CFITSIO Quick Start Guide

William Pence *

January 2003

Contents

1 Introduction

2 Installing and Using CFITSIO
3 Example Programs

4 CFITSIO Routines
4.1 Error Reporting
4.2 File Open/Close Routines
4.3 HDU-level Routines e
44 TImage I/O Routines
45 TableI/ORoutines.
4.6 Header Keyword I/O Routines
4.7 Utility Routines oL

5 CFITSIO File Names and Filters
5.1 CreatingNew Files o
5.2 Opening Existing Files oo
5.3 Image Filtering e
5.3.1 Extracting a subsection of an image
5.3.2 Create an Image by Binning Table Columns
5.4 Table Filtering e
5.4.1 Column and Keyword Filtering
54.2 Row Filtering L
5.4.3 Good Time Interval Filtering
5.4.4 Spatial Region Filtering
5.4.5 Example Row Filters
5.5 Combined Filtering Examples L.

6 CFITSIO Error Status Codes
*HEASARC, NASA Goddard Space Flight Center, William.D.Pence@nasa.gov

23
23
24
26
26
26
28
28
29
32
32
34
36

38

1 Introduction

This document is intended to help you quickly start writing C programs to read and write
FITS files using the CFITSIO library. It covers the most important CFITSIO routines
that are needed to perform most types of operations on FITS files. For more complete
information about these and all the other available routines in the library please refer to
the “CFITSIO User’s Reference Guide”, which is available from the CFITSIO Web site at
http://heasarc.gsfc.nasa.gov/fitsio.

For more general information about the FITS data format, refer to the following web
page: http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html

FITS stands for Flexible Image Transport System and is the standard file format used to
store most astronomical data files. There are 2 basic types of FITS files: images and tables.
FITS images often contain a 2-dimensional array of pixels representing an image of a piece
of the sky, but FITS images can also contain 1-D arrays (i.e, a spectrum or light curve), or
3-D arrays (a data cube), or even higher dimensional arrays of data. An image may also
have zero dimensions, in which case it is referred to as a null or empty array. The supported
datatypes for the image arrays are 8, 16, and 32-bit integers, and 32 and 64-bit floating point
real numbers. Both signed and unsigned integers are supported.

FITS tables contain rows and columns of data, similar to a spreadsheet. All the values
in a particular column must have the same datatype. A cell of a column is not restricted to
a single number, and instead can contain an array or vector of numbers. There are actually
2 subtypes of FITS tables: ASCII and binary. As the names imply, ASCII tables store
the data values in an ASCII representation whereas binary tables store the data values in
a more efficient machine-readable binary format. Binary tables are generally more compact
and support more features (e.g., a wider range of datatypes, and vector columns) than ASCII
tables.

A single FITS file many contain multiple images or tables. Each table or image is called
a Header-Data Unit, or HDU. The first HDU in a FITS file must be an image (but it may
have zero axes) and is called the Primary Array. Any additional HDUs in the file (which are
also referred to as ‘extensions’) may contain either an image or a table.

Every HDU contains a header containing keyword records. Each keyword record is 80
ASCII characters long and has the following format:

KEYWORD = value / comment string

The keyword name can be up to 8 characters long (all uppercase). The value can be either
an integer or floating point number, a logical value (T or F), or a character string enclosed in
single quotes. Fach header begins with a series of required keywords to describe the datatype
and format of the following data unit, if any. Any number of other optional keywords can
be included in the header to provide other descriptive information about the data. For the
most part, the CFITSIO routines automatically write the required FITS keywords for each
HDU, so you, the programmer, usually do not need to worry about them.

2 Installing and Using CFITSIO

First, you should download the CFITSIO software and the set of example FITS utility pro-
grams from the web site at http://heasarc.gsfc.nasa.gov/fitsio. The example programs illus-
trate how to perform many common types of operations on FITS files using CFITSIO. They
are also useful when writing a new program because it is often easier to take a copy of one of
these utility programs as a template and then modify it for your own purposes, rather than
writing the new program completely from scratch.

To build the CFITSIO library on Unix platforms, ‘untar’ the source code distribution file
and then execute the following commands in the directory containing the source code:

> ./configure [--prefix=/target/installation/path]
> make (or ’make shared’)
> make install (this step is optiomnal)

The optional ’prefix’ argument to configure gives the path to the directory where the
CFITSIO library and include files should be installed via the later 'make install’ command.
For example,

> ./configure --prefix=/usri/local

will cause the 'make install’ command to copy the CFITSIO libcfitsio file to /usrl/local/lib
and the necessary include files to /usrl/local/include (assuming of course that the process
has permission to write to these directories).

Pre-compiled versions of the CFITSIO DLL library are available for PCs. On Macintosh
machines, refer to the README.MacOS file for instructions on building CFITSIO using
CodeWarrior.

Any programs that use CFITSIO must of course be linked with the CFITSIO library
when creating the executable file. The exact procedure for linking a program depends on
your software environment, but on Unix platforms, the command line to compile and link a
program will look something like this:

gcc —o myprog myprog.c -L. -lcfitsio -1m -1nsl -lsocket
You may not need to include all of the 'm’, 'nsl’, and ’socket’ system libraries on your

particular machine. To find out what libraries are required on your (Unix) system, type
’make testprog’ and see what libraries are then included on the resulting link line.

