vide_public/external/healpix/Healpix_cxx/alm_powspec_tools.cc
2012-10-30 13:56:48 -04:00

450 lines
13 KiB
C++

/*
* This file is part of Healpix_cxx.
*
* Healpix_cxx is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Healpix_cxx is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Healpix_cxx; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* For more information about HEALPix, see http://healpix.jpl.nasa.gov
*/
/*
* Healpix_cxx is being developed at the Max-Planck-Institut fuer Astrophysik
* and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt
* (DLR).
*/
/*
* Copyright (C) 2003-2011 Max-Planck-Society
* Author: Martin Reinecke
*/
#include "alm_powspec_tools.h"
#include "alm.h"
#include "planck_rng.h"
#include "powspec.h"
#include "xcomplex.h"
#include "rotmatrix.h"
#include "openmp_support.h"
#include "wigner.h"
#include "lsconstants.h"
using namespace std;
template<typename T> void create_alm
(const PowSpec &powspec, Alm<xcomplex<T> > &alm, planck_rng &rng)
{
int lmax = alm.Lmax();
int mmax = alm.Mmax();
const double hsqrt2 = 1/sqrt(2.);
for (int l=0; l<=lmax; ++l)
{
double rms_tt = sqrt(powspec.tt(l));
double zeta1_r = rng.rand_gauss();
alm(l,0) = T(zeta1_r * rms_tt);
for (int m=1; m<=min(l,mmax); ++m)
{
zeta1_r = rng.rand_gauss()*hsqrt2;
double zeta1_i = rng.rand_gauss()*hsqrt2;
alm(l,m).Set (T(zeta1_r*rms_tt), T(zeta1_i*rms_tt));
}
}
}
template void create_alm (const PowSpec &powspec,
Alm<xcomplex<float> > &alm, planck_rng &rng);
template void create_alm (const PowSpec &powspec,
Alm<xcomplex<double> > &alm, planck_rng &rng);
template<typename T> void create_alm_pol
(const PowSpec &powspec,
Alm<xcomplex<T> > &almT,
Alm<xcomplex<T> > &almG,
Alm<xcomplex<T> > &almC,
planck_rng &rng)
{
int lmax = almT.Lmax();
int mmax = almT.Mmax();
const double hsqrt2 = 1/sqrt(2.);
for (int l=0; l<=lmax; ++l)
{
double rms_tt=0, rms_g1=0;
if (powspec.tt(l) != 0)
{
rms_tt = sqrt(powspec.tt(l));
rms_g1 = powspec.tg(l)/rms_tt;
}
double zeta1_r = rng.rand_gauss();
almT(l,0) = T(zeta1_r * rms_tt);
almG(l,0) = T(zeta1_r * rms_g1);
for (int m=1; m<=min(l,mmax); ++m)
{
zeta1_r = rng.rand_gauss()*hsqrt2;
double zeta1_i = rng.rand_gauss()*hsqrt2;
almT(l,m).Set (T(zeta1_r*rms_tt), T(zeta1_i*rms_tt));
almG(l,m).Set (T(zeta1_r*rms_g1), T(zeta1_i*rms_g1));
}
}
for (int l=0; l<=lmax; ++l)
{
double rms_g2 = 0;
double rms_cc = 0;
if (powspec.tt(l) != 0)
{
rms_g2 = powspec.gg(l) - (powspec.tg(l)/powspec.tt(l))*powspec.tg(l);
if (rms_g2 <= 0)
{
planck_assert (abs(rms_g2) <= 1e-8*abs(powspec.gg(l)),
"Inconsistent TT, GG and TG spectra at l="+dataToString(l));
rms_g2 = 0;
}
rms_g2 = sqrt(rms_g2);
rms_cc = sqrt(powspec.cc(l));
}
almG(l,0) += T(rng.rand_gauss()*rms_g2);
almC(l,0) = T(rng.rand_gauss()*rms_cc);
for (int m=1; m<=min(l,mmax); ++m)
{
double zeta2_r = rng.rand_gauss()*hsqrt2;
double zeta2_i = rng.rand_gauss()*hsqrt2;
double zeta3_r = rng.rand_gauss()*hsqrt2;
double zeta3_i = rng.rand_gauss()*hsqrt2;
