 1, $2,
|
|
0, 0, 0, 0, 0, 0 );
|
|
} else if (FSTRCMP($1,"MIN(") == 0) {
|
|
$$ = New_Func( TYPE($2), /* Force 1D result */
|
|
min1_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
/* Note: $2 is a vector so the result can never
|
|
be a constant. Therefore it will never be set
|
|
inside New_Func(), and it is safe to set SIZE() */
|
|
SIZE($$) = 1;
|
|
} else if (FSTRCMP($1,"ACCUM(") == 0) {
|
|
long zero = 0;
|
|
$$ = New_BinOp( LONG , $2, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
|
|
} else if (FSTRCMP($1,"MAX(") == 0) {
|
|
$$ = New_Func( TYPE($2), /* Force 1D result */
|
|
max1_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
/* Note: $2 is a vector so the result can never
|
|
be a constant. Therefore it will never be set
|
|
inside New_Func(), and it is safe to set SIZE() */
|
|
SIZE($$) = 1;
|
|
} else {
|
|
yyerror("Function(bits) not supported");
|
|
YYERROR;
|
|
}
|
|
TEST($$);
|
|
}
|
|
| FUNCTION expr ')'
|
|
{ if (FSTRCMP($1,"SUM(") == 0)
|
|
$$ = New_Func( TYPE($2), sum_fct, 1, $2,
|
|
0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"AVERAGE(") == 0)
|
|
$$ = New_Func( DOUBLE, average_fct, 1, $2,
|
|
0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"STDDEV(") == 0)
|
|
$$ = New_Func( DOUBLE, stddev_fct, 1, $2,
|
|
0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"MEDIAN(") == 0)
|
|
$$ = New_Func( TYPE($2), median_fct, 1, $2,
|
|
0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"NELEM(") == 0)
|
|
$$ = New_Const( LONG, &( SIZE($2) ), sizeof(long) );
|
|
else if (FSTRCMP($1,"NVALID(") == 0)
|
|
$$ = New_Func( LONG, nonnull_fct, 1, $2,
|
|
0, 0, 0, 0, 0, 0 );
|
|
else if ((FSTRCMP($1,"ACCUM(") == 0) && (TYPE($2) == LONG)) {
|
|
long zero = 0;
|
|
$$ = New_BinOp( LONG , $2, ACCUM, New_Const( LONG, &zero, sizeof(zero) ));
|
|
} else if ((FSTRCMP($1,"ACCUM(") == 0) && (TYPE($2) == DOUBLE)) {
|
|
double zero = 0;
|
|
$$ = New_BinOp( DOUBLE , $2, ACCUM, New_Const( DOUBLE, &zero, sizeof(zero) ));
|
|
} else if ((FSTRCMP($1,"SEQDIFF(") == 0) && (TYPE($2) == LONG)) {
|
|
long zero = 0;
|
|
$$ = New_BinOp( LONG , $2, DIFF, New_Const( LONG, &zero, sizeof(zero) ));
|
|
} else if ((FSTRCMP($1,"SEQDIFF(") == 0) && (TYPE($2) == DOUBLE)) {
|
|
double zero = 0;
|
|
$$ = New_BinOp( DOUBLE , $2, DIFF, New_Const( DOUBLE, &zero, sizeof(zero) ));
|
|
} else if (FSTRCMP($1,"ABS(") == 0)
|
|
$$ = New_Func( 0, abs_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"MIN(") == 0)
|
|
$$ = New_Func( TYPE($2), /* Force 1D result */
|
|
min1_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"MAX(") == 0)
|
|
$$ = New_Func( TYPE($2), /* Force 1D result */
|
|
max1_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"RANDOM(") == 0) { /* Vector RANDOM() */
|
|
srand( (unsigned int) time(NULL) );
|
|
$$ = New_Func( 0, rnd_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
TEST($$);
|
|
TYPE($$) = DOUBLE;
|
|
} else if (FSTRCMP($1,"RANDOMN(") == 0) {
|
|
srand( (unsigned int) time(NULL) ); /* Vector RANDOMN() */
|
|
$$ = New_Func( 0, gasrnd_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
TEST($$);
|
|
TYPE($$) = DOUBLE;
|
|
}
|
|
else { /* These all take DOUBLE arguments */
|
|
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
|
|
if (FSTRCMP($1,"SIN(") == 0)
|
|
$$ = New_Func( 0, sin_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"COS(") == 0)
|
|
$$ = New_Func( 0, cos_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"TAN(") == 0)
|
|
$$ = New_Func( 0, tan_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"ARCSIN(") == 0
|
|
|| FSTRCMP($1,"ASIN(") == 0)
|
|
$$ = New_Func( 0, asin_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"ARCCOS(") == 0
|
|
|| FSTRCMP($1,"ACOS(") == 0)
|
|
$$ = New_Func( 0, acos_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"ARCTAN(") == 0
|
|
|| FSTRCMP($1,"ATAN(") == 0)
|
|
$$ = New_Func( 0, atan_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"SINH(") == 0)
|
|
$$ = New_Func( 0, sinh_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"COSH(") == 0)
|
|
$$ = New_Func( 0, cosh_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"TANH(") == 0)
|
|
$$ = New_Func( 0, tanh_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"EXP(") == 0)
|
|
$$ = New_Func( 0, exp_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"LOG(") == 0)
|
|
$$ = New_Func( 0, log_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"LOG10(") == 0)
|
|
$$ = New_Func( 0, log10_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"SQRT(") == 0)
|
|
$$ = New_Func( 0, sqrt_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"ROUND(") == 0)
|
|
$$ = New_Func( 0, round_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"FLOOR(") == 0)
|
|
$$ = New_Func( 0, floor_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"CEIL(") == 0)
|
|
$$ = New_Func( 0, ceil_fct, 1, $2, 0, 0, 0, 0, 0, 0 );
|
|
else if (FSTRCMP($1,"RANDOMP(") == 0) {
|
|
srand( (unsigned int) time(NULL) );
|
|
$$ = New_Func( 0, poirnd_fct, 1, $2,
|
|
0, 0, 0, 0, 0, 0 );
|
|
TYPE($$) = LONG;
|
|
} else {
|
|
yyerror("Function(expr) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
TEST($$);
|
|
}
|
|
| IFUNCTION sexpr ',' sexpr ')'
|
|
{
|
|
if (FSTRCMP($1,"STRSTR(") == 0) {
|
|
$$ = New_Func( LONG, strpos_fct, 2, $2, $4, 0,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
}
|
|
}
|
|
| FUNCTION expr ',' expr ')'
|
|
{
|
|
if (FSTRCMP($1,"DEFNULL(") == 0) {
|
|
if( SIZE($2)>=SIZE($4) && Test_Dims( $2, $4 ) ) {
|
|
PROMOTE($2,$4);
|
|
$$ = New_Func( 0, defnull_fct, 2, $2, $4, 0,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
} else {
|
|
yyerror("Dimensions of DEFNULL arguments "
|
|
"are not compatible");
|
|
YYERROR;
|
|
}
|
|
} else if (FSTRCMP($1,"ARCTAN2(") == 0) {
|
|
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
|
|
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
|
|
if( Test_Dims( $2, $4 ) ) {
|
|
$$ = New_Func( 0, atan2_fct, 2, $2, $4, 0, 0, 0, 0, 0 );
|
|
TEST($$);
|
|
if( SIZE($2)<SIZE($4) ) Copy_Dims($$, $4);
|
|
} else {
|
|
yyerror("Dimensions of arctan2 arguments "
|
|
"are not compatible");
|
|
YYERROR;
|
|
}
|
|
} else if (FSTRCMP($1,"MIN(") == 0) {
|
|
PROMOTE( $2, $4 );
|
|
if( Test_Dims( $2, $4 ) ) {
|
|
$$ = New_Func( 0, min2_fct, 2, $2, $4, 0, 0, 0, 0, 0 );
|
|
TEST($$);
|
|
if( SIZE($2)<SIZE($4) ) Copy_Dims($$, $4);
|
|
} else {
|
|
yyerror("Dimensions of min(a,b) arguments "
|
|
"are not compatible");
|
|
YYERROR;
|
|
}
|
|
} else if (FSTRCMP($1,"MAX(") == 0) {
|
|
PROMOTE( $2, $4 );
|
|
if( Test_Dims( $2, $4 ) ) {
|
|
$$ = New_Func( 0, max2_fct, 2, $2, $4, 0, 0, 0, 0, 0 );
|
|
TEST($$);
|
|
if( SIZE($2)<SIZE($4) ) Copy_Dims($$, $4);
|
|
} else {
|
|
yyerror("Dimensions of max(a,b) arguments "
|
|
"are not compatible");
|
|
YYERROR;
|
|
}
|
|
#if 0
|
|
} else if (FSTRCMP($1,"STRSTR(") == 0) {
|
|
if( TYPE($2) != STRING || TYPE($4) != STRING) {
|
|
yyerror("Arguments to strstr(s,r) must be strings");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Func( LONG, strpos_fct, 2, $2, $4, 0,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
#endif
|
|
} else {
|
|
yyerror("Function(expr,expr) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
| FUNCTION expr ',' expr ',' expr ',' expr ')'
|
|
{
|
|
if (FSTRCMP($1,"ANGSEP(") == 0) {
|
|
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
|
|
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
|
|
if( TYPE($6) != DOUBLE ) $6 = New_Unary( DOUBLE, 0, $6 );
|
|
if( TYPE($8) != DOUBLE ) $8 = New_Unary( DOUBLE, 0, $8 );
|
|
if( Test_Dims( $2, $4 ) && Test_Dims( $4, $6 ) &&
|
|
Test_Dims( $6, $8 ) ) {
|
|
$$ = New_Func( 0, angsep_fct, 4, $2, $4, $6, $8,0,0,0 );
|
|
TEST($$);
|
|
if( SIZE($2)<SIZE($4) ) Copy_Dims($$, $4);
|
|
if( SIZE($4)<SIZE($6) ) Copy_Dims($$, $6);
|
|
if( SIZE($6)<SIZE($8) ) Copy_Dims($$, $8);
|
|
} else {
|
|
yyerror("Dimensions of ANGSEP arguments "
|
|
"are not compatible");
|
|
YYERROR;
|
|
}
|
|
} else {
|
|
yyerror("Function(expr,expr,expr,expr) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
| expr '[' expr ']'
|
|
{ $$ = New_Deref( $1, 1, $3, 0, 0, 0, 0 ); TEST($$); }
|
|
| expr '[' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 2, $3, $5, 0, 0, 0 ); TEST($$); }
|
|
| expr '[' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 3, $3, $5, $7, 0, 0 ); TEST($$); }
|
|
| expr '[' expr ',' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 4, $3, $5, $7, $9, 0 ); TEST($$); }
|
|
| expr '[' expr ',' expr ',' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 5, $3, $5, $7, $9, $11 ); TEST($$); }
|
|
| INTCAST expr
|
|
{ $$ = New_Unary( LONG, INTCAST, $2 ); TEST($$); }
|
|
| INTCAST bexpr
|
|
{ $$ = New_Unary( LONG, INTCAST, $2 ); TEST($$); }
|
|
| FLTCAST expr
|
|
{ $$ = New_Unary( DOUBLE, FLTCAST, $2 ); TEST($$); }
|
|
| FLTCAST bexpr
|
|
{ $$ = New_Unary( DOUBLE, FLTCAST, $2 ); TEST($$); }
|
|
;
|
|
|
|
bexpr: BOOLEAN
|
|
{ $$ = New_Const( BOOLEAN, &($1), sizeof(char) ); TEST($$); }
|
|
| BCOLUMN
|
|
{ $$ = New_Column( $1 ); TEST($$); }
|
|
| BCOLUMN '{' expr '}'
|
|
{
|
|
if( TYPE($3) != LONG
|
|
|| OPER($3) != CONST_OP ) {
|
|
yyerror("Offset argument must be a constant integer");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Offset( $1, $3 ); TEST($$);
|
|
}
|
|
| bits EQ bits
|
|
{ $$ = New_BinOp( BOOLEAN, $1, EQ, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| bits NE bits
|
|
{ $$ = New_BinOp( BOOLEAN, $1, NE, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| bits LT bits
|
|
{ $$ = New_BinOp( BOOLEAN, $1, LT, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| bits LTE bits
|
|
{ $$ = New_BinOp( BOOLEAN, $1, LTE, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| bits GT bits
|
|
{ $$ = New_BinOp( BOOLEAN, $1, GT, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| bits GTE bits
|
|
{ $$ = New_BinOp( BOOLEAN, $1, GTE, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| expr GT expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, GT, $3 );
|
|
TEST($$); }
|
|
| expr LT expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, LT, $3 );
|
|
TEST($$); }
|
|
| expr GTE expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, GTE, $3 );
|
|
TEST($$); }
|
|
| expr LTE expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, LTE, $3 );
|
|
TEST($$); }
|
|
| expr '~' expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, '~', $3 );
|
|
TEST($$); }
|
|
| expr EQ expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, EQ, $3 );
|
|
TEST($$); }
|
|
| expr NE expr
|
|
{ PROMOTE($1,$3); $$ = New_BinOp( BOOLEAN, $1, NE, $3 );
|
|
TEST($$); }
|
|
| sexpr EQ sexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, EQ, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| sexpr NE sexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, NE, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| sexpr GT sexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, GT, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| sexpr GTE sexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, GTE, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| sexpr LT sexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, LT, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| sexpr LTE sexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, LTE, $3 ); TEST($$);
|
|
SIZE($$) = 1; }
|
|
| bexpr AND bexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, AND, $3 ); TEST($$); }
|
|
| bexpr OR bexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, OR, $3 ); TEST($$); }
|
|
| bexpr EQ bexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, EQ, $3 ); TEST($$); }
|
|
| bexpr NE bexpr
|
|
{ $$ = New_BinOp( BOOLEAN, $1, NE, $3 ); TEST($$); }
|
|
|
|
| expr '=' expr ':' expr
|
|
{ PROMOTE($1,$3); PROMOTE($1,$5); PROMOTE($3,$5);
|
|
$3 = New_BinOp( BOOLEAN, $3, LTE, $1 );
|
|
$5 = New_BinOp( BOOLEAN, $1, LTE, $5 );
|
|
$$ = New_BinOp( BOOLEAN, $3, AND, $5 );
|
|
TEST($$); }
|
|
|
|
| bexpr '?' bexpr ':' bexpr
|
|
{
|
|
if( ! Test_Dims($3,$5) ) {
|
|
yyerror("Incompatible dimensions in '?:' arguments");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Func( 0, ifthenelse_fct, 3, $3, $5, $1,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
if( SIZE($3)<SIZE($5) ) Copy_Dims($$, $5);
|
|
if( ! Test_Dims($1,$$) ) {
|
|
yyerror("Incompatible dimensions in '?:' condition");
|
|
YYERROR;
|
|
}
|
|
if( SIZE($$)<SIZE($1) ) Copy_Dims($$, $1);
|
|
}
|
|
|
|
| BFUNCTION expr ')'
|
|
{
|
|
if (FSTRCMP($1,"ISNULL(") == 0) {
|
|
$$ = New_Func( 0, isnull_fct, 1, $2, 0, 0,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
/* Use expression's size, but return BOOLEAN */
|
|
TYPE($$) = BOOLEAN;
|
|
} else {
|
|
yyerror("Boolean Function(expr) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
| BFUNCTION bexpr ')'
|
|
{
|
|
if (FSTRCMP($1,"ISNULL(") == 0) {
|
|
$$ = New_Func( 0, isnull_fct, 1, $2, 0, 0,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
/* Use expression's size, but return BOOLEAN */
|
|
TYPE($$) = BOOLEAN;
|
|
} else {
|
|
yyerror("Boolean Function(expr) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
| BFUNCTION sexpr ')'
|
|
{
|
|
if (FSTRCMP($1,"ISNULL(") == 0) {
|
|
$$ = New_Func( BOOLEAN, isnull_fct, 1, $2, 0, 0,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
} else {
|
|
yyerror("Boolean Function(expr) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
| FUNCTION bexpr ',' bexpr ')'
|
|
{
|
|
if (FSTRCMP($1,"DEFNULL(") == 0) {
|
|
if( SIZE($2)>=SIZE($4) && Test_Dims( $2, $4 ) ) {
|
|
$$ = New_Func( 0, defnull_fct, 2, $2, $4, 0,
|
|
0, 0, 0, 0 );
|
|
TEST($$);
|
|
} else {
|
|
yyerror("Dimensions of DEFNULL arguments are not compatible");
|
|
YYERROR;
|
|
}
|
|
} else {
|
|
yyerror("Boolean Function(expr,expr) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
| BFUNCTION expr ',' expr ',' expr ')'
|
|
{
|
|
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
|
|
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
|
|
if( TYPE($6) != DOUBLE ) $6 = New_Unary( DOUBLE, 0, $6 );
|
|
if( ! (Test_Dims( $2, $4 ) && Test_Dims( $4, $6 ) ) ) {
|
|
yyerror("Dimensions of NEAR arguments "
|
|
"are not compatible");
|
|
YYERROR;
|
|
} else {
|
|
if (FSTRCMP($1,"NEAR(") == 0) {
|
|
$$ = New_Func( BOOLEAN, near_fct, 3, $2, $4, $6,
|
|
0, 0, 0, 0 );
|
|
} else {
|
|
yyerror("Boolean Function not supported");
|
|
YYERROR;
|
|
}
|
|
TEST($$);
|
|
|
|
if( SIZE($$)<SIZE($2) ) Copy_Dims($$, $2);
|
|
if( SIZE($2)<SIZE($4) ) Copy_Dims($$, $4);
|
|
if( SIZE($4)<SIZE($6) ) Copy_Dims($$, $6);
|
|
}
|
|
}
|
|
| BFUNCTION expr ',' expr ',' expr ',' expr ',' expr ')'
|
|
{
|
|
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
|
|
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
|
|
if( TYPE($6) != DOUBLE ) $6 = New_Unary( DOUBLE, 0, $6 );
|
|
if( TYPE($8) != DOUBLE ) $8 = New_Unary( DOUBLE, 0, $8 );
|
|
if( TYPE($10)!= DOUBLE ) $10= New_Unary( DOUBLE, 0, $10);
|
|
if( ! (Test_Dims( $2, $4 ) && Test_Dims( $4, $6 ) &&
|
|
Test_Dims( $6, $8 ) && Test_Dims( $8, $10 )) ) {
|
|
yyerror("Dimensions of CIRCLE arguments "
|
|
"are not compatible");
|
|
YYERROR;
|
|
} else {
|
|
if (FSTRCMP($1,"CIRCLE(") == 0) {
|
|
$$ = New_Func( BOOLEAN, circle_fct, 5, $2, $4, $6, $8,
|
|
$10, 0, 0 );
|
|
} else {
|
|
yyerror("Boolean Function not supported");
|
|
YYERROR;
|
|
}
|
|
TEST($$);
|
|
if( SIZE($$)<SIZE($2) ) Copy_Dims($$, $2);
|
|
if( SIZE($2)<SIZE($4) ) Copy_Dims($$, $4);
|
|
if( SIZE($4)<SIZE($6) ) Copy_Dims($$, $6);
|
|
if( SIZE($6)<SIZE($8) ) Copy_Dims($$, $8);
|
|
if( SIZE($8)<SIZE($10) ) Copy_Dims($$, $10);
|
|
}
|
|
}
|
|
| BFUNCTION expr ',' expr ',' expr ',' expr ',' expr ',' expr ',' expr ')'
|
|
{
|
|
if( TYPE($2) != DOUBLE ) $2 = New_Unary( DOUBLE, 0, $2 );
|
|
if( TYPE($4) != DOUBLE ) $4 = New_Unary( DOUBLE, 0, $4 );
|
|
if( TYPE($6) != DOUBLE ) $6 = New_Unary( DOUBLE, 0, $6 );
|
|
if( TYPE($8) != DOUBLE ) $8 = New_Unary( DOUBLE, 0, $8 );
|
|
if( TYPE($10)!= DOUBLE ) $10= New_Unary( DOUBLE, 0, $10);
|
|
if( TYPE($12)!= DOUBLE ) $12= New_Unary( DOUBLE, 0, $12);
|
|
if( TYPE($14)!= DOUBLE ) $14= New_Unary( DOUBLE, 0, $14);
|
|
if( ! (Test_Dims( $2, $4 ) && Test_Dims( $4, $6 ) &&
|
|
Test_Dims( $6, $8 ) && Test_Dims( $8, $10 ) &&
|
|
Test_Dims($10,$12 ) && Test_Dims($12, $14 ) ) ) {
|
|
yyerror("Dimensions of BOX or ELLIPSE arguments "
|
|
"are not compatible");
|
|
YYERROR;
|
|
} else {
|
|
if (FSTRCMP($1,"BOX(") == 0) {
|
|
$$ = New_Func( BOOLEAN, box_fct, 7, $2, $4, $6, $8,
|
|
$10, $12, $14 );
|
|
} else if (FSTRCMP($1,"ELLIPSE(") == 0) {
|
|
$$ = New_Func( BOOLEAN, elps_fct, 7, $2, $4, $6, $8,
|
|
$10, $12, $14 );
|
|
} else {
|
|
yyerror("SAO Image Function not supported");
|
|
YYERROR;
|
|
}
|
|
TEST($$);
|
|
if( SIZE($$)<SIZE($2) ) Copy_Dims($$, $2);
|
|
if( SIZE($2)<SIZE($4) ) Copy_Dims($$, $4);
|
|
if( SIZE($4)<SIZE($6) ) Copy_Dims($$, $6);
|
|
if( SIZE($6)<SIZE($8) ) Copy_Dims($$, $8);
|
|
if( SIZE($8)<SIZE($10) ) Copy_Dims($$, $10);
|
|
if( SIZE($10)<SIZE($12) ) Copy_Dims($$, $12);
|
|
if( SIZE($12)<SIZE($14) ) Copy_Dims($$, $14);
|
|
}
|
|
}
|
|
|
|
| GTIFILTER ')'
|
|
{ /* Use defaults for all elements */
|
|
$$ = New_GTI( "", -99, "*START*", "*STOP*" );
|
|
TEST($$); }
|
|
| GTIFILTER STRING ')'
|
|
{ /* Use defaults for all except filename */
|
|
$$ = New_GTI( $2, -99, "*START*", "*STOP*" );
|
|
TEST($$); }
|
|
| GTIFILTER STRING ',' expr ')'
|
|
{ $$ = New_GTI( $2, $4, "*START*", "*STOP*" );
|
|
TEST($$); }
|
|
| GTIFILTER STRING ',' expr ',' STRING ',' STRING ')'
|
|
{ $$ = New_GTI( $2, $4, $6, $8 );
|
|
TEST($$); }
|
|
|
|
| REGFILTER STRING ')'
|
|
{ /* Use defaults for all except filename */
|
|
$$ = New_REG( $2, -99, -99, "" );
|
|
TEST($$); }
|
|
| REGFILTER STRING ',' expr ',' expr ')'
|
|
{ $$ = New_REG( $2, $4, $6, "" );
|
|
TEST($$); }
|
|
| REGFILTER STRING ',' expr ',' expr ',' STRING ')'
|
|
{ $$ = New_REG( $2, $4, $6, $8 );
|
|
TEST($$); }
|
|
|
|
| bexpr '[' expr ']'
|
|
{ $$ = New_Deref( $1, 1, $3, 0, 0, 0, 0 ); TEST($$); }
|
|
| bexpr '[' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 2, $3, $5, 0, 0, 0 ); TEST($$); }
|
|
| bexpr '[' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 3, $3, $5, $7, 0, 0 ); TEST($$); }
|
|
| bexpr '[' expr ',' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 4, $3, $5, $7, $9, 0 ); TEST($$); }
|
|
| bexpr '[' expr ',' expr ',' expr ',' expr ',' expr ']'
|
|
{ $$ = New_Deref( $1, 5, $3, $5, $7, $9, $11 ); TEST($$); }
|
|
| NOT bexpr
|
|
{ $$ = New_Unary( BOOLEAN, NOT, $2 ); TEST($$); }
|
|
| '(' bexpr ')'
|
|
{ $$ = $2; }