3 Example Programs

Before describing the individual CFITSIO routines in detail, it is instructive to first look at
an actual program. The names of the CFITSIO routines are fairly descriptive (they all begin
with fits_, so it should be reasonably clear what this program does:

#include <string.h>
#include <stdio.h>
1: #include "fitsio.h"

int main(int argc, char *argv[])

{
2: fitsfile *fptr;
char card[FLEN_CARD];
3: int status = 0, nkeys, ii; /* MUST initialize status */
4: fits_open_file(&fptr, argv[1], READONLY, &status);
fits_get_hdrspace(fptr, &nkeys, NULL, &status);
for (ii = 1; ii <= nkeys; ii++) {
fits_read_record(fptr, ii, card, &status); /* read keyword */
printf ("%s\n", card);
}
printf ("END\n\n"); /* terminate listing with END */
fits_close_file(fptr, &status);
if (status) /* print any error messages */
5: fits_report_error(stderr, status);
return(status);
}

This program opens the specified FITS file and prints out all the header keywords in the
current HDU. Some other points to notice about the program are:

1. The fitsio.h header file must be included to define the various routines and symbols
used in CFITSIO.

2. The fitsfile parameter is the first argument in almost every CFITSIO routine. It
is a pointer to a structure (defined in fitsio.h) that stores information about the
particular FITS file that the routine will operate on. Memory for this structure is
automatically allocated when the file is first opened or created, and is freed when the
file is closed.

3. Almost every CFITSIO routine has a status parameter as the last argument. The
status value is also usually returned as the value of the function itself. Normally status

= (), and a positive status value indicates an error of some sort. The status variable must
always be initialized to zero before use, because if status is greater than zero on input
then the CFITSIO routines will simply return without doing anything. This ‘inherited
status’ feature, where each CFITSIO routine inherits the status from the previous
routine, makes it unnecessary to check the status value after every single CFITSIO
routine call. Generally you should check the status after an especially important or
complicated routine has been called, or after a block of closely related CFITSIO calls.
This example program has taken this feature to the extreme and only checks the status
value at the very end of the program.

4. In this example program the file name to be opened is given as an argument on the

command line (arg[1]). If the file contains more than 1 HDU or extension, you can
specify which particular HDU to be opened by enclosing the name or number of the HDU
in square brackets following the root name of the file. For example, file.fts[0] opens
the primary array, while file.fts[2] will move to and open the 2nd extension in the
file, and file.fit [EVENTS] will open the extension that has a EXTNAME = ’EVENTS’
keyword in the header. Note that on the Unix command line you must enclose the file
name in single or double quote characters if the name contains special characters such
as ‘[or ‘.
All of the CFITSIO routines which read or write header keywords, image data, or
table data operate only within the currently opened HDU in the file. To read or write
information in a different HDU you must first explicitly move to that HDU (see the
fits_movabs_hdu and fits movrel hdu routines in section 4.3).

5. The fits_report_error routine provides a convenient way to print out diagnostic mes-
sages about any error that may have occurred.

A set of example FITS utility programs are available from the CFITSIO web site at
http://heasarc.gsfc.nasa.gov/docs/software/fitsio/cexamples.html. These are real working
programs which illustrate how to read, write, and modify FITS files using the CFITSIO
library. Most of these programs are very short, containing only a few 10s of lines of executable
code or less, yet they perform quite useful operations on FITS files. Running each program
without any command line arguments will produce a short description of how to use the
program. The currently available programs are:

fitscopy - copy a file

listhead - list header keywords

liststruc - show the structure of a FITS file.

modhead - write or modify a header keyword

imarith - add, subtract, multiply, or divide 2 images

imlist - list pixel values in an image

imstat - compute mean, min, and max pixel values in an image
tablist - display the contents of a FITS table

tabcalc - general table calculator

4 CFITSIO Routines

This chapter describes the main CFITSIO routines that can be used to perform the most
common types of operations on FITS files.

4.1 Error Reporting

void fits_report_error (FILE *stream, int status)
void fits_get_errstatus(int status, char *err_text)
float fits_get_version(float *version)

The first routine prints out information about any error that has occurred. Whenever any
CFITSIO routine encounters an error it usually writes a message describing the nature of the
error to an internal error message stack and then returns with a positive integer status value.
Passing the error status value to this routine will cause a generic description of the error and
all the messages from the internal CFITSIO error stack to be printed to the specified stream.
The stream parameter is usually set equal to "stdout" or "stderr".

The second routine simply returns a 30-character descriptive error message corresponding
to the input status value.

The last routine returns the current CFITSIO library version number.

4.2 File Open/Close Routines

int fits_open_file(fitsfile **fptr, char *filename, int mode, int *status)
int fits_open_data(fitsfile **fptr, char *filename, int mode, int *status)
int fits_open_table(fitsfile **fptr, char *filename, int mode, int *status)
int fits_open_image(fitsfile **fptr, char *filename, int mode, int *status)

int fits_create_file(fitsfile **fptr, char *filename, int *status)
int fits_close_file(fitsfile *fptr, int *status)

These routines open or close a file. The first fitsfile parameter in these and nearly
every other CFITSIO routine is a pointer to a structure that CFITSIO uses to store relevant
parameters about each opened file. You should never directly read or write any information
in this structure. Memory for this structure is allocated automatically when the file is opened
or created, and is freed when the file is closed.

The mode parameter in the fits_open_xxxx set of routines can be set to either READONLY
or READWRITE to select the type of file access that will be allowed. These symbolic constants
are defined in fitsio.h.

The fits_open_file routine opens the file and positions the internal file pointer to the
beginning of the file, or to the specified extension if an extension name or number is appended
to the file name (see the later section on “CFITSIO File Names and Filters” for a description
of the syntax). fits_open_data behaves similarly except that it will move to the first HDU
containing significant data if a HDU name or number to open is not explicitly specified as
part of the filename. It will move to the first IMAGE HDU with NAXIS greater than 0, or the

first table that does not contain the strings ‘GTI’ (a Good Time Interval extension) or ‘OB-
STABLE’ in the EXTNAME keyword value. The fits_open_table and fits_open_image
routines are similar except that they will move to the first significant table HDU or image
HDU, respectively if a HDU name of number is not specified as part of the input file name.

When opening an existing file, the filename can include optional arguments, enclosed in
square brackets that specify filtering operations that should be applied to the input file. For
example,

myfile.fit [EVENTS] [counts > 0]

opens the table in the EVENTS extension and creates a virtual table by selecting only those
rows where the COUNTS column value is greater than 0. See section 5 for more examples of
these powerful filtering capabilities.