almG(l,m) += xcomplex<T> (T(zeta2_r*rms_g2),T(zeta2_i*rms_g2));
almC(l,m).Set (T(zeta3_r*rms_cc),T(zeta3_i*rms_cc));
}
}
}
template void create_alm_pol
(const PowSpec &powspec,
Alm<xcomplex<float> > &almT,
Alm<xcomplex<float> > &almG,
Alm<xcomplex<float> > &almC,
planck_rng &rng);
template void create_alm_pol
(const PowSpec &powspec,
Alm<xcomplex<double> > &almT,
Alm<xcomplex<double> > &almG,
Alm<xcomplex<double> > &almC,
planck_rng &rng);
template<typename T> void extract_crosspowspec
(const Alm<xcomplex<T> > &alm1,
const Alm<xcomplex<T> > &alm2,PowSpec &powspec)
{
planck_assert (alm1.conformable(alm2), "a_lm are not conformable");
arr<double> tt(alm1.Lmax()+1);
for (int l=0; l<=alm1.Lmax(); ++l)
{
tt[l] = alm1(l,0).re*alm2(l,0).re;
int limit = min(l,alm1.Mmax());
for (int m=1; m<=limit; ++m)
tt[l] += 2 * (alm1(l,m).re*alm2(l,m).re + alm1(l,m).im*alm2(l,m).im);
tt[l] /= (2*l+1);
}
powspec.Set(tt);
}
template void extract_crosspowspec
(const Alm<xcomplex<float> > &alm1,
const Alm<xcomplex<float> > &alm2, PowSpec &powspec);
template void extract_crosspowspec
(const Alm<xcomplex<double> > &alm1,
const Alm<xcomplex<double> > &alm2, PowSpec &powspec);
template<typename T> void extract_powspec
(const Alm<xcomplex<T> > &alm, PowSpec &powspec)
{ extract_crosspowspec (alm,alm,powspec); }
template void extract_powspec
(const Alm<xcomplex<float> > &alm, PowSpec &powspec);
template void extract_powspec
(const Alm<xcomplex<double> > &alm, PowSpec &powspec);
namespace {
template<typename T> void extract_crosspowspec
(const Alm<xcomplex<T> > &almT1,
const Alm<xcomplex<T> > &almG1,
const Alm<xcomplex<T> > &almC1,
const Alm<xcomplex<T> > &almT2,
const Alm<xcomplex<T> > &almG2,
const Alm<xcomplex<T> > &almC2,
PowSpec &powspec)
{
planck_assert (almT1.conformable(almG1) && almT1.conformable(almC1) &&
almT1.conformable(almT2) && almT1.conformable(almG2) &&
almT1.conformable(almC2), "a_lm are not conformable");
int lmax = almT1.Lmax();
arr<double> tt(lmax+1), gg(lmax+1), cc(lmax+1), tg(lmax+1),
tc(lmax+1), gc(lmax+1);
for (int l=0; l<=lmax; ++l)
{
tt[l] = almT1(l,0).re*almT2(l,0).re;
gg[l] = almG1(l,0).re*almG2(l,0).re;
cc[l] = almC1(l,0).re*almC2(l,0).re;
tg[l] = almT1(l,0).re*almG2(l,0).re;
tc[l] = almT1(l,0).re*almC2(l,0).re;
gc[l] = almG1(l,0).re*almC2(l,0).re;
int limit = min(l,almT1.Mmax());
for (int m=1; m<=limit; ++m)
{
tt[l] += 2 * (almT1(l,m).re*almT2(l,m).re + almT1(l,m).im*almT2(l,m).im);
gg[l] += 2 * (almG1(l,m).re*almG2(l,m).re + almG1(l,m).im*almG2(l,m).im);
cc[l] += 2 * (almC1(l,m).re*almC2(l,m).re + almC1(l,m).im*almC2(l,m).im);
tg[l] += 2 * (almT1(l,m).re*almG2(l,m).re + almT1(l,m).im*almG2(l,m).im);
tc[l] += 2 * (almT1(l,m).re*almC2(l,m).re + almT1(l,m).im*almC2(l,m).im);
gc[l] += 2 * (almG1(l,m).re*almC2(l,m).re + almG1(l,m).im*almC2(l,m).im);
}
tt[l] /= (2*l+1);
gg[l] /= (2*l+1);
cc[l] /= (2*l+1);
tg[l] /= (2*l+1);
tc[l] /= (2*l+1);
gc[l] /= (2*l+1);
}
powspec.Set(tt,gg,cc,tg,tc,gc);
}
} // unnamed namespace