|
|
;
|
|
|
|
sexpr: STRING
|
|
{ $$ = New_Const( STRING, $1, strlen($1)+1 ); TEST($$);
|
|
SIZE($$) = strlen($1); }
|
|
| SCOLUMN
|
|
{ $$ = New_Column( $1 ); TEST($$); }
|
|
| SCOLUMN '{' expr '}'
|
|
{
|
|
if( TYPE($3) != LONG
|
|
|| OPER($3) != CONST_OP ) {
|
|
yyerror("Offset argument must be a constant integer");
|
|
YYERROR;
|
|
}
|
|
$$ = New_Offset( $1, $3 ); TEST($$);
|
|
}
|
|
| SNULLREF
|
|
{ $$ = New_Func( STRING, null_fct, 0, 0, 0, 0, 0, 0, 0, 0 ); }
|
|
| '(' sexpr ')'
|
|
{ $$ = $2; }
|
|
| sexpr '+' sexpr
|
|
{
|
|
if (SIZE($1)+SIZE($3) >= MAX_STRLEN) {
|
|
yyerror("Combined string size exceeds " MAX_STRLEN_S " characters");
|
|
YYERROR;
|
|
}
|
|
$$ = New_BinOp( STRING, $1, '+', $3 ); TEST($$);
|
|
SIZE($$) = SIZE($1) + SIZE($3);
|
|
}
|
|
| bexpr '?' sexpr ':' sexpr
|
|
{
|
|
int outSize;
|
|
if( SIZE($1)!=1 ) {
|
|
yyerror("Cannot have a vector string column");
|
|
YYERROR;
|
|
}
|
|
/* Since the output can be calculated now, as a constant
|
|
scalar, we must precalculate the output size, in
|
|
order to avoid an overflow. */
|
|
outSize = SIZE($3);
|
|
if (SIZE($5) > outSize) outSize = SIZE($5);
|
|
$$ = New_FuncSize( 0, ifthenelse_fct, 3, $3, $5, $1,
|
|
0, 0, 0, 0, outSize);
|
|
|
|
TEST($$);
|
|
if( SIZE($3)<SIZE($5) ) Copy_Dims($$, $5);
|
|
}
|
|
|
|
| FUNCTION sexpr ',' sexpr ')'
|
|
{
|
|
if (FSTRCMP($1,"DEFNULL(") == 0) {
|
|
int outSize;
|
|
/* Since the output can be calculated now, as a constant
|
|
scalar, we must precalculate the output size, in
|
|
order to avoid an overflow. */
|
|
outSize = SIZE($2);
|
|
if (SIZE($4) > outSize) outSize = SIZE($4);
|
|
|
|
$$ = New_FuncSize( 0, defnull_fct, 2, $2, $4, 0,
|
|
0, 0, 0, 0, outSize );
|
|
TEST($$);
|
|
if( SIZE($4)>SIZE($2) ) SIZE($$) = SIZE($4);
|
|
} else {
|
|
yyerror("Function(string,string) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
| FUNCTION sexpr ',' expr ',' expr ')'
|
|
{
|
|
if (FSTRCMP($1,"STRMID(") == 0) {
|
|
int len;
|
|
if( TYPE($4) != LONG || SIZE($4) != 1 ||
|
|
TYPE($6) != LONG || SIZE($6) != 1) {
|
|
yyerror("When using STRMID(S,P,N), P and N must be integers (and not vector columns)");
|
|
YYERROR;
|
|
}
|
|
if (OPER($6) == CONST_OP) {
|
|
/* Constant value: use that directly */
|
|
len = (gParse.Nodes[$6].value.data.lng);
|
|
} else {
|
|
/* Variable value: use the maximum possible (from $2) */
|
|
len = SIZE($2);
|
|
}
|
|
if (len <= 0 || len >= MAX_STRLEN) {
|
|
yyerror("STRMID(S,P,N), N must be 1-" MAX_STRLEN_S);
|
|
YYERROR;
|
|
}
|
|
$$ = New_FuncSize( 0, strmid_fct, 3, $2, $4,$6,0,0,0,0,len);
|
|
TEST($$);
|
|
} else {
|
|
yyerror("Function(string,expr,expr) not supported");
|
|
YYERROR;
|
|
}
|
|
}
|
|
|
|
;
|
|
|
|
%%
|
|
|
|
/*************************************************************************/
|
|
/* Start of "New" routines which build the expression Nodal structure */
|
|
/*************************************************************************/
|
|
|
|
static int Alloc_Node( void )
|
|
{
|
|
/* Use this for allocation to guarantee *Nodes */
|
|
Node *newNodePtr; /* survives on failure, making it still valid */
|
|
/* while working our way out of this error */
|
|
|
|
if( gParse.nNodes == gParse.nNodesAlloc ) {
|
|
if( gParse.Nodes ) {
|
|
gParse.nNodesAlloc += gParse.nNodesAlloc;
|
|
newNodePtr = (Node *)realloc( gParse.Nodes,
|
|
sizeof(Node)*gParse.nNodesAlloc );
|
|
} else {
|
|
gParse.nNodesAlloc = 100;
|
|
newNodePtr = (Node *)malloc ( sizeof(Node)*gParse.nNodesAlloc );
|
|
}
|
|
|
|
if( newNodePtr ) {
|
|
gParse.Nodes = newNodePtr;
|
|
} else {
|
|
gParse.status = MEMORY_ALLOCATION;
|
|
return( -1 );
|
|
}
|
|
}
|
|
|
|
return ( gParse.nNodes++ );
|
|
}
|
|
|
|
static void Free_Last_Node( void )
|
|
{
|
|
if( gParse.nNodes ) gParse.nNodes--;
|
|
}
|
|
|
|
static int New_Const( int returnType, void *value, long len )
|
|
{
|
|
Node *this;
|
|
int n;
|
|
|
|
n = Alloc_Node();
|
|
if( n>=0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->operation = CONST_OP; /* Flag a constant */
|
|
this->DoOp = NULL;
|
|
this->nSubNodes = 0;
|
|
this->type = returnType;
|
|
memcpy( &(this->value.data), value, len );
|
|
this->value.undef = NULL;
|
|
this->value.nelem = 1;
|
|
this->value.naxis = 1;
|
|
this->value.naxes[0] = 1;
|
|
}
|
|
return(n);
|
|
}
|
|
|
|
static int New_Column( int ColNum )
|
|
{
|
|
Node *this;
|
|
int n, i;
|
|
|
|
n = Alloc_Node();
|
|
if( n>=0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->operation = -ColNum;
|
|
this->DoOp = NULL;
|
|
this->nSubNodes = 0;
|
|
this->type = gParse.varData[ColNum].type;
|
|
this->value.nelem = gParse.varData[ColNum].nelem;
|
|
this->value.naxis = gParse.varData[ColNum].naxis;
|
|
for( i=0; i<gParse.varData[ColNum].naxis; i++ )
|
|
this->value.naxes[i] = gParse.varData[ColNum].naxes[i];
|
|
}
|
|
return(n);
|
|
}
|
|
|
|
static int New_Offset( int ColNum, int offsetNode )
|
|
{
|
|
Node *this;
|
|
int n, i, colNode;
|
|
|
|
colNode = New_Column( ColNum );
|
|
if( colNode<0 ) return(-1);
|
|
|
|
n = Alloc_Node();
|
|
if( n>=0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->operation = '{';
|
|
this->DoOp = Do_Offset;
|
|
this->nSubNodes = 2;
|
|
this->SubNodes[0] = colNode;
|
|
this->SubNodes[1] = offsetNode;
|
|
this->type = gParse.varData[ColNum].type;
|
|
this->value.nelem = gParse.varData[ColNum].nelem;
|
|
this->value.naxis = gParse.varData[ColNum].naxis;
|
|
for( i=0; i<gParse.varData[ColNum].naxis; i++ )
|
|
this->value.naxes[i] = gParse.varData[ColNum].naxes[i];
|
|
}
|
|
return(n);
|
|
}
|
|
|
|
static int New_Unary( int returnType, int Op, int Node1 )
|
|
{
|
|
Node *this, *that;
|
|
int i,n;
|
|
|
|
if( Node1<0 ) return(-1);
|
|
that = gParse.Nodes + Node1;
|
|
|
|
if( !Op ) Op = returnType;
|
|
|
|
if( (Op==DOUBLE || Op==FLTCAST) && that->type==DOUBLE ) return( Node1 );
|
|
if( (Op==LONG || Op==INTCAST) && that->type==LONG ) return( Node1 );
|
|
if( (Op==BOOLEAN ) && that->type==BOOLEAN ) return( Node1 );
|
|
|
|
n = Alloc_Node();
|
|
if( n>=0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->operation = Op;
|
|
this->DoOp = Do_Unary;
|
|
this->nSubNodes = 1;
|
|
this->SubNodes[0] = Node1;
|
|
this->type = returnType;
|
|
|
|
that = gParse.Nodes + Node1; /* Reset in case .Nodes mv'd */
|
|
this->value.nelem = that->value.nelem;
|
|
this->value.naxis = that->value.naxis;
|
|
for( i=0; i<that->value.naxis; i++ )
|
|
this->value.naxes[i] = that->value.naxes[i];
|
|
|
|
if( that->operation==CONST_OP ) this->DoOp( this );
|
|
}
|
|
return( n );
|
|
}
|
|
|
|
static int New_BinOp( int returnType, int Node1, int Op, int Node2 )
|
|
{
|
|
Node *this,*that1,*that2;
|
|
int n,i,constant;
|
|
|
|
if( Node1<0 || Node2<0 ) return(-1);
|
|
|
|
n = Alloc_Node();
|
|
if( n>=0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->operation = Op;
|
|
this->nSubNodes = 2;
|
|
this->SubNodes[0]= Node1;
|
|
this->SubNodes[1]= Node2;
|
|
this->type = returnType;
|
|
|
|
that1 = gParse.Nodes + Node1;
|
|
that2 = gParse.Nodes + Node2;
|
|
constant = (that1->operation==CONST_OP
|
|
&& that2->operation==CONST_OP);
|
|
if( that1->type!=STRING && that1->type!=BITSTR )
|
|
if( !Test_Dims( Node1, Node2 ) ) {
|
|
Free_Last_Node();
|
|
yyerror("Array sizes/dims do not match for binary operator");
|
|
return(-1);
|
|
}
|
|
if( that1->value.nelem == 1 ) that1 = that2;
|
|
|
|
this->value.nelem = that1->value.nelem;
|
|
this->value.naxis = that1->value.naxis;
|
|
for( i=0; i<that1->value.naxis; i++ )
|
|
this->value.naxes[i] = that1->value.naxes[i];
|
|
|
|
if ( Op == ACCUM && that1->type == BITSTR ) {
|
|
/* ACCUM is rank-reducing on bit strings */
|
|
this->value.nelem = 1;
|
|
this->value.naxis = 1;
|
|
this->value.naxes[0] = 1;
|
|
}
|
|
|
|
/* Both subnodes should be of same time */
|
|
switch( that1->type ) {
|
|
case BITSTR: this->DoOp = Do_BinOp_bit; break;
|
|
case STRING: this->DoOp = Do_BinOp_str; break;
|
|
case BOOLEAN: this->DoOp = Do_BinOp_log; break;
|
|
case LONG: this->DoOp = Do_BinOp_lng; break;
|
|
case DOUBLE: this->DoOp = Do_BinOp_dbl; break;
|
|
}
|
|
if( constant ) this->DoOp( this );
|
|
}
|
|
return( n );
|
|
}
|
|
|
|
static int New_Func( int returnType, funcOp Op, int nNodes,
|
|
int Node1, int Node2, int Node3, int Node4,
|
|
int Node5, int Node6, int Node7 )
|
|
{
|
|
return New_FuncSize(returnType, Op, nNodes,
|
|
Node1, Node2, Node3, Node4,
|
|
Node5, Node6, Node7, 0);
|
|
}
|
|
|
|
static int New_FuncSize( int returnType, funcOp Op, int nNodes,
|
|
int Node1, int Node2, int Node3, int Node4,
|
|
int Node5, int Node6, int Node7, int Size )
|
|
/* If returnType==0 , use Node1's type and vector sizes as returnType, */
|
|
/* else return a single value of type returnType */
|
|
{
|
|
Node *this, *that;
|
|
int i,n,constant;
|
|
|
|
if( Node1<0 || Node2<0 || Node3<0 || Node4<0 ||
|
|
Node5<0 || Node6<0 || Node7<0 ) return(-1);
|
|
|
|
n = Alloc_Node();
|
|
if( n>=0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->operation = (int)Op;
|
|
this->DoOp = Do_Func;
|
|
this->nSubNodes = nNodes;
|
|
this->SubNodes[0] = Node1;
|
|
this->SubNodes[1] = Node2;
|
|
this->SubNodes[2] = Node3;
|
|
this->SubNodes[3] = Node4;
|
|
this->SubNodes[4] = Node5;
|
|
this->SubNodes[5] = Node6;
|
|
this->SubNodes[6] = Node7;
|
|
i = constant = nNodes; /* Functions with zero params are not const */
|
|
if (Op == poirnd_fct) constant = 0; /* Nor is Poisson deviate */
|
|
|
|
while( i-- )
|
|
constant = ( constant && OPER(this->SubNodes[i]) == CONST_OP );
|
|
|
|
if( returnType ) {
|
|
this->type = returnType;
|
|
this->value.nelem = 1;
|
|
this->value.naxis = 1;
|
|
this->value.naxes[0] = 1;
|
|
} else {
|
|
that = gParse.Nodes + Node1;
|
|
this->type = that->type;
|
|
this->value.nelem = that->value.nelem;
|
|
this->value.naxis = that->value.naxis;
|
|
for( i=0; i<that->value.naxis; i++ )
|
|
this->value.naxes[i] = that->value.naxes[i];
|
|
}
|
|
/* Force explicit size before evaluating */
|
|
if (Size > 0) this->value.nelem = Size;
|
|
|
|
if( constant ) this->DoOp( this );
|
|
}
|
|
return( n );
|
|
}
|
|
|
|
static int New_Deref( int Var, int nDim,
|
|
int Dim1, int Dim2, int Dim3, int Dim4, int Dim5 )
|
|
{
|
|
int n, idx, constant;
|
|
long elem=0;
|
|
Node *this, *theVar, *theDim[MAXDIMS];
|
|
|
|
if( Var<0 || Dim1<0 || Dim2<0 || Dim3<0 || Dim4<0 || Dim5<0 ) return(-1);
|
|
|
|
theVar = gParse.Nodes + Var;
|
|
if( theVar->operation==CONST_OP || theVar->value.nelem==1 ) {
|
|
yyerror("Cannot index a scalar value");
|
|
return(-1);
|
|
}
|
|
|
|
n = Alloc_Node();
|
|
if( n>=0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->nSubNodes = nDim+1;
|
|
theVar = gParse.Nodes + (this->SubNodes[0]=Var);
|
|
theDim[0] = gParse.Nodes + (this->SubNodes[1]=Dim1);
|
|
theDim[1] = gParse.Nodes + (this->SubNodes[2]=Dim2);
|
|
theDim[2] = gParse.Nodes + (this->SubNodes[3]=Dim3);
|
|
theDim[3] = gParse.Nodes + (this->SubNodes[4]=Dim4);
|
|
theDim[4] = gParse.Nodes + (this->SubNodes[5]=Dim5);
|
|
constant = theVar->operation==CONST_OP;
|
|
for( idx=0; idx<nDim; idx++ )
|
|
constant = (constant && theDim[idx]->operation==CONST_OP);
|
|
|
|
for( idx=0; idx<nDim; idx++ )
|
|
if( theDim[idx]->value.nelem>1 ) {
|
|
Free_Last_Node();
|
|
yyerror("Cannot use an array as an index value");
|
|
return(-1);
|
|
} else if( theDim[idx]->type!=LONG ) {
|
|
Free_Last_Node();
|
|
yyerror("Index value must be an integer type");
|
|
return(-1);
|
|
}
|
|
|
|
this->operation = '[';
|
|
this->DoOp = Do_Deref;
|
|
this->type = theVar->type;
|
|
|
|
if( theVar->value.naxis == nDim ) { /* All dimensions specified */
|
|
this->value.nelem = 1;
|
|
this->value.naxis = 1;
|
|
this->value.naxes[0] = 1;
|
|
} else if( nDim==1 ) { /* Dereference only one dimension */
|
|
elem=1;
|
|
this->value.naxis = theVar->value.naxis-1;
|
|
for( idx=0; idx<this->value.naxis; idx++ ) {
|
|
elem *= ( this->value.naxes[idx] = theVar->value.naxes[idx] );
|
|
}
|
|
this->value.nelem = elem;
|
|
} else {
|
|
Free_Last_Node();
|
|
yyerror("Must specify just one or all indices for vector");
|
|
return(-1);
|
|
}
|
|
if( constant ) this->DoOp( this );
|
|
}
|
|
return(n);
|
|
}
|
|
|
|
extern int yyGetVariable( char *varName, YYSTYPE *varVal );
|
|
|
|
static int New_GTI( char *fname, int Node1, char *start, char *stop )
|
|
{
|
|
fitsfile *fptr;
|
|
Node *this, *that0, *that1;
|
|
int type,i,n, startCol, stopCol, Node0;
|
|
int hdutype, hdunum, evthdu, samefile, extvers, movetotype, tstat;
|
|
char extname[100];
|
|
long nrows;
|
|
double timeZeroI[2], timeZeroF[2], dt, timeSpan;
|
|
char xcol[20], xexpr[20];
|
|
YYSTYPE colVal;
|
|
|
|
if( Node1==-99 ) {
|
|
type = yyGetVariable( "TIME", &colVal );
|
|
if( type==COLUMN ) {
|
|
Node1 = New_Column( (int)colVal.lng );
|
|
} else {
|
|
yyerror("Could not build TIME column for GTIFILTER");
|
|
return(-1);
|
|
}
|
|
}
|
|
Node1 = New_Unary( DOUBLE, 0, Node1 );
|
|
Node0 = Alloc_Node(); /* This will hold the START/STOP times */
|
|
if( Node1<0 || Node0<0 ) return(-1);
|
|
|
|
/* Record current HDU number in case we need to move within this file */
|
|
|
|
fptr = gParse.def_fptr;
|
|
ffghdn( fptr, &evthdu );
|
|
|
|
/* Look for TIMEZERO keywords in current extension */
|
|
|
|
tstat = 0;
|
|
if( ffgkyd( fptr, "TIMEZERO", timeZeroI, NULL, &tstat ) ) {
|
|
tstat = 0;
|
|
if( ffgkyd( fptr, "TIMEZERI", timeZeroI, NULL, &tstat ) ) {
|
|
timeZeroI[0] = timeZeroF[0] = 0.0;
|
|
} else if( ffgkyd( fptr, "TIMEZERF", timeZeroF, NULL, &tstat ) ) {
|
|
timeZeroF[0] = 0.0;
|
|
}
|
|
} else {
|
|
timeZeroF[0] = 0.0;
|
|
}
|
|
|
|
/* Resolve filename parameter */
|
|
|
|
switch( fname[0] ) {
|
|
case '\0':
|
|
samefile = 1;
|
|
hdunum = 1;
|
|
break;
|
|
case '[':
|
|
samefile = 1;
|
|
i = 1;
|
|
while( fname[i] != '\0' && fname[i] != ']' ) i++;
|
|
if( fname[i] ) {
|
|
fname[i] = '\0';
|
|
fname++;
|
|
ffexts( fname, &hdunum, extname, &extvers, &movetotype,
|
|
xcol, xexpr, &gParse.status );
|
|
if( *extname ) {
|
|
ffmnhd( fptr, movetotype, extname, extvers, &gParse.status );
|
|
ffghdn( fptr, &hdunum );
|
|
} else if( hdunum ) {
|
|
ffmahd( fptr, ++hdunum, &hdutype, &gParse.status );
|
|
} else if( !gParse.status ) {
|
|
yyerror("Cannot use primary array for GTI filter");
|
|
return( -1 );
|
|
}
|
|
} else {
|
|
yyerror("File extension specifier lacks closing ']'");
|
|
return( -1 );
|
|
}
|
|
break;
|
|
case '+':
|
|
samefile = 1;
|
|
hdunum = atoi( fname ) + 1;
|
|
if( hdunum>1 )
|
|
ffmahd( fptr, hdunum, &hdutype, &gParse.status );
|
|
else {
|
|
yyerror("Cannot use primary array for GTI filter");
|
|
return( -1 );
|
|
}
|
|
break;
|
|
default:
|
|
samefile = 0;
|
|
if( ! ffopen( &fptr, fname, READONLY, &gParse.status ) )
|
|
ffghdn( fptr, &hdunum );
|
|
break;
|
|
}
|
|
if( gParse.status ) return(-1);
|
|
|
|
/* If at primary, search for GTI extension */
|
|
|
|
if( hdunum==1 ) {
|
|
while( 1 ) {
|
|
hdunum++;
|
|
if( ffmahd( fptr, hdunum, &hdutype, &gParse.status ) ) break;
|
|
if( hdutype==IMAGE_HDU ) continue;
|
|
tstat = 0;
|
|
if( ffgkys( fptr, "EXTNAME", extname, NULL, &tstat ) ) continue;
|
|
ffupch( extname );
|
|
if( strstr( extname, "GTI" ) ) break;
|
|
}
|
|
if( gParse.status ) {
|
|
if( gParse.status==END_OF_FILE )
|
|
yyerror("GTI extension not found in this file");
|
|
return(-1);
|
|
}
|
|
}
|
|
|
|
/* Locate START/STOP Columns */
|
|
|
|
ffgcno( fptr, CASEINSEN, start, &startCol, &gParse.status );
|
|
ffgcno( fptr, CASEINSEN, stop, &stopCol, &gParse.status );
|
|
if( gParse.status ) return(-1);
|
|
|
|
/* Look for TIMEZERO keywords in GTI extension */
|
|
|
|
tstat = 0;
|
|
if( ffgkyd( fptr, "TIMEZERO", timeZeroI+1, NULL, &tstat ) ) {
|
|
tstat = 0;
|
|
if( ffgkyd( fptr, "TIMEZERI", timeZeroI+1, NULL, &tstat ) ) {
|
|
timeZeroI[1] = timeZeroF[1] = 0.0;
|
|
} else if( ffgkyd( fptr, "TIMEZERF", timeZeroF+1, NULL, &tstat ) ) {
|
|
timeZeroF[1] = 0.0;
|
|
}
|
|
} else {
|
|
timeZeroF[1] = 0.0;
|
|
}
|
|
|
|
n = Alloc_Node();
|
|
if( n >= 0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->nSubNodes = 2;
|
|
this->SubNodes[1] = Node1;
|
|
this->operation = (int)gtifilt_fct;
|
|
this->DoOp = Do_GTI;
|
|
this->type = BOOLEAN;
|
|
that1 = gParse.Nodes + Node1;
|
|
this->value.nelem = that1->value.nelem;
|
|
this->value.naxis = that1->value.naxis;
|
|
for( i=0; i < that1->value.naxis; i++ )
|
|
this->value.naxes[i] = that1->value.naxes[i];
|
|
|
|
/* Init START/STOP node to be treated as a "constant" */
|
|
|
|
this->SubNodes[0] = Node0;
|
|
that0 = gParse.Nodes + Node0;
|
|
that0->operation = CONST_OP;
|
|
that0->DoOp = NULL;
|
|
that0->value.data.ptr= NULL;
|
|
|
|
/* Read in START/STOP times */
|
|
|
|
if( ffgkyj( fptr, "NAXIS2", &nrows, NULL, &gParse.status ) )
|
|
return(-1);
|
|
that0->value.nelem = nrows;
|
|
if( nrows ) {
|
|
|
|
that0->value.data.dblptr = (double*)malloc( 2*nrows*sizeof(double) );
|
|
if( !that0->value.data.dblptr ) {
|
|
gParse.status = MEMORY_ALLOCATION;
|
|
return(-1);
|
|
}
|
|
|
|
ffgcvd( fptr, startCol, 1L, 1L, nrows, 0.0,
|
|
that0->value.data.dblptr, &i, &gParse.status );
|
|
ffgcvd( fptr, stopCol, 1L, 1L, nrows, 0.0,
|
|
that0->value.data.dblptr+nrows, &i, &gParse.status );
|
|
if( gParse.status ) {
|
|
free( that0->value.data.dblptr );
|
|
return(-1);
|
|
}
|
|
|
|
/* Test for fully time-ordered GTI... both START && STOP */
|
|
|
|
that0->type = 1; /* Assume yes */
|
|
i = nrows;
|
|
while( --i )
|
|
if( that0->value.data.dblptr[i-1]
|
|
>= that0->value.data.dblptr[i]
|
|
|| that0->value.data.dblptr[i-1+nrows]
|
|
>= that0->value.data.dblptr[i+nrows] ) {
|
|
that0->type = 0;
|
|
break;
|
|
}
|
|
|
|
/* Handle TIMEZERO offset, if any */
|
|
|
|
dt = (timeZeroI[1] - timeZeroI[0]) + (timeZeroF[1] - timeZeroF[0]);
|
|
timeSpan = that0->value.data.dblptr[nrows+nrows-1]
|
|
- that0->value.data.dblptr[0];
|
|
|
|
if( fabs( dt / timeSpan ) > 1e-12 ) {
|
|
for( i=0; i<(nrows+nrows); i++ )
|
|
that0->value.data.dblptr[i] += dt;
|
|
}
|
|
}
|
|
if( OPER(Node1)==CONST_OP )
|
|
this->DoOp( this );
|
|
}
|
|
|
|
if( samefile )
|
|
ffmahd( fptr, evthdu, &hdutype, &gParse.status );
|
|
else
|
|
ffclos( fptr, &gParse.status );
|
|
|
|
return( n );
|
|
}
|
|
|
|
static int New_REG( char *fname, int NodeX, int NodeY, char *colNames )
|
|
{
|
|
Node *this, *that0;
|
|
int type, n, Node0;
|
|
int Xcol, Ycol, tstat;
|
|
WCSdata wcs;
|
|
SAORegion *Rgn;
|
|
char *cX, *cY;
|
|
YYSTYPE colVal;
|
|
|
|
if( NodeX==-99 ) {
|
|
type = yyGetVariable( "X", &colVal );
|
|
if( type==COLUMN ) {
|
|
NodeX = New_Column( (int)colVal.lng );
|
|
} else {
|
|
yyerror("Could not build X column for REGFILTER");
|
|
