#include #include #include #include #include #include #include #include #include #include "generateMock_conf.h" #include "gslIntegrate.hpp" #include using namespace std; using namespace CosmoTool; #define LIGHT_SPEED 299792.458 SimuData *doLoadRamses(const char *basename, int baseid, int velAxis, bool goRedshift) { SimuData *d, *outd; d = loadRamsesSimu(basename, baseid, -1, 0); outd = new SimuData; outd->NumPart = d->TotalNumPart; outd->BoxSize = d->BoxSize; outd->TotalNumPart = outd->NumPart; outd->Hubble = d->Hubble; outd->Omega_Lambda = d->Omega_Lambda; outd->Omega_M = d->Omega_M; outd->time = d->time; for (int k = 0; k < 3; k++) outd->Pos[k] = new float[outd->NumPart]; outd->Vel[2] = new float[outd->NumPart]; delete d; int curCpu = 0; cout << "loading cpu 0 " << endl; while (d = loadRamsesSimu(basename, baseid, curCpu, NEED_POSITION|NEED_VELOCITY|NEED_GADGET_ID)) { for (int k = 0; k < 3; k++) for (int i = 0; i < d->NumPart; i++) { assert(d->Id[i] >= 1); assert(d->Id[i] <= outd->TotalNumPart); outd->Pos[k][d->Id[i]-1] = d->Pos[k][i]; outd->Vel[2][d->Id[i]-1] = d->Vel[velAxis][i]; } if (goRedshift) for (int i = 0; i < d->NumPart; i++) outd->Pos[velAxis][d->Id[i]-1] += d->Vel[velAxis][i]/100.; delete d; curCpu++; cout << "loading cpu " << curCpu << endl; } return outd; } static double cubic(double a) { return a*a*a; } struct TotalExpansion { double Omega_M, Omega_L; double operator()(double z) { return 1/sqrt(Omega_M*cubic(1+z) + Omega_L); } }; Interpolate make_cosmological_redshift(double OM, double OL, double z0, double z1, int N = 1000) { TotalExpansion e_computer; double D_tilde, Q, Qprime; InterpolatePairs pairs; e_computer.Omega_M = OM; e_computer.Omega_L = OL; pairs.resize(N); ofstream f("comoving_distance.txt"); for (int i = 0; i < N; i++) { double z = z0 + (z1-z0)/N*i; pairs[i].second = z; pairs[i].first = gslIntegrate(e_computer, 0, z, 1e-3); f << z << " " << pairs[i].first << endl; } return buildFromVector(pairs); } void metricTransform(SimuData *data, int axis) { int x0, x1, x2; switch (axis) { case 0: x0 = 1; x1 = 2; x2 = 0; break; case 1: x0 = 0; x1 = 2; x2 = 1; break; case 2: x0 = 0; x1 = 1; x2 = 2; break; default: abort(); } Interpolate z_vs_D = make_cosmological_redshift(data->Omega_M, data->Omega_Lambda, 0., 2.0); // Redshift 2 should be sufficient ? double z0 = 1/data->time - 1; TotalExpansion e_computer; double baseComovingDistance; cout << "Using base redshift z=" << z0 << endl; e_computer.Omega_M = data->Omega_M; e_computer.Omega_L = data->Omega_Lambda; baseComovingDistance = LIGHT_SPEED/100.* gslIntegrate(e_computer, 0, z0, 1e-3); cout << "Comoving distance = " << baseComovingDistance << " Mpc/h" << endl; for (uint32_t i = 0; i < data->NumPart; i++) { float& x = data->Pos[x0][i]; float& y = data->Pos[x1][i]; float& z = data->Pos[x2][i]; float& v = data->Vel[2][i]; double reduced_red = (z + baseComovingDistance)*100./LIGHT_SPEED; // Distorted redshift z = z_vs_D.compute(reduced_red)*LIGHT_SPEED/100.; // Add peculiar velocity z += v/100; } } void generateOutput(SimuData *data, int axis, const std::string& fname) { UnformattedWrite f(fname); cout << "Generating output particles to " << fname << endl; int x0, x1, x2; switch (axis) { case 0: x0 = 1; x1 = 2; x2 = 0; break; case 1: x0 = 0; x1 = 2; x2 = 1; break; case 2: x0 = 0; x1 = 1; x2 = 2; break; default: abort(); } f.beginCheckpoint(); f.writeInt32(data->NumPart); f.endCheckpoint(); cout << "Writing X components..." << endl; f.beginCheckpoint(); for (uint32_t i = 0; i < data->NumPart; i++) { f.writeReal32(data->Pos[x0][i]); } f.endCheckpoint(); cout << "Writing Y components..." << endl; f.beginCheckpoint(); for (uint32_t i = 0; i < data->NumPart; i++) { f.writeReal32(data->Pos[x1][i]); } f.endCheckpoint(); cout << "Writing Z components..." << endl; f.beginCheckpoint(); for (uint32_t i = 0; i < data->NumPart; i++) { f.writeReal32(data->Pos[x2][i]); } f.endCheckpoint(); } void makeBox(SimuData *simu, SimuData *&boxed, generateMock_info& args_info) { uint32_t goodParticles = 0; double ranges[3][2] = { { args_info.rangeX_min_arg, args_info.rangeX_max_arg }, { args_info.rangeY_min_arg, args_info.rangeY_max_arg }, { args_info.rangeZ_min_arg, args_info.rangeZ_max_arg } }; double mul[3]; int *particle_id; boxed = new SimuData; boxed->Hubble = simu->Hubble; boxed->Omega_M = simu->Omega_M; boxed->Omega_Lambda = simu->Omega_Lambda; boxed->time = simu->time; boxed->BoxSize = simu->BoxSize; for (uint32_t i = 0; i < simu->NumPart; i++) { bool acceptance = true; for (int j = 0; j < 3; j++) acceptance = acceptance && (simu->Pos[j][i] > ranges[j][0]) && (simu->Pos[j][i] < ranges[j][1]); if (acceptance) goodParticles++; } for (int j = 0; j < 3; j++) { boxed->Pos[j] = new float[goodParticles]; boxed->Vel[j] = 0; mul[j] = 1.0/(ranges[j][1] - ranges[j][0]); } boxed->NumPart = goodParticles; particle_id = new int[goodParticles]; uint32_t k = 0; for (uint32_t i = 0; i < simu->NumPart; i++) { bool acceptance = true; for (int j = 0; j < 3; j++) acceptance = acceptance && (simu->Pos[j][i] > ranges[j][0]) && (simu->Pos[j][i] < ranges[j][1]); if (acceptance) { for (int j = 0; j < 3; j++) { boxed->Pos[j][k] = (simu->Pos[j][i]-ranges[j][0])*mul[j]; assert(boxed->Pos[j][k] > 0); assert(boxed->Pos[j][k] < 1); } particle_id[k] = i; k++; } } NcFile f(args_info.outputParameter_arg, NcFile::Replace); f.add_att("range_x_min", ranges[0][0]); f.add_att("range_x_max", ranges[0][1]); f.add_att("range_y_min", ranges[1][0]); f.add_att("range_y_max", ranges[1][1]); f.add_att("range_z_min", ranges[2][0]); f.add_att("range_z_max", ranges[2][1]); NcDim *NumPart_dim = f.add_dim("numpart_dim", boxed->NumPart); NcVar *v = f.add_var("particle_ids", ncInt, NumPart_dim); v->put(particle_id, boxed->NumPart); } int main(int argc, char **argv) { generateMock_info args_info; generateMock_conf_params args_params; SimuData *simu, *simuOut; generateMock_conf_init(&args_info); generateMock_conf_params_init(&args_params); args_params.check_required = 0; if (generateMock_conf_ext (argc, argv, &args_info, &args_params)) return 1; if (!args_info.configFile_given) { if (generateMock_conf_required (&args_info, GENERATEMOCK_CONF_PACKAGE)) return 1; } else { args_params.check_required = 1; args_params.initialize = 0; if (generateMock_conf_config_file (args_info.configFile_arg, &args_info, &args_params)) return 1; } generateMock_conf_print_version(); simu = doLoadRamses(args_info.ramsesBase_arg, args_info.ramsesId_arg, args_info.axis_arg, false); cout << "Hubble = " << simu->Hubble << endl; cout << "Boxsize = " << simu->BoxSize << endl; cout << "Omega_M = " << simu->Omega_M << endl; cout << "Omega_Lambda = " << simu->Omega_Lambda << endl; metricTransform(simu, args_info.axis_arg); makeBox(simu, simuOut, args_info); delete simu; generateOutput(simuOut, args_info.axis_arg, args_info.output_arg); delete simuOut; return 0; }