template<typename T> void extract_powspec
(const Alm<xcomplex<T> > &almT,
const Alm<xcomplex<T> > &almG,
const Alm<xcomplex<T> > &almC,
PowSpec &powspec)
{ extract_crosspowspec(almT,almG,almC,almT,almG,almC,powspec); }
template void extract_powspec
(const Alm<xcomplex<float> > &almT,
const Alm<xcomplex<float> > &almG,
const Alm<xcomplex<float> > &almC,
PowSpec &powspec);
template void extract_powspec
(const Alm<xcomplex<double> > &almT,
const Alm<xcomplex<double> > &almG,
const Alm<xcomplex<double> > &almC,
PowSpec &powspec);
template<typename T> void smoothWithGauss
(Alm<xcomplex<T> > &alm, double fwhm)
{
int fct = (fwhm>=0) ? 1 : -1;
double sigma = fwhm*fwhm2sigma;
arr<double> gb(alm.Lmax()+1);
for (int l=0; l<=alm.Lmax(); ++l)
gb[l] = exp(-.5*fct*l*(l+1)*sigma*sigma);
alm.ScaleL(gb);
}
template void smoothWithGauss
(Alm<xcomplex<float> > &alm, double fwhm);
template void smoothWithGauss
(Alm<xcomplex<double> > &alm, double fwhm);
template<typename T> void smoothWithGauss
(Alm<xcomplex<T> > &almT,
Alm<xcomplex<T> > &almG,
Alm<xcomplex<T> > &almC,
double fwhm)
{
int fct = (fwhm>=0) ? 1 : -1;
double sigma = fwhm*fwhm2sigma;
double fact_pol = exp(2*fct*sigma*sigma);
arr<double> gb(almT.Lmax()+1);
for (int l=0; l<=almT.Lmax(); ++l)
gb[l] = exp(-.5*fct*l*(l+1)*sigma*sigma);
almT.ScaleL(gb);
for (int l=0; l<=almT.Lmax(); ++l)
gb[l] *= fact_pol;
almG.ScaleL(gb); almC.ScaleL(gb);
}
template void smoothWithGauss
(Alm<xcomplex<float> > &almT,
Alm<xcomplex<float> > &almG,
Alm<xcomplex<float> > &almC,
double fwhm);
template void smoothWithGauss
(Alm<xcomplex<double> > &almT,
Alm<xcomplex<double> > &almG,
Alm<xcomplex<double> > &almC,
double fwhm);
template<typename T> void rotate_alm (Alm<xcomplex<T> > &alm,
double psi, double theta, double phi)
{
planck_assert (alm.Lmax()==alm.Mmax(),
"rotate_alm: lmax must be equal to mmax");
int lmax=alm.Lmax();
arr<xcomplex<double> > exppsi(lmax+1), expphi(lmax+1);
for (int m=0; m<=lmax; ++m)
{
exppsi[m].Set (cos(psi*m),-sin(psi*m));
expphi[m].Set (cos(phi*m),-sin(phi*m));
}
wigner_d_risbo_openmp rec(lmax,theta);
arr<xcomplex<double> > almtmp(lmax+1);
for (int l=0; l<=lmax; ++l)
{
const arr2<double> &d(rec.recurse());
for (int m=0; m<=l; ++m)
almtmp[m] = xcomplex<double>(alm(l,0))*d[l][l+m];
#pragma omp parallel
{
int64 lo,hi;
openmp_calc_share(0,l+1,lo,hi);
bool flip = true;
for (int mm=1; mm<=l; ++mm)
{
xcomplex<double> t1 = xcomplex<double>(alm(l,mm))*exppsi[mm];
bool flip2 = ((mm+lo)&1) ? true : false;
for (int m=lo; m<hi; ++m)
{
double d1 = flip2 ? -d[l-mm][l-m] : d[l-mm][l-m];
double d2 = flip ? -d[l-mm][l+m] : d[l-mm][l+m];
double f1 = d1+d2, f2 = d1-d2;
almtmp[m].re += t1.re*f1; almtmp[m].im += t1.im*f2;
flip2 = !flip2;
}
flip = !flip;
}
}
for (int m=0; m<=l; ++m)
alm(l,m) = xcomplex<T>(almtmp[m]*expphi[m]);
}
}
template void rotate_alm (Alm<xcomplex<float> > &alm,
double psi, double theta, double phi);
template void rotate_alm (Alm<xcomplex<double> > &alm,
double psi, double theta, double phi);