In fits create file, the filename is simply the root name of the file to be created.
You can overwrite an existing file by prefixing the name with a ‘!’ character (on the Unix
command line this must be prefixed with a backslash, as in ‘\!file.fit”). If the file name
ends with .gz the file will be compressed using the gzip algorithm. If the filename is stdout
or "-" (a single dash character) then the output file will be piped to the stdout stream. You
can chain several tasks together by writing the output from the first task to stdout and then
reading the input file in the 2nd task from stdin or "-".

4.3 HDU-level Routines

The routines listed in this section operate on Header-Data Units (HDUs) in a file.
int fits_get_num_hdus(fitsfile *fptr, int *hdunum, int *status)
int fits_get_hdu_num(fitsfile *fptr, int *hdunum)

The first routines returns the total number of HDUs in the FITS file, and the second
routine returns the position of the currently opened HDU in the FITS file (starting with 1,
not 0).

int fits_movabs_hdu(fitsfile *fptr, int hdunum, int *hdutype, int *status)
int fits_movrel_hdu(fitsfile *fptr, int nmove, int *hdutype, int *status)
int fits_movnam_hdu(fitsfile *fptr, int hdutype, char *extname,

int extver, int *status)

These routines enable you to move to a different HDU in the file. Most of the CFITSIO
functions which read or write keywords or data operate only on the currently opened HDU
in the file. The first routine moves to the specified absolute HDU number in the FITS file
(the first HDU = 1), whereas the second routine moves a relative number of HDUs forward
or backward from the currently open HDU. The hdutype parameter returns the type of the
newly opened HDU, and will be equal to one of these symbolic constant values: IMAGE_HDU,
ASCII_TBL, or BINARY.TBL. hdutype may be set to NULL if it is not needed. The third
routine moves to the (first) HDU that matches the input extension type, name, and version
number, as given by the XTENSION, EXTNAME (or HDUNAME) and EXTVER keywords. If the input

value of extver = 0, then the version number will be ignored when looking for a matching
HDU.

int fits_get_hdu_type(fitsfile *fptr, int *hdutype, int *status)

Get the type of the current HDU in the FITS file: TMAGE HDU, ASCII TBL, or BINARY_TBL.

int fits_copy_hdu(fitsfile *infptr, fitsfile *outfptr, int morekeys,
int *status)

int fits_copy_file(fitsfile *infptr, fitsfile *outfptr, int previous,
int current, int following, > int *status)

The first routine copies the current HDU from the FITS file associated with infptr and
appends it to the end of the FITS file associated with outfptr. Space may be reserved for
morekeys additional keywords in the output header. The second routine copies any HDUs
previous to the current HDU, and/or the current HDU, and/or any HDUs following the
current HDU, depending on the value (True or False) of previous, current, and following,
respectively. For example,

fits_copy_file(infptr, outfptr, 0, 1, 1, &status);

will copy the current HDU and any HDUs that follow it from the input to the output file,
but it will not copy any HDUs preceding the current HDU.

4.4 Image I/O Routines

This section lists the more important CFITSIO routines which operate on FITS images.

int fits_get_img_type(fitsfile *fptr, int *bitpix, int *status)

int fits_get_img_dim(fitsfile *fptr, int *naxis, int *status)

int fits_get_img_size(fitsfile *fptr, int maxdim, long *naxes,
int *status)

int fits_get_img_param(fitsfile *fptr, int maxdim, int *bitpix,
int *naxis, long *naxes, int *status)

Get information about the currently opened image HDU. The first routine returns the
datatype of the image as (defined by the BITPIX keyword), which can have the following
symbolic constant values:

BYTE_IMG = 8 (8-bit byte pixels, 0 - 255)
SHORT_IMG = 16 (16 bit integer pixels)
LONG_IMG = 32 (32-bit integer pixels)
FLOAT_IMG = -32 (32-bit floating point pixels)
DOUBLE_IMG = -64 (64-bit floating point pixels)

The second and third routines return the number of dimensions in the image (from the
NAXIS keyword), and the sizes of each dimension (from the NAXIS1, NAXIS2, etc. keywords).
The last routine simply combines the function of the first 3 routines. The input maxdim
parameter in this routine gives the maximum number dimensions that may be returned (i.e.,
the dimension of the naxes array)

int fits_create_img(fitsfile *fptr, int bitpix, int naxis,
long *naxes, int *status)

Create an image HDU by writing the required keywords which define the structure of the
image. The 2nd through 4th parameters specified the datatype, the number of dimensions,
and the sizes of the dimensions. The allowed values of the bitpix parameter are listed above
in the description of the fits_get_img _type routine. If the FITS file pointed to by fptr is
empty (previously created with fits_create_file) then this routine creates a primary array
in the file, otherwise a new IMAGE extension is appended to end of the file following the
other HDUs in the file.

int fits_write_pix(fitsfile *fptr, int datatype, long *fpixel,
long nelements, void *array, int *status);

int fits_write_pixnull(fitsfile *fptr, int datatype, long *fpixel,
long nelements, void *array, void *nulval, int *status);

int fits_read_pix(fitsfile *fptr, int datatype, long *fpixel,
long nelements, void *nulval, void *array,
int *anynul, int *status)

Read or write all or part of the FITS image. There are 2 different "write’ pixel routines:
The first simply writes the input array of pixels to the FITS file. The second is similar, except
that it substitutes the appropriate null pixel value in the FITS file for any pixels which have
a value equal to *nulval (note that this parameter gives the address of the null pixel value,
not the value itself). Similarly, when reading an image, CFITSIO will substitute the value
given by nulval for any undefined pixels in the image, unless nulval = NULL, in which case
no checks will be made for undefined pixels when reading the FITS image.

