mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
175 lines
4.2 KiB
C
175 lines
4.2 KiB
C
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include "header.h"
|
|
|
|
double m_g3,r_g3,*x_g3,*y_g3,*z_g3;
|
|
double n_g3;
|
|
int flag_g3=0;
|
|
|
|
double func_ng(double m);
|
|
double func_ng2(double m);
|
|
|
|
/* The restr
|
|
*/
|
|
|
|
double restricted_number_density(double r)
|
|
{
|
|
static int flag=1;
|
|
static double *x,*y,*y2;
|
|
int i,n=50,j;
|
|
double mlimit,dlogm,logm,mmin,sum=0,t0,t1,s1,s2,s3,m,r1,r2,ng2,rlim,rmin,rmax;
|
|
|
|
if(flag)
|
|
{
|
|
n_g3 = n;
|
|
x_g3=dvector(1,n);
|
|
y_g3=dvector(1,n);
|
|
z_g3=dvector(1,n);
|
|
flag=0;
|
|
}
|
|
|
|
/* Reset the static variables in this function.
|
|
*/
|
|
func_ng2(-1);
|
|
|
|
r_g3=r;
|
|
ng2=GALAXY_DENSITY*GALAXY_DENSITY;
|
|
|
|
/* Calculate the maximum allowable halo mass, which had
|
|
* rvir = r_g3 - rvir(M_low).
|
|
*/
|
|
r1=pow(3.*HOD.M_low/(4.*PI*DELTA_HALO*RHO_CRIT*OMEGA_M),1.0/3.0);
|
|
rlim = r_g3 - r1;
|
|
mlimit=log(4./3.*DELTA_HALO*RHO_CRIT*PI*rlim*rlim*rlim*OMEGA_M);
|
|
if(mlimit>log(HOD.M_max))mlimit=log(HOD.M_max);
|
|
mmin=log(HOD.M_low);
|
|
|
|
if(HOD.color==2)
|
|
{
|
|
dlogm=(mlimit-mmin)/(n-1);
|
|
m = mmin;
|
|
for(i=1;i<=n;++i)
|
|
{
|
|
if(N_avg(exp(m))>0)break;
|
|
m += dlogm;
|
|
}
|
|
mmin = m;
|
|
r1=pow(3.*exp(mmin)/(4.*PI*DELTA_HALO*RHO_CRIT*OMEGA_M),1.0/3.0);
|
|
rlim = r_g3 - r1;
|
|
mlimit=log(4./3.*DELTA_HALO*RHO_CRIT*PI*rlim*rlim*rlim*OMEGA_M);
|
|
}
|
|
|
|
if(EXCLUSION==2) {
|
|
dlogm=(mlimit-mmin)/(n-1);
|
|
x_g3[1] = mmin;
|
|
y_g3[1] = qromo(func_galaxy_density,mmin,mmin+dlogm,midpnt);
|
|
for(i=2;i<=n;++i)
|
|
{
|
|
x_g3[i] = i*dlogm+mmin;
|
|
y_g3[i] = y_g3[i-1] + qromo(func_galaxy_density,(i-1)*dlogm+mmin,mmin+i*dlogm,midpnt);
|
|
}
|
|
spline(x_g3,y_g3,n,1.0E+30,1.0E+30,z_g3);
|
|
s1 = qromo(func_ng2,mmin,mlimit,midpnt);
|
|
return(sqrt(s1));
|
|
}
|
|
|
|
/* Calculate the double integral at specified masses.
