mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 07:11:12 +00:00
1036 lines
26 KiB
C
1036 lines
26 KiB
C
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#ifdef PARALLEL
|
|
#include <mpi.h>
|
|
#endif
|
|
|
|
#include "header.h"
|
|
|
|
// parameters of Eduardo's P(M|N200)
|
|
#define B_rozo -0.12596
|
|
#define alpha_rozo 1.149
|
|
|
|
|
|
/* External functions from wp_minimization.c
|
|
*/
|
|
void wp_input(void);
|
|
double poisson_prob(int n, double nave);
|
|
|
|
/* Internal functions.
|
|
*/
|
|
double m2n_chi2_wp_wrapper(double *a);
|
|
double m2n_initialize(double *a, double **cov1, double *avg1, double *start_dev);
|
|
void m2n_input(void);
|
|
double chi2_m2n(void);
|
|
double chi2_number_profiles(void);
|
|
int parameter_out_of_range(double *a);
|
|
|
|
double prob_ngals_ntrue(double m, int ngals, int ntrue);
|
|
double prob_ntrue_mass(double m, double ntrue);
|
|
double m2n_func1(double m);
|
|
double m2n_func1a(double m);
|
|
double m2n_func2(double m);
|
|
double m2n_func3(double m);
|
|
|
|
void test_pdf(void);
|
|
|
|
/* Variables.
|
|
*/
|
|
int USE_IWEIGHT;
|
|
|
|
/******************************************************************
|
|
*
|
|
* HOD.free[] also controls which variables will be held constant/vary
|
|
* during MCMC minimization. Since this routine will also so z-space
|
|
* minimization if requested, indices>6 are cosmological.
|
|
*
|
|
* i variable
|
|
* --- --------
|
|
* [1] -> M_min
|
|
* [2] -> M1
|
|
* [3] -> alpha
|
|
* [4] -> M_cut
|
|
* [5] -> sigmaM
|
|
* [6] -> CVIR_FAC
|
|
* [7] -> MaxCen (or M_cen_max)
|
|
* [8] -> M_sat_break
|
|
* [9] -> alpha1
|
|
*
|
|
* [10]-> OMEGA_M
|
|
* [11]-> SIGMA_8
|
|
* [12]-> VBIAS
|
|
* [13]-> VBIAS_C
|
|
* [14]-> GAMMA
|
|
* [15]-> SPECTRAL_INDX
|
|
* [16]-> HUBBLE PARAMETER [used for P(k)]
|
|
*
|
|
* [0] -> The galaxy_density will be considered data with errors on it,
|
|
* and therefore no variable will be fixed by the galaxy density.
|
|
*
|
|
*/
|
|
void m2n_mcmc()
|
|
{
|
|
double stepfac=1;
|
|
double error=1,tolerance=0,**cov1,**tmp,*a,*avg1,chi2,chi2prev,
|
|
**evect,*eval,*aprev,*atemp,**tmp1,*opar,x1,fsat,**chain,*start_dev,*eval_prev;
|
|
int n,i,j,k,nrot,niter=0,count=0,imax_chain=100000,NSTEP=50,NSTEP_MAX=10000,convergence=0;
|
|
long IDUM=-555;
|
|
|
|
int *pcheck,pcnt,ptot=20,firstflag=1,*iweight,total_weight;
|
|
double t0,tprev,temp,chi2a,chi2b;
|
|
|
|
double delta_halo_rhoc = 200;
|
|
|
|
int icvir;
|
|
|
|
test_pdf();
|
|
|
|
// initialize use of SYSTEMATIC ERROR
|
|
USE_ERRORS = 1;
|
|
M2N.IDUM = -5555;
|
|
|
|
opar=dvector(1,100);
|
|
|
|
MCMC=Task.MCMC;
|
|
|
|
pcheck=calloc(ptot,sizeof(int));
|
|
|
|
/* read in the wp data for a single luminosity threshold sample.
|
|
*/
|
|
wp_input();
|
|
|
|
/* read in the M2N data.
|
|
*/
|
|
m2n_input();
|
|
|
|
Work.imodel=2;
|
|
Work.chi2=1;
|
|
|
|
/* Since we're at constant halo overdensity wrt RHO_CRIT,
|
|
* set the overdensity of the halo
|
|
*/
|
|
DELTA_HALO = delta_halo_rhoc/OMEGA_M;
|
|
|
|
|
|
srand48(32498793);
|
|
|
|
/* Find the number of free parameters in the minimization
|
|
* for the real-space correlation function.