return(-1);
|
|
}
|
|
}
|
|
if( NodeY==-99 ) {
|
|
type = yyGetVariable( "Y", &colVal );
|
|
if( type==COLUMN ) {
|
|
NodeY = New_Column( (int)colVal.lng );
|
|
} else {
|
|
yyerror("Could not build Y column for REGFILTER");
|
|
return(-1);
|
|
}
|
|
}
|
|
NodeX = New_Unary( DOUBLE, 0, NodeX );
|
|
NodeY = New_Unary( DOUBLE, 0, NodeY );
|
|
Node0 = Alloc_Node(); /* This will hold the Region Data */
|
|
if( NodeX<0 || NodeY<0 || Node0<0 ) return(-1);
|
|
|
|
if( ! (Test_Dims( NodeX, NodeY ) ) ) {
|
|
yyerror("Dimensions of REGFILTER arguments are not compatible");
|
|
return (-1);
|
|
}
|
|
|
|
n = Alloc_Node();
|
|
if( n >= 0 ) {
|
|
this = gParse.Nodes + n;
|
|
this->nSubNodes = 3;
|
|
this->SubNodes[0] = Node0;
|
|
this->SubNodes[1] = NodeX;
|
|
this->SubNodes[2] = NodeY;
|
|
this->operation = (int)regfilt_fct;
|
|
this->DoOp = Do_REG;
|
|
this->type = BOOLEAN;
|
|
this->value.nelem = 1;
|
|
this->value.naxis = 1;
|
|
this->value.naxes[0] = 1;
|
|
|
|
Copy_Dims(n, NodeX);
|
|
if( SIZE(NodeX)<SIZE(NodeY) ) Copy_Dims(n, NodeY);
|
|
|
|
/* Init Region node to be treated as a "constant" */
|
|
|
|
that0 = gParse.Nodes + Node0;
|
|
that0->operation = CONST_OP;
|
|
that0->DoOp = NULL;
|
|
|
|
/* Identify what columns to use for WCS information */
|
|
|
|
Xcol = Ycol = 0;
|
|
if( *colNames ) {
|
|
/* Use the column names in this string for WCS info */
|
|
while( *colNames==' ' ) colNames++;
|
|
cX = cY = colNames;
|
|
while( *cY && *cY!=' ' && *cY!=',' ) cY++;
|
|
if( *cY )
|
|
*(cY++) = '\0';
|
|
while( *cY==' ' ) cY++;
|
|
if( !*cY ) {
|
|
yyerror("Could not extract valid pair of column names from REGFILTER");
|
|
Free_Last_Node();
|
|
return( -1 );
|
|
}
|
|
fits_get_colnum( gParse.def_fptr, CASEINSEN, cX, &Xcol,
|
|
&gParse.status );
|
|
fits_get_colnum( gParse.def_fptr, CASEINSEN, cY, &Ycol,
|
|
&gParse.status );
|
|
if( gParse.status ) {
|
|
yyerror("Could not locate columns indicated for WCS info");
|
|
Free_Last_Node();
|
|
return( -1 );
|
|
}
|
|
|
|
} else {
|
|
/* Try to find columns used in X/Y expressions */
|
|
Xcol = Locate_Col( gParse.Nodes + NodeX );
|
|
Ycol = Locate_Col( gParse.Nodes + NodeY );
|
|
if( Xcol<0 || Ycol<0 ) {
|
|
yyerror("Found multiple X/Y column references in REGFILTER");
|
|
Free_Last_Node();
|
|
return( -1 );
|
|
}
|
|
}
|
|
|
|
/* Now, get the WCS info, if it exists, from the indicated columns */
|
|
wcs.exists = 0;
|
|
if( Xcol>0 && Ycol>0 ) {
|
|
tstat = 0;
|
|
ffgtcs( gParse.def_fptr, Xcol, Ycol,
|
|
&wcs.xrefval, &wcs.yrefval,
|
|
&wcs.xrefpix, &wcs.yrefpix,
|
|
&wcs.xinc, &wcs.yinc,
|
|
&wcs.rot, wcs.type,
|
|
&tstat );
|
|
if( tstat==NO_WCS_KEY ) {
|
|
wcs.exists = 0;
|
|
} else if( tstat ) {
|
|
gParse.status = tstat;
|
|
Free_Last_Node();
|
|
return( -1 );
|
|
} else {
|
|
wcs.exists = 1;
|
|
}
|
|
}
|
|
|
|
/* Read in Region file */
|
|
|
|
fits_read_rgnfile( fname, &wcs, &Rgn, &gParse.status );
|
|
if( gParse.status ) {
|
|
Free_Last_Node();
|
|
return( -1 );
|
|
}
|
|
|
|
that0->value.data.ptr = Rgn;
|
|
|
|
if( OPER(NodeX)==CONST_OP && OPER(NodeY)==CONST_OP )
|
|
this->DoOp( this );
|
|
}
|
|
|
|
return( n );
|
|
}
|
|
|
|
static int New_Vector( int subNode )
|
|
{
|
|
Node *this, *that;
|
|
int n;
|
|
|
|
n = Alloc_Node();
|
|
if( n >= 0 ) {
|
|
this = gParse.Nodes + n;
|
|
that = gParse.Nodes + subNode;
|
|
this->type = that->type;
|
|
this->nSubNodes = 1;
|
|
this->SubNodes[0] = subNode;
|
|
this->operation = '{';
|
|
this->DoOp = Do_Vector;
|
|
}
|
|
|
|
return( n );
|
|
}
|
|
|
|
static int Close_Vec( int vecNode )
|
|
{
|
|
Node *this;
|
|
int n, nelem=0;
|
|
|
|
this = gParse.Nodes + vecNode;
|
|
for( n=0; n < this->nSubNodes; n++ ) {
|
|
if( TYPE( this->SubNodes[n] ) != this->type ) {
|
|
this->SubNodes[n] = New_Unary( this->type, 0, this->SubNodes[n] );
|
|
if( this->SubNodes[n]<0 ) return(-1);
|
|
}
|
|
nelem += SIZE(this->SubNodes[n]);
|
|
}
|
|
this->value.naxis = 1;
|
|
this->value.nelem = nelem;
|
|
this->value.naxes[0] = nelem;
|
|
|
|
return( vecNode );
|
|
}
|
|
|
|
static int Locate_Col( Node *this )
|
|
/* Locate the TABLE column number of any columns in "this" calculation. */
|
|
/* Return ZERO if none found, or negative if more than 1 found. */
|
|
{
|
|
Node *that;
|
|
int i, col=0, newCol, nfound=0;
|
|
|
|
if( this->nSubNodes==0
|
|
&& this->operation<=0 && this->operation!=CONST_OP )
|
|
return gParse.colData[ - this->operation].colnum;
|
|
|
|
for( i=0; i<this->nSubNodes; i++ ) {
|
|
that = gParse.Nodes + this->SubNodes[i];
|
|
if( that->operation>0 ) {
|
|
newCol = Locate_Col( that );
|
|
if( newCol<=0 ) {
|
|
nfound += -newCol;
|
|
} else {
|
|
if( !nfound ) {
|
|
col = newCol;
|
|
nfound++;
|
|
} else if( col != newCol ) {
|
|
nfound++;
|
|
}
|
|
}
|
|
} else if( that->operation!=CONST_OP ) {
|
|
/* Found a Column */
|
|
newCol = gParse.colData[- that->operation].colnum;
|
|
if( !nfound ) {
|
|
col = newCol;
|
|
nfound++;
|
|
} else if( col != newCol ) {
|
|
nfound++;
|
|
}
|
|
}
|
|
}
|
|
if( nfound!=1 )
|
|
return( - nfound );
|
|
else
|
|
return( col );
|
|
}
|
|
|
|
static int Test_Dims( int Node1, int Node2 )
|
|
{
|
|
Node *that1, *that2;
|
|
int valid, i;
|
|
|
|
if( Node1<0 || Node2<0 ) return(0);
|
|
|
|
that1 = gParse.Nodes + Node1;
|
|
that2 = gParse.Nodes + Node2;
|
|
|
|
if( that1->value.nelem==1 || that2->value.nelem==1 )
|
|
valid = 1;
|
|
else if( that1->type==that2->type
|
|
&& that1->value.nelem==that2->value.nelem
|
|
&& that1->value.naxis==that2->value.naxis ) {
|
|
valid = 1;
|
|
for( i=0; i<that1->value.naxis; i++ ) {
|
|
if( that1->value.naxes[i]!=that2->value.naxes[i] )
|
|
valid = 0;
|
|
}
|
|
} else
|
|
valid = 0;
|
|
return( valid );
|
|
}
|
|
|
|
static void Copy_Dims( int Node1, int Node2 )
|
|
{
|
|
Node *that1, *that2;
|
|
int i;
|
|
|
|
if( Node1<0 || Node2<0 ) return;
|
|
|
|
that1 = gParse.Nodes + Node1;
|
|
that2 = gParse.Nodes + Node2;
|
|
|
|
that1->value.nelem = that2->value.nelem;
|
|
that1->value.naxis = that2->value.naxis;
|
|
for( i=0; i<that2->value.naxis; i++ )
|
|
that1->value.naxes[i] = that2->value.naxes[i];
|
|
}
|
|
|
|
/********************************************************************/
|
|
/* Routines for actually evaluating the expression start here */
|
|
/********************************************************************/
|
|
|
|
void Evaluate_Parser( long firstRow, long nRows )
|
|
/***********************************************************************/
|
|
/* Reset the parser for processing another batch of data... */
|
|
/* firstRow: Row number of the first element to evaluate */
|
|
/* nRows: Number of rows to be processed */
|
|
/* Initialize each COLUMN node so that its UNDEF and DATA pointers */
|
|
/* point to the appropriate column arrays. */
|
|
/* Finally, call Evaluate_Node for final node. */
|
|
/***********************************************************************/
|
|
{
|
|
int i, column;
|
|
long offset, rowOffset;
|
|
|
|
gParse.firstRow = firstRow;
|
|
gParse.nRows = nRows;
|
|
|
|
/* Reset Column Nodes' pointers to point to right data and UNDEF arrays */
|
|
|
|
rowOffset = firstRow - gParse.firstDataRow;
|
|
for( i=0; i<gParse.nNodes; i++ ) {
|
|
if( OPER(i) > 0 || OPER(i) == CONST_OP ) continue;
|
|
|
|
column = -OPER(i);
|
|
offset = gParse.varData[column].nelem * rowOffset;
|
|
|
|
gParse.Nodes[i].value.undef = gParse.varData[column].undef + offset;
|
|
|
|
switch( gParse.Nodes[i].type ) {
|
|
case BITSTR:
|
|
gParse.Nodes[i].value.data.strptr =
|
|
(char**)gParse.varData[column].data + rowOffset;
|
|
gParse.Nodes[i].value.undef = NULL;
|
|
break;
|
|
case STRING:
|
|
gParse.Nodes[i].value.data.strptr =
|
|
(char**)gParse.varData[column].data + rowOffset;
|
|
gParse.Nodes[i].value.undef = gParse.varData[column].undef + rowOffset;
|
|
break;
|
|
case BOOLEAN:
|
|
gParse.Nodes[i].value.data.logptr =
|
|
(char*)gParse.varData[column].data + offset;
|
|
break;
|
|
case LONG:
|
|
gParse.Nodes[i].value.data.lngptr =
|
|
(long*)gParse.varData[column].data + offset;
|
|
break;
|
|
case DOUBLE:
|
|
gParse.Nodes[i].value.data.dblptr =
|
|
(double*)gParse.varData[column].data + offset;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Evaluate_Node( gParse.resultNode );
|
|
}
|
|
|
|
static void Evaluate_Node( int thisNode )
|
|
/**********************************************************************/
|
|
/* Recursively evaluate thisNode's subNodes, then call one of the */
|
|
/* Do_<Action> functions pointed to by thisNode's DoOp element. */
|
|
/**********************************************************************/
|
|
{
|
|
Node *this;
|
|
int i;
|
|
|
|
if( gParse.status ) return;
|
|
|
|
this = gParse.Nodes + thisNode;
|
|
if( this->operation>0 ) { /* <=0 indicate constants and columns */
|
|
i = this->nSubNodes;
|
|
while( i-- ) {
|
|
Evaluate_Node( this->SubNodes[i] );
|
|
if( gParse.status ) return;
|
|
}
|
|
this->DoOp( this );
|
|
}
|
|
}
|
|
|
|
static void Allocate_Ptrs( Node *this )
|
|
{
|
|
long elem, row, size;
|
|
|
|
if( this->type==BITSTR || this->type==STRING ) {
|
|
|
|
this->value.data.strptr = (char**)malloc( gParse.nRows
|
|
* sizeof(char*) );
|
|
if( this->value.data.strptr ) {
|
|
this->value.data.strptr[0] = (char*)malloc( gParse.nRows
|
|
* (this->value.nelem+2)
|
|
* sizeof(char) );
|
|
if( this->value.data.strptr[0] ) {
|
|
row = 0;
|
|
while( (++row)<gParse.nRows ) {
|
|
this->value.data.strptr[row] =
|
|
this->value.data.strptr[row-1] + this->value.nelem+1;
|
|
}
|
|
if( this->type==STRING ) {
|
|
this->value.undef = this->value.data.strptr[row-1]
|
|
+ this->value.nelem+1;
|
|
} else {
|
|
this->value.undef = NULL; /* BITSTRs don't use undef array */
|
|
}
|
|
} else {
|
|
gParse.status = MEMORY_ALLOCATION;
|
|
free( this->value.data.strptr );
|
|
}
|
|
} else {
|
|
gParse.status = MEMORY_ALLOCATION;
|
|
}
|
|
|
|
} else {
|
|
|
|
elem = this->value.nelem * gParse.nRows;
|
|
switch( this->type ) {
|
|
case DOUBLE: size = sizeof( double ); break;
|
|
case LONG: size = sizeof( long ); break;
|
|
case BOOLEAN: size = sizeof( char ); break;
|
|
default: size = 1; break;
|
|
}
|
|
|
|
this->value.data.ptr = calloc(size+1, elem);
|
|
|
|
if( this->value.data.ptr==NULL ) {
|
|
gParse.status = MEMORY_ALLOCATION;
|
|
} else {
|
|
this->value.undef = (char *)this->value.data.ptr + elem*size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void Do_Unary( Node *this )
|
|
{
|
|
Node *that;
|
|
long elem;
|
|
|
|
that = gParse.Nodes + this->SubNodes[0];
|
|
|
|
if( that->operation==CONST_OP ) { /* Operating on a constant! */
|
|
switch( this->operation ) {
|
|
case DOUBLE:
|
|
case FLTCAST:
|
|
if( that->type==LONG )
|
|
this->value.data.dbl = (double)that->value.data.lng;
|
|
else if( that->type==BOOLEAN )
|
|
this->value.data.dbl = ( that->value.data.log ? 1.0 : 0.0 );
|
|
break;
|
|
case LONG:
|
|
case INTCAST:
|
|
if( that->type==DOUBLE )
|
|
this->value.data.lng = (long)that->value.data.dbl;
|
|
else if( that->type==BOOLEAN )
|
|
this->value.data.lng = ( that->value.data.log ? 1L : 0L );
|
|
break;
|
|
case BOOLEAN:
|
|
if( that->type==DOUBLE )
|
|
this->value.data.log = ( that->value.data.dbl != 0.0 );
|
|
else if( that->type==LONG )
|
|
this->value.data.log = ( that->value.data.lng != 0L );
|
|
break;
|
|
case UMINUS:
|
|
if( that->type==DOUBLE )
|
|
this->value.data.dbl = - that->value.data.dbl;
|
|
else if( that->type==LONG )
|
|
this->value.data.lng = - that->value.data.lng;
|
|
break;
|
|
case NOT:
|
|
if( that->type==BOOLEAN )
|
|
this->value.data.log = ( ! that->value.data.log );
|
|
else if( that->type==BITSTR )
|
|
bitnot( this->value.data.str, that->value.data.str );
|
|
break;
|
|
}
|
|
this->operation = CONST_OP;
|
|
|
|
} else {
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
|
|
if( this->type!=BITSTR ) {
|
|
elem = gParse.nRows;
|
|
if( this->type!=STRING )
|
|
elem *= this->value.nelem;
|
|
while( elem-- )
|
|
this->value.undef[elem] = that->value.undef[elem];
|
|
}
|
|
|
|
elem = gParse.nRows * this->value.nelem;
|
|
|
|
switch( this->operation ) {
|
|
|
|
case BOOLEAN:
|
|
if( that->type==DOUBLE )
|
|
while( elem-- )
|
|
this->value.data.logptr[elem] =
|
|
( that->value.data.dblptr[elem] != 0.0 );
|
|
else if( that->type==LONG )
|
|
while( elem-- )
|
|
this->value.data.logptr[elem] =
|
|
( that->value.data.lngptr[elem] != 0L );
|
|
break;
|
|
|
|
case DOUBLE:
|
|
case FLTCAST:
|
|
if( that->type==LONG )
|
|
while( elem-- )
|
|
this->value.data.dblptr[elem] =
|
|
(double)that->value.data.lngptr[elem];
|
|
else if( that->type==BOOLEAN )
|
|
while( elem-- )
|
|
this->value.data.dblptr[elem] =
|
|
( that->value.data.logptr[elem] ? 1.0 : 0.0 );
|
|
break;
|
|
|
|
case LONG:
|
|
case INTCAST:
|
|
if( that->type==DOUBLE )
|
|
while( elem-- )
|
|
this->value.data.lngptr[elem] =
|
|
(long)that->value.data.dblptr[elem];
|
|
else if( that->type==BOOLEAN )
|
|
while( elem-- )
|
|
this->value.data.lngptr[elem] =
|
|
( that->value.data.logptr[elem] ? 1L : 0L );
|
|
break;
|
|
|
|
case UMINUS:
|
|
if( that->type==DOUBLE ) {
|
|
while( elem-- )
|
|
this->value.data.dblptr[elem] =
|
|
- that->value.data.dblptr[elem];
|
|
} else if( that->type==LONG ) {
|
|
while( elem-- )
|
|
this->value.data.lngptr[elem] =
|
|
- that->value.data.lngptr[elem];
|
|
}
|
|
break;
|
|
|
|
case NOT:
|
|
if( that->type==BOOLEAN ) {
|
|
while( elem-- )
|
|
this->value.data.logptr[elem] =
|
|
( ! that->value.data.logptr[elem] );
|
|
} else if( that->type==BITSTR ) {
|
|
elem = gParse.nRows;
|
|
while( elem-- )
|
|
bitnot( this->value.data.strptr[elem],
|
|
that->value.data.strptr[elem] );
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( that->operation>0 ) {
|
|
free( that->value.data.ptr );
|
|
}
|
|
}
|
|
|
|
static void Do_Offset( Node *this )
|
|
{
|
|
Node *col;
|
|
long fRow, nRowOverlap, nRowReload, rowOffset;
|
|
long nelem, elem, offset, nRealElem;
|
|
int status;
|
|
|
|
col = gParse.Nodes + this->SubNodes[0];
|
|
rowOffset = gParse.Nodes[ this->SubNodes[1] ].value.data.lng;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
fRow = gParse.firstRow + rowOffset;
|
|
if( this->type==STRING || this->type==BITSTR )
|
|
nRealElem = 1;
|
|
else
|
|
nRealElem = this->value.nelem;
|
|
|
|
nelem = nRealElem;
|
|
|
|
if( fRow < gParse.firstDataRow ) {
|
|
|
|
/* Must fill in data at start of array */
|
|
|
|
nRowReload = gParse.firstDataRow - fRow;
|
|
if( nRowReload > gParse.nRows ) nRowReload = gParse.nRows;
|
|
nRowOverlap = gParse.nRows - nRowReload;
|
|
|
|
offset = 0;
|
|
|
|
/* NULLify any values falling out of bounds */
|
|
|
|
while( fRow<1 && nRowReload>0 ) {
|
|
if( this->type == BITSTR ) {
|
|
nelem = this->value.nelem;
|
|
this->value.data.strptr[offset][ nelem ] = '\0';
|
|
while( nelem-- ) this->value.data.strptr[offset][nelem] = '0';
|
|
offset++;
|
|
} else {
|
|
while( nelem-- )
|
|
this->value.undef[offset++] = 1;
|
|
}
|
|
nelem = nRealElem;
|
|
fRow++;
|
|
nRowReload--;
|
|
}
|
|
|
|
} else if( fRow + gParse.nRows > gParse.firstDataRow + gParse.nDataRows ) {
|
|
|
|
/* Must fill in data at end of array */
|
|
|
|
nRowReload = (fRow+gParse.nRows) - (gParse.firstDataRow+gParse.nDataRows);
|
|
if( nRowReload>gParse.nRows ) {
|
|
nRowReload = gParse.nRows;
|
|
} else {
|
|
fRow = gParse.firstDataRow + gParse.nDataRows;
|
|
}
|
|
nRowOverlap = gParse.nRows - nRowReload;
|
|
|
|
offset = nRowOverlap * nelem;
|
|
|
|
/* NULLify any values falling out of bounds */
|
|
|
|
elem = gParse.nRows * nelem;
|
|
while( fRow+nRowReload>gParse.totalRows && nRowReload>0 ) {
|
|
if( this->type == BITSTR ) {
|
|
nelem = this->value.nelem;
|
|
elem--;
|
|
this->value.data.strptr[elem][ nelem ] = '\0';
|
|
while( nelem-- ) this->value.data.strptr[elem][nelem] = '0';
|
|
} else {
|
|
while( nelem-- )
|
|
this->value.undef[--elem] = 1;
|
|
}
|
|
nelem = nRealElem;
|
|
nRowReload--;
|
|
}
|
|
|
|
} else {
|
|
|
|
nRowReload = 0;
|
|
nRowOverlap = gParse.nRows;
|
|
offset = 0;
|
|
|
|
}
|
|
|
|
if( nRowReload>0 ) {
|
|
switch( this->type ) {
|
|
case BITSTR:
|
|
case STRING:
|
|
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
|
|
this->value.data.strptr+offset,
|
|
this->value.undef+offset );
|
|
break;
|
|
case BOOLEAN:
|
|
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
|
|
this->value.data.logptr+offset,
|
|
this->value.undef+offset );
|
|
break;
|
|
case LONG:
|
|
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
|
|
this->value.data.lngptr+offset,
|
|
this->value.undef+offset );
|
|
break;
|
|
case DOUBLE:
|
|
status = (*gParse.loadData)( -col->operation, fRow, nRowReload,
|
|
this->value.data.dblptr+offset,
|
|
this->value.undef+offset );
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Now copy over the overlapping region, if any */
|
|
|
|
if( nRowOverlap <= 0 ) return;
|
|
|
|
if( rowOffset>0 )
|
|
elem = nRowOverlap * nelem;
|
|
else
|
|
elem = gParse.nRows * nelem;
|
|
|
|
offset = nelem * rowOffset;
|
|
while( nRowOverlap-- && !gParse.status ) {
|
|
while( nelem-- && !gParse.status ) {
|
|
elem--;
|
|
if( this->type != BITSTR )
|
|
this->value.undef[elem] = col->value.undef[elem+offset];
|
|
switch( this->type ) {
|
|
case BITSTR:
|
|
strcpy( this->value.data.strptr[elem ],
|
|
col->value.data.strptr[elem+offset] );
|
|
break;
|
|
case STRING:
|
|
strcpy( this->value.data.strptr[elem ],
|
|
col->value.data.strptr[elem+offset] );
|
|
break;
|
|
case BOOLEAN:
|
|
this->value.data.logptr[elem] = col->value.data.logptr[elem+offset];
|
|
break;
|
|
case LONG:
|
|
this->value.data.lngptr[elem] = col->value.data.lngptr[elem+offset];
|
|
break;
|
|
case DOUBLE:
|
|
this->value.data.dblptr[elem] = col->value.data.dblptr[elem+offset];
|
|
break;
|
|
}
|
|
}
|
|
nelem = nRealElem;
|
|
}
|
|
}
|
|
|
|
static void Do_BinOp_bit( Node *this )
|
|
{
|
|
Node *that1, *that2;
|
|
char *sptr1=NULL, *sptr2=NULL;
|
|
int const1, const2;
|
|
long rows;
|
|
|
|
that1 = gParse.Nodes + this->SubNodes[0];
|
|
that2 = gParse.Nodes + this->SubNodes[1];
|
|
|
|
const1 = ( that1->operation==CONST_OP );
|
|
const2 = ( that2->operation==CONST_OP );
|
|
sptr1 = ( const1 ? that1->value.data.str : NULL );
|
|
sptr2 = ( const2 ? that2->value.data.str : NULL );
|
|
|
|
if( const1 && const2 ) {
|
|
switch( this->operation ) {
|
|
case NE:
|
|
this->value.data.log = !bitcmp( sptr1, sptr2 );
|
|
break;
|
|
case EQ:
|
|
this->value.data.log = bitcmp( sptr1, sptr2 );
|
|
break;
|
|
case GT:
|
|
case LT:
|
|
case LTE:
|
|
case GTE:
|
|
this->value.data.log = bitlgte( sptr1, this->operation, sptr2 );
|
|
break;
|
|
case '|':
|
|