The fpixel parameter in these routines is an array which gives the coordinate in each
dimension of the first pixel to be read or written, and nelements is the total number of pixels
to read or write. array is the address of an array which either contains the pixel values to be
written, or will hold the values of the pixels that are read. When reading, array must have
been allocated large enough to hold all the returned pixel values. These routines starts at
the fpixel location and then read or write the nelements pixels, continuing on successive
rows of the image if necessary. For example, to write an entire 2D image, set fpixel[0] =
fpixel[1] = 1, and nelements = NAXIS1 * NAXIS2. Or to read just the 10th row of the
image, set fpixel[0] = 1, fpixel[1] = 10, and nelements = NAXIS1. The datatype
parameter specifies the datatype of the C array in the program, which need not be the same
as the datatype of the FITS image itself. If the datatypes differ then CFITSIO will convert
the data as it is read or written. The following symbolic constants are allowed for the value
of datatype:

TBYTE unsigned char
TSBYTE signed char
TSHORT signed short
TUSHORT unsigned short

TINT signed int
TUINT unsigned int
TLONG signed long

TULONG unsigned long
TFLOAT float
TDOUBLE double

int fits_write_subset(fitsfile *fptr, int datatype, long *fpixel,
long *1lpixel, DTYPE *array, > int *status)

int fits_read_subset(fitsfile *fptr, int datatype, long *fpixel,
long *1pixel, long *inc, void *nulval, void *array,
int *anynul, int *status)

Read or write a rectangular section of the FITS image. These are very similar to
fits write pix and fits_read pix except that you specify the last pixel coordinate (the

10

upper right corner of the section) instead of the number of pixels to be read. The read routine
also has an inc parameter which can be used to read only every inc-th pixel along each
dimension of the image. Normally inc[0] = inc[1] = 1 to read every pixel in a 2D image.
To read every other pixel in the entire 2D image, set

fpixel[0] = fpixel[1] =1
lpixel[0] = {NAXIS1}
lpixel[1] = {NAXIS2}
inc[0] = inc[1] = 2

Or, to read the 8th row of a 2D image, set

fpixel[0] = 1
fpixel[1] = 8
lpixel[0] = {NAXIS1}
lpixel[1] = 8

inc[0] = inc[1] =1

11

4.5 Table I/O Routines
This section lists the most important CFITSIO routines which operate on FITS tables.

int fits_create_tbl(fitsfile *fptr, int tbltype, long nrows, int tfields,
char *ttypel],char *tform[], char *tunit[], char *extname, int *status)

Create a new table extension by writing the required keywords that define the table
structure. The required null primary array will be created first if the file is initially completely
empty. tbltype defines the type of table and can have values of ASCII TBL or BINARY TBL.
Binary tables are generally preferred because they are more efficient and support a greater
range of column datatypes than ASCII tables.

The nrows parameter gives the initial number of empty rows to be allocated for the table;
this should normally be set to 0. The tfields parameter gives the number of columns in the
table (maximum = 999). The ttype, tform, and tunit parameters give the name, datatype,
and physical units of each column, and extname gives the name for the table (the value of
the EXTNAME keyword). The FITS Standard recommends that only letters, digits, and the
underscore character be used in column names with no embedded spaces. It is recommended
that all the column names in a given table be unique within the first 8 characters.

The following table shows the TFORM column format values that are allowed in ASCII
tables and in binary tables:

ASCII Table Column Format Codes

(w = column width, d = no. of decimal places to display)

Aw - character string

Iw - integer

Fw.d - fixed floating point

Ew.d - exponential floating point

Dw.d - exponential floating point

Binary Table Column Format Codes
(r = vector length, default = 1)
rA - character string
rAw - array of strings, each of length w
rL. - logical
rX - bit
rB - unsigned byte
rS - signed byte **
rI - signed 16-bit integer

rU - unsigned 16-bit integer *x*
rJ - signed 32-bit integer
rV - unsigned 32-bit integer *x*

rK - 64-bit integer **x*

12

rE - 32-bit floating point
rD - 64-bit floating point
rC - 32-bit complex pair

rM - 64-bit complex pair

** The S, U and V format codes are not actual legal TFORMn values.
CFITSIO substitutes the somewhat more complicated set of
keywords that are used to represent unsigned integers or
signed bytes.

*xx The 64-bit integer format is experimental and is not
officially recognized in the FITS Standard.

The tunit and extname parameters are optional and may be set to NULL if they are not
needed.

Note that it may be easier to create a new table by copying the header from another
existing table with fits_copy_header rather than calling this routine.

int fits_get_num_rows(fitsfile *fptr, long *nrows, int *status)
int fits_get_num_cols(fitsfile *fptr, int #*ncols, int *status)

Get the number of rows or columns in the current FITS table. The number of rows is
given by the NAXIS2 keyword and the number of columns is given by the TFIELDS keyword
in the header of the table.

int fits_get_colnum(fitsfile *fptr, int casesen, char *template,
int *colnum, int *status)

int fits_get_colname(fitsfile *fptr, int casesen, char *template,
char *colname, int *colnum, int *status)

Get the column number (starting with 1, not 0) of the column whose name matches the
specified template name. The only difference in these 2 routines is that the 2nd one also
returns the name of the column that matched the template string.

Normally, casesen should be set to CASEINSEN, but it may be set to CASESEN to force the
name matching to be case-sensitive.

The input template string gives the name of the desired column and may include wildcard
characters: a ‘*’ matches any sequence of characters (including zero characters), ‘?” matches
any single character, and ‘#’ matches any consecutive string of decimal digits (0-9). If
more than one column name in the table matches the template string, then the first match is
returned and the status value will be set to COL_NOT_UNIQUE as a warning that a unique match
was not found. To find the next column that matches the template, call this routine again
leaving the input status value equal to COL_NOT_UNIQUE. Repeat this process until status =
COL_NOT_FOUND is returned.

13

int fits_get_coltype(fitsfile *fptr, int colnum, int *typecode,
long *repeat, long *width, int *status)

Return the datatype, vector repeat count, and the width in bytes of a single column
element for column number colnum. Allowed values for the returned datatype in ASCII
tables are: TSTRING, TSHORT, TLONG, TFLOAT, and TDOUBLE. Binary tables support these
additional types: TLOGICAL, TBIT, TBYTE, TINT32BIT, TCOMPLEX and TDBLCOMPLEX. The
negative of the datatype code value is returned if it is a variable length array column. The
repeat count is always 1 in ASCII tables.