|
|
*/
|
|
for(n=0,i=1;i<100;++i)
|
|
{
|
|
n+=HOD.free[i];
|
|
/* if(i>N_HOD_PARAMS && HOD.free[i])MCMC=3;*/
|
|
if(OUTPUT)
|
|
printf("mcmc_min> free[%i] = %d\n",i,HOD.free[i]);
|
|
}
|
|
if(USE_ERRORS)
|
|
n+=3;
|
|
wp.ncf=n;
|
|
|
|
/* Find out which free parameter is for CVIR_FAC
|
|
*/
|
|
j=0;
|
|
if(HOD.free[6])
|
|
for(i=0;i<6;++i)
|
|
if(HOD.free[i])j++;
|
|
icvir=j+1;
|
|
|
|
if(HOD.free[0])
|
|
{
|
|
wp.ngal = GALAXY_DENSITY;
|
|
wp.ngal_err = 0.1*wp.ngal;
|
|
FIX_PARAM = 0;
|
|
}
|
|
|
|
if(OUTPUT)
|
|
printf("mcmc_min> %d free parameters\n",n);
|
|
|
|
a=dvector(1,n);
|
|
start_dev=dvector(1,n);
|
|
aprev=dvector(1,n);
|
|
atemp=dvector(1,n);
|
|
cov1=dmatrix(1,n,1,n);
|
|
avg1=dvector(1,n);
|
|
|
|
tmp=dmatrix(1,n,1,n);
|
|
tmp1=dmatrix(1,n,1,1);
|
|
evect=dmatrix(1,n,1,n);
|
|
eval=dvector(1,n);
|
|
eval_prev=dvector(1,n);
|
|
|
|
chain=dmatrix(1,imax_chain,1,n);
|
|
iweight = ivector(1,imax_chain);
|
|
for(i=1;i<=imax_chain;++i)
|
|
iweight[i] = 0;
|
|
|
|
IDUM=IDUM_MCMC;
|
|
|
|
chi2prev=m2n_initialize(a,cov1,avg1,start_dev);
|
|
niter++;
|
|
for(i=1;i<=n;++i)
|
|
{
|
|
aprev[i] = a[i];
|
|
chain[1][i] = a[i];
|
|
}
|
|
|
|
pcnt=0;
|
|
pcheck[pcnt]=1;
|
|
|
|
stepfac=1;
|
|
while(niter<NSTEP)
|
|
{
|
|
pcnt++;
|
|
if(pcnt==ptot)
|
|
{
|
|
for(j=i=0;i<ptot;++i)j+=pcheck[i];
|
|
stepfac = stepfac*pow(0.9,5-j);
|
|
if(!ThisTask)printf("STEPFAC %f %d %d\n",stepfac,j,count);
|
|
pcnt=0;
|
|
}
|
|
/* stepfac=0.7; */
|
|
for(i=1;i<=n;++i)
|
|
a[i] = (1+gasdev(&IDUM)*start_dev[i]*stepfac)*aprev[i];
|
|
|
|
|
|
if(MCMC>1)
|
|
{
|
|
RESET_COSMOLOGY++;
|
|
j=0;
|
|
for(i=1;i<=N_HOD_PARAMS;++i)if(HOD.free[i])j++;
|
|
i=N_HOD_PARAMS;
|
|
if(HOD.free[++i])OMEGA_M = a[++j];
|
|
if(HOD.free[++i])SIGMA_8 = a[++j];
|
|
if(HOD.free[++i])VBIAS = a[++j];
|
|
if(HOD.free[++i])VBIAS_C = a[++j];
|
|
if(HOD.free[++i])GAMMA = a[++j];
|
|
if(HOD.free[++i])SPECTRAL_INDX = a[++j];
|
|
if(HOD.free[++i])HUBBLE = a[++j];
|
|
}
|
|
if(VBIAS_C<0)continue;
|
|
|
|
if(USE_ERRORS)
|
|
{
|
|
M2N.mf_amp = a[++j];
|
|
M2N.bias_amp = a[++j];
|
|
M2N.scalebias_amp = a[++j];
|
|
}
|
|
|
|
/* Hard-wire CVIR variation
|
|
*/
|
|
if(HOD.free[6])
|
|
CVIR_FAC = a[icvir];
|
|
|
|
/* Since we're at constant halo overdensity wrt RHO_CRIT,
|
|
* set the overdensity of the halo
|
|
*/
|
|
DELTA_HALO = delta_halo_rhoc/OMEGA_M;
|
|
|
|
// Check to see if any of our parameters are out of range.
|
|
if(parameter_out_of_range(a))continue;
|
|
|
|
|
|
/* Draw random value of cvir from prior.
|
|
*/
|
|
/* if(CVIR_FAC<0.3 || CVIR_FAC>1.2)continue; */
|
|
/* CVIR_FAC = 0.9*drand48()+0.3; */
|
|
/* GAMMA = gasdev(&IDUM)*0.02 + 0.15; */
|
|
|
|
|
|
chi2=m2n_chi2_wp_wrapper(a);
|
|
// reset cosmology for z=0.25
|
|
SIGMA_8 = SIGMA_8*growthfactor(0.25);
|
|
RESET_COSMOLOGY++;
|
|
if(MCMC>1 && chi2<1.0E7)chi2+= chi2a = chi2_m2n();
|
|
if(MCMC>1 && chi2<1.0E7)chi2+= chi2b = chi2_number_profiles();
|
|
|
|
if(!ThisTask){
|
|
printf("TRY %d ",++count);
|
|
for(i=1;i<=n;++i)
|
|
printf("%.4e ",a[i]);
|
|
printf("%e\n",chi2);fflush(stdout);
|
|
}
|
|
pcheck[pcnt]=1;
|
|
if(!(chi2<chi2prev || drand48() <= exp(-(chi2-chi2prev)/2)))
|
|
{
|
|
/* This for loop puts the prev element in the chain is
|
|
* the current trial point is rejected.
|
|
*/
|
|
|
|
/* For the initialization, don't use this: we need
|
|
* separate elements for estimating the covariance matrix.
