vide_public/c_tools/analysis/voidOverlap.cpp
2013-03-02 20:23:33 -05:00

576 lines
19 KiB
C++

/*+
VIDE -- Void IDEntification pipeline -- ./c_tools/analysis/voidOverlap.cpp
Copyright (C) 2010-2013 Guilhem Lavaux
Copyright (C) 2011-2013 P. M. Sutter
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+*/
// =============================================================================
//
// Program: voidOverlap
//
// Description: Takes two void catalogs and reports the "overlap" between
// them.
//
// ============================================================================
#include "string.h"
#include "ctype.h"
#include "stdlib.h"
#include <stdio.h>
#include <math.h>
#include "voidOverlap_conf.h"
#include <vector>
#include <netcdfcpp.h>
#include <iostream>
#include <sstream>
#include <fstream>
using namespace std;
typedef struct partStruct {
float x, y, z, volume;
float ra, dec, redshift;
long uniqueID;
} PART;
typedef struct zoneStruct {
int numPart;
int *partIDs;
} ZONE2PART;
typedef struct voidZoneStruct {
int numZones;
int *zoneIDs;
} VOID2ZONE;
typedef struct matchProps {
int matchID;
float commonVol;
float dist;
} MATCHPROPS;
typedef struct voidStruct {
float vol, coreDens, zoneVol, densCon, voidProb, radius;
int voidID, numPart, numZones, coreParticle, zoneNumPart;
float maxRadius, nearestMock, centralDen, redshift, redshiftInMpc;
float nearestEdge;
float barycenter[3];
std::vector<MATCHPROPS> matches;
int numMatches;
int numBigMatches;
float radiusMpc;
} VOID;
typedef struct catalog {
int numVoids, numPartTot, numZonesTot;
float boxLen[3];
std::vector<PART> part;
std::vector<ZONE2PART> zones2Parts;
std::vector<VOID2ZONE> void2Zones;
std::vector<VOID> voids;
} CATALOG;
void loadCatalog(const char *partFile, const char *volFile,
const char *voidFile, const char *zoneFile,
const char *infoFile, const char *barycenterFile,
const char *zonePartFile, CATALOG& catalog);
float getDist(CATALOG& catalog1, CATALOG& catalog2, int& iVoid1, int& iVoid2,
bool periodicX, bool periodicY, bool operiodicZ);
void sortMatches(std::vector<MATCHPROPS>& matches);
// ----------------------------------------------------------------------------
int main(int argc, char **argv) {
int p1, p2, iZ1, iZ2, iVoid1, iVoid2, iVoid, zoneID1, zoneID2, iMatch;
int partID1, partID2;
int voidID1, voidID2;
bool periodicX=false, periodicY=false, periodicZ=false, match;
float dist[3], rdist, r1, r2;
FILE *fp;
int closestMatchID;
float closestMatchDist;
float commonVolRatio;
MATCHPROPS newMatch;
int MAX_MATCHES = 20;
CATALOG catalog1, catalog2;
// initialize arguments
voidOverlap_info args;
voidOverlap_conf_params params;
voidOverlap_conf_init(&args);
voidOverlap_conf_params_init(&params);
params.check_required = 0;
if (voidOverlap_conf_ext (argc, argv, &args, &params))
return 1;
if (!args.configFile_given) {
if (voidOverlap_conf_required (&args, VOIDOVERLAP_CONF_PACKAGE))
return 1;
} else {
params.check_required = 1;
params.initialize = 0;
if (voidOverlap_conf_config_file (args.configFile_arg, &args, &params))
return 1;
}
loadCatalog(args.partFile1_arg, args.volFile1_arg, args.voidFile1_arg,
args.zoneFile1_arg, args.infoFile1_arg, args.barycenterFile1_arg,
args.zonePartFile1_arg, catalog1);