template<typename T> void rotate_alm (Alm<xcomplex<T> > &almT,
Alm<xcomplex<T> > &almG, Alm<xcomplex<T> > &almC,
double psi, double theta, double phi)
{
planck_assert (almT.Lmax()==almT.Mmax(),
"rotate_alm: lmax must be equal to mmax");
planck_assert (almG.conformable(almT) && almC.conformable(almT),
"rotate_alm: a_lm are not conformable");
int lmax=almT.Lmax();
arr<xcomplex<double> > exppsi(lmax+1), expphi(lmax+1);
for (int m=0; m<=lmax; ++m)
{
exppsi[m].Set (cos(psi*m),-sin(psi*m));
expphi[m].Set (cos(phi*m),-sin(phi*m));
}
wigner_d_risbo_openmp rec(lmax,theta);
arr<xcomplex<double> > almtmpT(lmax+1), almtmpG(lmax+1), almtmpC(lmax+1);
for (int l=0; l<=lmax; ++l)
{
const arr2<double> &d(rec.recurse());
for (int m=0; m<=l; ++m)
{
almtmpT[m] = xcomplex<double>(almT(l,0))*d[l][m+l];
almtmpG[m] = xcomplex<double>(almG(l,0))*d[l][m+l];
almtmpC[m] = xcomplex<double>(almC(l,0))*d[l][m+l];
}
#pragma omp parallel
{
int64 lo,hi;
openmp_calc_share(0,l+1,lo,hi);
bool flip = true;
for (int mm=1; mm<=l; ++mm)
{
xcomplex<double> t1T = xcomplex<double>(almT(l,mm))*exppsi[mm];
xcomplex<double> t1G = xcomplex<double>(almG(l,mm))*exppsi[mm];
xcomplex<double> t1C = xcomplex<double>(almC(l,mm))*exppsi[mm];
bool flip2 = ((mm+lo)&1) ? true : false;
for (int m=lo; m<hi; ++m)
{
double d1 = flip2 ? -d[l-mm][l-m] : d[l-mm][l-m];
double d2 = flip ? -d[l-mm][l+m] : d[l-mm][l+m];
double f1 = d1+d2, f2 = d1-d2;
almtmpT[m].re += t1T.re*f1; almtmpT[m].im += t1T.im*f2;
almtmpG[m].re += t1G.re*f1; almtmpG[m].im += t1G.im*f2;
almtmpC[m].re += t1C.re*f1; almtmpC[m].im += t1C.im*f2;
flip2 = !flip2;
}
flip = !flip;
}
}
for (int m=0; m<=l; ++m)
{
almT(l,m) = xcomplex<T>(almtmpT[m]*expphi[m]);
almG(l,m) = xcomplex<T>(almtmpG[m]*expphi[m]);
almC(l,m) = xcomplex<T>(almtmpC[m]*expphi[m]);
}
}
}
template void rotate_alm (Alm<xcomplex<float> > &almT,
Alm<xcomplex<float> > &almG, Alm<xcomplex<float> > &almC,
double psi, double theta, double phi);
template void rotate_alm (Alm<xcomplex<double> > &almT,
Alm<xcomplex<double> > &almG, Alm<xcomplex<double> > &almC,
double psi, double theta, double phi);
template<typename T> void rotate_alm (Alm<xcomplex<T> > &alm,
const rotmatrix &mat)
{
double a1, a2, a3;
mat.Extract_CPAC_Euler_Angles (a1, a2, a3);
rotate_alm (alm, a3, a2, a1);
}
template void rotate_alm (Alm<xcomplex<float> > &alm, const rotmatrix &mat);
template void rotate_alm (Alm<xcomplex<double> > &alm, const rotmatrix &mat);
template<typename T> void rotate_alm (Alm<xcomplex<T> > &almT,
Alm<xcomplex<T> > &almG, Alm<xcomplex<T> > &almC,
const rotmatrix &mat)
{
double a1, a2, a3;
mat.Extract_CPAC_Euler_Angles (a1, a2, a3);
rotate_alm (almT, almG, almC, a3, a2, a1);
}
template void rotate_alm (Alm<xcomplex<float> > &almT,
Alm<xcomplex<float> > &almG, Alm<xcomplex<float> > &almC,
const rotmatrix &mat);
template void rotate_alm (Alm<xcomplex<double> > &almT,
Alm<xcomplex<double> > &almG, Alm<xcomplex<double> > &almC,
const rotmatrix &mat);