The ’repeat’ parameter returns the vector repeat count on the binary table TFORMn
keyword value. (ASCII table columns always have repeat = 1). The ’width’ parameter
returns the width in bytes of a single column element (e.g., a 10D’ binary table column
will have width = 8, an ASCII table ’F12.2’ column will have width = 12, and a binary
table’60A’ character string column will have width = 60); Note that this routine supports the
local convention for specifying arrays of fixed length strings within a binary table character
column using the syntax TFORM = 'rAw’ where 'r’ is the total number of characters (=
the width of the column) and ’w’ is the width of a unit string within the column. Thus if
the column has TFORM = '60A12’ then this means that each row of the table contains 5
12-character substrings within the 60-character field, and thus in this case this routine will
return typecode = TSTRING, repeat = 60, and width = 12. The number of substings in any
binary table character string field can be calculated by (repeat/width). A null pointer may
be given for any of the output parameters that are not needed.

int fits_insert_rows(fitsfile *fptr, long firstrow, long nrows, int *status)
int fits_delete_rows(fitsfile *fptr, long firstrow, long nrows, int *status)
int fits_delete_rowrange(fitsfile *fptr, char *rangelist, int *status)

int fits_delete_rowlist(fitsfile *fptr, long *rowlist, long nrows, int *stat)

Insert or delete rows in a table. The blank rows are inserted immediately following row
frow. Set frow = 0 to insert rows at the beginning of the table. The first ’delete’ routine
deletes nrows rows beginning with row firstrow. The 2nd delete routine takes an input
string listing the rows or row ranges to be deleted (e.g., 2,4-7, 9-12’). The last delete routine
takes an input long integer array that specifies each individual row to be deleted. The row
lists must be sorted in ascending order. All these routines update the value of the NAXIS2
keyword to reflect the new number of rows in the table.

int fits_insert_col(fitsfile *fptr, int colnum, char *ttype, char *tform,
int *status)

int fits_insert_cols(fitsfile *fptr, int colnum, int ncols, char **ttype,
char **tform, int *status)

int fits_delete_col(fitsfile *fptr, int colnum, int *status)

14

Insert or delete columns in a table. colnum gives the position of the column to be inserted
or deleted (where the first column of the table is at position 1). ttype and tform give the
column name and column format, where the allowed format codes are listed above in the
description of the fits_create _table routine. The 2nd ’insert’ routine inserts multiple
columns, where ncols is the number of columns to insert, and ttype and tform are arrays
of string pointers in this case.

int fits_copy_col(fitsfile *infptr, fitsfile *outfptr, int incolnum,
int outcolnum, int create_col, int *status);

Copy a column from one table HDU to another. If create_col = TRUE (i.e., not equal
to zero), then a new column will be inserted in the output table at position outcolumn,
otherwise the values in the existing output column will be overwritten.

int fits_write_col(fitsfile *fptr, int datatype, int colnum, long firstrow,
long firstelem, long nelements, void *array, int *status)
int fits_write_colnull(fitsfile *fptr, int datatype, int colnum,
long firstrow, long firstelem, long nelements,
void *array, void *nulval, int *status)
int fits_write_col_null(fitsfile *fptr, int colnum, long firstrow,
long firstelem, long nelements, int *status)

int fits_read_col(fitsfile *fptr, int datatype, int colnum, long firstrow,
long firstelem, long nelements, void *nulval, void *array,
int *anynul, int *status)

Write or read elements in column number colnum, starting with row firstsrow and
element firstelem (if it is a vector column). firstelem is ignored if it is a scalar column.
The nelements number of elements are read or written continuing on successive rows of the
table if necessary. array is the address of an array which either contains the values to be
written, or will hold the returned values that are read. When reading, array must have been
allocated large enough to hold all the returned values.

There are 3 different ’write’ column routines: The first simply writes the input array
into the column. The second is similar, except that it substitutes the appropriate null pixel
value in the column for any input array values which are equal to *nulval (note that this
parameter gives the address of the null pixel value, not the value itself). The third write
routine sets the specified table elements to a null value. New rows will be automatical added
to the table if the write operation extends beyond the current size of the table.

When reading a column, CFITSIO will substitute the value given by nulval for any
undefined elements in the FITS column, unless nulval or *nulval = NULL, in which case no
checks will be made for undefined values when reading the column.

datatype specifies the datatype of the C array in the program, which need not be the
same as the intrinsic datatype of the column in the FITS table. The following symbolic
constants are allowed for the value of datatype:

15

TSTRING array of character string pointers
TBYTE unsigned char

TSHORT signed short

TUSHORT unsigned short

TINT signed int
TUINT unsigned int
TLONG signed long

TULONG unsigned long
TFLOAT float
TDOUBLE double

Note that TSTRING corresponds to the C char** datatype, i.e., a pointer to an array of
pointers to an array of characters.

Any column, regardless of it’s intrinsic datatype, may be read as a TSTRING character
string. The display format of the returned strings will be determined by the TDISPn keyword,
if it exists, otherwise a default format will be used depending on the datatype of the column.
The tablist example utility program (available from the CFITSIO web site) uses this feature
to display all the values in a FITS table.

int fits_select_rows(fitsfile *infptr, fitsfile *outfptr, char *expr,
int *status)

int fits_calculator(fitsfile *infptr, char *expr, fitsfile *outfptr,
char *colname, char *tform, int *status)

These are 2 of the most powerful routines in the CFITSIO library. (See the full CFITSIO
Reference Guide for a description of several related routines). These routines can perform
complicated transformations on tables based on an input arithmetic expression which is
evaluated for each row of the table. The first routine will select or copy rows of the table
for which the expression evaluates to TRUE (i.e., not equal to zero). The second routine
writes the value of the expression to a column in the output table. Rather than supplying
the expression directly to these routines, the expression may also be written to a text file
(continued over multiple lines if necessary) and the name of the file, prepended with a '@’
character, may be supplied as the value of the ’expr’ parameter (e.g. '@Qfilename.txt’).