bitor( this->value.data.str, sptr1, sptr2 );
|
|
break;
|
|
case '&':
|
|
bitand( this->value.data.str, sptr1, sptr2 );
|
|
break;
|
|
case '+':
|
|
strcpy( this->value.data.str, sptr1 );
|
|
strcat( this->value.data.str, sptr2 );
|
|
break;
|
|
case ACCUM:
|
|
this->value.data.lng = 0;
|
|
while( *sptr1 ) {
|
|
if ( *sptr1 == '1' ) this->value.data.lng ++;
|
|
sptr1 ++;
|
|
}
|
|
break;
|
|
|
|
}
|
|
this->operation = CONST_OP;
|
|
|
|
} else {
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
rows = gParse.nRows;
|
|
switch( this->operation ) {
|
|
|
|
/* BITSTR comparisons */
|
|
|
|
case NE:
|
|
case EQ:
|
|
case GT:
|
|
case LT:
|
|
case LTE:
|
|
case GTE:
|
|
while( rows-- ) {
|
|
if( !const1 )
|
|
sptr1 = that1->value.data.strptr[rows];
|
|
if( !const2 )
|
|
sptr2 = that2->value.data.strptr[rows];
|
|
switch( this->operation ) {
|
|
case NE: this->value.data.logptr[rows] =
|
|
!bitcmp( sptr1, sptr2 );
|
|
break;
|
|
case EQ: this->value.data.logptr[rows] =
|
|
bitcmp( sptr1, sptr2 );
|
|
break;
|
|
case GT:
|
|
case LT:
|
|
case LTE:
|
|
case GTE: this->value.data.logptr[rows] =
|
|
bitlgte( sptr1, this->operation, sptr2 );
|
|
break;
|
|
}
|
|
this->value.undef[rows] = 0;
|
|
}
|
|
break;
|
|
|
|
/* BITSTR AND/ORs ... no UNDEFS in or out */
|
|
|
|
case '|':
|
|
case '&':
|
|
case '+':
|
|
while( rows-- ) {
|
|
if( !const1 )
|
|
sptr1 = that1->value.data.strptr[rows];
|
|
if( !const2 )
|
|
sptr2 = that2->value.data.strptr[rows];
|
|
if( this->operation=='|' )
|
|
bitor( this->value.data.strptr[rows], sptr1, sptr2 );
|
|
else if( this->operation=='&' )
|
|
bitand( this->value.data.strptr[rows], sptr1, sptr2 );
|
|
else {
|
|
strcpy( this->value.data.strptr[rows], sptr1 );
|
|
strcat( this->value.data.strptr[rows], sptr2 );
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Accumulate 1 bits */
|
|
case ACCUM:
|
|
{
|
|
long i, previous, curr;
|
|
|
|
previous = that2->value.data.lng;
|
|
|
|
/* Cumulative sum of this chunk */
|
|
for (i=0; i<rows; i++) {
|
|
sptr1 = that1->value.data.strptr[i];
|
|
for (curr = 0; *sptr1; sptr1 ++) {
|
|
if ( *sptr1 == '1' ) curr ++;
|
|
}
|
|
previous += curr;
|
|
this->value.data.lngptr[i] = previous;
|
|
this->value.undef[i] = 0;
|
|
}
|
|
|
|
/* Store final cumulant for next pass */
|
|
that2->value.data.lng = previous;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( that1->operation>0 ) {
|
|
free( that1->value.data.strptr[0] );
|
|
free( that1->value.data.strptr );
|
|
}
|
|
if( that2->operation>0 ) {
|
|
free( that2->value.data.strptr[0] );
|
|
free( that2->value.data.strptr );
|
|
}
|
|
}
|
|
|
|
static void Do_BinOp_str( Node *this )
|
|
{
|
|
Node *that1, *that2;
|
|
char *sptr1, *sptr2, null1=0, null2=0;
|
|
int const1, const2, val;
|
|
long rows;
|
|
|
|
that1 = gParse.Nodes + this->SubNodes[0];
|
|
that2 = gParse.Nodes + this->SubNodes[1];
|
|
|
|
const1 = ( that1->operation==CONST_OP );
|
|
const2 = ( that2->operation==CONST_OP );
|
|
sptr1 = ( const1 ? that1->value.data.str : NULL );
|
|
sptr2 = ( const2 ? that2->value.data.str : NULL );
|
|
|
|
if( const1 && const2 ) { /* Result is a constant */
|
|
switch( this->operation ) {
|
|
|
|
/* Compare Strings */
|
|
|
|
case NE:
|
|
case EQ:
|
|
val = ( FSTRCMP( sptr1, sptr2 ) == 0 );
|
|
this->value.data.log = ( this->operation==EQ ? val : !val );
|
|
break;
|
|
case GT:
|
|
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) > 0 );
|
|
break;
|
|
case LT:
|
|
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) < 0 );
|
|
break;
|
|
case GTE:
|
|
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) >= 0 );
|
|
break;
|
|
case LTE:
|
|
this->value.data.log = ( FSTRCMP( sptr1, sptr2 ) <= 0 );
|
|
break;
|
|
|
|
/* Concat Strings */
|
|
|
|
case '+':
|
|
strcpy( this->value.data.str, sptr1 );
|
|
strcat( this->value.data.str, sptr2 );
|
|
break;
|
|
}
|
|
this->operation = CONST_OP;
|
|
|
|
} else { /* Not a constant */
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
|
|
rows = gParse.nRows;
|
|
switch( this->operation ) {
|
|
|
|
/* Compare Strings */
|
|
|
|
case NE:
|
|
case EQ:
|
|
while( rows-- ) {
|
|
if( !const1 ) null1 = that1->value.undef[rows];
|
|
if( !const2 ) null2 = that2->value.undef[rows];
|
|
this->value.undef[rows] = (null1 || null2);
|
|
if( ! this->value.undef[rows] ) {
|
|
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
|
|
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
|
|
val = ( FSTRCMP( sptr1, sptr2 ) == 0 );
|
|
this->value.data.logptr[rows] =
|
|
( this->operation==EQ ? val : !val );
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GT:
|
|
case LT:
|
|
while( rows-- ) {
|
|
if( !const1 ) null1 = that1->value.undef[rows];
|
|
if( !const2 ) null2 = that2->value.undef[rows];
|
|
this->value.undef[rows] = (null1 || null2);
|
|
if( ! this->value.undef[rows] ) {
|
|
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
|
|
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
|
|
val = ( FSTRCMP( sptr1, sptr2 ) );
|
|
this->value.data.logptr[rows] =
|
|
( this->operation==GT ? val>0 : val<0 );
|
|
}
|
|
}
|
|
break;
|
|
|
|
case GTE:
|
|
case LTE:
|
|
while( rows-- ) {
|
|
if( !const1 ) null1 = that1->value.undef[rows];
|
|
if( !const2 ) null2 = that2->value.undef[rows];
|
|
this->value.undef[rows] = (null1 || null2);
|
|
if( ! this->value.undef[rows] ) {
|
|
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
|
|
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
|
|
val = ( FSTRCMP( sptr1, sptr2 ) );
|
|
this->value.data.logptr[rows] =
|
|
( this->operation==GTE ? val>=0 : val<=0 );
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Concat Strings */
|
|
|
|
case '+':
|
|
while( rows-- ) {
|
|
if( !const1 ) null1 = that1->value.undef[rows];
|
|
if( !const2 ) null2 = that2->value.undef[rows];
|
|
this->value.undef[rows] = (null1 || null2);
|
|
if( ! this->value.undef[rows] ) {
|
|
if( !const1 ) sptr1 = that1->value.data.strptr[rows];
|
|
if( !const2 ) sptr2 = that2->value.data.strptr[rows];
|
|
strcpy( this->value.data.strptr[rows], sptr1 );
|
|
strcat( this->value.data.strptr[rows], sptr2 );
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( that1->operation>0 ) {
|
|
free( that1->value.data.strptr[0] );
|
|
free( that1->value.data.strptr );
|
|
}
|
|
if( that2->operation>0 ) {
|
|
free( that2->value.data.strptr[0] );
|
|
free( that2->value.data.strptr );
|
|
}
|
|
}
|
|
|
|
static void Do_BinOp_log( Node *this )
|
|
{
|
|
Node *that1, *that2;
|
|
int vector1, vector2;
|
|
char val1=0, val2=0, null1=0, null2=0;
|
|
long rows, nelem, elem;
|
|
|
|
that1 = gParse.Nodes + this->SubNodes[0];
|
|
that2 = gParse.Nodes + this->SubNodes[1];
|
|
|
|
vector1 = ( that1->operation!=CONST_OP );
|
|
if( vector1 )
|
|
vector1 = that1->value.nelem;
|
|
else {
|
|
val1 = that1->value.data.log;
|
|
}
|
|
|
|
vector2 = ( that2->operation!=CONST_OP );
|
|
if( vector2 )
|
|
vector2 = that2->value.nelem;
|
|
else {
|
|
val2 = that2->value.data.log;
|
|
}
|
|
|
|
if( !vector1 && !vector2 ) { /* Result is a constant */
|
|
switch( this->operation ) {
|
|
case OR:
|
|
this->value.data.log = (val1 || val2);
|
|
break;
|
|
case AND:
|
|
this->value.data.log = (val1 && val2);
|
|
break;
|
|
case EQ:
|
|
this->value.data.log = ( (val1 && val2) || (!val1 && !val2) );
|
|
break;
|
|
case NE:
|
|
this->value.data.log = ( (val1 && !val2) || (!val1 && val2) );
|
|
break;
|
|
case ACCUM:
|
|
this->value.data.lng = val1;
|
|
break;
|
|
}
|
|
this->operation=CONST_OP;
|
|
} else if (this->operation == ACCUM) {
|
|
long i, previous, curr;
|
|
rows = gParse.nRows;
|
|
nelem = this->value.nelem;
|
|
elem = this->value.nelem * rows;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
previous = that2->value.data.lng;
|
|
|
|
/* Cumulative sum of this chunk */
|
|
for (i=0; i<elem; i++) {
|
|
if (!that1->value.undef[i]) {
|
|
curr = that1->value.data.logptr[i];
|
|
previous += curr;
|
|
}
|
|
this->value.data.lngptr[i] = previous;
|
|
this->value.undef[i] = 0;
|
|
}
|
|
|
|
/* Store final cumulant for next pass */
|
|
that2->value.data.lng = previous;
|
|
}
|
|
|
|
} else {
|
|
rows = gParse.nRows;
|
|
nelem = this->value.nelem;
|
|
elem = this->value.nelem * rows;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
|
|
if (this->operation == ACCUM) {
|
|
long i, previous, curr;
|
|
|
|
previous = that2->value.data.lng;
|
|
|
|
/* Cumulative sum of this chunk */
|
|
for (i=0; i<elem; i++) {
|
|
if (!that1->value.undef[i]) {
|
|
curr = that1->value.data.logptr[i];
|
|
previous += curr;
|
|
}
|
|
this->value.data.lngptr[i] = previous;
|
|
this->value.undef[i] = 0;
|
|
}
|
|
|
|
/* Store final cumulant for next pass */
|
|
that2->value.data.lng = previous;
|
|
}
|
|
|
|
while( rows-- ) {
|
|
while( nelem-- ) {
|
|
elem--;
|
|
|
|
if( vector1>1 ) {
|
|
val1 = that1->value.data.logptr[elem];
|
|
null1 = that1->value.undef[elem];
|
|
} else if( vector1 ) {
|
|
val1 = that1->value.data.logptr[rows];
|
|
null1 = that1->value.undef[rows];
|
|
}
|
|
|
|
if( vector2>1 ) {
|
|
val2 = that2->value.data.logptr[elem];
|
|
null2 = that2->value.undef[elem];
|
|
} else if( vector2 ) {
|
|
val2 = that2->value.data.logptr[rows];
|
|
null2 = that2->value.undef[rows];
|
|
}
|
|
|
|
this->value.undef[elem] = (null1 || null2);
|
|
switch( this->operation ) {
|
|
|
|
case OR:
|
|
/* This is more complicated than others to suppress UNDEFs */
|
|
/* in those cases where the other argument is DEF && TRUE */
|
|
|
|
if( !null1 && !null2 ) {
|
|
this->value.data.logptr[elem] = (val1 || val2);
|
|
} else if( (null1 && !null2 && val2)
|
|
|| ( !null1 && null2 && val1 ) ) {
|
|
this->value.data.logptr[elem] = 1;
|
|
this->value.undef[elem] = 0;
|
|
}
|
|
break;
|
|
|
|
case AND:
|
|
/* This is more complicated than others to suppress UNDEFs */
|
|
/* in those cases where the other argument is DEF && FALSE */
|
|
|
|
if( !null1 && !null2 ) {
|
|
this->value.data.logptr[elem] = (val1 && val2);
|
|
} else if( (null1 && !null2 && !val2)
|
|
|| ( !null1 && null2 && !val1 ) ) {
|
|
this->value.data.logptr[elem] = 0;
|
|
this->value.undef[elem] = 0;
|
|
}
|
|
break;
|
|
|
|
case EQ:
|
|
this->value.data.logptr[elem] =
|
|
( (val1 && val2) || (!val1 && !val2) );
|
|
break;
|
|
|
|
case NE:
|
|
this->value.data.logptr[elem] =
|
|
( (val1 && !val2) || (!val1 && val2) );
|
|
break;
|
|
}
|
|
}
|
|
nelem = this->value.nelem;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( that1->operation>0 ) {
|
|
free( that1->value.data.ptr );
|
|
}
|
|
if( that2->operation>0 ) {
|
|
free( that2->value.data.ptr );
|
|
}
|
|
}
|
|
|
|
static void Do_BinOp_lng( Node *this )
|
|
{
|
|
Node *that1, *that2;
|
|
int vector1, vector2;
|
|
long val1=0, val2=0;
|
|
char null1=0, null2=0;
|
|
long rows, nelem, elem;
|
|
|
|
that1 = gParse.Nodes + this->SubNodes[0];
|
|
that2 = gParse.Nodes + this->SubNodes[1];
|
|
|
|
vector1 = ( that1->operation!=CONST_OP );
|
|
if( vector1 )
|
|
vector1 = that1->value.nelem;
|
|
else {
|
|
val1 = that1->value.data.lng;
|
|
}
|
|
|
|
vector2 = ( that2->operation!=CONST_OP );
|
|
if( vector2 )
|
|
vector2 = that2->value.nelem;
|
|
else {
|
|
val2 = that2->value.data.lng;
|
|
}
|
|
|
|
if( !vector1 && !vector2 ) { /* Result is a constant */
|
|
|
|
switch( this->operation ) {
|
|
case '~': /* Treat as == for LONGS */
|
|
case EQ: this->value.data.log = (val1 == val2); break;
|
|
case NE: this->value.data.log = (val1 != val2); break;
|
|
case GT: this->value.data.log = (val1 > val2); break;
|
|
case LT: this->value.data.log = (val1 < val2); break;
|
|
case LTE: this->value.data.log = (val1 <= val2); break;
|
|
case GTE: this->value.data.log = (val1 >= val2); break;
|
|
|
|
case '+': this->value.data.lng = (val1 + val2); break;
|
|
case '-': this->value.data.lng = (val1 - val2); break;
|
|
case '*': this->value.data.lng = (val1 * val2); break;
|
|
|
|
case '%':
|
|
if( val2 ) this->value.data.lng = (val1 % val2);
|
|
else yyerror("Divide by Zero");
|
|
break;
|
|
case '/':
|
|
if( val2 ) this->value.data.lng = (val1 / val2);
|
|
else yyerror("Divide by Zero");
|
|
break;
|
|
case POWER:
|
|
this->value.data.lng = (long)pow((double)val1,(double)val2);
|
|
break;
|
|
case ACCUM:
|
|
this->value.data.lng = val1;
|
|
break;
|
|
case DIFF:
|
|
this->value.data.lng = 0;
|
|
break;
|
|
}
|
|
this->operation=CONST_OP;
|
|
|
|
} else if ((this->operation == ACCUM) || (this->operation == DIFF)) {
|
|
long i, previous, curr;
|
|
long undef;
|
|
rows = gParse.nRows;
|
|
nelem = this->value.nelem;
|
|
elem = this->value.nelem * rows;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
previous = that2->value.data.lng;
|
|
undef = (long) that2->value.undef;
|
|
|
|
if (this->operation == ACCUM) {
|
|
/* Cumulative sum of this chunk */
|
|
for (i=0; i<elem; i++) {
|
|
if (!that1->value.undef[i]) {
|
|
curr = that1->value.data.lngptr[i];
|
|
previous += curr;
|
|
}
|
|
this->value.data.lngptr[i] = previous;
|
|
this->value.undef[i] = 0;
|
|
}
|
|
} else {
|
|
/* Sequential difference for this chunk */
|
|
for (i=0; i<elem; i++) {
|
|
curr = that1->value.data.lngptr[i];
|
|
if (that1->value.undef[i] || undef) {
|
|
/* Either this, or previous, value was undefined */
|
|
this->value.data.lngptr[i] = 0;
|
|
this->value.undef[i] = 1;
|
|
} else {
|
|
/* Both defined, we are okay! */
|
|
this->value.data.lngptr[i] = curr - previous;
|
|
this->value.undef[i] = 0;
|
|
}
|
|
|
|
previous = curr;
|
|
undef = that1->value.undef[i];
|
|
}
|
|
}
|
|
|
|
/* Store final cumulant for next pass */
|
|
that2->value.data.lng = previous;
|
|
that2->value.undef = (char *) undef; /* XXX evil, but no harm here */
|
|
}
|
|
|
|
} else {
|
|
|
|
rows = gParse.nRows;
|
|
nelem = this->value.nelem;
|
|
elem = this->value.nelem * rows;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
while( rows-- && !gParse.status ) {
|
|
while( nelem-- && !gParse.status ) {
|
|
elem--;
|
|
|
|
if( vector1>1 ) {
|
|
val1 = that1->value.data.lngptr[elem];
|
|
null1 = that1->value.undef[elem];
|
|
} else if( vector1 ) {
|
|
val1 = that1->value.data.lngptr[rows];
|
|
null1 = that1->value.undef[rows];
|
|
}
|
|
|
|
if( vector2>1 ) {
|
|
val2 = that2->value.data.lngptr[elem];
|
|
null2 = that2->value.undef[elem];
|
|
} else if( vector2 ) {
|
|
val2 = that2->value.data.lngptr[rows];
|
|
null2 = that2->value.undef[rows];
|
|
}
|
|
|
|
this->value.undef[elem] = (null1 || null2);
|
|
switch( this->operation ) {
|
|
case '~': /* Treat as == for LONGS */
|
|
case EQ: this->value.data.logptr[elem] = (val1 == val2); break;
|
|
case NE: this->value.data.logptr[elem] = (val1 != val2); break;
|
|
case GT: this->value.data.logptr[elem] = (val1 > val2); break;
|
|
case LT: this->value.data.logptr[elem] = (val1 < val2); break;
|
|
case LTE: this->value.data.logptr[elem] = (val1 <= val2); break;
|
|
case GTE: this->value.data.logptr[elem] = (val1 >= val2); break;
|
|
|
|
case '+': this->value.data.lngptr[elem] = (val1 + val2); break;
|
|
case '-': this->value.data.lngptr[elem] = (val1 - val2); break;
|
|
case '*': this->value.data.lngptr[elem] = (val1 * val2); break;
|
|
|
|
case '%':
|
|
if( val2 ) this->value.data.lngptr[elem] = (val1 % val2);
|
|
else {
|
|
this->value.data.lngptr[elem] = 0;
|
|
this->value.undef[elem] = 1;
|
|
}
|
|
break;
|
|
case '/':
|
|
if( val2 ) this->value.data.lngptr[elem] = (val1 / val2);
|
|
else {
|
|
this->value.data.lngptr[elem] = 0;
|
|
this->value.undef[elem] = 1;
|
|
}
|
|
break;
|
|
case POWER:
|
|
this->value.data.lngptr[elem] = (long)pow((double)val1,(double)val2);
|
|
break;
|
|
}
|
|
}
|
|
nelem = this->value.nelem;
|
|
}
|
|
}
|
|
|
|
if( that1->operation>0 ) {
|
|
free( that1->value.data.ptr );
|
|
}
|
|
if( that2->operation>0 ) {
|
|
free( that2->value.data.ptr );
|
|
}
|
|
}
|
|
|
|
static void Do_BinOp_dbl( Node *this )
|
|
{
|
|
Node *that1, *that2;
|
|
int vector1, vector2;
|
|
double val1=0.0, val2=0.0;
|
|
char null1=0, null2=0;
|
|
long rows, nelem, elem;
|
|
|
|
that1 = gParse.Nodes + this->SubNodes[0];
|
|
that2 = gParse.Nodes + this->SubNodes[1];
|
|
|
|
vector1 = ( that1->operation!=CONST_OP );
|
|
if( vector1 )
|
|
vector1 = that1->value.nelem;
|
|
else {
|
|
val1 = that1->value.data.dbl;
|
|
}
|
|
|
|
vector2 = ( that2->operation!=CONST_OP );
|
|
if( vector2 )
|
|
vector2 = that2->value.nelem;
|
|
else {
|
|
val2 = that2->value.data.dbl;
|
|
}
|
|
|
|
if( !vector1 && !vector2 ) { /* Result is a constant */
|
|
|
|
switch( this->operation ) {
|
|
case '~': this->value.data.log = ( fabs(val1-val2) < APPROX ); break;
|
|
case EQ: this->value.data.log = (val1 == val2); break;
|
|
case NE: this->value.data.log = (val1 != val2); break;
|
|
case GT: this->value.data.log = (val1 > val2); break;
|
|
case LT: this->value.data.log = (val1 < val2); break;
|
|
case LTE: this->value.data.log = (val1 <= val2); break;
|
|
case GTE: this->value.data.log = (val1 >= val2); break;
|
|
|
|
case '+': this->value.data.dbl = (val1 + val2); break;
|
|
case '-': this->value.data.dbl = (val1 - val2); break;
|
|
case '*': this->value.data.dbl = (val1 * val2); break;
|
|
|
|
case '%':
|
|
if( val2 ) this->value.data.dbl = val1 - val2*((int)(val1/val2));
|
|
else yyerror("Divide by Zero");
|
|
break;
|
|
case '/':
|
|
if( val2 ) this->value.data.dbl = (val1 / val2);
|
|
else yyerror("Divide by Zero");
|
|
break;
|
|
case POWER:
|
|
this->value.data.dbl = (double)pow(val1,val2);
|
|
break;
|
|
case ACCUM:
|
|
this->value.data.dbl = val1;
|
|
break;
|
|
case DIFF:
|
|
this->value.data.dbl = 0;
|
|
break;
|
|
}
|
|
this->operation=CONST_OP;
|
|
|
|
} else if ((this->operation == ACCUM) || (this->operation == DIFF)) {
|
|
long i;
|
|
long undef;
|
|
double previous, curr;
|
|
rows = gParse.nRows;
|
|
nelem = this->value.nelem;
|
|
elem = this->value.nelem * rows;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
previous = that2->value.data.dbl;
|
|
undef = (long) that2->value.undef;
|
|
|
|
if (this->operation == ACCUM) {
|
|
/* Cumulative sum of this chunk */
|
|
for (i=0; i<elem; i++) {
|
|
if (!that1->value.undef[i]) {
|
|
curr = that1->value.data.dblptr[i];
|
|
previous += curr;
|
|
}
|
|
this->value.data.dblptr[i] = previous;
|
|
this->value.undef[i] = 0;
|
|
}
|
|
} else {
|
|
/* Sequential difference for this chunk */
|
|
for (i=0; i<elem; i++) {
|
|
curr = that1->value.data.dblptr[i];
|
|
if (that1->value.undef[i] || undef) {
|
|
/* Either this, or previous, value was undefined */
|
|
this->value.data.dblptr[i] = 0;
|
|
this->value.undef[i] = 1;
|
|
} else {
|
|
/* Both defined, we are okay! */
|
|
this->value.data.dblptr[i] = curr - previous;