|
|
*/
|
|
/*
|
|
for(i=1;i<=n;++i)
|
|
a[i] = aprev[i];
|
|
chi2 = chi2prev;
|
|
*/
|
|
if(USE_IWEIGHT)
|
|
iweight[niter+1]++;
|
|
pcheck[pcnt]=0;
|
|
continue;
|
|
|
|
}
|
|
|
|
niter++;
|
|
iweight[niter]++;
|
|
|
|
for(i=1;i<=n;++i)
|
|
chain[niter][i]=a[i];
|
|
for(i=1;i<=n;++i)
|
|
avg1[i] += a[i];
|
|
for(i=1;i<=n;++i)
|
|
aprev[i] = a[i];
|
|
for(i=1;i<=n;++i)
|
|
for(j=1;j<=n;++j)
|
|
cov1[i][j] += a[i]*a[j];
|
|
chi2prev=chi2;
|
|
|
|
if(!ThisTask){
|
|
printf("ACCEPT %d %d ",niter,count);
|
|
for(i=1;i<=n;++i)
|
|
printf("%e ",a[i]);
|
|
printf("%e %e %e %e\n",chi2,chi2a,chi2b,chi2-chi2a-chi2b);fflush(stdout);
|
|
printf("HSTATS %d %e %e %e %e\n",niter,HOD.M_min,number_weighted_halo_mass(),
|
|
number_weighted_central_mass(),
|
|
qromo(func_satellite_density,log(HOD.M_low),log(HOD.M_max),midpnt)/GALAXY_DENSITY);
|
|
|
|
fsat = qromo(func_satfrac,log(HOD.M_low),log(HOD.M_max),midpnt)/GALAXY_DENSITY;
|
|
printf("FSAT %d %e %e %e %e\n",niter,fsat,HOD.M_min,HOD.sigma_logM,qromo(func_galaxy_bias,log(HOD.M_low),log(HOD.M_max),midpnt)/GALAXY_DENSITY);
|
|
}
|
|
|
|
}
|
|
|
|
stepfac=1.6/sqrt(n);
|
|
pcnt=-1;
|
|
t0 = second();
|
|
|
|
NSTEP = niter;
|
|
|
|
while(niter<imax_chain)
|
|
{
|
|
pcnt++;
|
|
if(pcnt==ptot)
|
|
{
|
|
for(j=i=0;i<ptot;++i)j+=pcheck[i];
|
|
stepfac=1.6/sqrt(n);
|
|
if(!ThisTask)printf("STEPFAC %f %d %d\n",stepfac,j,count);
|
|
pcnt=0;
|
|
}
|
|
stepfac=1.6/sqrt(n);
|
|
|
|
if(convergence)goto SKIP_MATRIX;
|
|
|
|
for(j=1;j<=n;++j)
|
|
{
|
|
avg1[j]=0;
|
|
for(k=1;k<=n;++k)
|
|
cov1[j][k]=0;
|
|
}
|
|
total_weight = 0;
|
|
for(i=1;i<=niter;++i)
|
|
{
|
|
for(j=1;j<=n;++j)
|
|
{
|
|
avg1[j]+=chain[i][j]*iweight[i];
|
|
for(k=1;k<=n;++k)
|
|
cov1[j][k]+=chain[i][j]*chain[i][k]*iweight[i];
|
|
}
|
|
total_weight+=iweight[i];
|
|
}
|
|
|
|
for(i=1;i<=n;++i)
|
|
for(j=1;j<=n;++j)
|
|
tmp[i][j] = cov1[i][j]/total_weight - avg1[i]*avg1[j]/(total_weight*total_weight);
|
|
|
|
jacobi(tmp,n,eval,evect,&nrot);
|
|
gaussj(evect,n,tmp1,1);
|
|
|
|
SKIP_MATRIX:
|
|
for(i=1;i<=n;++i)
|
|
atemp[i] = gasdev(&IDUM)*sqrt(eval[i])*stepfac;
|
|
|
|
for(i=1;i<=n;++i)
|
|
for(a[i]=0,j=1;j<=n;++j)
|
|
a[i] += atemp[j]*evect[j][i];
|
|
|
|
for(i=1;i<=n;++i)
|
|
a[i] += aprev[i];
|
|
|
|
/* We seem to be having a problem with this.
|
|
* So, broadcast the model params from the root processor.
|
|
*/
|
|
#ifdef PARALLEL
|
|
MPI_Bcast(&a[1],n,MPI_DOUBLE_PRECISION,0,MPI_COMM_WORLD);
|
|
#endif
|
|
|
|
if(MCMC>1)
|
|
{
|
|
RESET_COSMOLOGY++;
|
|
j=0;
|
|
for(i=1;i<=N_HOD_PARAMS;++i)if(HOD.free[i])j++;
|
|
i=N_HOD_PARAMS;
|
|
if(HOD.free[++i])OMEGA_M = a[++j];
|
|
if(HOD.free[++i])SIGMA_8 = a[++j];
|
|
if(HOD.free[++i])VBIAS = a[++j];
|
|
if(HOD.free[++i])VBIAS_C = a[++j];
|
|
if(HOD.free[++i])GAMMA = a[++j];
|
|
if(HOD.free[++i])SPECTRAL_INDX = a[++j];
|
|
if(HOD.free[++i])HUBBLE = a[++j];
|
|
}
|
|
if(VBIAS_C<0)continue;
|
|
|
|
if(USE_ERRORS)
|
|
{
|
|
M2N.mf_amp = a[++j];
|
|
M2N.bias_amp = a[++j];
|
|
M2N.scalebias_amp = a[++j];
|
|
}
|
|
|
|
/* Hard-wire CVIR variation
|
|
*/
|
|
if(HOD.free[6])
|
|
CVIR_FAC = a[icvir];
|
|
|
|
/* Since we're at constant halo overdensity wrt RHO_CRIT,
|
|
* set the overdensity of the halo
|
|
*/
|
|
DELTA_HALO = delta_halo_rhoc/OMEGA_M;
|
|
|
|
// Check to see if any of our parameters are out of range.
|
|
if(parameter_out_of_range(a))continue;
|
|
|
|
|
|
/* Draw random value of cvir from prior.
