vide_public/python_tools/void_python_tools/voidUtil/profileUtil.py
2014-06-06 16:02:10 -05:00

212 lines
7.9 KiB
Python

#+
# VIDE -- Void IDentification and Examination -- ./python_tools/void_python_tools/plotting/plotTools.py
# Copyright (C) 2010-2013 Guilhem Lavaux
# Copyright (C) 2011-2013 P. M. Sutter
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#+
__all__=['buildProfile','fitHSWProfile','getHSWProfile',]
from void_python_tools.backend.classes import *
from void_python_tools.voidUtil import *
from plotDefs import *
import numpy as np
import os
import void_python_tools.apTools as vp
from scipy.optimize import curve_fit
from scipy.interpolate import interp1d
def HSWProfile(r, rs, dc):
alpha = -2.0*rs + 4.0
if rs < 0.91:
beta = 17.5*rs - 6.5
else:
beta = -9.8*rs + 18.4
return dc * (1 - (r/rs)**alpha) / (1+ (r)**beta) + 1
# -----------------------------------------------------------------------------
def buildProfile(catalog, rMin, rMax):
# builds a stacked radial density profile from the given catalog
# catalog: void catalog
# rMin: minimum void radius, in Mpc/h
# rMax: maximum void radius, in Mpc/h
#
# returns:
# binCenters: array of radii in binned profile
# stackedProfile: the stacked density profile
# sigmas: 1-sigma uncertainty in each bin
rMaxProfile = rMin*3 + 2
periodicLine = getPeriodic(catalog.sampleInfo)
print " Building particle tree..."
partTree = getPartTree(catalog)
print " Selecting voids to stack..."
voidsToStack = [v for v in catalog.voids if (v.radius > rMin and v.radius < rMax)]
if len(voidsToStack) == 0:
print " No voids to stack!"
return -1, -1, -1
print " Stacking voids..."
allProfiles = []
for void in voidsToStack:
center = void.macrocenter
localPart = catalog.partPos[ getBall(partTree, center, rMaxProfile) ]
shiftedPart = shiftPart(localPart, center, periodicLine, catalog.ranges)
dist = np.sqrt(np.sum(shiftedPart[:,:]**2, axis=1))
thisProfile, radii = np.histogram(dist, bins=10, range=(0,rMaxProfile))
deltaV = 4*np.pi/3*(radii[1:]**3-radii[0:(radii.size-1)]**3)
thisProfile = np.float32(thisProfile)
thisProfile /= deltaV
thisProfile /= catalog.volNorm
allProfiles.append(thisProfile)
binCenters = 0.5*(radii[1:] + radii[:-1])
nVoids = len(voidsToStack)
stackedProfile = np.mean(allProfiles, axis=0)
sigmas = np.std(allProfiles, axis=0) / np.sqrt(nVoids)
return binCenters, stackedProfile, sigmas
# -----------------------------------------------------------------------------
def fitHSWProfile(radii, densities, sigmas, rV):
# fits the given density profile to the HSW function
# radii: array of radii
# densities: array of densities
# sigmas: array of uncertainties
# rV: radius normalization
#
# returns:
# popt: best-fit values of dc and rs
# pcov: covariance matrix
# rVals: array of radii for best-fit curve
# hswProfile: array of densities for best-fit curve
popt, pcov = curve_fit(HSWProfile, radii/rV, densities,
sigma=sigmas,
maxfev=10000, xtol=5.e-3,
p0=[1.0,-1.0])
# return best-fits
rVals = np.linspace(0.0, radii[-1], 100) / rV
return popt, pcov, rVals*rV, HSWProfile(rVals,popt[0],popt[1])
# -----------------------------------------------------------------------------
def getHSWProfile(density, radius):
