vide_public/external/libsdf/libsw/cosmo.c
2013-03-01 15:43:05 -05:00

288 lines
6 KiB
C

#include <math.h>
#include <stdlib.h>
#include "Msgs.h"
#include "qromo.h"
#include "cosmo.h"
static struct cosmo_s C;
static double
adot(double a)
{
return C.H0*sqrt(C.Omega_m/a + C.Omega_r/(a*a) + C.Lambda*a*a + (1.0 - C.Omega0 - C.Lambda));
}
static double
addot(double a)
{ /* factor of a? */
return C.H0 * C.H0 * (C.Lambda*a-C.Omega_r/(a*a*a)-0.5*C.Omega_m/(a*a));
}
static double
integrand(double a)
{
double x;
x = adot(a);
return 1.0/(x*x*x);
}
static double
t_integrand(double a)
{
double x;
x = adot(a);
return 1.0/x;
}
static double
dp_integrand(double a)
{
double x;
x = adot(a);
return 1.0/(a*x);
}
static double
kick_integrand(double t)
{
double a;
a = Anow(&C, t);
return 1.0/a;
}
static double
drift_integrand(double t)
{
double a;
a = Anow(&C, t);
return 1.0/(a*a);
}
double
growthfac_from_Z(struct cosmo_s *c, double z)
{
double a = 1.0/(1.0+z);
C = *c;
return 2.5*c->H0*c->H0*adot(a)*qromod(integrand, 0.0, a, midpntd)/a;
}
double
velfac_from_Z(struct cosmo_s *c, double z)
{
double d, a_dot;
double a = 1.0/(1.0+z);
C = *c;
d = qromod(integrand, 0.0, a, midpntd);
a_dot = adot(a);
return addot(a)
*a/(a_dot*a_dot) - 1.0 + a/(a_dot*a_dot*a_dot*d);
}
double
velfac_approx_from_Z(struct cosmo_s *c, double z)
{
double aomega;
double a = 1.0/(1.0+z);
C = *c;
aomega = C.Omega_m + C.Omega_r/a + C.Lambda*a*a*a + (1.0 - C.Omega0 - C.Lambda)*a;
return pow(C.Omega0/aomega, 0.6);
}
double
t_from_Z(struct cosmo_s *c, double z)
{
double d;
double a = 1.0/(1.0+z);
C = *c;
d = qromod(t_integrand, 0.0, a, midpntd);
return (d);
}
double
dp_from_Z(struct cosmo_s *c, double z)
{
double d;
double a = 1.0/(1.0+z);
if (a == 1.0) return 0.0;
C = *c;
d = qromod(dp_integrand, a, 1.0, midpntd);
return (d);
}
double
comoving_distance_from_Z(struct cosmo_s *c, double z)
{
return speed_of_light*(one_Gyr/one_kpc)*dp_from_Z(c, z);
}
double
hubble_from_Z(struct cosmo_s *c, double z)
{
double a = 1.0/(1.0+z);
C = *c;
return adot(a)/a;
}
double
kick_delta(struct cosmo_s *c, double t0, double t1)
{
double d;
C = *c;
Msgf(("kick_delta %lf %lf\n", t0, t1));
if (t0 == t1) return 0.0;
d = qromod(kick_integrand, t0, t1, midpntd);
return (d);
}
double
drift_delta(struct cosmo_s *c, double t0, double t1)
{
double d;
C = *c;
Msgf(("drift_delta %lf %lf\n", t0, t1));
if (t0 == t1) return 0.0;
d = qromod(drift_integrand, t0, t1, midpntd);
return (d);
}
double
Anow(struct cosmo_s *c, double time)
{
struct cosmo_s foo;
foo = *c;
CosmoPush(&foo, time);
return foo.a;
}
double
Znow(struct cosmo_s *c, double time)
{
return 1.0/Anow(c, time) - 1.0;
}
double
Hnow(struct cosmo_s *c, double time)
{
struct cosmo_s foo;
foo = *c;
CosmoPush(&foo, time);
C = *c;
return adot(foo.a)/foo.a;
}
void CosmoPush(struct cosmo_s *p, double time)