loadCatalog(args.partFile2_arg, args.volFile2_arg, args.voidFile2_arg,
args.zoneFile2_arg, args.infoFile2_arg, args.barycenterFile2_arg,
args.zonePartFile2_arg, catalog2);
// check for periodic box
if ( strchr(args.periodic_arg, 'x') != NULL) {
periodicX = true;
printf("Will assume x-direction is periodic.\n");
}
if ( strchr(args.periodic_arg, 'y') != NULL) {
periodicY = true;
printf("Will assume y-direction is periodic.\n");
}
if ( strchr(args.periodic_arg, 'z') != NULL) {
periodicZ = true;
printf("Will assume z-direction is periodic.\n");
}
// find closest voids
printf(" Finding nearest matches...\n");
for (iVoid1 = 0; iVoid1 < catalog1.numVoids; iVoid1++) {
for (iVoid2 = 0; iVoid2 < catalog2.numVoids; iVoid2++) {
rdist = getDist(catalog1, catalog2, iVoid1, iVoid2,
periodicX, periodicY, periodicZ);
newMatch.matchID = iVoid2;
newMatch.commonVol = 0;
newMatch.dist = rdist;
if (catalog1.voids[iVoid1].matches.size() < MAX_MATCHES) {
catalog1.voids[iVoid1].matches.push_back(newMatch);
} else {
// find the farthest match
float farthestMatchDist = 0;
int farthestMatchID = 0;
for (iMatch = 0; iMatch < MAX_MATCHES; iMatch++) {
if (catalog1.voids[iVoid1].matches[iMatch].dist > farthestMatchDist){
farthestMatchDist = catalog1.voids[iVoid1].matches[iMatch].dist;
farthestMatchID = iMatch;
}
}
if (rdist < farthestMatchDist)
catalog1.voids[iVoid1].matches[farthestMatchID] = newMatch;
}
}
}
printf(" Determining overlap...\n");
for (iVoid1 = 0; iVoid1 < catalog1.numVoids; iVoid1++) {
printf(" Working on void %d of %d...\n", iVoid1+1, catalog1.numVoids);
voidID1 = catalog1.voids[iVoid1].voidID;
for (iMatch = 0; iMatch < catalog1.voids[iVoid1].matches.size();iMatch++) {
iVoid2 = catalog1.voids[iVoid1].matches[iMatch].matchID;
voidID2 = catalog2.voids[iVoid2].voidID;
for (iZ1 = 0; iZ1 < catalog1.void2Zones[voidID1].numZones; iZ1++) {
zoneID1 = catalog1.void2Zones[voidID1].zoneIDs[iZ1];
for (p1 = 0; p1 < catalog1.zones2Parts[zoneID1].numPart; p1++) {
partID1 = catalog1.zones2Parts[zoneID1].partIDs[p1];
for (iZ2 = 0; iZ2 < catalog2.void2Zones[voidID2].numZones; iZ2++) {
zoneID2 = catalog2.void2Zones[voidID2].zoneIDs[iZ2];
for (p2 = 0; p2 < catalog2.zones2Parts[zoneID2].numPart; p2++) {
partID2 = catalog2.zones2Parts[zoneID2].partIDs[p2];
match = false;
if (args.useID_flag) {
if (catalog1.part[partID1].uniqueID ==
catalog2.part[partID2].uniqueID) match = true;
} else {
dist[0] = fabs(catalog1.part[partID1].x -
catalog2.part[partID2].x);
dist[1] = fabs(catalog1.part[partID1].y -
catalog2.part[partID2].y);
dist[2] = fabs(catalog1.part[partID1].z -
catalog2.part[partID2].z);
if (periodicX) dist[0] = fmin(dist[0], 1.0 - dist[0]);
if (periodicY) dist[1] = fmin(dist[1], 1.0 - dist[1]);
if (periodicZ) dist[2] = fmin(dist[2], 1.0 - dist[2]);
rdist = sqrt(dist[0]*dist[0] + dist[1]*dist[1] +
dist[2]*dist[2]);
r1 = pow(3./4./M_PI*catalog1.part[partID1].volume /
catalog1.numPartTot, 1./3.);
r2 = pow(3./4./M_PI*catalog2.part[partID2].volume /
catalog2.numPartTot, 1./3.);
if (rdist <= 0.1*r1 || rdist <= 0.1*r2) match = true;
}
if (match) {
catalog1.voids[iVoid1].matches[iMatch].commonVol +=
catalog2.part[partID2].volume;
} // end if match
} // end p2
} // end iZ2
} // end p1
} // end iZ1
} // end iVoid2
} // end match finding