|
|
*/
|
|
/* CVIR_FAC = a[n]; */
|
|
/* if(CVIR_FAC<0.3 || CVIR_FAC>1.2)continue; */
|
|
/* CVIR_FAC = 0.7*drand48()+0.3; */
|
|
/* GAMMA = gasdev(&IDUM)*0.02 + 0.15; */
|
|
// printf("GAMMA %d %f %f\n",count+1,GAMMA,CVIR_FAC);
|
|
|
|
chi2=m2n_chi2_wp_wrapper(a);
|
|
// reset cosmology for z=0.25
|
|
SIGMA_8 = SIGMA_8*growthfactor(0.25);
|
|
RESET_COSMOLOGY++;
|
|
if(MCMC>1 && chi2<1.0E7)chi2 += chi2a = chi2_m2n();
|
|
if(MCMC>1 && chi2<1.0E7)chi2 += chi2b = chi2_number_profiles();
|
|
|
|
tprev = t0;
|
|
t0 = second();
|
|
++count;
|
|
if(!ThisTask) {
|
|
printf("TRY %d ",count);
|
|
for(i=1;i<=n;++i)
|
|
printf("%.4e ",a[i]);
|
|
if(RESTART==2) {
|
|
printf("%e %e %.2f\n",chi2,chi2/(1+exp(-count/100.0)),
|
|
timediff(tprev,t0));fflush(stdout); }
|
|
else {
|
|
printf("%e %.2f\n",chi2,
|
|
timediff(tprev,t0));fflush(stdout); }
|
|
}
|
|
if(0) {
|
|
printf("CPU%02d %d ",ThisTask,count);
|
|
for(i=1;i<=n;++i)
|
|
printf("%.4e ",a[i]);
|
|
if(RESTART==2) {
|
|
printf("%e %e %.2f\n",chi2,chi2/(1+exp(-count/100.0)),
|
|
timediff(tprev,t0));fflush(stdout); }
|
|
else {
|
|
printf("%e %.2f\n",chi2,
|
|
timediff(tprev,t0));fflush(stdout); }
|
|
}
|
|
|
|
pcheck[pcnt]=0;
|
|
if(!(chi2<chi2prev || drand48() <= exp(-(chi2-chi2prev)/2)))
|
|
{
|
|
/*
|
|
for(i=1;i<=n;++i)
|
|
a[i] = aprev[i];
|
|
chi2 = chi2prev;
|
|
*/
|
|
if(USE_IWEIGHT)
|
|
iweight[niter+1]++;
|
|
continue;
|
|
}
|
|
pcheck[pcnt]=1;
|
|
|
|
// if(NSTEP<NSTEP_MAX)NSTEP++;
|
|
niter++;
|
|
if(!convergence)NSTEP = niter;
|
|
iweight[niter]++;
|
|
|
|
if(niter%NSTEP_MAX==0 && !convergence && niter>NSTEP_MAX)
|
|
{
|
|
convergence = 1;
|
|
for(i=1;i<=n;++i)
|
|
{
|
|
x1=fabs(eval[i]-eval_prev[i])/eval_prev[i];
|
|
if(x1>0.01)convergence = 0;
|
|
printf("CONVERGENCE CHECK %d %d %e %e %e\n",niter/NSTEP_MAX,i,x1,eval[i],eval_prev[i]);
|
|
}
|
|
for(i=1;i<=n;++i)
|
|
eval_prev[i] = eval[i];
|
|
convergence = 0;
|
|
|
|
if(convergence)
|
|
printf("CONVERGENCE ACCOMPLISHED %d %d \n",niter,count);
|
|
}
|
|
if(niter==NSTEP_MAX)
|
|
{
|
|
for(i=1;i<=n;++i)
|
|
eval_prev[i] = eval[i];
|
|
}
|
|
|
|
|
|
for(i=1;i<=n;++i)
|
|
chain[niter][i]=a[i];
|
|
for(i=1;i<=n;++i)
|
|
avg1[i] += a[i];
|
|
for(i=1;i<=n;++i)
|
|
aprev[i] = a[i];
|
|
for(i=1;i<=n;++i)
|
|
for(j=1;j<=n;++j)
|
|
cov1[i][j] += a[i]*a[j];
|
|
chi2prev=chi2;
|
|
|
|
if(!ThisTask) {
|
|
printf("ACCEPT %d %d ",niter,count);
|
|
for(i=1;i<=n;++i)
|
|
printf("%e ",a[i]);
|
|
printf("%e %e %e %e\n",chi2,chi2a,chi2b,chi2-chi2a-chi2b);fflush(stdout);
|
|
|
|
if(MCMC==1)
|
|
{
|
|
printf("HSTATS %d %e %e %e %e\n",niter,HOD.M_min,number_weighted_halo_mass(),
|
|
number_weighted_central_mass(),
|
|
qromo(func_satellite_density,log(HOD.M_low),log(HOD.M_max),midpnt)/GALAXY_DENSITY);
|
|
|
|
fsat = qromo(func_satfrac,log(HOD.M_low),log(HOD.M_max),midpnt)/GALAXY_DENSITY;
|
|
printf("FSAT %d %e %e %e %e\n",niter,fsat,HOD.M_min,HOD.sigma_logM,qromo(func_galaxy_bias,log(HOD.M_low),log(HOD.M_max),midpnt)/GALAXY_DENSITY);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
/* This is a routine where i can hand-set some boundaries for the
|
|
* cosmological parameters (and such)
|
|
*/
|
|
int parameter_out_of_range(double *a)
|
|
{
|
|
int i;
|
|
i=N_HOD_PARAMS;
|
|
if(HOD.free[++i])//OMEGA_M = a[++j];
|
|
if(OMEGA_M<0.15 || OMEGA_M>0.4) return 1;
|
|
if(HOD.free[++i])//SIGMA_8 = a[++j];
|
|
if(SIGMA_8<0.55 || SIGMA_8>1.1) return 1;
|
|
if(HOD.free[++i])//VBIAS = a[++j];
|
|
;
|
|
if(HOD.free[++i])//VBIAS_C = a[++j];
|
|
;
|
|
if(HOD.free[++i])//GAMMA = a[++j];
|
|
;
|
|
if(HOD.free[++i])//SPECTRAL_INDX = a[++j];
|
|
if(SPECTRAL_INDX<0.88 || SPECTRAL_INDX>1.05) return 1;
|
|
if(HOD.free[++i])//HUBBLE = a[++j];
|
|
if(HUBBLE < 0.6 || HUBBLE > 0.8) return 1;
|
|
if(HOD.free[6])//CVIR_FAC
|
|
if(CVIR_FAC<0.2 || CVIR_FAC>2) return 1;
|
|
if(USE_ERRORS)
|
|
{
|
|
if(M2N.bias_amp > 1.10 || M2N.bias_amp < 0.9) return 1;
|
|
if(M2N.mf_amp > 1.10 || M2N.mf_amp < 0.9) return 1;
|
|
if(M2N.scalebias_amp > 1.30 || M2N.scalebias_amp < 0.7) return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
double m2n_chi2_wp_wrapper(double *a)
|
|
{
|
|
static int flag=1;
|
|
static double *b;
|
|
int i,j;
|
|
|
|
if(flag)
|
|
{
|
|
b=dvector(1,100);
|
|
flag=0;
|
|
}
|
|
|
|
/* check to make sure that none of the HOD parameters
|
|
* are NEGATIVE. (with exception of sigma_logM)
|
|
*/
|
|
for(j=0,i=1;i<=N_HOD_PARAMS;++i) {
|
|
if(HOD.free[i] && i!=5) {
|
|
if(a[++j]<=0) { printf("NEG %d %d %e\n",i,j,a[j]); return(1.0E7); } }
|
|
if(HOD.free[i] && i==5) {
|
|
++j; }
|
|
}
|
|
|
|
/* check to make sure that none of the cosmological
|
|
* parameters are negative, either.