|
|
this->value.undef[i] = 0;
|
|
}
|
|
|
|
previous = curr;
|
|
undef = that1->value.undef[i];
|
|
}
|
|
}
|
|
|
|
/* Store final cumulant for next pass */
|
|
that2->value.data.dbl = previous;
|
|
that2->value.undef = (char *) undef; /* XXX evil, but no harm here */
|
|
}
|
|
|
|
} else {
|
|
|
|
rows = gParse.nRows;
|
|
nelem = this->value.nelem;
|
|
elem = this->value.nelem * rows;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
while( rows-- && !gParse.status ) {
|
|
while( nelem-- && !gParse.status ) {
|
|
elem--;
|
|
|
|
if( vector1>1 ) {
|
|
val1 = that1->value.data.dblptr[elem];
|
|
null1 = that1->value.undef[elem];
|
|
} else if( vector1 ) {
|
|
val1 = that1->value.data.dblptr[rows];
|
|
null1 = that1->value.undef[rows];
|
|
}
|
|
|
|
if( vector2>1 ) {
|
|
val2 = that2->value.data.dblptr[elem];
|
|
null2 = that2->value.undef[elem];
|
|
} else if( vector2 ) {
|
|
val2 = that2->value.data.dblptr[rows];
|
|
null2 = that2->value.undef[rows];
|
|
}
|
|
|
|
this->value.undef[elem] = (null1 || null2);
|
|
switch( this->operation ) {
|
|
case '~': this->value.data.logptr[elem] =
|
|
( fabs(val1-val2) < APPROX ); break;
|
|
case EQ: this->value.data.logptr[elem] = (val1 == val2); break;
|
|
case NE: this->value.data.logptr[elem] = (val1 != val2); break;
|
|
case GT: this->value.data.logptr[elem] = (val1 > val2); break;
|
|
case LT: this->value.data.logptr[elem] = (val1 < val2); break;
|
|
case LTE: this->value.data.logptr[elem] = (val1 <= val2); break;
|
|
case GTE: this->value.data.logptr[elem] = (val1 >= val2); break;
|
|
|
|
case '+': this->value.data.dblptr[elem] = (val1 + val2); break;
|
|
case '-': this->value.data.dblptr[elem] = (val1 - val2); break;
|
|
case '*': this->value.data.dblptr[elem] = (val1 * val2); break;
|
|
|
|
case '%':
|
|
if( val2 ) this->value.data.dblptr[elem] =
|
|
val1 - val2*((int)(val1/val2));
|
|
else {
|
|
this->value.data.dblptr[elem] = 0.0;
|
|
this->value.undef[elem] = 1;
|
|
}
|
|
break;
|
|
case '/':
|
|
if( val2 ) this->value.data.dblptr[elem] = (val1 / val2);
|
|
else {
|
|
this->value.data.dblptr[elem] = 0.0;
|
|
this->value.undef[elem] = 1;
|
|
}
|
|
break;
|
|
case POWER:
|
|
this->value.data.dblptr[elem] = (double)pow(val1,val2);
|
|
break;
|
|
}
|
|
}
|
|
nelem = this->value.nelem;
|
|
}
|
|
}
|
|
|
|
if( that1->operation>0 ) {
|
|
free( that1->value.data.ptr );
|
|
}
|
|
if( that2->operation>0 ) {
|
|
free( that2->value.data.ptr );
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This Quickselect routine is based on the algorithm described in
|
|
* "Numerical recipes in C", Second Edition,
|
|
* Cambridge University Press, 1992, Section 8.5, ISBN 0-521-43108-5
|
|
* This code by Nicolas Devillard - 1998. Public domain.
|
|
* http://ndevilla.free.fr/median/median/src/quickselect.c
|
|
*/
|
|
|
|
#define ELEM_SWAP(a,b) { register long t=(a);(a)=(b);(b)=t; }
|
|
|
|
/*
|
|
* qselect_median_lng - select the median value of a long array
|
|
*
|
|
* This routine selects the median value of the long integer array
|
|
* arr[]. If there are an even number of elements, the "lower median"
|
|
* is selected.
|
|
*
|
|
* The array arr[] is scrambled, so users must operate on a scratch
|
|
* array if they wish the values to be preserved.
|
|
*
|
|
* long arr[] - array of values
|
|
* int n - number of elements in arr
|
|
*
|
|
* RETURNS: the lower median value of arr[]
|
|
*
|
|
*/
|
|
long qselect_median_lng(long arr[], int n)
|
|
{
|
|
int low, high ;
|
|
int median;
|
|
int middle, ll, hh;
|
|
|
|
low = 0 ; high = n-1 ; median = (low + high) / 2;
|
|
for (;;) {
|
|
|
|
if (high <= low) { /* One element only */
|
|
return arr[median];
|
|
}
|
|
|
|
if (high == low + 1) { /* Two elements only */
|
|
if (arr[low] > arr[high])
|
|
ELEM_SWAP(arr[low], arr[high]) ;
|
|
return arr[median];
|
|
}
|
|
|
|
/* Find median of low, middle and high items; swap into position low */
|
|
middle = (low + high) / 2;
|
|
if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]) ;
|
|
if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ;
|
|
if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ;
|
|
|
|
/* Swap low item (now in position middle) into position (low+1) */
|
|
ELEM_SWAP(arr[middle], arr[low+1]) ;
|
|
|
|
/* Nibble from each end towards middle, swapping items when stuck */
|
|
ll = low + 1;
|
|
hh = high;
|
|
for (;;) {
|
|
do ll++; while (arr[low] > arr[ll]) ;
|
|
do hh--; while (arr[hh] > arr[low]) ;
|
|
|
|
if (hh < ll)
|
|
break;
|
|
|
|
ELEM_SWAP(arr[ll], arr[hh]) ;
|
|
}
|
|
|
|
/* Swap middle item (in position low) back into correct position */
|
|
ELEM_SWAP(arr[low], arr[hh]) ;
|
|
|
|
/* Re-set active partition */
|
|
if (hh <= median)
|
|
low = ll;
|
|
if (hh >= median)
|
|
high = hh - 1;
|
|
}
|
|
}
|
|
|
|
#undef ELEM_SWAP
|
|
|
|
#define ELEM_SWAP(a,b) { register double t=(a);(a)=(b);(b)=t; }
|
|
|
|
/*
|
|
* qselect_median_dbl - select the median value of a double array
|
|
*
|
|
* This routine selects the median value of the double array
|
|
* arr[]. If there are an even number of elements, the "lower median"
|
|
* is selected.
|
|
*
|
|
* The array arr[] is scrambled, so users must operate on a scratch
|
|
* array if they wish the values to be preserved.
|
|
*
|
|
* double arr[] - array of values
|
|
* int n - number of elements in arr
|
|
*
|
|
* RETURNS: the lower median value of arr[]
|
|
*
|
|
*/
|
|
double qselect_median_dbl(double arr[], int n)
|
|
{
|
|
int low, high ;
|
|
int median;
|
|
int middle, ll, hh;
|
|
|
|
low = 0 ; high = n-1 ; median = (low + high) / 2;
|
|
for (;;) {
|
|
if (high <= low) { /* One element only */
|
|
return arr[median] ;
|
|
}
|
|
|
|
if (high == low + 1) { /* Two elements only */
|
|
if (arr[low] > arr[high])
|
|
ELEM_SWAP(arr[low], arr[high]) ;
|
|
return arr[median] ;
|
|
}
|
|
|
|
/* Find median of low, middle and high items; swap into position low */
|
|
middle = (low + high) / 2;
|
|
if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]) ;
|
|
if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]) ;
|
|
if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ;
|
|
|
|
/* Swap low item (now in position middle) into position (low+1) */
|
|
ELEM_SWAP(arr[middle], arr[low+1]) ;
|
|
|
|
/* Nibble from each end towards middle, swapping items when stuck */
|
|
ll = low + 1;
|
|
hh = high;
|
|
for (;;) {
|
|
do ll++; while (arr[low] > arr[ll]) ;
|
|
do hh--; while (arr[hh] > arr[low]) ;
|
|
|
|
if (hh < ll)
|
|
break;
|
|
|
|
ELEM_SWAP(arr[ll], arr[hh]) ;
|
|
}
|
|
|
|
/* Swap middle item (in position low) back into correct position */
|
|
ELEM_SWAP(arr[low], arr[hh]) ;
|
|
|
|
/* Re-set active partition */
|
|
if (hh <= median)
|
|
low = ll;
|
|
if (hh >= median)
|
|
high = hh - 1;
|
|
}
|
|
}
|
|
|
|
#undef ELEM_SWAP
|
|
|
|
/*
|
|
* angsep_calc - compute angular separation between celestial coordinates
|
|
*
|
|
* This routine computes the angular separation between to coordinates
|
|
* on the celestial sphere (i.e. RA and Dec). Note that all units are
|
|
* in DEGREES, unlike the other trig functions in the calculator.
|
|
*
|
|
* double ra1, dec1 - RA and Dec of the first position in degrees
|
|
* double ra2, dec2 - RA and Dec of the second position in degrees
|
|
*
|
|
* RETURNS: (double) angular separation in degrees
|
|
*
|
|
*/
|
|
double angsep_calc(double ra1, double dec1, double ra2, double dec2)
|
|
{
|
|
double cd;
|
|
static double deg = 0;
|
|
double a, sdec, sra;
|
|
|
|
if (deg == 0) deg = ((double)4)*atan((double)1)/((double)180);
|
|
/* deg = 1.0; **** UNCOMMENT IF YOU WANT RADIANS */
|
|
|
|
|
|
|
|
/*
|
|
This (commented out) algorithm uses the Low of Cosines, which becomes
|
|
unstable for angles less than 0.1 arcsec.
|
|
|
|
cd = sin(dec1*deg)*sin(dec2*deg)
|
|
+ cos(dec1*deg)*cos(dec2*deg)*cos((ra1-ra2)*deg);
|
|
if (cd < (-1)) cd = -1;
|
|
if (cd > (+1)) cd = +1;
|
|
return acos(cd)/deg;
|
|
*/
|
|
|
|
/* The algorithm is the law of Haversines. This algorithm is
|
|
stable even when the points are close together. The normal
|
|
Law of Cosines fails for angles around 0.1 arcsec. */
|
|
|
|
sra = sin( (ra2 - ra1)*deg / 2 );
|
|
sdec = sin( (dec2 - dec1)*deg / 2);
|
|
a = sdec*sdec + cos(dec1*deg)*cos(dec2*deg)*sra*sra;
|
|
|
|
/* Sanity checking to avoid a range error in the sqrt()'s below */
|
|
if (a < 0) { a = 0; }
|
|
if (a > 1) { a = 1; }
|
|
|
|
return 2.0*atan2(sqrt(a), sqrt(1.0 - a)) / deg;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static double ran1()
|
|
{
|
|
static double dval = 0.0;
|
|
double rndVal;
|
|
|
|
if (dval == 0.0) {
|
|
if( rand()<32768 && rand()<32768 )
|
|
dval = 32768.0;
|
|
else
|
|
dval = 2147483648.0;
|
|
}
|
|
|
|
rndVal = (double)rand();
|
|
while( rndVal > dval ) dval *= 2.0;
|
|
return rndVal/dval;
|
|
}
|
|
|
|
/* Gaussian deviate routine from Numerical Recipes */
|
|
static double gasdev()
|
|
{
|
|
static int iset = 0;
|
|
static double gset;
|
|
double fac, rsq, v1, v2;
|
|
|
|
if (iset == 0) {
|
|
do {
|
|
v1 = 2.0*ran1()-1.0;
|
|
v2 = 2.0*ran1()-1.0;
|
|
rsq = v1*v1 + v2*v2;
|
|
} while (rsq >= 1.0 || rsq == 0.0);
|
|
fac = sqrt(-2.0*log(rsq)/rsq);
|
|
gset = v1*fac;
|
|
iset = 1;
|
|
return v2*fac;
|
|
} else {
|
|
iset = 0;
|
|
return gset;
|
|
}
|
|
|
|
}
|
|
|
|
/* lgamma function - from Numerical Recipes */
|
|
|
|
float gammaln(float xx)
|
|
/* Returns the value ln Gamma[(xx)] for xx > 0. */
|
|
{
|
|
/*
|
|
Internal arithmetic will be done in double precision, a nicety
|
|
that you can omit if five-figure accuracy is good enough. */
|
|
double x,y,tmp,ser;
|
|
static double cof[6]={76.18009172947146,-86.50532032941677,
|
|
24.01409824083091,-1.231739572450155,
|
|
0.1208650973866179e-2,-0.5395239384953e-5};
|
|
int j;
|
|
y=x=xx;
|
|
tmp=x+5.5;
|
|
tmp -= (x+0.5)*log(tmp);
|
|
ser=1.000000000190015;
|
|
for (j=0;j<=5;j++) ser += cof[j]/++y;
|
|
return (float) -tmp+log(2.5066282746310005*ser/x);
|
|
}
|
|
|
|
/* Poisson deviate - derived from Numerical Recipes */
|
|
static long poidev(double xm)
|
|
{
|
|
static double sq, alxm, g, oldm = -1.0;
|
|
static double pi = 0;
|
|
double em, t, y;
|
|
|
|
if (pi == 0) pi = ((double)4)*atan((double)1);
|
|
|
|
if (xm < 20.0) {
|
|
if (xm != oldm) {
|
|
oldm = xm;
|
|
g = exp(-xm);
|
|
}
|
|
em = -1;
|
|
t = 1.0;
|
|
do {
|
|
em += 1;
|
|
t *= ran1();
|
|
} while (t > g);
|
|
} else {
|
|
if (xm != oldm) {
|
|
oldm = xm;
|
|
sq = sqrt(2.0*xm);
|
|
alxm = log(xm);
|
|
g = xm*alxm-gammaln( (float) (xm+1.0));
|
|
}
|
|
do {
|
|
do {
|
|
y = tan(pi*ran1());
|
|
em = sq*y+xm;
|
|
} while (em < 0.0);
|
|
em = floor(em);
|
|
t = 0.9*(1.0+y*y)*exp(em*alxm-gammaln( (float) (em+1.0) )-g);
|
|
} while (ran1() > t);
|
|
}
|
|
|
|
/* Return integer version */
|
|
return (long int) floor(em+0.5);
|
|
}
|
|
|
|
static void Do_Func( Node *this )
|
|
{
|
|
Node *theParams[MAXSUBS];
|
|
int vector[MAXSUBS], allConst;
|
|
lval pVals[MAXSUBS];
|
|
char pNull[MAXSUBS];
|
|
long ival;
|
|
double dval;
|
|
int i, valInit;
|
|
long row, elem, nelem;
|
|
|
|
i = this->nSubNodes;
|
|
allConst = 1;
|
|
while( i-- ) {
|
|
theParams[i] = gParse.Nodes + this->SubNodes[i];
|
|
vector[i] = ( theParams[i]->operation!=CONST_OP );
|
|
if( vector[i] ) {
|
|
allConst = 0;
|
|
vector[i] = theParams[i]->value.nelem;
|
|
} else {
|
|
if( theParams[i]->type==DOUBLE ) {
|
|
pVals[i].data.dbl = theParams[i]->value.data.dbl;
|
|
} else if( theParams[i]->type==LONG ) {
|
|
pVals[i].data.lng = theParams[i]->value.data.lng;
|
|
} else if( theParams[i]->type==BOOLEAN ) {
|
|
pVals[i].data.log = theParams[i]->value.data.log;
|
|
} else
|
|
strcpy(pVals[i].data.str, theParams[i]->value.data.str);
|
|
pNull[i] = 0;
|
|
}
|
|
}
|
|
|
|
if( this->nSubNodes==0 ) allConst = 0; /* These do produce scalars */
|
|
/* Random numbers are *never* constant !! */
|
|
if( this->operation == poirnd_fct ) allConst = 0;
|
|
if( this->operation == gasrnd_fct ) allConst = 0;
|
|
if( this->operation == rnd_fct ) allConst = 0;
|
|
|
|
if( allConst ) {
|
|
|
|
switch( this->operation ) {
|
|
|
|
/* Non-Trig single-argument functions */
|
|
|
|
case sum_fct:
|
|
if( theParams[0]->type==BOOLEAN )
|
|
this->value.data.lng = ( pVals[0].data.log ? 1 : 0 );
|
|
else if( theParams[0]->type==LONG )
|
|
this->value.data.lng = pVals[0].data.lng;
|
|
else if( theParams[0]->type==DOUBLE )
|
|
this->value.data.dbl = pVals[0].data.dbl;
|
|
else if( theParams[0]->type==BITSTR )
|
|
strcpy(this->value.data.str, pVals[0].data.str);
|
|
break;
|
|
case average_fct:
|
|
if( theParams[0]->type==LONG )
|
|
this->value.data.dbl = pVals[0].data.lng;
|
|
else if( theParams[0]->type==DOUBLE )
|
|
this->value.data.dbl = pVals[0].data.dbl;
|
|
break;
|
|
case stddev_fct:
|
|
this->value.data.dbl = 0; /* Standard deviation of a constant = 0 */
|
|
break;
|
|
case median_fct:
|
|
if( theParams[0]->type==BOOLEAN )
|
|
this->value.data.lng = ( pVals[0].data.log ? 1 : 0 );
|
|
else if( theParams[0]->type==LONG )
|
|
this->value.data.lng = pVals[0].data.lng;
|
|
else
|
|
this->value.data.dbl = pVals[0].data.dbl;
|
|
break;
|
|
|
|
case poirnd_fct:
|
|
if( theParams[0]->type==DOUBLE )
|
|
this->value.data.lng = poidev(pVals[0].data.dbl);
|
|
else
|
|
this->value.data.lng = poidev(pVals[0].data.lng);
|
|
break;
|
|
|
|
case abs_fct:
|
|
if( theParams[0]->type==DOUBLE ) {
|
|
dval = pVals[0].data.dbl;
|
|
this->value.data.dbl = (dval>0.0 ? dval : -dval);
|
|
} else {
|
|
ival = pVals[0].data.lng;
|
|
this->value.data.lng = (ival> 0 ? ival : -ival);
|
|
}
|
|
break;
|
|
|
|
/* Special Null-Handling Functions */
|
|
|
|
case nonnull_fct:
|
|
this->value.data.lng = 1; /* Constants are always 1-element and defined */
|
|
break;
|
|
case isnull_fct: /* Constants are always defined */
|
|
this->value.data.log = 0;
|
|
break;
|
|
case defnull_fct:
|
|
if( this->type==BOOLEAN )
|
|
this->value.data.log = pVals[0].data.log;
|
|
else if( this->type==LONG )
|
|
this->value.data.lng = pVals[0].data.lng;
|
|
else if( this->type==DOUBLE )
|
|
this->value.data.dbl = pVals[0].data.dbl;
|
|
else if( this->type==STRING )
|
|
strcpy(this->value.data.str,pVals[0].data.str);
|
|
break;
|
|
|
|
/* Math functions with 1 double argument */
|
|
|
|
case sin_fct:
|
|
this->value.data.dbl = sin( pVals[0].data.dbl );
|
|
break;
|
|
case cos_fct:
|
|
this->value.data.dbl = cos( pVals[0].data.dbl );
|
|
break;
|
|
case tan_fct:
|
|
this->value.data.dbl = tan( pVals[0].data.dbl );
|
|
break;
|
|
case asin_fct:
|
|
dval = pVals[0].data.dbl;
|
|
if( dval<-1.0 || dval>1.0 )
|
|
yyerror("Out of range argument to arcsin");
|
|
else
|
|
this->value.data.dbl = asin( dval );
|
|
break;
|
|
case acos_fct:
|
|
dval = pVals[0].data.dbl;
|
|
if( dval<-1.0 || dval>1.0 )
|
|
yyerror("Out of range argument to arccos");
|
|
else
|
|
this->value.data.dbl = acos( dval );
|
|
break;
|
|
case atan_fct:
|
|
this->value.data.dbl = atan( pVals[0].data.dbl );
|
|
break;
|
|
case sinh_fct:
|
|
this->value.data.dbl = sinh( pVals[0].data.dbl );
|
|
break;
|
|
case cosh_fct:
|
|
this->value.data.dbl = cosh( pVals[0].data.dbl );
|
|
break;
|
|
case tanh_fct:
|
|
this->value.data.dbl = tanh( pVals[0].data.dbl );
|
|
break;
|
|
case exp_fct:
|
|
this->value.data.dbl = exp( pVals[0].data.dbl );
|
|
break;
|
|
case log_fct:
|
|
dval = pVals[0].data.dbl;
|
|
if( dval<=0.0 )
|
|
yyerror("Out of range argument to log");
|
|
else
|
|
this->value.data.dbl = log( dval );
|
|
break;
|
|
case log10_fct:
|
|
dval = pVals[0].data.dbl;
|
|
if( dval<=0.0 )
|
|
yyerror("Out of range argument to log10");
|
|
else
|
|
this->value.data.dbl = log10( dval );
|
|
break;
|
|
case sqrt_fct:
|
|
dval = pVals[0].data.dbl;
|
|
if( dval<0.0 )
|
|
yyerror("Out of range argument to sqrt");
|
|
else
|
|
this->value.data.dbl = sqrt( dval );
|
|
break;
|
|
case ceil_fct:
|
|
this->value.data.dbl = ceil( pVals[0].data.dbl );
|
|
break;
|
|
case floor_fct:
|
|
this->value.data.dbl = floor( pVals[0].data.dbl );
|
|
break;
|
|
case round_fct:
|
|
this->value.data.dbl = floor( pVals[0].data.dbl + 0.5 );
|
|
break;
|
|
|
|
/* Two-argument Trig Functions */
|
|
|
|
case atan2_fct:
|
|
this->value.data.dbl =
|
|
atan2( pVals[0].data.dbl, pVals[1].data.dbl );
|
|
break;
|
|
|
|
/* Four-argument ANGSEP function */
|
|
case angsep_fct:
|
|
this->value.data.dbl =
|
|
angsep_calc(pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl, pVals[3].data.dbl);
|
|
|
|
/* Min/Max functions taking 1 or 2 arguments */
|
|
|
|
case min1_fct:
|
|
/* No constant vectors! */
|
|
if( this->type == DOUBLE )
|
|
this->value.data.dbl = pVals[0].data.dbl;
|
|
else if( this->type == LONG )
|
|
this->value.data.lng = pVals[0].data.lng;
|
|
else if( this->type == BITSTR )
|
|
strcpy(this->value.data.str, pVals[0].data.str);
|
|
break;
|
|
case min2_fct:
|
|
if( this->type == DOUBLE )
|
|
this->value.data.dbl =
|
|
minvalue( pVals[0].data.dbl, pVals[1].data.dbl );
|
|
else if( this->type == LONG )
|
|
this->value.data.lng =
|
|
minvalue( pVals[0].data.lng, pVals[1].data.lng );
|
|
break;
|
|
case max1_fct:
|
|
/* No constant vectors! */
|
|
if( this->type == DOUBLE )
|
|
this->value.data.dbl = pVals[0].data.dbl;
|
|
else if( this->type == LONG )
|
|
this->value.data.lng = pVals[0].data.lng;
|
|
else if( this->type == BITSTR )
|
|
strcpy(this->value.data.str, pVals[0].data.str);
|
|
break;
|
|
case max2_fct:
|
|
if( this->type == DOUBLE )
|
|
this->value.data.dbl =
|
|
maxvalue( pVals[0].data.dbl, pVals[1].data.dbl );
|
|
else if( this->type == LONG )
|
|
this->value.data.lng =
|
|
maxvalue( pVals[0].data.lng, pVals[1].data.lng );
|
|
break;
|
|
|
|
/* Boolean SAO region Functions... scalar or vector dbls */
|
|
|
|
case near_fct:
|
|
this->value.data.log = bnear( pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl );
|
|
break;
|
|
case circle_fct:
|
|
this->value.data.log = circle( pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl, pVals[3].data.dbl,
|
|
pVals[4].data.dbl );
|
|
break;
|
|
case box_fct:
|
|
this->value.data.log = saobox( pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl, pVals[3].data.dbl,
|
|
pVals[4].data.dbl, pVals[5].data.dbl,
|
|
pVals[6].data.dbl );
|
|
break;
|
|
case elps_fct:
|
|
this->value.data.log =
|
|
ellipse( pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl, pVals[3].data.dbl,
|
|
pVals[4].data.dbl, pVals[5].data.dbl,
|
|
pVals[6].data.dbl );
|
|
break;
|
|
|
|
/* C Conditional expression: bool ? expr : expr */
|
|
|
|
case ifthenelse_fct:
|
|
switch( this->type ) {
|
|
case BOOLEAN:
|
|
this->value.data.log = ( pVals[2].data.log ?