printf(" Sorting matches...\n");
for (iVoid1 = 0; iVoid1 < catalog1.numVoids; iVoid1++) {
sortMatches(catalog1.voids[iVoid1].matches);
}
// count up significant matches
printf(" Categorizing matches...\n");
for (iVoid1 = 0; iVoid1 < catalog1.numVoids; iVoid1++) {
closestMatchDist = 0.;
for (iMatch = 0; iMatch < catalog1.voids[iVoid1].matches.size(); iMatch++) {
commonVolRatio = catalog1.voids[iVoid1].matches[iMatch].commonVol /
// catalog1.voids[iVoid1].numPart;
catalog1.voids[iVoid1].vol;
if (commonVolRatio > 0.1) catalog1.voids[iVoid1].numBigMatches++;
}
catalog1.voids[iVoid1].numMatches = catalog1.voids[iVoid1].matches.size();
}
// output summary
printf(" Output...\n");
std::string filename;
filename = string(args.outfile_arg);
filename = filename.append("summary.out");
fp = fopen(filename.c_str(), "w");
fprintf(fp, "# void ID, radius, radius ratio, common volume ratio, common volume ratio 2, relative dist, num matches, num significant matches\n");
for (iVoid1 = 0; iVoid1 < catalog1.numVoids; iVoid1++) {
int voidID = catalog1.voids[iVoid1].voidID;
if (catalog1.voids[iVoid1].numMatches > 0) {
iVoid2 = catalog1.voids[iVoid1].matches[0].matchID;
float rRatio = catalog2.voids[iVoid2].radius /
catalog1.voids[iVoid1].radius;
commonVolRatio = catalog1.voids[iVoid1].matches[0].commonVol /
//catalog1.voids[iVoid1].numPart;
catalog1.voids[iVoid1].vol;
float volRatio = catalog1.voids[iVoid1].matches[0].commonVol /
catalog2.voids[iVoid2].vol;
rdist = catalog1.voids[iVoid1].matches[0].dist;
rdist /= catalog1.voids[iVoid1].radius;
fprintf(fp, "%d %.2f %.2f %.2f %.2f %.2f %d %d\n", voidID,
catalog1.voids[iVoid1].radiusMpc,
rRatio,
commonVolRatio,
volRatio,
rdist,
catalog1.voids[iVoid1].numMatches,
catalog1.voids[iVoid1].numBigMatches);
} else {
fprintf(fp, "%d %.2f 0.0 0.0 0.0 0.0 0 0\n", voidID,
catalog1.voids[iVoid1].radiusMpc);
}
} // end printing
fclose(fp);
// output detail
printf(" Output detail...\n");
filename = string(args.outfile_arg);
filename = filename.append("detail.out");
fp = fopen(filename.c_str(), "w");
int MAX_OUT = 10;
fprintf(fp, "# void ID, match common vol\n");
for (iVoid1 = 0; iVoid1 < catalog1.numVoids; iVoid1++) {
int voidID = catalog1.voids[iVoid1].voidID;
fprintf(fp,"%d: ", voidID);
for (iMatch = 0; iMatch < MAX_OUT; iMatch++) {
if (iMatch < catalog1.voids[iVoid1].matches.size()) {
commonVolRatio = catalog1.voids[iVoid1].matches[iMatch].commonVol /
//catalog1.voids[iVoid1].numPart;
catalog1.voids[iVoid1].vol;
fprintf(fp, "%.3f ", catalog1.voids[iVoid1].matches[iMatch].dist);
//fprintf(fp, "%.2f ", commonVolRatio);
} else {
fprintf(fp, "0.00 ");
}
}
fprintf(fp, "\n");
} // end printing detail
fclose(fp);
printf("\nDone!\n");
return 0;
} // end main
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
void loadCatalog(const char *partFile, const char *volFile,
const char *voidFile, const char *zoneFile,
const char *infoFile, const char *barycenterFile,
const char *zonePartFile, CATALOG& catalog) {
int i, p, numPartTot, numZonesTot, dummy, iVoid, iZ, numVolTot;
FILE *fp;
float *temp, junk, voidVol, coreParticle, coreDens, zoneVol, zoneNumPart;
float densCon, voidProb, volNorm;
long *temp2;
int junkInt, voidID, numPart, numZones, zoneID, partID;
char line[500], junkStr[10];