|
|
*/
|
|
dlogm=(mlimit-mmin)/(n-1);
|
|
for(i=1;i<=n;++i)
|
|
{
|
|
logm=(i-0.5)*dlogm+mmin;
|
|
m_g3=exp(logm);
|
|
r2 = pow(3*m_g3/(4*PI*DELTA_HALO*RHO_CRIT*OMEGA_M),1.0/3.0);
|
|
if(EXCLUSION==3) {
|
|
if(ellipsoidal_exclusion_probability(r1/r2,r_g3/(r1+r2))==0)break; }
|
|
else {
|
|
if(r1+r2>r_g3)break; }
|
|
s1=qtrap(func_ng,mmin,mlimit,1.0E-4);
|
|
sum+=s1*m_g3*dlogm;
|
|
if(s1==0)break;
|
|
if(sum>=ng2)break;
|
|
}
|
|
return sqrt(sum);
|
|
}
|
|
|
|
double func_ng2(double m)
|
|
{
|
|
static double fac2=-1,fac1=-1;
|
|
double s1,rv1,n,N,m1,mx;
|
|
|
|
if(m<0)
|
|
{
|
|
fac1=fac2=-1;
|
|
return(0);
|
|
}
|
|
|
|
m1=exp(m);
|
|
if(fac2<0)
|
|
fac2=pow(3.0/(4.*PI*DELTA_HALO*RHO_CRIT*OMEGA_M),1.0/3.0);
|
|
if(fac1<0)
|
|
fac1=4./3.*PI*RHO_CRIT*DELTA_HALO*OMEGA_M;
|
|
|
|
rv1 = r_g3 - pow(m1,1.0/3.0)*fac2;
|
|
rv1 = rv1;
|
|
mx = fac1*rv1*rv1*rv1;
|
|
|
|
n=dndM_interp(m1);
|
|
N=N_avg(m1);
|
|
splint(x_g3,y_g3,z_g3,n_g3,log(mx),&s1);
|
|
return(n*N*s1*m1);
|
|
}
|
|
|
|
|
|
double func_ng(double m)
|
|
{
|
|
static double fac2=-1;
|
|
double s1,rv1,rv2,exfac=1,n,N;
|
|
|
|
m=exp(m);
|
|
if(fac2<0)
|
|
fac2=pow(3.0/(4*DELTA_HALO*PI*RHO_CRIT*OMEGA_M),1.0/3.0);
|
|
rv1=pow(m_g3,1.0/3.0)*fac2;
|
|
rv2=pow(m,1.0/3.0)*fac2;
|
|
|
|
if(EXCLUSION==3)
|
|
{
|
|
if(0.5*(rv1+rv2)>r_g3)return(0);
|
|
if(1.5*(rv1+rv2)>r_g3)exfac=ellipsoidal_exclusion_probability(rv2/rv1,r_g3/(rv2+rv1));
|
|
}
|
|
else
|
|
{
|
|
if(rv1+rv2>r_g3)return(0);
|
|
}
|
|
|
|
n=dndM_interp(m)*dndM_interp(m_g3);
|
|
N=N_avg(m)*N_avg(m_g3);
|
|
return(exfac*n*N*m);
|
|
}
|
|
|
|
/* This is the probability that two halos do not overlap, given their
|
|
* radii and separation. Of course, for spherical halos P(x) is a step function
|
|
* at x = (r1+r2)/r_sep = 1, but for ellipsoidal halos there is a chance
|
|
* that they could be closer. In detail, P(x) changes depending on the mass
|
|
* ratio of the halos, but using tabulated values does not appear to make
|
|
* significant difference in the results for xi_2h(r). The function below is
|
|
* a fit to Monte Carlo results for a halos with a distribution of axis ratios
|
|
* which is lognormal in e_b = (1-b/a) and e_c = (1-c/a) with dispersions of 0.2
|
|
* mean <b/a>=0.9 and <c/a>=0.8 (pretty reasonable values).
|
|
*/
|
|
double ellipsoidal_exclusion_probability(double rv, double r)
|
|
{
|
|
static int flag=0,nr=101,nratio=31;
|
|
static double **xprob,*rad,*ratio,rhi,rlo,mhi,mlo,dr,dm;
|
|
float x1,x2,x3;
|
|
int i,j,im,ir;
|
|
FILE *fp;
|
|
|
|
if(rv<1)rv=1.0/rv;
|
|
|
|
r=(r-0.8)/0.29;
|
|
if(r>1)return(1.0);
|
|
if(r<0)return(0.0);
|
|
return(3*r*r-2*r*r*r);
|
|
}
|