The arithmetic expression may be a function of any column or keyword in the input table
as shown in these examples:

Row Selection Expressions:

counts > 0 uses COUNTS column value

sqrt (X*x2 + Y*x2) < 10. uses X and Y column values

(X >10) || (X < -10) && (Y == 0) wused ’or’ and ’and’ operators
gtifilter() filter on Good Time Intervals
regfilter ("myregion.reg") filter using a region file
O@select.txt reads expression from a text file

Calculator Expressions:
#row % 10 modulus of the row number

16

counts/#exposure Fn of COUNTS column and EXPOSURE keyword
dec < 85 7 cos(dec * #deg) : 0 Conditional expression: evaluates to
cos(dec) if dec < 85, else O

(count{-1}+count+count{+1})/3. running mean of the count values in the
previous, current, and next rows

max (0, min(X, 1000)) returns a value between 0 - 1000

Q@calc.txt reads expression from a text file

Most standard mathematical operators and functions are supported. If the expression
includes the name of a column, than the value in the current row of the table will be used
when evaluating the expression on each row. An offset to an adjacent row can be specified
by including the offset value in curly brackets after the column name as shown in one of the
examples. Keyword values can be included in the expression by preceding the keyword name
with a ‘#’ sign. See Section 5 of this document for more discussion of the expression syntax.

gtifilter is a special function which tests whether the TIME column value in the input
table falls within one or more Good Time Intervals. By default, this function looks for a
"GTT’ extension in the same file as the input table. The 'GTT’ table contains START and STOP
columns which define the range of each good time interval. See section 5.4.3 for more details.

regfilter is another special function which selects rows based on whether the spatial
position associated with each row is located within in a specified region of the sky. By default,
the X and Y columns in the input table are assumed to give the position of each row. The
spatial region is defined in an ASCII text file whose name is given as the argument to the
regfilter function. See section 5.4.4 for more details.

The infptr and outfptr parameters in these routines may point to the same table or to
different tables. In fits_select_rows, if the input and output tables are the same then the
rows that do not satisfy the selection expression will be deleted from the table. Otherwise, if
the output table is different from the input table then the selected rows will be copied from
the input table to the output table.

The output column in fits_calculator may or may not already exist. If it exists then
the calculated values will be written to that column, overwriting the existing values. If
the column doesn’t exist then the new column will be appended to the output table. The
tform parameter can be used to specify the datatype of the new column (e.g., the TFORM
keyword value as in *1E’, or ’1J’).If tform = NULL then a default datatype will be used,
depending on the expression.

int fits_read_tblbytes(fitsfile *fptr, long firstrow, long firstchar,
long nchars, unsigned char *array, int *status)

int fits_write_tblbytes (fitsfile *fptr, long firstrow, long firstchar,
long nchars, unsigned char *array, int *status)

These 2 routines provide low-level access to tables and are mainly useful as an efficient
way to copy rows of a table from one file to another. These routines simply read or write
the specified number of consecutive characters (bytes) in a table, without regard for column
boundaries. For example, to read or write the first row of a table, set firstrow = 1,

17

firstchar = 1, and nchars = NAXIS1 where the length of a row is given by the value of
the NAXIS1 header keyword. When reading a table, array must have been declared at least
nchars bytes long to hold the returned string of bytes.

18

4.6 Header Keyword I/O Routines

The following routines read and write header keywords in the current HDU.

int fits_get_hdrspace(fitsfile *fptr, int *keysexist, int *morekeys,
int *status)

Return the number of existing keywords (not counting the mandatory END keyword) and
the amount of empty space currently available for more keywords. The morekeys parameter
may be set to NULL if it’s value is not needed.

int fits_read_record(fitsfile *fptr, int keynum, char *record, int *status)
int fits_read_card(fitsfile *fptr, char *keyname, char *record, int *status)
int fits_read_key(fitsfile *fptr, int datatype, char *keyname,

void *value, char *comment, int *status)

int fits_find_nextkey(fitsfile *fptr, char #**inclist, int ninc,
char **exclist, int nexc, char *card, int *status)

int fits_read_key_unit(fitsfile *fptr, char *keyname, char *unit,
int *status)

These routines all read a header record in the current HDU. The first routine reads
keyword number keynum (where the first keyword is at position 1). This routine is most
commonly used when sequentially reading every record in the header from beginning to end.
The 2nd and 3rd routines read the named keyword and return either the whole 80-byte record,
or the keyword value and comment string.

Wild card characters (*, 7, and #) may be used when specifying the name of the keyword
to be read, in which case the first matching keyword is returned.

The datatype parameter specifies the C datatype of the returned keyword value and
can have one of the following symbolic constant values: TSTRING, TLOGICAL (== int),
TBYTE, TSHORT, TUSHORT, TINT, TUINT, TLONG, TULONG, TFLOAT, TDOUBLE, TCOMPLEX, and
TDBLCOMPLEX. Data type conversion will be performed for numeric values if the intrinsic
FITS keyword value does not have the same datatype. The comment parameter may be set
equal to NULL if the comment string is not needed.

The 4th routine provides an easy way to find all the keywords in the header that match one
of the name templates in inclist and do not match any of the name templates in exclist.
ninc and nexc are the number of template strings in inclist and exclist, respectively.
Wild cards (*, 7, and #) may be used in the templates to match multiple keywords. Each
time this routine is called it returns the next matching 80-byte keyword record. It returns
status = KEY NO_EXIST if there are no more matches.

The 5th routine returns the keyword value units string, if any. The units are recorded at
the beginning of the keyword comment field enclosed in square brackets.