{
double Omega0 = p->Omega0;
double Omega_r = p->Omega_r;
double Omega_m = p->Omega_m;
double Lambda = p->Lambda;
double H0 = p->H0;
double H, a2, a3, aold, anew, a2dot;
double deltat, dt;
int i;
int nstep;
/* The cosmo structure holds,H0, Omega0, Lambda' = Lambda/3H0^2, a
and t. We integrate (forward or backward) to the new 'time' */
deltat = time - p->t;
if (deltat == 0.0)
return;
/* Felten et al do all their integrals with dt=1/(400 H0). We can
do the same by choosing Nstep appropriately. In fact, we can
do better by ensuring dt < 1/(800 H). */
aold = p->a;
a2 = aold*aold;
H = (H0 / aold) * sqrt(Omega_m/aold + Omega_r/a2 + Lambda*a2 + (1.0 - Omega0 - Lambda));
nstep = (int)(800.*H*fabs(deltat)) + 1;
Msgf(("Cosmo push %d steps, deltat=%g, H*deltat=%g\n",
nstep, deltat, deltat*H));
dt = deltat/(double)nstep;
anew = p->a;
for (i = 0; i < nstep; i++) {
aold = anew;
a2 = aold*aold;
a3 = a2*aold;
H = (H0 / aold) * sqrt(Omega_m/aold + Omega_r/a2 + Lambda*a2 + (1.0 - Omega0 - Lambda));
/* Follow the advice of Felten et al. Do this to second-order */
a2dot = H0*H0*(-0.5*Omega_m/a2 - Omega_r/a3 + Lambda*aold);
anew = aold + dt*H*aold + 0.5*dt*dt*a2dot;
}
Msgf(("After push Z=%g\n", 1./anew - 1.));
p->a = anew;
p->t = time;
}
#if 0
/* Crays don't have acosh */
static double Acosh(double x)
{
return log(x + sqrt(x*x-1.0));
}
static double
growthfac_from_Z(double Omega0, double H0, double Z)
{
/* This is just the growing mode */
/* See Weinberg 15.9.27--15.9.31 or Peebles LSS 11.16 */
double d, d0;
if (Omega0 == 1.0) {
d = 1.0/(1.0+Z);
d0 = 1.0;
} else if(Omega0 < 1.0) {
/* Using doubles can cause roundoff problems near Omega0=1 */
double psi, coshpsi;
coshpsi = 1.0 + 2.0*(1.0 - Omega0)/(Omega0*(1.0+Z));
psi = Acosh(coshpsi);
d = - 3.0 * psi * sinh(psi)/((coshpsi-1.0)*(coshpsi-1.0))
+ (5.0+coshpsi)/(coshpsi-1.0);
coshpsi = 1.0 + 2.0*(1.0 - Omega0)/Omega0;
psi = Acosh(coshpsi);
d0 = - 3.0 * psi * sinh(psi)/((coshpsi-1.0)*(coshpsi-1.0))
+ (5.0+coshpsi)/(coshpsi-1.0);
} else {
double theta, costheta;
costheta = 1.0 - 2.0*(Omega0-1.0)/(Omega0*(1.0+Z));
theta = acos(costheta);
d = - 3.0 * theta * sin(theta)/((1.0-costheta)*(1.0-costheta))
+ (5.0+costheta)/(1.0-costheta);
costheta = 1.0 - 2.0*(Omega0-1.0)/Omega0;
theta = acos(costheta);
d0 = - 3.0 * theta * sin(theta)/((1.0-costheta)*(1.0-costheta))
+ (5.0+costheta)/(1.0-costheta);
}
return d/d0;
}
static double
t_from_Z(double Omega0, double H0, double Z)
{
double t, theta, psi;
if(Omega0 == 1.0){
t = (2.0/3.0) * pow(1.0+Z, -1.5);
}else if(Omega0 < 1.0){
psi = Acosh( 1.0 + 2.0*(1.0 - Omega0)/(Omega0*(1.0+Z)) );
t = (Omega0/2.0)*pow(1.0-Omega0, -1.5)*(sinh(psi) - psi) ;
}else{
theta = acos( 1.0 - 2.0*(Omega0-1.)/(Omega0*(1.0+Z)) );
t = (Omega0/2.0)*pow(Omega0-1.0, -1.5)*(theta-sin(theta));
}
t /= H0;
return t;
}
#endif