|
|
*/
|
|
for(i=N_HOD_PARAMS+1;i<100;++i)
|
|
if(HOD.free[i])
|
|
if(a[++j]<=0) { printf("NEG %d %d %e\n",i,j,a[j]); return(1.0E7); }
|
|
|
|
i=0;j=0;
|
|
if(HOD.free[++i]){j++;b[j]=pow(10.0,a[j]);} /* M_min */
|
|
if(HOD.free[++i]){j++;b[j]=pow(10.0,a[j]);} /* M1 */
|
|
if(HOD.free[++i]){j++;b[j]=a[j];} /* alpha */
|
|
if(HOD.free[++i]){j++;b[j]=pow(10.0,a[j]);} /* M_cut */
|
|
if(HOD.free[++i]){j++;b[j]=pow(10.0,a[j]);} /* sigma_logM */
|
|
if(HOD.free[++i]){j++;b[j]=a[j];} /* cvir_fac */
|
|
if(HOD.free[++i]){j++;b[j]=pow(10.0,a[j]);} /* MaxCen */
|
|
if(HOD.free[++i]){j++;b[j]=pow(10.0,a[j]);} /* M_sat_break */
|
|
if(HOD.free[++i]){j++;b[j]=a[j];} /* alpha1 */
|
|
|
|
return(chi2_wp(b));
|
|
}
|
|
|
|
double m2n_initialize(double *a, double **cov1, double *avg1, double *start_dev)
|
|
{
|
|
int i,j=0;
|
|
double x1,x2,omega_m;
|
|
long IDUM = -556;
|
|
|
|
omega_m = 1;
|
|
//if(MCMC>1)
|
|
//omega_m = OMEGA_M;
|
|
|
|
i=0;j=0;
|
|
if(HOD.free[++i]){ a[++j]=log10(HOD.M_min/omega_m);start_dev[j]=0.001; }
|
|
if(HOD.free[++i]){ a[++j]=log10(HOD.M1/omega_m);start_dev[j]=0.001; } //.0005
|
|
if(HOD.free[++i]){ a[++j]=HOD.alpha;start_dev[j]=0.03; } //.005
|
|
if(HOD.free[++i]){ a[++j]=log10(HOD.M_cut/omega_m);start_dev[j]=0.01; } //.001
|
|
if(HOD.free[++i]){ a[++j]=log10(HOD.sigma_logM);start_dev[j]=0.01; }
|
|
if(HOD.free[++i]){ a[++j]=CVIR_FAC;start_dev[j]=0.02; }
|
|
if(HOD.pdfc==7) {
|
|
if(HOD.free[++i])a[++j]=log10(HOD.M_cen_max/omega_m); start_dev[j]=0.001; }
|
|
else {
|
|
if(HOD.free[++i])a[++j]=HOD.MaxCen; start_dev[j]=0.02; }
|
|
if(HOD.free[++i]){ a[++j]=log10(HOD.M_sat_break/omega_m);start_dev[j]=0.001; }
|
|
if(HOD.free[++i]){ a[++j]=HOD.alpha1;start_dev[j]=0.02; }
|
|
|
|
if(MCMC>1)
|
|
{
|
|
if(HOD.free[++i])a[++j]=OMEGA_M;
|
|
if(HOD.free[++i])a[++j]=SIGMA_8;
|
|
if(HOD.free[++i])a[++j]=VBIAS;
|
|
if(HOD.free[++i])a[++j]=VBIAS_C;
|
|
if(HOD.free[++i])a[++j]=GAMMA;
|
|
if(HOD.free[++i])a[++j]=SPECTRAL_INDX;
|
|
if(HOD.free[++i])a[++j]=HUBBLE;
|
|
}
|
|
if(USE_ERRORS)
|
|
{
|
|
a[++j]=1;
|
|
a[++j]=1;
|
|
a[++j]=1;
|
|
}
|
|
|
|
if(!ThisTask)
|
|
{
|
|
printf("INITIAL VALUES: ");
|
|
for(i=1;i<=wp.ncf;++i)printf("%e ",a[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
for(i=1;i<=wp.ncf;++i)
|
|
{
|
|
avg1[i]=a[i];
|
|
for(j=1;j<=wp.ncf;++j)
|
|
cov1[i][j]=a[i]*a[j];
|
|
}
|
|
|
|
if(MCMC>1)
|
|
{
|
|
RESET_COSMOLOGY++;
|
|
j=0;
|
|
for(i=1;i<=N_HOD_PARAMS;++i)if(HOD.free[i])j++;
|
|
i=N_HOD_PARAMS;
|
|
if(HOD.free[++i]){ OMEGA_M = a[++j]; start_dev[j] = 0.01; }
|
|
if(HOD.free[++i]){ SIGMA_8 = a[++j]; start_dev[j] = 0.01; }
|
|
if(HOD.free[++i]){ VBIAS = a[++j]; start_dev[j] = 0.01; }
|
|
if(HOD.free[++i]){ VBIAS_C = a[++j]; start_dev[j] = 0.02; }
|
|
if(HOD.free[++i]){ GAMMA = a[++j]; start_dev[j] = 0.015; }
|
|
if(HOD.free[++i]){ SPECTRAL_INDX = a[++j]; start_dev[j] = 0.02; }
|
|
if(HOD.free[++i]){ HUBBLE = a[++j]; start_dev[j] = 0.02; }
|
|
}
|
|
|
|
if(USE_ERRORS)
|
|
{
|
|
M2N.bias_amp = a[++j]; start_dev[j] = 0.01;
|
|
M2N.mf_amp = a[++j]; start_dev[j] = 0.01;
|
|
M2N.scalebias_amp = a[++j]; start_dev[j] = 0.02;
|
|
}
|
|
|
|
x1=m2n_chi2_wp_wrapper(a);
|
|
// reset cosmology for z=0.25
|
|
SIGMA_8 = SIGMA_8*growthfactor(0.25);
|
|
RESET_COSMOLOGY++;
|
|
if(MCMC>1 && x1<1.0E7)x1+=chi2_m2n();
|
|
if(MCMC>1 && x1<1.0E7)x1+=chi2_number_profiles();
|
|
|
|
if(!ThisTask) {
|
|
printf("TRY 0 ");
|
|
for(i=1;i<=wp.ncf;++i)
|
|
printf("%.4e ",a[i]);
|
|
printf("%e\n",x1+x2);fflush(stdout);
|
|
printf("INITIAL CHI2: %e\n",x1);
|
|
fflush(stdout);
|
|
}
|
|
return(x1);
|
|
}
|
|
|
|
/* get the input data.