19

int fits_write_key(fitsfile *fptr, int datatype, char *keyname,
void *value, char *comment, int *status)

int fits_update_key(fitsfile *fptr, int datatype, char *keyname,
void *value, char *comment, int *status)

int fits_write_record(fitsfile *fptr, char *card, int *status)

int fits_modify_comment (fitsfile *fptr, char *keyname, char *comment,
int *status)

int fits_write_key_unit(fitsfile *fptr, char *keyname, char *unit,
int *status)

Write or modify a keyword in the header of the current HDU. The first routine appends
the new keyword to the end of the header, whereas the second routine will update the value
and comment fields of the keyword if it already exists, otherwise it behaves like the first
routine and appends the new keyword. Note that value gives the address to the value and
not the value itself. The datatype parameter specifies the C datatype of the keyword value
and may have any of the values listed in the description of the keyword reading routines,
above. A NULL may be entered for the comment parameter, in which case the keyword
comment field will be unmodified or left blank.

The third routine is more primitive and simply writes the 80-character card record to the
header. It is the programmer’s responsibility in this case to ensure that the record conforms
to all the FITS format requirements for a header record.

The fourth routine modifies the comment string in an existing keyword, and the last
routine writes or updates the keyword units string for an existing keyword. (The units are
recorded at the beginning of the keyword comment field enclosed in square brackets).

int fits_write_comment(fitsfile *fptr, char *comment, int *status)
int fits_write_history(fitsfile *fptr, char *history, int *status)
int fits_write_date(fitsfile *fptr, int *status)

Write a COMMENT, HISTORY, or DATE keyword to the current header. The COMMENT keyword
is typically used to write a comment about the file or the data. The HISTORY keyword is
typically used to provide information about the history of the processing procedures that have
been applied to the data. The comment or history string will be continued over multiple
keywords if it is more than 70 characters long.

The DATE keyword is used to record the date and time that the FITS file was created.
Note that this file creation date is usually different from the date of the observation which
obtained the data in the FITS file. The DATE keyword value is a character string in ’yyyy-
mm-ddThh:mm:ss’ format. If a DATE keyword already exists in the header, then this routine
will update the value with the current system date.

int fits_delete_record(fitsfile *fptr, int keynum, int *status)
int fits_delete_key(fitsfile *fptr, char *keyname, int *status)

20

Delete a keyword record. The first routine deletes a keyword at a specified position (the
first keyword is at position 1, not 0), whereas the second routine deletes the named keyword.

int fits_copy_header(fitsfile *infptr, fitsfile *outfptr, int *status)

Copy all the header keywords from the current HDU associated with infptr to the current
HDU associated with outfptr. If the current output HDU is not empty, then a new HDU will
be appended to the output file. The output HDU will then have the identical structure as
the input HDU, but will contain no data.

21

4.7 Utility Routines
This section lists the most important CFITSIO general utility routines.

int fits_write_chksum(fitsfile *fptr, int *status)
int fits_verify_chksum(fitsfile *fptr, int *dataok, int *hduok, int *status)

These routines compute or validate the checksums for the currenrt HDU. The DATASUM
keyword is used to store the numerical value of the 32-bit, 1’s complement checksum for the
data unit alone. The CHECKSUM keyword is used to store the ASCII encoded COMPLEMENT
of the checksum for the entire HDU. Storing the complement, rather than the actual check-
sum, forces the checksum for the whole HDU to equal zero. If the file has been modified since
the checksums were computed, then the HDU checksum will usually not equal zero.

The returned dataok and hduok parameters will have a value = 1 if the data or HDU is
verified correctly, a value = 0 if the DATASUM or CHECKSUM keyword is not present, or value =
-1 if the computed checksum is not correct.

int fits_parse_value(char *card, char *value, char *comment, int *status)

int fits_get_keytype(char *value, char *dtype, int *status)

int fits_get_keyclass(char *card)

int fits_parse_template(char *template, char *card, int *keytype, int *status)

fits_parse_value parses the input 80-chararacter header keyword record, returning the
value (as a literal character string) and comment strings. If the keyword has no value (columns
9-10 not equal to '=’), then a null value string is returned and the comment string is set
equal to column 9 - 80 of the input string.

fits_get keytype parses the keyword value string to determine its datatype. dtype
returns with a value of ’C’, 'L’, ’T’, °F’ or "X’, for character string, logical, integer, floating
point, or complex, respectively.

fits_get _keyclass returns a classification code that indicates the classification type of
the input keyword record (e.g., a required structural keyword, a TDIM keyword, a WCS
keyword, a comment keyword, etc. See the CFITSIO Reference Guide for a list of the
different classification codes.

fits_parse_template takes an input free format keyword template string and returns
a formatted 80*char record that satisfies all the FITS requirements for a header keyword
record. The template should generally contain 3 tokens: the keyword name, the keyword
value, and the keyword comment string. The returned keytype parameter indicates whether
the keyword is a COMMENT keyword or not. See the CFITSIO Reference Guide for more
details.

22

5 CFITSIO File Names and Filters

5.1 Creating New Files

When creating a new output file on magnetic disk with fits create file the following
features are supported.

e Overwriting, or ’Clobbering’ an Existing File

If the filename is preceded by an exclamation point (!) then if that file already exists it
will be deleted prior to creating the new FITS file. Otherwise if there is an existing file
with the same name, CFITSIO will not overwrite the existing file and will return an
error status code. Note that the exclamation point is a special UNIX character, so if it
is used on the command line rather than entered at a task prompt, it must be preceded
by a backslash to force the UNIX shell to pass it verbatim to the application program.

e Compressed Output Files

If the output disk file name ends with the suffix ’.gz’, then CFITSIO will compress the
file using the gzip compression algorithm before writing it to disk. This can reduce
the amount of disk space used by the file. Note that this feature requires that the
uncompressed file be constructed in memory before it is compressed and written to
disk, so it can fail if there is insufficient available memory.

