vide_public/c_tools/hod/tf_eisenstein_hu.c

140 lines
3.5 KiB
C

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "header.h"
// Transfer function of Eisenstein & Hu 1998
// (Equation numbers refer to this paper)
double calc_tf_eh(double k);
double tf_eisenstein_hu(double k)
{
static int flag=0,prev_cosmo=0;
static double *x,*y,*y2;
int n=1000,i;
double a,rlo=1.0E-4,rhi=1.0E+4,dlogr,klo;
double xi_linear_int();
if(!flag || RESET_COSMOLOGY!=prev_cosmo)
{
if(!flag)
{
x=dvector(1,n);
y=dvector(1,n);
y2=dvector(1,n);
}
flag=1;
dlogr = (log(rhi)-log(rlo))/(n-1);
for(i=1;i<=n;++i)
{
x[i] = exp((i-1)*dlogr)*rlo;
y[i] = log(calc_tf_eh(x[i]));
//printf("TK %e %e %e %e %e\n",x[i],exp(y[i]),exp(y[i]),exp(y[i]),exp(y[i]));
x[i] = log(x[i]);
}
spline(x,y,n,2.0E+30,2.0E+30,y2);
prev_cosmo=RESET_COSMOLOGY;
}
splint(x,y,y2,n,log(k),&a);
return(exp(a));
}
double calc_tf_eh(double k)
{
double rk,e,thet,thetsq,thetpf,b1,b2,zd,ze,rd,re,rke,s,rks,q,y,g;
double ab,a1,a2,ac,bc,f,c1,c2,tc,bb,bn,ss,tb,tk_eh;
double h,hsq,om_mhsq,om_b,om_m;
// set up cosmology
h = HUBBLE;
om_m = OMEGA_M;
om_b = OMEGA_B;
// convert k to Mpc^-1 rather than hMpc^-1
rk=k*h;
hsq=h*h;
om_mhsq=om_m*hsq;
// constants
e=exp(1.);
thet=2.728/2.7;
thetsq=thet*thet;
thetpf=thetsq*thetsq;
// Equation 4 - redshift of drag epoch
b1=0.313*pow(om_mhsq,-0.419)*(1.+0.607*pow(om_mhsq,0.674));
b2=0.238*pow(om_mhsq,0.223);
zd=1291.*(1.+b1*pow(om_b*hsq,b2))*pow(om_mhsq,0.251)
/(1.+0.659*pow(om_mhsq,0.828));
// Equation 2 - redshift of matter-radiation equality
ze=2.50e4*om_mhsq/thetpf;
// value of R=(ratio of baryon-photon momentum density) at drag epoch
rd=31500.*om_b*hsq/(thetpf*zd);
// value of R=(ratio of baryon-photon momentum density) at epoch of matter-radiation equality
re=31500.*om_b*hsq/(thetpf*ze);
// Equation 3 - scale of ptcle horizon at matter-radiation equality
rke=7.46e-2*om_mhsq/(thetsq);
// Equation 6 - sound horizon at drag epoch
s=(2./3./rke)*sqrt(6./re)*log((sqrt(1.+rd)+sqrt(rd+re))/(1.+sqrt(re)));
// Equation 7 - silk damping scale
rks=1.6*pow(om_b*hsq,0.52)*pow(om_mhsq,0.73)*(1.+pow(10.4*om_mhsq,-0.95));
// Equation 10 - define q
q=rk/13.41/rke;
// Equations 11 - CDM transfer function fits
a1=pow(46.9*om_mhsq,0.670)*(1.+pow(32.1*om_mhsq,-0.532));
a2=pow(12.0*om_mhsq,0.424)*(1.+pow(45.0*om_mhsq,-0.582));
ac=pow(a1,(-om_b/om_m))*pow(a2,pow(-(om_b/om_m),3.));
// Equations 12 - CDM transfer function fits
b1=0.944/(1.+pow(458.*om_mhsq,-0.708));
b2=pow(0.395*om_mhsq,-0.0266);
bc=1./(1.+b1*(pow(1.-om_b/om_m,b2)-1.));
// Equation 18
f=1./(1.+pow(rk*s/5.4,4.));
// Equation 20
c1=14.2 + 386./(1.+69.9*pow(q,1.08));
c2=14.2/ac + 386./(1.+69.9*pow(q,1.08));
// Equation 17 - CDM transfer function
tc=f*log(e+1.8*bc*q)/(log(e+1.8*bc*q)+c1*q*q) +
(1.-f)*log(e+1.8*bc*q)/(log(e+1.8*bc*q)+c2*q*q);
// Equation 15
y=(1.+ze)/(1.+zd);
g=y*(-6.*sqrt(1.+y)+(2.+3.*y)*log((sqrt(1.+y)+1.)/(sqrt(1.+y)-1.)));
// Equation 14
ab=g*2.07*rke*s/pow(1.+rd,0.75);
// Equation 23
bn=8.41*pow(om_mhsq,0.435);
// Equation 22
ss=s/pow(1.+pow(bn/rk/s,3.),1./3.);
// Equation 24
bb=0.5+(om_b/om_m) + (3.-2.*om_b/om_m)*sqrt(pow(17.2*om_mhsq,2.)+1.);
// Equations 19 & 21
tb=log(e+1.8*q)/(log(e+1.8*q)+c1*q*q)/(1+pow(rk*s/5.2,2.));
tb=(tb+ab*exp(-pow(rk/rks,1.4))/(1.+pow(bb/rk/s,3.)))*sin(rk*ss)/rk/ss;
// Equation 8
tk_eh=(om_b/om_m)*tb+(1.-om_b/om_m)*tc;
return tk_eh;
}