vide_public/c_tools/hod/halo_bias_error.c

178 lines
4.5 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "header.h"
/* This is the bias factor for halos. Mass (in h^{-1} M_sol) is the input.
* This is not the scale-dependent bias factor, which can be calculated later.
*
* The parameterization of b(M) is taken from Sheth Mo & Tormen (2001 MNRAS 232 1)
* but the actual parameters have been replaced by the values of Appendix A in
* Tinker, Weinberg, Zheng, & Zehavi. 2005 Apj (submitted)
*/
double bias(double mass)
{
static int prev_cosmo=-1;
static long IDUM=-3333;
double rm,sig,k,neff,b,logk,khi,klo,phi,plo,nu,psp,x,fac,fac1,fac2;
static int flag=0,na=4;
static double pnorm,*xa,*ya,*za;
int i;
/* Original SMT parameters */
double a=0.707,bb=0.5,c=0.6;
/* Tinker et al parameters */
a=0.707;
bb=0.35;
c=0.8;
/* Fitting to Mike Warren's simulations. */
bb=0.28;
/* Use the globel parameters. */
a=BIAS_A; bb=BIAS_B; c=BIAS_C;
if(!flag)
{
xa=dvector(1,na);
ya=dvector(1,na);
za=dvector(1,na);
flag=1;
xa[1] = log(1/2.51);
xa[2] = log(1/1.49);
xa[3] = log(1/0.905);
xa[4] = log(1/0.501);
}
if(prev_cosmo != RESET_COSMOLOGY)
{
prev_cosmo=RESET_COSMOLOGY;
for(i=1;i<=4;++i)
ya[i] = gasdev(&IDUM);
spline(xa,ya,na,1.0E+30,1.0E+30,za);
}
/* First normalize the power spectrum
*/
pnorm=SIGMA_8/sigmac(8.0);
rm=pow(3.0*mass/(4.0*PI*OMEGA_M*RHO_CRIT),1.0/3.0);
sig=pnorm*sigmac(rm);
nu=DELTA_CRIT/sig;
b=1+1.0/(sqrt(a)*DELTA_CRIT)*(sqrt(a)*a*nu*nu + sqrt(a)*bb*pow(a*nu*nu,1-c) -
(pow(a*nu*nu,c)/(pow(a*nu*nu,c)+bb*(1-c)*(1-c/2.))));
splint(xa,ya,za,na,log(1/sig),&fac1);
fac2 = 0.0158*pow(sig,-2.7) + 0.00251*pow(sig,2.2);
fac = 1 + fac1*fac2;
if(fac<0.01)fac=0.01;
b*=fac;
return(b);
/* This is the Seljak & Warren (2004) bias.
* There's an alpha_s in the correction term, which here I set to zero. (RUNNING.)
* See App. A of Tinker et al for a comparison of this bias with above bias.
*/
x=mass/MSTAR;
b=(0.53+0.39*pow(x,0.45)+0.13/(40*x+1) + 5.0e-4*pow(x,1.5));
b=b+log10(x)*(0.4*(OMEGA_M-0.3+SPECTRAL_INDX-1)+0.3*(SIGMA_8-0.9+HUBBLE-0.7)+0.8*0.0);
return(b);
/* This is the old Mo & White (1996) formula
*/
return(1+DELTA_CRIT/sig/sig-1/DELTA_CRIT);
}
/* Just like the halo mass function, we'll set this up such that
* you just need to interpolate.
*
* Now this has been changed to calculate the spatial-scale dependence
* of the bias factor. If you don't want the scale dep. b, then just
* input r<0.
*
* If the global flag LINEAR_PSP==0, uses the scale dependence calculated for
* for halo bias relative to the non-linear matter \xi_m(r):
*
* f^2(r) = (1.0+xi*1.17)^1.49/(1.0+xi*0.69)^2.09 --> b(r) = b0*f(r)
*
* For LINEAR_PSP==1, use scale dependence determined for the linear P(k):
*
* f(r) = 1 + exp[-(r/A)^0.7] --> where A is a parameter that we're gonna have to
* determine in more detail, but now A \approx 1
*/
double bias_interp(double m, double r)
{
static int flag=0,prev_cosmo=0;
static double *x,*y,*y2;
int i,n=100;
double dm,max=16.3,min=9,a,b,m1,m2,dm1,xi;
if(!flag || RESET_COSMOLOGY!=prev_cosmo)
{
if(!ThisTask && OUTPUT)
fprintf(stdout,"RESET: resetting bias for %f %f\n",OMEGA_M,SIGMA_8);
if(!flag)
{
x=dvector(1,n);
y=dvector(1,n);
y2=dvector(1,n);
}
flag=1;
dm=(double)(max-min)/n;
for(i=1;i<=n;++i)
{
x[i]=pow(10.0,min+i*dm);
y[i]=log(bias(x[i]));
if(DELTA_HALO!=200)
{
m1 = halo_mass_conversion2(x[i]*1.001,halo_c200(x[i]*1.001),DELTA_HALO,200.0);
m2 = halo_mass_conversion2(x[i]*0.999,halo_c200(x[i]*0.999),DELTA_HALO,200.0);
dm1 = (x[i]*1.001 - x[i]*0.999)/(m1-m2);
y[i] = y[i] + log(dm1);
x[i]=log(halo_mass_conversion2(x[i],halo_c200(x[i]),DELTA_HALO,200.0));
}
else
x[i]=log(x[i]);
}
spline(x,y,n,2.0E+30,2.0E+30,y2);
prev_cosmo=RESET_COSMOLOGY;
}
m=log(m);
splint(x,y,y2,n,m,&a);
if(r<0 || r>10)return(exp(a));
if(LINEAR_PSP)
{
b=exp(-pow(r,0.7)) + 1;
}
else
{
xi=xi_interp(r);
b=pow(1.0+xi*1.17,1.49*0.5)*pow(1.0+xi*0.69,-2.09*0.5);
}
a=exp(a)*b;
return(a);
}
/* This is the integrand which qromo or qtrap would call
* to calculate the large-scale galaxy bias.
* The integral is a number-weighted average of the halo
* bias function, integrated over the halo mass function.
*/
double func_galaxy_bias(double m)
{
return(dndM_interp(m)*N_avg(m)*bias_interp(m,-1.));
}