|
|
* --------------------
|
|
*
|
|
* M2N data. (first off)
|
|
*
|
|
* N(R) density profiles for each Ngals bin (later)
|
|
*
|
|
*/
|
|
|
|
void m2n_input()
|
|
{
|
|
int i;
|
|
FILE *fp;
|
|
char aa[1000];
|
|
float x1; // dummy for mass error
|
|
|
|
sprintf(M2N.m2n_filename,"/home/tinker/SDSS/DENSITY_PROFILES/M2N_erin_ngals10.data");
|
|
fp = openfile(M2N.m2n_filename);
|
|
M2N.ndata = filesize(fp);
|
|
|
|
M2N.mass = vector(1,M2N.ndata);
|
|
M2N.radius = vector(1,M2N.ndata);
|
|
M2N.m2n = vector(1,M2N.ndata);
|
|
M2N.err = vector(1,M2N.ndata);
|
|
M2N.Ngals_lo = ivector(1,M2N.ndata);
|
|
M2N.Ngals_hi = ivector(1,M2N.ndata);
|
|
|
|
M2N.model_mass = dvector(1,M2N.ndata);
|
|
M2N.model_m2n = dvector(1,M2N.ndata);
|
|
|
|
for(i=1;i<=M2N.ndata;++i)
|
|
{
|
|
fscanf(fp,"%f %f %f %f %d %d",&M2N.mass[i], &x1, &M2N.m2n[i], &M2N.err[i],
|
|
&M2N.Ngals_lo[i], &M2N.Ngals_hi[i]);
|
|
fgets(aa,1000,fp);
|
|
M2N.radius[i] = pow(3*M2N.mass[i]/(4*PI*200*RHO_CRIT),THIRD);
|
|
}
|
|
fprintf(stderr,"Done reading [%d] lines from [%s]\n",M2N.ndata,M2N.m2n_filename);
|
|
}
|
|
|
|
|
|
/* Calculate the chi2 for the M2N data.
|
|
* ----------------------------------------------------------------------------
|
|
*
|
|
* For each Ngals, calculate the mean halo mass and the mean number of galaxies.
|
|
*
|
|
* M_bar(N_gals) = \int dM dn/dM P(N_gals|Mass) Mass
|
|
* divided by \int dM dn/dM P(N_gals|Mass)
|
|
*
|
|
* N_bar(N_gals) = \int dM dn/dM P(N_gals|Mass) N_true(Mass)
|
|
* divided by \int dM dn/dM P(N_gals|Mass)
|
|
*
|
|
* Where P(N_true|Mass) is the Poisson distribution for satellites + nearest int for centrals.
|
|
*
|
|
* Where P(N_gals|N_true) is something we have yet to determine.
|
|
*
|
|
* For bins in Ngals that are wider than one, do a weighted sum between all the
|
|
* values of Ngals.
|
|
*
|
|
* How many systems do you find at a fixed Ngals?
|
|
*
|
|
* n(N_gals) = \int dM dn/dM P(N_gals|Mass)
|
|
*
|
|
*/
|
|
double chi2_m2n()
|
|
{
|
|
int i,j,k,n;
|
|
double mbar, nbar, nsys, m2n, chi2, x1;
|
|
static int iter=0;
|
|
|
|
chi2 = 0;
|
|
iter++;
|
|
|
|
for(i=1;i<=M2N.ndata;++i)
|
|
{
|
|
mbar = nbar = nsys = x1 = 0;
|
|
M2N.current_bin = i;
|
|
//for(j=M2N.Ngals_lo[i];j<=M2N.Ngals_lo[i];++j)
|
|
for(j=M2N.Ngals_lo[i];j<=M2N.Ngals_hi[i];++j)
|
|
{
|
|
M2N.current_Ngals = j;
|
|
mbar += qromo(m2n_func1,log(HOD.M_min),log(HOD.M_max),midpnt);
|
|
nbar += qromo(m2n_func2,log(HOD.M_min),log(HOD.M_max),midpnt);
|
|
nsys += qromo(m2n_func3,log(HOD.M_min),log(HOD.M_max),midpnt);
|
|
x1 += qromo(m2n_func1a,log(HOD.M_min),log(HOD.M_max),midpnt);
|
|
}
|
|
m2n = mbar/nbar;
|
|
M2N.model_m2n[i] = m2n;
|
|
M2N.model_mass[i] = mbar/nsys;
|
|
x1 /= nsys;
|
|
chi2 += (M2N.m2n[i] - m2n)*(M2N.m2n[i] - m2n)/(M2N.err[i]*M2N.err[i]);
|
|
|
|
if(OUTPUT)
|
|
printf("CHIM2N %d %d %e %e %e %e %e %e %e %e\n",iter,i,M2N.m2n[i],M2N.err[i],m2n,M2N.mass[i],M2N.model_mass[i],chi2,x1,exp(-0.12)*pow(M2N.Ngals_lo[i]/40.,1.15)*4e14*HUBBLE);
|
|
//exit(0);
|
|
}
|
|
exit(0);
|
|
return chi2;
|
|
}
|
|
|
|
|
|
/* THis is the integrand of the mean mass integral:
|
|
* dM dn/dM P(N_gals|M) Mass
|
|
*
|
|
* The PDF of P(M|N_gals) is a lognormal with
|
|
* mean = <M|Ngals> = exp(B) pow(N_gals/40,alpha)
|
|
* sigma = 0.48
|
|
*
|
|