# returns the HSW profile for the given sample density and void size
# will interpolate/extrapole the radius
# density: choice of sample (see arXiv:1309.5087):
# maxDM: DM at 1 particles per cubic Mpc/h
# fullDM: DM at 0.01 particles per cubic Mpc/h
# denseDM: DM at 4.e-3 particles per cubic Mpc/h
# sparseDM: DM at 3.e-4 particles per cubic Mpc/h
#
# denseHalos: halos at 4.e-3 particles per cubic Mpc/h
# sparseHalos: halos at 3.e-4 particles per cubic Mpc/h
#
# denseGal: galaxies at 4.e-3 particles per cubic Mpc/h
# sparseGal: galaxies at 3.e-4 particles per cubic Mpc/h
#
# radius: void size in Mpc/h
# returns:
# (rs, dc): best-fit values
# binCenters: array of radii in binned profile
# stackedProfile: the density profile
samples = [
{'name': 'maxDM',
'rv': [8.74041095, 11.65557095, 15.54746657, 20.94913774, 28.41063131, 38.61523696, 51.85944898, 69.42297033],
'rs': [0.74958738, 0.79650829, 0.86245251, 0.93960051, 1.01595177, 1.13159483, 1.31457096, 1.65611709],
'dc': [-0.95353184, -0.94861939, -0.91888455, -0.84480086, -0.73431544, -0.62614422, -0.54908132, -0.4912146],
},
{'name': 'fullDM',
'rv': [10, 15, 20, 25, 30, 35],
'rs': [ 0.76986779, 0.80980775, 0.86590177, 0.93732629, 1.02643542,
1.12875503],
'dc': [-0.81021 , -0.78115474, -0.78326026, -0.78670109, -0.76626508,
-0.72531084],
},
{'name': 'denseDM',
'rv': [10, 15, 20, 25, 30, 35, 40],
'rs': [0.7477462 , 0.79932797, 0.84369297, 0.90309363, 0.92990401,
1.06970842, 1.16393474],
'dc': [-0.78333107, -0.75780925, -0.71586397, -0.74669512, -0.74902649,
-0.75342964, -0.76598043],
},
{'name': 'sparseDM',
'rv': [25, 30, 35, 40, 45, 50, 55, 60],
'rs': [0.78351117, 0.79751047, 0.8225573 , 0.83751894, 0.85443167,
0.86346031, 0.85692501, 0.91470448],
'dc': [-0.67407548, -0.62389586, -0.59125414, -0.55341724, -0.54659457,
-0.5297821 , -0.534683 , -0.51055946],
},
{'name': 'denseHalos',
'rv': [15, 20, 25, 30, 35, 40, 45, 50, 55],
'rs': [0.75393528, 0.7758442 , 0.79720886, 0.81560553, 0.83797299,
0.84377082, 0.84900783, 0.8709897 , 0.86886687],
'dc': [-0.81348968, -0.77362777, -0.74336192, -0.72571135, -0.67928029,
-0.6279349 , -0.6313316 , -0.55188564, -0.48096026],
},
{'name': 'sparseHalos',
'rv': [25, 30, 35, 40, 45, 50, 55, 60, 65, 70],
'rs': [0.76420703, 0.78939067, 0.80480265, 0.82315275, 0.8158607 ,
0.82553517, 0.83843323, 0.85759226, 0.8471268 , 0.89286939],
'dc': [-0.79317192, -0.81661415, -0.76770778, -0.7151494 , -0.718561 ,
-0.70858856, -0.68995608, -0.67415305, -0.63706798, -0.5303759],
},
{'name': 'denseGal',
'rv': [10, 15, 20, 25, 30, 35, 40, 45],
'rs': [0.70048139, 0.73717884, 0.75338516, 0.76782043, 0.79292536,
0.80157122, 0.8207239 , 0.8091386],
'dc': [-0.83166549, -0.86505329, -0.81066899, -0.7662453 , -0.72840363,
-0.65163607, -0.57937656, -0.57125164],
},
{'name': 'sparseGal',
'rv': [25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75],
'rs': [0.75928922, 0.76622648, 0.77695425, 0.79963152, 0.8045125 ,
0.81892965, 0.83439691, 0.86600085, 0.83166875, 0.85283258,
0.83971344],
'dc': [-0.82413212, -0.87483536, -0.8221596 , -0.78459706, -0.75290061,
-0.77513988, -0.70012913, -0.67487994, -0.69903308, -0.65811992,
-0.57929526],
},
]
mySample = next((item for item in samples if item['name'] == density), None)
if mySample == None:
print "Sample", density," not found! Use one of ", [item['name'] for item in samples]
return
# interpolate the radii
rsFunc = interp1d( mySample['rv'], mySample['rs'], kind='cubic' )
dcFunc = interp1d( mySample['rv'], mySample['dc'], kind='cubic' )
rs = rsFunc(radius)
dc = dcFunc(radius)
# return best-fits
rVals = np.linspace(0.0, 3*radius, 100) / radius
return (rs,dc), rVals*radius, HSWProfile(rVals,rs,dc)