|
|
pVals[0].data.log : pVals[1].data.log );
|
|
break;
|
|
case LONG:
|
|
this->value.data.lng = ( pVals[2].data.log ?
|
|
pVals[0].data.lng : pVals[1].data.lng );
|
|
break;
|
|
case DOUBLE:
|
|
this->value.data.dbl = ( pVals[2].data.log ?
|
|
pVals[0].data.dbl : pVals[1].data.dbl );
|
|
break;
|
|
case STRING:
|
|
strcpy(this->value.data.str, ( pVals[2].data.log ?
|
|
pVals[0].data.str :
|
|
pVals[1].data.str ) );
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/* String functions */
|
|
case strmid_fct:
|
|
cstrmid(this->value.data.str, this->value.nelem,
|
|
pVals[0].data.str, pVals[0].nelem,
|
|
pVals[1].data.lng);
|
|
break;
|
|
case strpos_fct:
|
|
{
|
|
char *res = strstr(pVals[0].data.str, pVals[1].data.str);
|
|
if (res == NULL) {
|
|
this->value.data.lng = 0;
|
|
} else {
|
|
this->value.data.lng = (res - pVals[0].data.str) + 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
this->operation = CONST_OP;
|
|
|
|
} else {
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
row = gParse.nRows;
|
|
elem = row * this->value.nelem;
|
|
|
|
if( !gParse.status ) {
|
|
switch( this->operation ) {
|
|
|
|
/* Special functions with no arguments */
|
|
|
|
case row_fct:
|
|
while( row-- ) {
|
|
this->value.data.lngptr[row] = gParse.firstRow + row;
|
|
this->value.undef[row] = 0;
|
|
}
|
|
break;
|
|
case null_fct:
|
|
if( this->type==LONG ) {
|
|
while( row-- ) {
|
|
this->value.data.lngptr[row] = 0;
|
|
this->value.undef[row] = 1;
|
|
}
|
|
} else if( this->type==STRING ) {
|
|
while( row-- ) {
|
|
this->value.data.strptr[row][0] = '\0';
|
|
this->value.undef[row] = 1;
|
|
}
|
|
}
|
|
break;
|
|
case rnd_fct:
|
|
while( elem-- ) {
|
|
this->value.data.dblptr[elem] = ran1();
|
|
this->value.undef[elem] = 0;
|
|
}
|
|
break;
|
|
|
|
case gasrnd_fct:
|
|
while( elem-- ) {
|
|
this->value.data.dblptr[elem] = gasdev();
|
|
this->value.undef[elem] = 0;
|
|
}
|
|
break;
|
|
|
|
case poirnd_fct:
|
|
if( theParams[0]->type==DOUBLE ) {
|
|
if (theParams[0]->operation == CONST_OP) {
|
|
while( elem-- ) {
|
|
this->value.undef[elem] = (pVals[0].data.dbl < 0);
|
|
if (! this->value.undef[elem]) {
|
|
this->value.data.lngptr[elem] = poidev(pVals[0].data.dbl);
|
|
}
|
|
}
|
|
} else {
|
|
while( elem-- ) {
|
|
this->value.undef[elem] = theParams[0]->value.undef[elem];
|
|
if (theParams[0]->value.data.dblptr[elem] < 0)
|
|
this->value.undef[elem] = 1;
|
|
if (! this->value.undef[elem]) {
|
|
this->value.data.lngptr[elem] =
|
|
poidev(theParams[0]->value.data.dblptr[elem]);
|
|
}
|
|
} /* while */
|
|
} /* ! CONST_OP */
|
|
} else {
|
|
/* LONG */
|
|
if (theParams[0]->operation == CONST_OP) {
|
|
while( elem-- ) {
|
|
this->value.undef[elem] = (pVals[0].data.lng < 0);
|
|
if (! this->value.undef[elem]) {
|
|
this->value.data.lngptr[elem] = poidev(pVals[0].data.lng);
|
|
}
|
|
}
|
|
} else {
|
|
while( elem-- ) {
|
|
this->value.undef[elem] = theParams[0]->value.undef[elem];
|
|
if (theParams[0]->value.data.lngptr[elem] < 0)
|
|
this->value.undef[elem] = 1;
|
|
if (! this->value.undef[elem]) {
|
|
this->value.data.lngptr[elem] =
|
|
poidev(theParams[0]->value.data.lngptr[elem]);
|
|
}
|
|
} /* while */
|
|
} /* ! CONST_OP */
|
|
} /* END LONG */
|
|
break;
|
|
|
|
|
|
/* Non-Trig single-argument functions */
|
|
|
|
case sum_fct:
|
|
elem = row * theParams[0]->value.nelem;
|
|
if( theParams[0]->type==BOOLEAN ) {
|
|
while( row-- ) {
|
|
this->value.data.lngptr[row] = 0;
|
|
/* Default is UNDEF until a defined value is found */
|
|
this->value.undef[row] = 1;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if ( ! theParams[0]->value.undef[elem] ) {
|
|
this->value.data.lngptr[row] +=
|
|
( theParams[0]->value.data.logptr[elem] ? 1 : 0 );
|
|
this->value.undef[row] = 0;
|
|
}
|
|
}
|
|
}
|
|
} else if( theParams[0]->type==LONG ) {
|
|
while( row-- ) {
|
|
this->value.data.lngptr[row] = 0;
|
|
/* Default is UNDEF until a defined value is found */
|
|
this->value.undef[row] = 1;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if ( ! theParams[0]->value.undef[elem] ) {
|
|
this->value.data.lngptr[row] +=
|
|
theParams[0]->value.data.lngptr[elem];
|
|
this->value.undef[row] = 0;
|
|
}
|
|
}
|
|
}
|
|
} else if( theParams[0]->type==DOUBLE ){
|
|
while( row-- ) {
|
|
this->value.data.dblptr[row] = 0.0;
|
|
/* Default is UNDEF until a defined value is found */
|
|
this->value.undef[row] = 1;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if ( ! theParams[0]->value.undef[elem] ) {
|
|
this->value.data.dblptr[row] +=
|
|
theParams[0]->value.data.dblptr[elem];
|
|
this->value.undef[row] = 0;
|
|
}
|
|
}
|
|
}
|
|
} else { /* BITSTR */
|
|
nelem = theParams[0]->value.nelem;
|
|
while( row-- ) {
|
|
char *sptr1 = theParams[0]->value.data.strptr[row];
|
|
this->value.data.lngptr[row] = 0;
|
|
this->value.undef[row] = 0;
|
|
while (*sptr1) {
|
|
if (*sptr1 == '1') this->value.data.lngptr[row] ++;
|
|
sptr1++;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case average_fct:
|
|
elem = row * theParams[0]->value.nelem;
|
|
if( theParams[0]->type==LONG ) {
|
|
while( row-- ) {
|
|
int count = 0;
|
|
this->value.data.dblptr[row] = 0;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if (theParams[0]->value.undef[elem] == 0) {
|
|
this->value.data.dblptr[row] +=
|
|
theParams[0]->value.data.lngptr[elem];
|
|
count ++;
|
|
}
|
|
}
|
|
if (count == 0) {
|
|
this->value.undef[row] = 1;
|
|
} else {
|
|
this->value.undef[row] = 0;
|
|
this->value.data.dblptr[row] /= count;
|
|
}
|
|
}
|
|
} else if( theParams[0]->type==DOUBLE ){
|
|
while( row-- ) {
|
|
int count = 0;
|
|
this->value.data.dblptr[row] = 0;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if (theParams[0]->value.undef[elem] == 0) {
|
|
this->value.data.dblptr[row] +=
|
|
theParams[0]->value.data.dblptr[elem];
|
|
count ++;
|
|
}
|
|
}
|
|
if (count == 0) {
|
|
this->value.undef[row] = 1;
|
|
} else {
|
|
this->value.undef[row] = 0;
|
|
this->value.data.dblptr[row] /= count;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case stddev_fct:
|
|
elem = row * theParams[0]->value.nelem;
|
|
if( theParams[0]->type==LONG ) {
|
|
|
|
/* Compute the mean value */
|
|
while( row-- ) {
|
|
int count = 0;
|
|
double sum = 0, sum2 = 0;
|
|
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if (theParams[0]->value.undef[elem] == 0) {
|
|
sum += theParams[0]->value.data.lngptr[elem];
|
|
count ++;
|
|
}
|
|
}
|
|
if (count > 1) {
|
|
sum /= count;
|
|
|
|
/* Compute the sum of squared deviations */
|
|
nelem = theParams[0]->value.nelem;
|
|
elem += nelem; /* Reset elem for second pass */
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if (theParams[0]->value.undef[elem] == 0) {
|
|
double dx = (theParams[0]->value.data.lngptr[elem] - sum);
|
|
sum2 += (dx*dx);
|
|
}
|
|
}
|
|
|
|
sum2 /= (double)count-1;
|
|
|
|
this->value.undef[row] = 0;
|
|
this->value.data.dblptr[row] = sqrt(sum2);
|
|
} else {
|
|
this->value.undef[row] = 0; /* STDDEV => 0 */
|
|
this->value.data.dblptr[row] = 0;
|
|
}
|
|
}
|
|
} else if( theParams[0]->type==DOUBLE ){
|
|
|
|
/* Compute the mean value */
|
|
while( row-- ) {
|
|
int count = 0;
|
|
double sum = 0, sum2 = 0;
|
|
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if (theParams[0]->value.undef[elem] == 0) {
|
|
sum += theParams[0]->value.data.dblptr[elem];
|
|
count ++;
|
|
}
|
|
}
|
|
if (count > 1) {
|
|
sum /= count;
|
|
|
|
/* Compute the sum of squared deviations */
|
|
nelem = theParams[0]->value.nelem;
|
|
elem += nelem; /* Reset elem for second pass */
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if (theParams[0]->value.undef[elem] == 0) {
|
|
double dx = (theParams[0]->value.data.dblptr[elem] - sum);
|
|
sum2 += (dx*dx);
|
|
}
|
|
}
|
|
|
|
sum2 /= (double)count-1;
|
|
|
|
this->value.undef[row] = 0;
|
|
this->value.data.dblptr[row] = sqrt(sum2);
|
|
} else {
|
|
this->value.undef[row] = 0; /* STDDEV => 0 */
|
|
this->value.data.dblptr[row] = 0;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case median_fct:
|
|
elem = row * theParams[0]->value.nelem;
|
|
nelem = theParams[0]->value.nelem;
|
|
if( theParams[0]->type==LONG ) {
|
|
long *dptr = theParams[0]->value.data.lngptr;
|
|
char *uptr = theParams[0]->value.undef;
|
|
long *mptr = (long *) malloc(sizeof(long)*nelem);
|
|
int irow;
|
|
|
|
/* Allocate temporary storage for this row, since the
|
|
quickselect function will scramble the contents */
|
|
if (mptr == 0) {
|
|
yyerror("Could not allocate temporary memory in median function");
|
|
free( this->value.data.ptr );
|
|
break;
|
|
}
|
|
|
|
for (irow=0; irow<row; irow++) {
|
|
long *p = mptr;
|
|
int nelem1 = nelem;
|
|
int count = 0;
|
|
|
|
while ( nelem1-- ) {
|
|
if (*uptr == 0) {
|
|
*p++ = *dptr; /* Only advance the dest pointer if we copied */
|
|
}
|
|
dptr ++; /* Advance the source pointer ... */
|
|
uptr ++; /* ... and source "undef" pointer */
|
|
}
|
|
|
|
nelem1 = (p - mptr); /* Number of accepted data points */
|
|
if (nelem1 > 0) {
|
|
this->value.undef[irow] = 0;
|
|
this->value.data.lngptr[irow] = qselect_median_lng(mptr, nelem1);
|
|
} else {
|
|
this->value.undef[irow] = 1;
|
|
this->value.data.lngptr[irow] = 0;
|
|
}
|
|
|
|
}
|
|
|
|
free(mptr);
|
|
} else {
|
|
double *dptr = theParams[0]->value.data.dblptr;
|
|
char *uptr = theParams[0]->value.undef;
|
|
double *mptr = (double *) malloc(sizeof(double)*nelem);
|
|
int irow;
|
|
|
|
/* Allocate temporary storage for this row, since the
|
|
quickselect function will scramble the contents */
|
|
if (mptr == 0) {
|
|
yyerror("Could not allocate temporary memory in median function");
|
|
free( this->value.data.ptr );
|
|
break;
|
|
}
|
|
|
|
for (irow=0; irow<row; irow++) {
|
|
double *p = mptr;
|
|
int nelem1 = nelem;
|
|
|
|
while ( nelem1-- ) {
|
|
if (*uptr == 0) {
|
|
*p++ = *dptr; /* Only advance the dest pointer if we copied */
|
|
}
|
|
dptr ++; /* Advance the source pointer ... */
|
|
uptr ++; /* ... and source "undef" pointer */
|
|
}
|
|
|
|
nelem1 = (p - mptr); /* Number of accepted data points */
|
|
if (nelem1 > 0) {
|
|
this->value.undef[irow] = 0;
|
|
this->value.data.dblptr[irow] = qselect_median_dbl(mptr, nelem1);
|
|
} else {
|
|
this->value.undef[irow] = 1;
|
|
this->value.data.dblptr[irow] = 0;
|
|
}
|
|
|
|
}
|
|
free(mptr);
|
|
}
|
|
break;
|
|
case abs_fct:
|
|
if( theParams[0]->type==DOUBLE )
|
|
while( elem-- ) {
|
|
dval = theParams[0]->value.data.dblptr[elem];
|
|
this->value.data.dblptr[elem] = (dval>0.0 ? dval : -dval);
|
|
this->value.undef[elem] = theParams[0]->value.undef[elem];
|
|
}
|
|
else
|
|
while( elem-- ) {
|
|
ival = theParams[0]->value.data.lngptr[elem];
|
|
this->value.data.lngptr[elem] = (ival> 0 ? ival : -ival);
|
|
this->value.undef[elem] = theParams[0]->value.undef[elem];
|
|
}
|
|
break;
|
|
|
|
/* Special Null-Handling Functions */
|
|
|
|
case nonnull_fct:
|
|
nelem = theParams[0]->value.nelem;
|
|
if ( theParams[0]->type==STRING ) nelem = 1;
|
|
elem = row * nelem;
|
|
while( row-- ) {
|
|
int nelem1 = nelem;
|
|
|
|
this->value.undef[row] = 0; /* Initialize to 0 (defined) */
|
|
this->value.data.lngptr[row] = 0;
|
|
while( nelem1-- ) {
|
|
elem --;
|
|
if ( theParams[0]->value.undef[elem] == 0 ) this->value.data.lngptr[row] ++;
|
|
}
|
|
}
|
|
break;
|
|
case isnull_fct:
|
|
if( theParams[0]->type==STRING ) elem = row;
|
|
while( elem-- ) {
|
|
this->value.data.logptr[elem] = theParams[0]->value.undef[elem];
|
|
this->value.undef[elem] = 0;
|
|
}
|
|
break;
|
|
case defnull_fct:
|
|
switch( this->type ) {
|
|
case BOOLEAN:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
pVals[i].data.log =
|
|
theParams[i]->value.data.logptr[elem];
|
|
} else if( vector[i] ) {
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
pVals[i].data.log =
|
|
theParams[i]->value.data.logptr[row];
|
|
}
|
|
if( pNull[0] ) {
|
|
this->value.undef[elem] = pNull[1];
|
|
this->value.data.logptr[elem] = pVals[1].data.log;
|
|
} else {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.logptr[elem] = pVals[0].data.log;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case LONG:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
pVals[i].data.lng =
|
|
theParams[i]->value.data.lngptr[elem];
|
|
} else if( vector[i] ) {
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
pVals[i].data.lng =
|
|
theParams[i]->value.data.lngptr[row];
|
|
}
|
|
if( pNull[0] ) {
|
|
this->value.undef[elem] = pNull[1];
|
|
this->value.data.lngptr[elem] = pVals[1].data.lng;
|
|
} else {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.lngptr[elem] = pVals[0].data.lng;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case DOUBLE:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
} else if( vector[i] ) {
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
}
|
|
if( pNull[0] ) {
|
|
this->value.undef[elem] = pNull[1];
|
|
this->value.data.dblptr[elem] = pVals[1].data.dbl;
|
|
} else {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.dblptr[elem] = pVals[0].data.dbl;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case STRING:
|
|
while( row-- ) {
|
|
i=2; while( i-- )
|
|
if( vector[i] ) {
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
strcpy(pVals[i].data.str,
|
|
theParams[i]->value.data.strptr[row]);
|
|
}
|
|
if( pNull[0] ) {
|
|
this->value.undef[row] = pNull[1];
|
|
strcpy(this->value.data.strptr[row],pVals[1].data.str);
|
|
} else {
|
|
this->value.undef[elem] = 0;
|
|
strcpy(this->value.data.strptr[row],pVals[0].data.str);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Math functions with 1 double argument */
|
|
|
|
case sin_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
sin( theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
break;
|
|
case cos_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
cos( theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
break;
|
|
case tan_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
tan( theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
break;
|
|
case asin_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
dval = theParams[0]->value.data.dblptr[elem];
|
|
if( dval<-1.0 || dval>1.0 ) {
|
|
this->value.data.dblptr[elem] = 0.0;
|
|
this->value.undef[elem] = 1;
|
|
} else
|
|
this->value.data.dblptr[elem] = asin( dval );
|
|
}
|
|
break;
|
|
case acos_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
dval = theParams[0]->value.data.dblptr[elem];
|
|
if( dval<-1.0 || dval>1.0 ) {
|
|
this->value.data.dblptr[elem] = 0.0;
|
|
this->value.undef[elem] = 1;
|
|
} else
|
|
this->value.data.dblptr[elem] = acos( dval );
|
|
}
|
|
break;
|
|
case atan_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
dval = theParams[0]->value.data.dblptr[elem];
|
|
this->value.data.dblptr[elem] = atan( dval );
|
|
}
|
|
break;
|
|
case sinh_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
sinh( theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
break;
|
|
case cosh_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
cosh( theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
break;
|
|
case tanh_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
tanh( theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
break;
|
|
case exp_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
dval = theParams[0]->value.data.dblptr[elem];
|
|
this->value.data.dblptr[elem] = exp( dval );
|
|
}
|
|
break;
|
|
case log_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
dval = theParams[0]->value.data.dblptr[elem];
|
|
if( dval<=0.0 ) {
|
|
this->value.data.dblptr[elem] = 0.0;
|
|
this->value.undef[elem] = 1;
|
|
} else
|
|
this->value.data.dblptr[elem] = log( dval );
|
|
}
|
|
break;
|
|
case log10_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
dval = theParams[0]->value.data.dblptr[elem];
|
|
if( dval<=0.0 ) {
|
|
this->value.data.dblptr[elem] = 0.0;
|
|
this->value.undef[elem] = 1;
|
|
} else
|
|
this->value.data.dblptr[elem] = log10( dval );
|
|
}
|
|
break;
|
|
case sqrt_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
dval = theParams[0]->value.data.dblptr[elem];
|
|
if( dval<0.0 ) {
|
|
this->value.data.dblptr[elem] = 0.0;
|
|
this->value.undef[elem] = 1;
|
|
} else
|
|
this->value.data.dblptr[elem] = sqrt( dval );
|
|
}
|
|
break;
|
|
case ceil_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
ceil( theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
break;
|
|
case floor_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
floor( theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
break;
|
|
case round_fct:
|
|
while( elem-- )
|
|
if( !(this->value.undef[elem] = theParams[0]->value.undef[elem]) ) {
|
|
this->value.data.dblptr[elem] =
|
|
floor( theParams[0]->value.data.dblptr[elem] + 0.5);
|
|
}
|
|
break;
|
|
|
|
/* Two-argument Trig Functions */
|
|
|
|
case atan2_fct:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = (pNull[0] || pNull[1]) ) )