* with B = -0.12
|
|
* with alpha = 1.15
|
|
*/
|
|
double m2n_func1(double m)
|
|
{
|
|
int i;
|
|
double x, logm, mu, sig, c, rvir, rs, rhos, mtrue;
|
|
|
|
logm = m;
|
|
m = exp(m);
|
|
i = M2N.current_bin;
|
|
|
|
//mu = exp(-0.12)*pow(M2N.current_Ngals/40.0,1.15);
|
|
//mu = B_rozo + alpha_rozo*log(M2N.current_Ngals/40.0) + log(4e14*HUBBLE);
|
|
sig = 0.48;
|
|
mu = B_rozo - sig*sig/2 + alpha_rozo*log(M2N.current_Ngals/40.0) + log(4e14*HUBBLE);
|
|
|
|
x = exp(-(mu - logm)*(mu - logm)/(2*sig*sig))/(RT2PI*sig)/m;
|
|
|
|
// extrapolate the HOD profile out/in to the mean radius of the bin
|
|
c = halo_concentration(m);
|
|
rvir = pow(3*m/(4*PI*RHO_CRIT*OMEGA_M*DELTA_HALO),THIRD);
|
|
rs = rvir/c;
|
|
rhos = m/(4*PI*rvir*rvir*rvir*HK_func(rs/rvir));
|
|
mtrue = 4*PI*rhos*pow(M2N.radius[i],3.0)*HK_func(rs/M2N.radius[i]);
|
|
|
|
return mtrue*m*dndM_interp(m)*x;
|
|
}
|
|
|
|
double m2n_func1a(double m)
|
|
{
|
|
int i;
|
|
double x, logm, mu, sig, c, rvir, rs, rhos, mtrue;
|
|
|
|
logm = m;
|
|
m = exp(m);
|
|
i = M2N.current_bin;
|
|
|
|
//mu = exp(-0.12)*pow(M2N.current_Ngals/40.0,1.15);
|
|
//mu = B_rozo + alpha_rozo*log(M2N.current_Ngals/40.0) + log(4e14*HUBBLE);
|
|
sig = 0.48;
|
|
mu = B_rozo - sig*sig/2 + alpha_rozo*log(M2N.current_Ngals/40.0) + log(4e14*HUBBLE);
|
|
|
|
x = exp(-(mu - logm)*(mu - logm)/(2*sig*sig))/(RT2PI*sig)/m;
|
|
return m*m*dndM_interp(m)*x;
|
|
}
|
|
|
|
|
|
/* THis is the integrand of the mean number integral:
|
|
* dM dn/dM P(N_gals|M) N_true(M)
|
|
*
|
|
* NB! need to do a correction for the fact that the radius for N
|
|
* isn't R200 exactly for all masses-- it's R200 for the mean mass in the bin.
|
|
*
|
|
*/
|
|
double m2n_func2(double m)
|
|
{
|
|
int i;
|
|
double x, logm, mu, sig, c, rvir, rs, rhos, nsat;
|
|
|
|
logm = m;
|
|
m = exp(m);
|
|
i = M2N.current_bin;
|
|
|
|
//mu = exp(-0.12)*pow(M2N.current_Ngals/40.0,1.15);
|
|
//mu = B_rozo + alpha_rozo*log(M2N.current_Ngals/40.0) + log(4e14*HUBBLE);
|
|
sig = 0.48;
|
|
mu = B_rozo - sig*sig/2 + alpha_rozo*log(M2N.current_Ngals/40.0) + log(4e14*HUBBLE);
|
|
|
|
x = exp(-(mu - logm)*(mu - logm)/(2*sig*sig))/(RT2PI*sig)/m;
|
|
|
|
// extrapolate the HOD profile out/in to the mean radius of the bin
|
|
c = CVIR_FAC*halo_concentration(m);
|
|
rvir = pow(3*m/(4*PI*RHO_CRIT*OMEGA_M*DELTA_HALO),THIRD);
|
|
rs = rvir/c;
|
|
rhos = N_sat(m)/(4*PI*rvir*rvir*rvir*HK_func(rs/rvir));
|
|
nsat = 4*PI*rhos*pow(M2N.radius[i],3.0)*HK_func(rs/M2N.radius[i]);
|
|
//printf("%e %e %e %e\n",m,rvir,M2N.radius[i],nsat/N_sat(m));
|
|
|
|
return m*nsat*dndM_interp(m)*x;
|
|
}
|
|
|
|
/* THis is the integrand of the number of systems
|
|
* dM dn/dM P(N_gals|M)
|
|
*
|
|
*/
|
|
double m2n_func3(double m)
|
|
{
|
|
int i;
|
|
double x, logm, mu, sig;
|
|
|
|
logm = m;
|
|
m = exp(m);
|
|
|
|
//mu = exp(-0.12)*pow(M2N.current_Ngals/40.0,1.15);
|
|
sig = 0.48;
|
|
mu = B_rozo - sig*sig/2 + alpha_rozo*log(M2N.current_Ngals/40.0) + log(4e14*HUBBLE);
|
|
|
|
x = exp(-(mu - logm)*(mu - logm)/(2*sig*sig))/(RT2PI*sig)/m;
|
|
//printf("%e %e %e %f %f\n",m,dndM_interp(m),x,mu,logm);
|
|
|
|
return m*dndM_interp(m)*x;
|
|
}
|
|
|
|
|
|
|
|
|
|
double chi2_number_profiles()
|
|
{
|
|
double chi2, c, rvir, rhos, rho, rr, m, rs;
|
|
float x1;
|
|