float ranges[3][2];
printf("Loading info...\n");
NcFile f_info(infoFile);
ranges[0][0] = f_info.get_att("range_x_min")->as_double(0);
ranges[0][1] = f_info.get_att("range_x_max")->as_double(0);
ranges[1][0] = f_info.get_att("range_y_min")->as_double(0);
ranges[1][1] = f_info.get_att("range_y_max")->as_double(0);
ranges[2][0] = f_info.get_att("range_z_min")->as_double(0);
ranges[2][1] = f_info.get_att("range_z_max")->as_double(0);
catalog.boxLen[0] = ranges[0][1] - ranges[0][0];
catalog.boxLen[1] = ranges[1][1] - ranges[1][0];
catalog.boxLen[2] = ranges[2][1] - ranges[2][0];
f_info.close();
// read in all particle positions
printf("Loading particles...\n");
fp = fopen(partFile, "r");
fread(&dummy, 1, 4, fp);
fread(&numPartTot, 1, 4, fp);
fread(&dummy, 1, 4, fp);
catalog.part.resize(numPartTot);
catalog.numPartTot = numPartTot;
volNorm = numPartTot/(catalog.boxLen[0]*catalog.boxLen[1]*catalog.boxLen[2]);
temp = (float *) malloc(numPartTot * sizeof(float));
temp2 = (long *) malloc(numPartTot * sizeof(long));
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
for (p = 0; p < numPartTot; p++)
catalog.part[p].x = temp[p];
fread(&dummy, 1, 4, fp);
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
for (p = 0; p < numPartTot; p++)
catalog.part[p].y = temp[p];
fread(&dummy, 1, 4, fp);
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
for (p = 0; p < numPartTot; p++)
catalog.part[p].z = temp[p];
fread(&dummy, 1, 4, fp);
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
for (p = 0; p < numPartTot; p++)
catalog.part[p].ra = temp[p];
fread(&dummy, 1, 4, fp);
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
for (p = 0; p < numPartTot; p++)
catalog.part[p].dec = temp[p];
fread(&dummy, 1, 4, fp);
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
for (p = 0; p < numPartTot; p++)
catalog.part[p].redshift = temp[p];
fread(&dummy, 1, 4, fp);
fread(&dummy, 1, 4, fp);
fread(temp2, numPartTot, 8, fp);
for (p = 0; p < numPartTot; p++)
catalog.part[p].uniqueID = temp2[p];
free(temp2);
fclose(fp);
printf(" Read %d particles...\n", catalog.numPartTot);
// read in all particle volumes
printf(" Loading volumes...\n");
fp = fopen(volFile, "r");
fread(&numVolTot, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
for (p = 0; p < numPartTot; p++)
catalog.part[p].volume = temp[p];
fclose(fp);
free(temp);
// read in desired voids
printf(" Loading voids...\n");
fp = fopen(voidFile ,"r");
fgets(line, sizeof(line), fp);
sscanf(line, "%d %s %d %s", &junkInt, junkStr, &catalog.numVoids, junkStr);
fgets(line, sizeof(line), fp);
catalog.voids.resize(catalog.numVoids);
i = 0;
while (fgets(line, sizeof(line), fp) != NULL) {
sscanf(line, "%d %d %d %f %f %d %d %f %d %f %f\n", &iVoid, &voidID,
&coreParticle, &coreDens, &zoneVol, &zoneNumPart, &numZones,
&voidVol, &numPart, &densCon, &voidProb);
catalog.voids[i].coreParticle = coreParticle;
catalog.voids[i].zoneNumPart = zoneNumPart;
catalog.voids[i].coreDens = coreDens;
catalog.voids[i].zoneVol = zoneVol;
catalog.voids[i].voidID = voidID;
catalog.voids[i].vol = voidVol;
catalog.voids[i].numPart = numPart;
catalog.voids[i].numZones = numZones;
catalog.voids[i].densCon = densCon;
catalog.voids[i].voidProb = voidProb;
catalog.voids[i].radius = pow(voidVol/catalog.numPartTot*3./4./M_PI, 1./3.);