|
|
this->value.data.dblptr[elem] =
|
|
atan2( pVals[0].data.dbl, pVals[1].data.dbl );
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Four-argument ANGSEP Function */
|
|
|
|
case angsep_fct:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=4; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
|
|
pNull[2] || pNull[3]) ) )
|
|
this->value.data.dblptr[elem] =
|
|
angsep_calc(pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl, pVals[3].data.dbl);
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
|
|
/* Min/Max functions taking 1 or 2 arguments */
|
|
|
|
case min1_fct:
|
|
elem = row * theParams[0]->value.nelem;
|
|
if( this->type==LONG ) {
|
|
long minVal=0;
|
|
while( row-- ) {
|
|
valInit = 1;
|
|
this->value.undef[row] = 1;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if ( !theParams[0]->value.undef[elem] ) {
|
|
if ( valInit ) {
|
|
valInit = 0;
|
|
minVal = theParams[0]->value.data.lngptr[elem];
|
|
} else {
|
|
minVal = minvalue( minVal,
|
|
theParams[0]->value.data.lngptr[elem] );
|
|
}
|
|
this->value.undef[row] = 0;
|
|
}
|
|
}
|
|
this->value.data.lngptr[row] = minVal;
|
|
}
|
|
} else if( this->type==DOUBLE ) {
|
|
double minVal=0.0;
|
|
while( row-- ) {
|
|
valInit = 1;
|
|
this->value.undef[row] = 1;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if ( !theParams[0]->value.undef[elem] ) {
|
|
if ( valInit ) {
|
|
valInit = 0;
|
|
minVal = theParams[0]->value.data.dblptr[elem];
|
|
} else {
|
|
minVal = minvalue( minVal,
|
|
theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
this->value.undef[row] = 0;
|
|
}
|
|
}
|
|
this->value.data.dblptr[row] = minVal;
|
|
}
|
|
} else if( this->type==BITSTR ) {
|
|
char minVal;
|
|
while( row-- ) {
|
|
char *sptr1 = theParams[0]->value.data.strptr[row];
|
|
minVal = '1';
|
|
while (*sptr1) {
|
|
if (*sptr1 == '0') minVal = '0';
|
|
sptr1++;
|
|
}
|
|
this->value.data.strptr[row][0] = minVal;
|
|
this->value.data.strptr[row][1] = 0; /* Null terminate */
|
|
}
|
|
}
|
|
break;
|
|
case min2_fct:
|
|
if( this->type==LONG ) {
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.lng =
|
|
theParams[i]->value.data.lngptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.lng =
|
|
theParams[i]->value.data.lngptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( pNull[0] && pNull[1] ) {
|
|
this->value.undef[elem] = 1;
|
|
this->value.data.lngptr[elem] = 0;
|
|
} else if (pNull[0]) {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.lngptr[elem] = pVals[1].data.lng;
|
|
} else if (pNull[1]) {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.lngptr[elem] = pVals[0].data.lng;
|
|
} else {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.lngptr[elem] =
|
|
minvalue( pVals[0].data.lng, pVals[1].data.lng );
|
|
}
|
|
}
|
|
}
|
|
} else if( this->type==DOUBLE ) {
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( pNull[0] && pNull[1] ) {
|
|
this->value.undef[elem] = 1;
|
|
this->value.data.dblptr[elem] = 0;
|
|
} else if (pNull[0]) {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.dblptr[elem] = pVals[1].data.dbl;
|
|
} else if (pNull[1]) {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.dblptr[elem] = pVals[0].data.dbl;
|
|
} else {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.dblptr[elem] =
|
|
minvalue( pVals[0].data.dbl, pVals[1].data.dbl );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case max1_fct:
|
|
elem = row * theParams[0]->value.nelem;
|
|
if( this->type==LONG ) {
|
|
long maxVal=0;
|
|
while( row-- ) {
|
|
valInit = 1;
|
|
this->value.undef[row] = 1;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if ( !theParams[0]->value.undef[elem] ) {
|
|
if ( valInit ) {
|
|
valInit = 0;
|
|
maxVal = theParams[0]->value.data.lngptr[elem];
|
|
} else {
|
|
maxVal = maxvalue( maxVal,
|
|
theParams[0]->value.data.lngptr[elem] );
|
|
}
|
|
this->value.undef[row] = 0;
|
|
}
|
|
}
|
|
this->value.data.lngptr[row] = maxVal;
|
|
}
|
|
} else if( this->type==DOUBLE ) {
|
|
double maxVal=0.0;
|
|
while( row-- ) {
|
|
valInit = 1;
|
|
this->value.undef[row] = 1;
|
|
nelem = theParams[0]->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if ( !theParams[0]->value.undef[elem] ) {
|
|
if ( valInit ) {
|
|
valInit = 0;
|
|
maxVal = theParams[0]->value.data.dblptr[elem];
|
|
} else {
|
|
maxVal = maxvalue( maxVal,
|
|
theParams[0]->value.data.dblptr[elem] );
|
|
}
|
|
this->value.undef[row] = 0;
|
|
}
|
|
}
|
|
this->value.data.dblptr[row] = maxVal;
|
|
}
|
|
} else if( this->type==BITSTR ) {
|
|
char maxVal;
|
|
while( row-- ) {
|
|
char *sptr1 = theParams[0]->value.data.strptr[row];
|
|
maxVal = '0';
|
|
while (*sptr1) {
|
|
if (*sptr1 == '1') maxVal = '1';
|
|
sptr1++;
|
|
}
|
|
this->value.data.strptr[row][0] = maxVal;
|
|
this->value.data.strptr[row][1] = 0; /* Null terminate */
|
|
}
|
|
}
|
|
break;
|
|
case max2_fct:
|
|
if( this->type==LONG ) {
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.lng =
|
|
theParams[i]->value.data.lngptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.lng =
|
|
theParams[i]->value.data.lngptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( pNull[0] && pNull[1] ) {
|
|
this->value.undef[elem] = 1;
|
|
this->value.data.lngptr[elem] = 0;
|
|
} else if (pNull[0]) {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.lngptr[elem] = pVals[1].data.lng;
|
|
} else if (pNull[1]) {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.lngptr[elem] = pVals[0].data.lng;
|
|
} else {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.lngptr[elem] =
|
|
maxvalue( pVals[0].data.lng, pVals[1].data.lng );
|
|
}
|
|
}
|
|
}
|
|
} else if( this->type==DOUBLE ) {
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( pNull[0] && pNull[1] ) {
|
|
this->value.undef[elem] = 1;
|
|
this->value.data.dblptr[elem] = 0;
|
|
} else if (pNull[0]) {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.dblptr[elem] = pVals[1].data.dbl;
|
|
} else if (pNull[1]) {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.dblptr[elem] = pVals[0].data.dbl;
|
|
} else {
|
|
this->value.undef[elem] = 0;
|
|
this->value.data.dblptr[elem] =
|
|
maxvalue( pVals[0].data.dbl, pVals[1].data.dbl );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Boolean SAO region Functions... scalar or vector dbls */
|
|
|
|
case near_fct:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=3; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
|
|
pNull[2]) ) )
|
|
this->value.data.logptr[elem] =
|
|
bnear( pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl );
|
|
}
|
|
}
|
|
break;
|
|
|
|
case circle_fct:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=5; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
|
|
pNull[2] || pNull[3] ||
|
|
pNull[4]) ) )
|
|
this->value.data.logptr[elem] =
|
|
circle( pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl, pVals[3].data.dbl,
|
|
pVals[4].data.dbl );
|
|
}
|
|
}
|
|
break;
|
|
|
|
case box_fct:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=7; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
|
|
pNull[2] || pNull[3] ||
|
|
pNull[4] || pNull[5] ||
|
|
pNull[6] ) ) )
|
|
this->value.data.logptr[elem] =
|
|
saobox( pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl, pVals[3].data.dbl,
|
|
pVals[4].data.dbl, pVals[5].data.dbl,
|
|
pVals[6].data.dbl );
|
|
}
|
|
}
|
|
break;
|
|
|
|
case elps_fct:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
i=7; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = (pNull[0] || pNull[1] ||
|
|
pNull[2] || pNull[3] ||
|
|
pNull[4] || pNull[5] ||
|
|
pNull[6] ) ) )
|
|
this->value.data.logptr[elem] =
|
|
ellipse( pVals[0].data.dbl, pVals[1].data.dbl,
|
|
pVals[2].data.dbl, pVals[3].data.dbl,
|
|
pVals[4].data.dbl, pVals[5].data.dbl,
|
|
pVals[6].data.dbl );
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* C Conditional expression: bool ? expr : expr */
|
|
|
|
case ifthenelse_fct:
|
|
switch( this->type ) {
|
|
case BOOLEAN:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if( vector[2]>1 ) {
|
|
pVals[2].data.log =
|
|
theParams[2]->value.data.logptr[elem];
|
|
pNull[2] = theParams[2]->value.undef[elem];
|
|
} else if( vector[2] ) {
|
|
pVals[2].data.log =
|
|
theParams[2]->value.data.logptr[row];
|
|
pNull[2] = theParams[2]->value.undef[row];
|
|
}
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.log =
|
|
theParams[i]->value.data.logptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.log =
|
|
theParams[i]->value.data.logptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = pNull[2]) ) {
|
|
if( pVals[2].data.log ) {
|
|
this->value.data.logptr[elem] = pVals[0].data.log;
|
|
this->value.undef[elem] = pNull[0];
|
|
} else {
|
|
this->value.data.logptr[elem] = pVals[1].data.log;
|
|
this->value.undef[elem] = pNull[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case LONG:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if( vector[2]>1 ) {
|
|
pVals[2].data.log =
|
|
theParams[2]->value.data.logptr[elem];
|
|
pNull[2] = theParams[2]->value.undef[elem];
|
|
} else if( vector[2] ) {
|
|
pVals[2].data.log =
|
|
theParams[2]->value.data.logptr[row];
|
|
pNull[2] = theParams[2]->value.undef[row];
|
|
}
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.lng =
|
|
theParams[i]->value.data.lngptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.lng =
|
|
theParams[i]->value.data.lngptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = pNull[2]) ) {
|
|
if( pVals[2].data.log ) {
|
|
this->value.data.lngptr[elem] = pVals[0].data.lng;
|
|
this->value.undef[elem] = pNull[0];
|
|
} else {
|
|
this->value.data.lngptr[elem] = pVals[1].data.lng;
|
|
this->value.undef[elem] = pNull[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case DOUBLE:
|
|
while( row-- ) {
|
|
nelem = this->value.nelem;
|
|
while( nelem-- ) {
|
|
elem--;
|
|
if( vector[2]>1 ) {
|
|
pVals[2].data.log =
|
|
theParams[2]->value.data.logptr[elem];
|
|
pNull[2] = theParams[2]->value.undef[elem];
|
|
} else if( vector[2] ) {
|
|
pVals[2].data.log =
|
|
theParams[2]->value.data.logptr[row];
|
|
pNull[2] = theParams[2]->value.undef[row];
|
|
}
|
|
i=2; while( i-- )
|
|
if( vector[i]>1 ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[elem];
|
|
pNull[i] = theParams[i]->value.undef[elem];
|
|
} else if( vector[i] ) {
|
|
pVals[i].data.dbl =
|
|
theParams[i]->value.data.dblptr[row];
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[elem] = pNull[2]) ) {
|
|
if( pVals[2].data.log ) {
|
|
this->value.data.dblptr[elem] = pVals[0].data.dbl;
|
|
this->value.undef[elem] = pNull[0];
|
|
} else {
|
|
this->value.data.dblptr[elem] = pVals[1].data.dbl;
|
|
this->value.undef[elem] = pNull[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case STRING:
|
|
while( row-- ) {
|
|
if( vector[2] ) {
|
|
pVals[2].data.log = theParams[2]->value.data.logptr[row];
|
|
pNull[2] = theParams[2]->value.undef[row];
|
|
}
|
|
i=2; while( i-- )
|
|
if( vector[i] ) {
|
|
strcpy( pVals[i].data.str,
|
|
theParams[i]->value.data.strptr[row] );
|
|
pNull[i] = theParams[i]->value.undef[row];
|
|
}
|
|
if( !(this->value.undef[row] = pNull[2]) ) {
|
|
if( pVals[2].data.log ) {
|
|
strcpy( this->value.data.strptr[row],
|
|
pVals[0].data.str );
|
|
this->value.undef[row] = pNull[0];
|
|
} else {
|
|
strcpy( this->value.data.strptr[row],
|
|
pVals[1].data.str );
|
|
this->value.undef[row] = pNull[1];
|
|
}
|
|
} else {
|
|
this->value.data.strptr[row][0] = '\0';
|
|
}
|
|
}
|
|
break;
|
|
|
|
}
|
|
break;
|
|
|
|
/* String functions */
|
|
case strmid_fct:
|
|
{
|
|
int strconst = theParams[0]->operation == CONST_OP;
|
|
int posconst = theParams[1]->operation == CONST_OP;
|
|
int lenconst = theParams[2]->operation == CONST_OP;
|
|
int dest_len = this->value.nelem;
|
|
int src_len = theParams[0]->value.nelem;
|
|
|
|
while (row--) {
|
|
int pos;
|
|
int len;
|
|
char *str;
|
|
int undef = 0;
|
|
|
|
if (posconst) {
|
|
pos = theParams[1]->value.data.lng;
|
|
} else {
|
|
pos = theParams[1]->value.data.lngptr[row];
|
|
if (theParams[1]->value.undef[row]) undef = 1;
|
|
}
|
|
if (strconst) {
|
|
str = theParams[0]->value.data.str;
|
|
if (src_len == 0) src_len = strlen(str);
|
|
} else {
|
|
str = theParams[0]->value.data.strptr[row];
|
|
if (theParams[0]->value.undef[row]) undef = 1;
|
|
}
|
|
if (lenconst) {
|
|
len = dest_len;
|
|
} else {
|
|
len = theParams[2]->value.data.lngptr[row];
|
|
if (theParams[2]->value.undef[row]) undef = 1;
|
|
}
|
|
this->value.data.strptr[row][0] = '\0';
|
|
if (pos == 0) undef = 1;
|
|
if (! undef ) {
|
|
if (cstrmid(this->value.data.strptr[row], len,
|
|
str, src_len, pos) < 0) break;
|
|
}
|
|
this->value.undef[row] = undef;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* String functions */
|
|
case strpos_fct:
|
|
{
|
|
int const1 = theParams[0]->operation == CONST_OP;
|
|
int const2 = theParams[1]->operation == CONST_OP;
|
|
|
|
while (row--) {
|
|
char *str1, *str2;
|
|
int undef = 0;
|
|
|
|
if (const1) {
|
|
str1 = theParams[0]->value.data.str;
|
|
} else {
|
|
str1 = theParams[0]->value.data.strptr[row];
|
|
if (theParams[0]->value.undef[row]) undef = 1;
|
|
}
|
|
if (const2) {
|
|
str2 = theParams[1]->value.data.str;
|
|
} else {
|
|
str2 = theParams[1]->value.data.strptr[row];
|
|
if (theParams[1]->value.undef[row]) undef = 1;
|
|
}
|
|
this->value.data.lngptr[row] = 0;
|
|
if (! undef ) {
|
|
char *res = strstr(str1, str2);
|
|
if (res == NULL) {
|
|
undef = 1;
|
|
this->value.data.lngptr[row] = 0;
|
|
} else {
|
|
this->value.data.lngptr[row] = (res - str1) + 1;
|
|
}
|
|
}
|
|
this->value.undef[row] = undef;
|
|
}
|
|
}
|
|
break;
|
|
|
|
|
|
} /* End switch(this->operation) */
|
|
} /* End if (!gParse.status) */
|
|
} /* End non-constant operations */
|
|
|
|
i = this->nSubNodes;
|
|
while( i-- ) {
|
|
if( theParams[i]->operation>0 ) {
|
|
/* Currently only numeric params allowed */
|
|
free( theParams[i]->value.data.ptr );
|
|
}
|
|
}
|
|
}
|
|
|
|
static void Do_Deref( Node *this )
|
|
{
|
|
Node *theVar, *theDims[MAXDIMS];
|
|
int isConst[MAXDIMS], allConst;
|
|
long dimVals[MAXDIMS];
|
|
int i, nDims;
|
|
long row, elem, dsize;
|
|
|
|
theVar = gParse.Nodes + this->SubNodes[0];
|
|
|
|
i = nDims = this->nSubNodes-1;
|
|
allConst = 1;
|
|
while( i-- ) {
|
|
theDims[i] = gParse.Nodes + this->SubNodes[i+1];
|
|
isConst[i] = ( theDims[i]->operation==CONST_OP );
|
|
if( isConst[i] )
|
|
dimVals[i] = theDims[i]->value.data.lng;
|
|
else
|
|
allConst = 0;
|
|
}
|
|
|
|
if( this->type==DOUBLE ) {
|
|
dsize = sizeof( double );
|
|
} else if( this->type==LONG ) {
|
|
dsize = sizeof( long );
|
|
} else if( this->type==BOOLEAN ) {
|
|
dsize = sizeof( char );
|
|
} else
|
|
dsize = 0;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
|
|
if( allConst && theVar->value.naxis==nDims ) {
|
|
|
|
/* Dereference completely using constant indices */
|
|
|
|
elem = 0;
|
|
i = nDims;
|
|
while( i-- ) {
|
|
if( dimVals[i]<1 || dimVals[i]>theVar->value.naxes[i] ) break;
|
|
elem = theVar->value.naxes[i]*elem + dimVals[i]-1;
|
|
}
|
|
if( i<0 ) {
|
|
for( row=0; row<gParse.nRows; row++ ) {
|
|
if( this->type==STRING )
|
|
this->value.undef[row] = theVar->value.undef[row];
|
|
else if( this->type==BITSTR )
|
|
this->value.undef; /* Dummy - BITSTRs do not have undefs */
|
|
else
|
|
this->value.undef[row] = theVar->value.undef[elem];
|
|
|
|
if( this->type==DOUBLE )
|
|
this->value.data.dblptr[row] =
|
|
theVar->value.data.dblptr[elem];
|
|
else if( this->type==LONG )
|
|
this->value.data.lngptr[row] =
|
|
theVar->value.data.lngptr[elem];
|
|
else if( this->type==BOOLEAN )
|
|
this->value.data.logptr[row] =
|
|
theVar->value.data.logptr[elem];
|
|
else {
|
|
/* XXX Note, the below expression uses knowledge of
|
|
the layout of the string format, namely (nelem+1)
|
|
characters per string, followed by (nelem+1)
|
|
"undef" values. */
|
|
this->value.data.strptr[row][0] =
|
|
theVar->value.data.strptr[0][elem+row];
|
|
this->value.data.strptr[row][1] = 0; /* Null terminate */
|
|
}
|
|
elem += theVar->value.nelem;
|
|
}
|
|
} else {
|
|
yyerror("Index out of range");
|
|
free( this->value.data.ptr );
|
|
}
|
|
|
|
} else if( allConst && nDims==1 ) {
|
|
|
|
/* Reduce dimensions by 1, using a constant index */
|
|
|
|
if( dimVals[0] < 1 ||
|
|
dimVals[0] > theVar->value.naxes[ theVar->value.naxis-1 ] ) {
|
|
yyerror("Index out of range");
|
|
free( this->value.data.ptr );
|
|
} else if ( this->type == BITSTR || this->type == STRING ) {
|
|
elem = this->value.nelem * (dimVals[0]-1);
|
|
for( row=0; row<gParse.nRows; row++ ) {
|
|
if (this->value.undef)
|
|
this->value.undef[row] = theVar->value.undef[row];
|
|
memcpy( (char*)this->value.data.strptr[0]
|
|
+ row*sizeof(char)*(this->value.nelem+1),
|
|
(char*)theVar->value.data.strptr[0] + elem*sizeof(char),
|
|
this->value.nelem * sizeof(char) );
|
|
/* Null terminate */
|
|