int i, j, ibin[6] = { 6, 7, 8, 9, 10, 11 };
|
|
char fname[1000];
|
|
FILE *fp;
|
|
|
|
static int flag = 1, nbins, nrad=14, iter=0;
|
|
static float **ngal, **rad, **err;
|
|
|
|
if(flag)
|
|
{
|
|
nbins = M2N.ndata;
|
|
ngal = matrix(1,nbins,1,nrad);
|
|
rad = matrix(1,nbins,1,nrad);
|
|
err = matrix(1,nbins,1,nrad);
|
|
flag = 0;
|
|
|
|
for(i=1;i<=nbins;++i)
|
|
{
|
|
sprintf(fname,"/home/tinker/SDSS/DENSITY_PROFILES/ngals3D_bin%02d.dat",ibin[i-1]);
|
|
fp = openfile(fname);
|
|
for(j=1;j<=nrad;++j)
|
|
{
|
|
fscanf(fp,"%f %f %f %f",&rad[i][j],&ngal[i][j],&err[i][j],&x1);
|
|
rad[i][j] /= 1.25; // put in comoving units
|
|
ngal[i][j]/=(M2N.mass[i]/M2N.m2n[i]); //normalize to unity
|
|
err[i][j]/=(M2N.mass[i]/M2N.m2n[i]); //normalize to unity
|
|
}
|
|
fprintf(stderr,"Done reading [%d] lines from [%s]\n",nrad,fname);
|
|
}
|
|
}
|
|
|
|
for(i=1;i<=M2N.ndata;++i)
|
|
{
|
|
x1 = 0;
|
|
m = M2N.model_mass[i];
|
|
c = CVIR_FAC*halo_concentration(m);
|
|
rvir = pow(3*m/(4*PI*RHO_CRIT*OMEGA_M*DELTA_HALO),THIRD);
|
|
rs = rvir/c;
|
|
rhos = 1/(4*PI*rvir*rvir*rvir*HK_func(1/c)); // normalize to unity
|
|
for(j=1;j<=nrad;++j)
|
|
{
|
|
if(rad[i][j]>M2N.radius[i])break;
|
|
rr = rad[i][j]/rs;
|
|
rho = rhos/(rr*(1+rr)*(1+rr));
|
|
//printf("PROFILE%d %e %e %e %e\n",i,rad[i][j],ngal[i][j],err[i][j],rho);
|
|
x1 += (ngal[i][j]-rho)*(ngal[i][j]-rho)/(err[i][j]*err[i][j]);
|
|
}
|
|
printf("CHIPROF%d %d %e %f %f %e %e\n",iter,i,x1, M2N.radius[i],rvir,
|
|
M2N.mass[i],M2N.model_mass[i]);
|
|
|
|
chi2 += x1;
|
|
}
|
|
++iter;
|
|
return chi2;
|
|
}
|
|
|
|
double meanN_givenM(double m)
|
|
{
|
|
static int flag = 1, n=1000;
|
|
static double *mass, *nbar, *yy;
|
|
int i,j,k;
|
|
double logm, dlogm, mlo, mhi, x, pn, ptot, mu, a, sig;
|
|
|
|
if(flag)
|
|
{
|
|
flag = 0;
|
|
mass = dvector(1,n);
|
|
nbar = dvector(1,n);
|
|
yy = dvector(1,n);
|
|
|
|
mlo = 1.0E12;
|
|
mhi = 1.0E16;
|
|
dlogm = log(mhi/mlo)/(n-1);
|
|
for(i=1;i<=n;++i)
|
|
{
|
|
mass[i] = exp(dlogm*(i-1))*mlo;
|
|
logm = log(mass[i]);
|
|
|
|
pn = ptot = 0;
|
|
sig = 0.48;
|
|
for(j=1;j<=220;++j)
|
|
{
|
|
mu = B_rozo - sig*sig/2 + alpha_rozo*log(i/40.0) + log(4e14*HUBBLE);
|
|
x = exp(-(mu - logm)*(mu - logm)/(2*sig*sig))/(RT2PI*sig)/m;
|
|
ptot += x;
|
|
pn += x*i;
|
|
}
|
|
nbar[i] = log(pn/ptot);
|
|
mass[i] = logm;
|
|
}
|
|
spline(mass,nbar,n,1.0E+30,1.0E+30,yy);
|
|
}
|
|
splint(mass,nbar,yy,n,log(m),&a);
|
|
return exp(a);
|
|
}
|
|
|
|
/* testing to see if i can back out the P(N|M) from P(M|N)
|
|
*/
|
|
void test_pdf()
|
|
{
|
|
int i,j,k;
|
|
double m, sig, mu, x, logm, ptot=0, xx[200], Nbar, pn = 0;
|
|
|
|
m = 2.0e13;
|
|
logm = log(m);
|
|
for(i=1;i<=100;++i)
|
|
{
|
|
sig = 0.48;
|
|
mu = B_rozo - sig*sig/2 + alpha_rozo*log(i/40.0) + log(4e14*HUBBLE);
|
|
x = exp(-(mu - logm)*(mu - logm)/(2*sig*sig))/(RT2PI*sig)/m;
|
|
ptot += x;
|
|
pn += x*i;
|
|
xx[i] = x;
|
|
}
|
|
mu = exp(B_rozo + log(4e14*HUBBLE))/1.6;
|
|
Nbar = log(pow(m/mu,1/alpha_rozo)*40);
|
|
Nbar = log(pn/ptot);
|
|
fprintf(stderr,"%f %f\n",exp(Nbar),pn/ptot);
|
|
sig = 0.48/alpha_rozo;
|
|
mu = Nbar - sig*sig/2;
|
|
for(i=1;i<=100;++i)
|
|
{
|
|
x = exp(-(mu - log(i))*(mu - log(i))/(2*sig*sig))/(RT2PI*sig)/i;
|
|
printf("PDF %d %e %e\n",i,xx[i]/ptot,x);
|
|
}
|
|
exit(0);
|
|
}
|