catalog.voids[i].numMatches = 0;
catalog.voids[i].numBigMatches = 0;
catalog.voids[i].radiusMpc = pow(voidVol/volNorm*3./4./M_PI, 1./3.);
i++;
}
fclose(fp);
printf(" Read %d voids.\n", catalog.numVoids);
printf(" Loading barycenters\n");
fp = fopen(barycenterFile, "r");
float tempBary[3];
iVoid = 0;
while (fgets(line, sizeof(line), fp) != NULL) {
sscanf(line, "%d %f %f %f\n", &voidID, &tempBary[0], &tempBary[1],
&tempBary[2]);
tempBary[0] = (tempBary[0] - ranges[0][0])/catalog.boxLen[0];
tempBary[1] = (tempBary[1] - ranges[1][0])/catalog.boxLen[1];
tempBary[2] = (tempBary[2] - ranges[2][0])/catalog.boxLen[2];
catalog.voids[iVoid].barycenter[0] = tempBary[0];
catalog.voids[iVoid].barycenter[1] = tempBary[1];
catalog.voids[iVoid].barycenter[2] = tempBary[2];
iVoid++;
}
fclose(fp);
// load up the zone membership for each void
printf(" Loading zone-void membership info...\n");
fp = fopen(zoneFile, "r");
fread(&catalog.numZonesTot, 1, 4, fp);
catalog.void2Zones.resize(catalog.numZonesTot);
for (iZ = 0; iZ < catalog.numZonesTot; iZ++) {
fread(&numZones, 1, 4, fp);
catalog.void2Zones[iZ].numZones = numZones;
catalog.void2Zones[iZ].zoneIDs = (int *) malloc(numZones * sizeof(int));
for (p = 0; p < numZones; p++) {
fread(&catalog.void2Zones[iZ].zoneIDs[p], 1, 4, fp);
}
}
fclose(fp);
// now the zone membership
printf(" Loading particle-zone membership info...\n");
fp = fopen(zonePartFile, "r");
fread(&dummy, 1, 4, fp);
fread(&numZonesTot, 1, 4, fp);
catalog.zones2Parts.resize(numZonesTot);
for (iZ = 0; iZ < numZonesTot; iZ++) {
fread(&numPart, 1, 4, fp);
catalog.zones2Parts[iZ].numPart = numPart;
catalog.zones2Parts[iZ].partIDs = (int *) malloc(numPart * sizeof(int));
for (p = 0; p < numPart; p++) {
fread(&catalog.zones2Parts[iZ].partIDs[p], 1, 4, fp);
}
}
fclose(fp);
} // end loadCatalog
// ----------------------------------------------------------------------------
float getDist(CATALOG& catalog1, CATALOG& catalog2, int& iVoid1, int& iVoid2,
bool periodicX, bool periodicY, bool periodicZ) {
float rdist, dist[3];
dist[0] = fabs(catalog1.voids[iVoid1].barycenter[0] -
catalog2.voids[iVoid2].barycenter[0]);
dist[1] = fabs(catalog1.voids[iVoid1].barycenter[1] -
catalog2.voids[iVoid2].barycenter[1]);
dist[2] = fabs(catalog1.voids[iVoid1].barycenter[2] -
catalog2.voids[iVoid2].barycenter[2]);
if (periodicX) dist[0] = fmin(dist[0], 1.0 - dist[0]);
if (periodicY) dist[1] = fmin(dist[1], 1.0 - dist[1]);
if (periodicZ) dist[2] = fmin(dist[2], 1.0 - dist[2]);
rdist = sqrt(dist[0]*dist[0] + dist[1]*dist[1] + dist[2]*dist[2]);
return rdist;
} // end getDist
// ----------------------------------------------------------------------------
void sortMatches(std::vector<MATCHPROPS>& matches) {
//printf("SORTING %d\n", matches.size());
MATCHPROPS tempMatch;
bool swapped;
if (matches.size() <= 1) return;
swapped = true;
while (swapped) {
swapped = false;
for (int iMatch = 0; iMatch < matches.size() - 1; iMatch++) {
if (matches[iMatch].dist > matches[iMatch+1].dist) {
//if (matches[iMatch].commonVol < matches[iMatch+1].commonVol) {
tempMatch = matches[iMatch+1];
matches[iMatch+1] = matches[iMatch];
matches[iMatch] = tempMatch;
swapped = true;
}
}
}
return;
} // end sortMatches