this->value.data.strptr[row][this->value.nelem] = 0;
|
|
elem += theVar->value.nelem+1;
|
|
}
|
|
} else {
|
|
elem = this->value.nelem * (dimVals[0]-1);
|
|
for( row=0; row<gParse.nRows; row++ ) {
|
|
memcpy( this->value.undef + row*this->value.nelem,
|
|
theVar->value.undef + elem,
|
|
this->value.nelem * sizeof(char) );
|
|
memcpy( (char*)this->value.data.ptr
|
|
+ row*dsize*this->value.nelem,
|
|
(char*)theVar->value.data.ptr + elem*dsize,
|
|
this->value.nelem * dsize );
|
|
elem += theVar->value.nelem;
|
|
}
|
|
}
|
|
|
|
} else if( theVar->value.naxis==nDims ) {
|
|
|
|
/* Dereference completely using an expression for the indices */
|
|
|
|
for( row=0; row<gParse.nRows; row++ ) {
|
|
|
|
for( i=0; i<nDims; i++ ) {
|
|
if( !isConst[i] ) {
|
|
if( theDims[i]->value.undef[row] ) {
|
|
yyerror("Null encountered as vector index");
|
|
free( this->value.data.ptr );
|
|
break;
|
|
} else
|
|
dimVals[i] = theDims[i]->value.data.lngptr[row];
|
|
}
|
|
}
|
|
if( gParse.status ) break;
|
|
|
|
elem = 0;
|
|
i = nDims;
|
|
while( i-- ) {
|
|
if( dimVals[i]<1 || dimVals[i]>theVar->value.naxes[i] ) break;
|
|
elem = theVar->value.naxes[i]*elem + dimVals[i]-1;
|
|
}
|
|
if( i<0 ) {
|
|
elem += row*theVar->value.nelem;
|
|
|
|
if( this->type==STRING )
|
|
this->value.undef[row] = theVar->value.undef[row];
|
|
else if( this->type==BITSTR )
|
|
this->value.undef; /* Dummy - BITSTRs do not have undefs */
|
|
else
|
|
this->value.undef[row] = theVar->value.undef[elem];
|
|
|
|
if( this->type==DOUBLE )
|
|
this->value.data.dblptr[row] =
|
|
theVar->value.data.dblptr[elem];
|
|
else if( this->type==LONG )
|
|
this->value.data.lngptr[row] =
|
|
theVar->value.data.lngptr[elem];
|
|
else if( this->type==BOOLEAN )
|
|
this->value.data.logptr[row] =
|
|
theVar->value.data.logptr[elem];
|
|
else {
|
|
/* XXX Note, the below expression uses knowledge of
|
|
the layout of the string format, namely (nelem+1)
|
|
characters per string, followed by (nelem+1)
|
|
"undef" values. */
|
|
this->value.data.strptr[row][0] =
|
|
theVar->value.data.strptr[0][elem+row];
|
|
this->value.data.strptr[row][1] = 0; /* Null terminate */
|
|
}
|
|
} else {
|
|
yyerror("Index out of range");
|
|
free( this->value.data.ptr );
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Reduce dimensions by 1, using a nonconstant expression */
|
|
|
|
for( row=0; row<gParse.nRows; row++ ) {
|
|
|
|
/* Index cannot be a constant */
|
|
|
|
if( theDims[0]->value.undef[row] ) {
|
|
yyerror("Null encountered as vector index");
|
|
free( this->value.data.ptr );
|
|
break;
|
|
} else
|
|
dimVals[0] = theDims[0]->value.data.lngptr[row];
|
|
|
|
if( dimVals[0] < 1 ||
|
|
dimVals[0] > theVar->value.naxes[ theVar->value.naxis-1 ] ) {
|
|
yyerror("Index out of range");
|
|
free( this->value.data.ptr );
|
|
} else if ( this->type == BITSTR || this->type == STRING ) {
|
|
elem = this->value.nelem * (dimVals[0]-1);
|
|
elem += row*(theVar->value.nelem+1);
|
|
if (this->value.undef)
|
|
this->value.undef[row] = theVar->value.undef[row];
|
|
memcpy( (char*)this->value.data.strptr[0]
|
|
+ row*sizeof(char)*(this->value.nelem+1),
|
|
(char*)theVar->value.data.strptr[0] + elem*sizeof(char),
|
|
this->value.nelem * sizeof(char) );
|
|
/* Null terminate */
|
|
this->value.data.strptr[row][this->value.nelem] = 0;
|
|
} else {
|
|
elem = this->value.nelem * (dimVals[0]-1);
|
|
elem += row*theVar->value.nelem;
|
|
memcpy( this->value.undef + row*this->value.nelem,
|
|
theVar->value.undef + elem,
|
|
this->value.nelem * sizeof(char) );
|
|
memcpy( (char*)this->value.data.ptr
|
|
+ row*dsize*this->value.nelem,
|
|
(char*)theVar->value.data.ptr + elem*dsize,
|
|
this->value.nelem * dsize );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( theVar->operation>0 ) {
|
|
if (theVar->type == STRING || theVar->type == BITSTR)
|
|
free(theVar->value.data.strptr[0] );
|
|
else
|
|
free( theVar->value.data.ptr );
|
|
}
|
|
for( i=0; i<nDims; i++ )
|
|
if( theDims[i]->operation>0 ) {
|
|
free( theDims[i]->value.data.ptr );
|
|
}
|
|
}
|
|
|
|
static void Do_GTI( Node *this )
|
|
{
|
|
Node *theExpr, *theTimes;
|
|
double *start, *stop, *times;
|
|
long elem, nGTI, gti;
|
|
int ordered;
|
|
|
|
theTimes = gParse.Nodes + this->SubNodes[0];
|
|
theExpr = gParse.Nodes + this->SubNodes[1];
|
|
|
|
nGTI = theTimes->value.nelem;
|
|
start = theTimes->value.data.dblptr;
|
|
stop = theTimes->value.data.dblptr + nGTI;
|
|
ordered = theTimes->type;
|
|
|
|
if( theExpr->operation==CONST_OP ) {
|
|
|
|
this->value.data.log =
|
|
(Search_GTI( theExpr->value.data.dbl, nGTI, start, stop, ordered )>=0);
|
|
this->operation = CONST_OP;
|
|
|
|
} else {
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
times = theExpr->value.data.dblptr;
|
|
if( !gParse.status ) {
|
|
|
|
elem = gParse.nRows * this->value.nelem;
|
|
if( nGTI ) {
|
|
gti = -1;
|
|
while( elem-- ) {
|
|
if( (this->value.undef[elem] = theExpr->value.undef[elem]) )
|
|
continue;
|
|
|
|
/* Before searching entire GTI, check the GTI found last time */
|
|
if( gti<0 || times[elem]<start[gti] || times[elem]>stop[gti] ) {
|
|
gti = Search_GTI( times[elem], nGTI, start, stop, ordered );
|
|
}
|
|
this->value.data.logptr[elem] = ( gti>=0 );
|
|
}
|
|
} else
|
|
while( elem-- ) {
|
|
this->value.data.logptr[elem] = 0;
|
|
this->value.undef[elem] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( theExpr->operation>0 )
|
|
free( theExpr->value.data.ptr );
|
|
}
|
|
|
|
static long Search_GTI( double evtTime, long nGTI, double *start,
|
|
double *stop, int ordered )
|
|
{
|
|
long gti, step;
|
|
|
|
if( ordered && nGTI>15 ) { /* If time-ordered and lots of GTIs, */
|
|
/* use "FAST" Binary search algorithm */
|
|
if( evtTime>=start[0] && evtTime<=stop[nGTI-1] ) {
|
|
gti = step = (nGTI >> 1);
|
|
while(1) {
|
|
if( step>1L ) step >>= 1;
|
|
|
|
if( evtTime>stop[gti] ) {
|
|
if( evtTime>=start[gti+1] )
|
|
gti += step;
|
|
else {
|
|
gti = -1L;
|
|
break;
|
|
}
|
|
} else if( evtTime<start[gti] ) {
|
|
if( evtTime<=stop[gti-1] )
|
|
gti -= step;
|
|
else {
|
|
gti = -1L;
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
} else
|
|
gti = -1L;
|
|
|
|
} else { /* Use "SLOW" linear search */
|
|
gti = nGTI;
|
|
while( gti-- )
|
|
if( evtTime>=start[gti] && evtTime<=stop[gti] )
|
|
break;
|
|
}
|
|
return( gti );
|
|
}
|
|
|
|
static void Do_REG( Node *this )
|
|
{
|
|
Node *theRegion, *theX, *theY;
|
|
double Xval=0.0, Yval=0.0;
|
|
char Xnull=0, Ynull=0;
|
|
int Xvector, Yvector;
|
|
long nelem, elem, rows;
|
|
|
|
theRegion = gParse.Nodes + this->SubNodes[0];
|
|
theX = gParse.Nodes + this->SubNodes[1];
|
|
theY = gParse.Nodes + this->SubNodes[2];
|
|
|
|
Xvector = ( theX->operation!=CONST_OP );
|
|
if( Xvector )
|
|
Xvector = theX->value.nelem;
|
|
else {
|
|
Xval = theX->value.data.dbl;
|
|
}
|
|
|
|
Yvector = ( theY->operation!=CONST_OP );
|
|
if( Yvector )
|
|
Yvector = theY->value.nelem;
|
|
else {
|
|
Yval = theY->value.data.dbl;
|
|
}
|
|
|
|
if( !Xvector && !Yvector ) {
|
|
|
|
this->value.data.log =
|
|
( fits_in_region( Xval, Yval, (SAORegion *)theRegion->value.data.ptr )
|
|
!= 0 );
|
|
this->operation = CONST_OP;
|
|
|
|
} else {
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
|
|
rows = gParse.nRows;
|
|
nelem = this->value.nelem;
|
|
elem = rows*nelem;
|
|
|
|
while( rows-- ) {
|
|
while( nelem-- ) {
|
|
elem--;
|
|
|
|
if( Xvector>1 ) {
|
|
Xval = theX->value.data.dblptr[elem];
|
|
Xnull = theX->value.undef[elem];
|
|
} else if( Xvector ) {
|
|
Xval = theX->value.data.dblptr[rows];
|
|
Xnull = theX->value.undef[rows];
|
|
}
|
|
|
|
if( Yvector>1 ) {
|
|
Yval = theY->value.data.dblptr[elem];
|
|
Ynull = theY->value.undef[elem];
|
|
} else if( Yvector ) {
|
|
Yval = theY->value.data.dblptr[rows];
|
|
Ynull = theY->value.undef[rows];
|
|
}
|
|
|
|
this->value.undef[elem] = ( Xnull || Ynull );
|
|
if( this->value.undef[elem] )
|
|
continue;
|
|
|
|
this->value.data.logptr[elem] =
|
|
( fits_in_region( Xval, Yval,
|
|
(SAORegion *)theRegion->value.data.ptr )
|
|
!= 0 );
|
|
}
|
|
nelem = this->value.nelem;
|
|
}
|
|
}
|
|
}
|
|
|
|
if( theX->operation>0 )
|
|
free( theX->value.data.ptr );
|
|
if( theY->operation>0 )
|
|
free( theY->value.data.ptr );
|
|
}
|
|
|
|
static void Do_Vector( Node *this )
|
|
{
|
|
Node *that;
|
|
long row, elem, idx, jdx, offset=0;
|
|
int node;
|
|
|
|
Allocate_Ptrs( this );
|
|
|
|
if( !gParse.status ) {
|
|
|
|
for( node=0; node<this->nSubNodes; node++ ) {
|
|
|
|
that = gParse.Nodes + this->SubNodes[node];
|
|
|
|
if( that->operation == CONST_OP ) {
|
|
|
|
idx = gParse.nRows*this->value.nelem + offset;
|
|
while( (idx-=this->value.nelem)>=0 ) {
|
|
|
|
this->value.undef[idx] = 0;
|
|
|
|
switch( this->type ) {
|
|
case BOOLEAN:
|
|
this->value.data.logptr[idx] = that->value.data.log;
|
|
break;
|
|
case LONG:
|
|
this->value.data.lngptr[idx] = that->value.data.lng;
|
|
break;
|
|
case DOUBLE:
|
|
this->value.data.dblptr[idx] = that->value.data.dbl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
row = gParse.nRows;
|
|
idx = row * that->value.nelem;
|
|
while( row-- ) {
|
|
elem = that->value.nelem;
|
|
jdx = row*this->value.nelem + offset;
|
|
while( elem-- ) {
|
|
this->value.undef[jdx+elem] =
|
|
that->value.undef[--idx];
|
|
|
|
switch( this->type ) {
|
|
case BOOLEAN:
|
|
this->value.data.logptr[jdx+elem] =
|
|
that->value.data.logptr[idx];
|
|
break;
|
|
case LONG:
|
|
this->value.data.lngptr[jdx+elem] =
|
|
that->value.data.lngptr[idx];
|
|
break;
|
|
case DOUBLE:
|
|
this->value.data.dblptr[jdx+elem] =
|
|
that->value.data.dblptr[idx];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
offset += that->value.nelem;
|
|
}
|
|
|
|
}
|
|
|
|
for( node=0; node < this->nSubNodes; node++ )
|
|
if( OPER(this->SubNodes[node])>0 )
|
|
free( gParse.Nodes[this->SubNodes[node]].value.data.ptr );
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Utility routines which perform the calculations on bits and SAO regions */
|
|
/*****************************************************************************/
|
|
|
|
static char bitlgte(char *bits1, int oper, char *bits2)
|
|
{
|
|
int val1, val2, nextbit;
|
|
char result;
|
|
int i, l1, l2, length, ldiff;
|
|
char stream[256];
|
|
char chr1, chr2;
|
|
|
|
l1 = strlen(bits1);
|
|
l2 = strlen(bits2);
|
|
if (l1 < l2)
|
|
{
|
|
length = l2;
|
|
ldiff = l2 - l1;
|
|
i=0;
|
|
while( ldiff-- ) stream[i++] = '0';
|
|
while( l1-- ) stream[i++] = *(bits1++);
|
|
stream[i] = '\0';
|
|
bits1 = stream;
|
|
}
|
|
else if (l2 < l1)
|
|
{
|
|
length = l1;
|
|
ldiff = l1 - l2;
|
|
i=0;
|
|
while( ldiff-- ) stream[i++] = '0';
|
|
while( l2-- ) stream[i++] = *(bits2++);
|
|
stream[i] = '\0';
|
|
bits2 = stream;
|
|
}
|
|
else
|
|
length = l1;
|
|
|
|
val1 = val2 = 0;
|
|
nextbit = 1;
|
|
|
|
while( length-- )
|
|
{
|
|
chr1 = bits1[length];
|
|
chr2 = bits2[length];
|
|
if ((chr1 != 'x')&&(chr1 != 'X')&&(chr2 != 'x')&&(chr2 != 'X'))
|
|
{
|
|
if (chr1 == '1') val1 += nextbit;
|
|
if (chr2 == '1') val2 += nextbit;
|
|
nextbit *= 2;
|
|
}
|
|
}
|
|
result = 0;
|
|
switch (oper)
|
|
{
|
|
case LT:
|
|
if (val1 < val2) result = 1;
|
|
break;
|
|
case LTE:
|
|
if (val1 <= val2) result = 1;
|
|
break;
|
|
case GT:
|
|
if (val1 > val2) result = 1;
|
|
break;
|
|
case GTE:
|
|
if (val1 >= val2) result = 1;
|
|
break;
|
|
}
|
|
return (result);
|
|
}
|
|
|
|
static void bitand(char *result,char *bitstrm1,char *bitstrm2)
|
|
{
|
|
int i, l1, l2, ldiff;
|
|
char stream[256];
|
|
char chr1, chr2;
|
|
|
|
l1 = strlen(bitstrm1);
|
|
l2 = strlen(bitstrm2);
|
|
if (l1 < l2)
|
|
{
|
|
ldiff = l2 - l1;
|
|
i=0;
|
|
while( ldiff-- ) stream[i++] = '0';
|
|
while( l1-- ) stream[i++] = *(bitstrm1++);
|
|
stream[i] = '\0';
|
|
bitstrm1 = stream;
|
|
}
|
|
else if (l2 < l1)
|
|
{
|
|
ldiff = l1 - l2;
|
|
i=0;
|
|
while( ldiff-- ) stream[i++] = '0';
|
|
while( l2-- ) stream[i++] = *(bitstrm2++);
|
|
stream[i] = '\0';
|
|
bitstrm2 = stream;
|
|
}
|
|
while ( (chr1 = *(bitstrm1++)) )
|
|
{
|
|
chr2 = *(bitstrm2++);
|
|
if ((chr1 == 'x') || (chr2 == 'x'))
|
|
*result = 'x';
|
|
else if ((chr1 == '1') && (chr2 == '1'))
|
|
*result = '1';
|
|
else
|
|
*result = '0';
|
|
result++;
|
|
}
|
|
*result = '\0';
|
|
}
|
|
|
|
static void bitor(char *result,char *bitstrm1,char *bitstrm2)
|
|
{
|
|
int i, l1, l2, ldiff;
|
|
char stream[256];
|
|
char chr1, chr2;
|
|
|
|
l1 = strlen(bitstrm1);
|
|
l2 = strlen(bitstrm2);
|
|
if (l1 < l2)
|
|
{
|
|
ldiff = l2 - l1;
|
|
i=0;
|
|
while( ldiff-- ) stream[i++] = '0';
|
|
while( l1-- ) stream[i++] = *(bitstrm1++);
|
|
stream[i] = '\0';
|
|
bitstrm1 = stream;
|
|
}
|
|
else if (l2 < l1)
|
|
{
|
|
ldiff = l1 - l2;
|
|
i=0;
|
|
while( ldiff-- ) stream[i++] = '0';
|
|
while( l2-- ) stream[i++] = *(bitstrm2++);
|
|
stream[i] = '\0';
|
|
bitstrm2 = stream;
|
|
}
|
|
while ( (chr1 = *(bitstrm1++)) )
|
|
{
|
|
chr2 = *(bitstrm2++);
|
|
if ((chr1 == '1') || (chr2 == '1'))
|
|
*result = '1';
|
|
else if ((chr1 == '0') || (chr2 == '0'))
|
|
*result = '0';
|
|
else
|
|
*result = 'x';
|
|
result++;
|
|
}
|
|
*result = '\0';
|
|
}
|
|
|
|
static void bitnot(char *result,char *bits)
|
|
{
|
|
int length;
|
|
char chr;
|
|
|
|
length = strlen(bits);
|
|
while( length-- ) {
|
|
chr = *(bits++);
|
|
*(result++) = ( chr=='1' ? '0' : ( chr=='0' ? '1' : chr ) );
|
|
}
|
|
*result = '\0';
|
|
}
|
|
|
|
static char bitcmp(char *bitstrm1, char *bitstrm2)
|
|
{
|
|
int i, l1, l2, ldiff;
|
|
char stream[256];
|
|
char chr1, chr2;
|
|
|
|
l1 = strlen(bitstrm1);
|
|
l2 = strlen(bitstrm2);
|
|
if (l1 < l2)
|
|
{
|
|
ldiff = l2 - l1;
|
|
i=0;
|
|
while( ldiff-- ) stream[i++] = '0';
|
|
while( l1-- ) stream[i++] = *(bitstrm1++);
|
|
stream[i] = '\0';
|
|
bitstrm1 = stream;
|
|
}
|
|
else if (l2 < l1)
|
|
{
|
|
ldiff = l1 - l2;
|
|
i=0;
|
|
while( ldiff-- ) stream[i++] = '0';
|
|
while( l2-- ) stream[i++] = *(bitstrm2++);
|
|
stream[i] = '\0';
|
|
bitstrm2 = stream;
|
|
}
|
|
while( (chr1 = *(bitstrm1++)) )
|
|
{
|
|
chr2 = *(bitstrm2++);
|
|
if ( ((chr1 == '0') && (chr2 == '1'))
|
|
|| ((chr1 == '1') && (chr2 == '0')) )
|
|
return( 0 );
|
|
}
|
|
return( 1 );
|
|
}
|
|
|
|
static char bnear(double x, double y, double tolerance)
|
|
{
|
|
if (fabs(x - y) < tolerance)
|
|
return ( 1 );
|
|
else
|
|
return ( 0 );
|
|
}
|
|
|
|
static char saobox(double xcen, double ycen, double xwid, double ywid,
|
|
double rot, double xcol, double ycol)
|
|
{
|
|
double x,y,xprime,yprime,xmin,xmax,ymin,ymax,theta;
|
|
|
|
theta = (rot / 180.0) * myPI;
|
|
xprime = xcol - xcen;
|
|
yprime = ycol - ycen;
|
|
x = xprime * cos(theta) + yprime * sin(theta);
|
|
y = -xprime * sin(theta) + yprime * cos(theta);
|
|
xmin = - 0.5 * xwid; xmax = 0.5 * xwid;
|
|
ymin = - 0.5 * ywid; ymax = 0.5 * ywid;
|
|
if ((x >= xmin) && (x <= xmax) && (y >= ymin) && (y <= ymax))
|
|
return ( 1 );
|
|
else
|
|
return ( 0 );
|
|
}
|
|
|
|
static char circle(double xcen, double ycen, double rad,
|
|
double xcol, double ycol)
|
|
{
|
|
double r2,dx,dy,dlen;
|
|
|
|
dx = xcol - xcen;
|
|
dy = ycol - ycen;
|
|
dx *= dx; dy *= dy;
|
|
dlen = dx + dy;
|
|
r2 = rad * rad;
|
|
if (dlen <= r2)
|
|
return ( 1 );
|
|
else
|
|
return ( 0 );
|
|
}
|
|
|
|
static char ellipse(double xcen, double ycen, double xrad, double yrad,
|
|
double rot, double xcol, double ycol)
|
|
{
|
|
double x,y,xprime,yprime,dx,dy,dlen,theta;
|
|
|
|
theta = (rot / 180.0) * myPI;
|
|
xprime = xcol - xcen;
|
|
yprime = ycol - ycen;
|
|
x = xprime * cos(theta) + yprime * sin(theta);
|
|
y = -xprime * sin(theta) + yprime * cos(theta);
|
|
dx = x / xrad; dy = y / yrad;
|
|
dx *= dx; dy *= dy;
|
|
dlen = dx + dy;
|
|
if (dlen <= 1.0)
|
|
return ( 1 );
|
|
else
|
|
return ( 0 );
|
|
}
|
|
|
|
/*
|
|
* Extract substring
|
|
*/
|
|
int cstrmid(char *dest_str, int dest_len,
|
|
char *src_str, int src_len,
|
|
int pos)
|
|
{
|
|
/* char fill_char = ' '; */
|
|
char fill_char = '\0';
|
|
if (src_len == 0) { src_len = strlen(src_str); } /* .. if constant */
|
|
|
|
/* Fill destination with blanks */
|
|
if (pos < 0) {
|
|
yyerror("STRMID(S,P,N) P must be 0 or greater");
|
|
return -1;
|
|
}
|
|
if (pos > src_len || pos == 0) {
|
|
/* pos==0: blank string requested */
|
|
memset(dest_str, fill_char, dest_len);
|
|
} else if (pos+dest_len > src_len) {
|
|
/* Copy a subset */
|
|
int nsub = src_len-pos+1;
|
|
int npad = dest_len - nsub;
|
|
memcpy(dest_str, src_str+pos-1, nsub);
|
|
/* Fill remaining string with blanks */
|
|
memset(dest_str+nsub, fill_char, npad);
|
|
} else {
|
|
/* Full string copy */
|
|
memcpy(dest_str, src_str+pos-1, dest_len);
|
|
}
|
|
dest_str[dest_len] = '\0'; /* Null-terminate */
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void yyerror(char *s)
|
|
{
|
|
char msg[80];
|
|
|
|
if( !gParse.status ) gParse.status = PARSE_SYNTAX_ERR;
|
|
|
|
strncpy(msg, s, 80);
|
|
msg[79] = '\0';
|
|
ffpmsg(msg);
|
|
}
|