One can also specify that any images written to the output file should be compressed
using the newly developed ‘tile-compression’ algorithm by appending ‘[compress]’ to the
name of the disk file (as in myfile.fits[compress]). Refer to the CFITSIO User’s
Reference Guide for more information about this new image compression format.

e Using a Template to Create a New FITS File

The structure of any new FITS file that is to be created may be defined in an ASCII
template file. If the name of the template file is appended to the name of the FITS file
itself, enclosed in parenthesis (e.g., ’newfile.fits(template.txt)’) then CFITSIO
will create a FITS file with that structure before opening it for the application to use.
The template file basically defines the dimensions and data type of the primary array
and any IMAGE extensions, and the names and data types of the columns in any ASCII
or binary table extensions. The template file can also be used to define any optional
keywords that should be written in any of the HDU headers. The image pixel values
and table entry values are all initialized to zero. The application program can then
write actual data into the HDUs. See the CFITSIO Reference Guide for for a complete
description of the template file syntax.

e Creating a Temporary Scratch File in Memory

It is sometimes useful to create a temporary output file when testing an application
program. If the name of the file to be created is specified as mem: then CFITSIO will
create the file in memory where it will persist only until the program closes the file.
Use of this mem: output file usually enables the program to run faster, and of course
the output file does not use up any disk space.

23

5.2 Opening Existing Files

When opening a file with fits_open file, CFITSIO can read a variety of different input
file formats and is not restricted to only reading FITS format files from magnetic disk. The
following types of input files are all supported:

e FITS files compressed with zip, gzip or compress

If CFITSIO cannot find the specified file to open it will automatically look for a file
with the same rootname but with a .gz, .zip, or .Z extension. If it finds such a
compressed file, it will allocate a block of memory and uncompress the file into that
memory space. The application program will then transparently open this virtual FITS
file in memory. Compressed files can only be opened with ’readonly’, not 'readwrite’
file access.

e FITS files on the internet, using ftp or http URLs

Simply provide the full URL as the name of the file that you want to open. For example,
ftp://legacy.gsfc.nasa.gov/software/fitsio/c/testprog.std

will open the CFITSIO test FITS file that is located on the legacy machine. These
files can only be opened with ’readonly’ file access.

e FITS files on stdin or stdout file streams

If the name of the file to be opened is *stdin’ or ’-’ (a single dash character) then
CFITSIO will read the file from the standard input stream. Similarly, if the output
file name is ’stdout’ or ’-’, then the file will be written to the standard output
stream. In addition, if the output filename is ’stdout.gz’ or ’-.gz’ then it will be
gzip compressed before being written to stdout. This mechanism can be used to pipe
FITS files from one task to another without having to write an intermediary FITS file
on magnetic disk.

e FITS files that exist only in memory, or shared memory.

In some applications, such as real time data acquisition, you may want to have one
process write a FITS file into a certain section of computer memory, and then be able
to open that file in memory with another process. There is a specialized CFITSIO open
routine called fits_open memfile that can be used for this purpose. See the “CFITSIO
User’s Reference Guide” for more details.

e IRAF format images (with .imh file extensions)

CFITSIO supports reading IRAF format images by converting them on the fly into
FITS images in memory. The application program then reads this virtual FITS format
image in memory. There is currently no support for writing IRAF format images, or
for reading or writing IRAF tables.

e Image arrays in raw binary format

If the input file is a raw binary data array, then CFITSIO will convert it on the fly into a
virtual FITS image with the basic set of required header keywords before it is opened by

24

the application program. In this case the data type and dimensions of the image must
be specified in square brackets following the filename (e.g. rawfile.dat[1b512,512]).
The first character inside the brackets defines the datatype of the array:

8-bit unsigned byte
16-bit signed integer
16-bit unsigned integer
32-bit signed integer
or £ 32-bit floating point
64-bit floating point

QA R« g B o

An optional second character specifies the byte order of the array values: b or B indi-
cates big endian (as in FITS files and the native format of SUN UNIX workstations and
Mac PCs) and 1 or L indicates little endian (native format of DEC OSF workstations
and IBM PCs). If this character is omitted then the array is assumed to have the
native byte order of the local machine. These datatype characters are then followed by
a series of one or more integer values separated by commas which define the size of each
dimension of the raw array. Arrays with up to 5 dimensions are currently supported.

Finally, a byte offset to the position of the first pixel in the data file may be specified
by separating it with a ’:” from the last dimension value. If omitted, it is assumed that
the offset = 0. This parameter may be used to skip over any header information in the
file that precedes the binary data. Further examples:

raw.dat [b10000] 1-dimensional 10000 pixel byte array

raw.dat [rb400,400,12] 3-dimensional floating point big-endian array

img.fits[ib512,512:2880] reads the 512 x 512 short integer array in a
FITS file, skipping over the 2880 byte header

25

5.3 Image Filtering
5.3.1 Extracting a subsection of an image

When specifying the name of an image to be opened, you can select a rectangular subsection of
the image to be extracted and opened by the application program. The application program
then opens a virtual image that only contains the pixels within the specified subsection. To
do this, specify the the range of pixels (start:end) along each axis to be extracted from the
original image enclosed in square brackets. You can also specify an optional pixel increment
(start:end:step) for each axis of the input image. A pixel step = 1 will be assumed if it is
not specified. If the starting pixel is larger then the end pixel, then the image will be flipped
(producing a mirror image) along that dimension. An asterisk, '*’, may be used to specify
the entire range of an axis, and ’-*’ will flip the entire axis. In the following examples, assume
that myfile.fits contains a 512 x 512 pixel 2D image.

myfile.fits[201:210, 251:260] - opens a 10 x 10 pixel subimage.

myfile.fits[*, 512:257] - opens a 512 x 256 image consisting of
all the columns in the input image, but only rows 257
through 512. The image will be flipped along the Y axis
since the starting row is greater than the ending
row.

myfile.fits[*:2, 512:257:2] - creates a 256 x 128 pixel image.
Similar to the previous example, but only every other row
and column is read from the input image.

myfile.fits[-*, *] - creates an image containing all the rows and
columns in the input image, but flips it along the X
axis.

If the array to be opened is in an Image extension, and not in the primary array of the
file, then you need to specify the extension name or number in square brackets before giving
the subsection range, as in myfile.fits[1] [-*, *] to read the image in the first extension
in the file.

5.3.2 Create an Image by Binning Table Columns

You can also create and open a virtual image by binning the values in a pair of columns
of a FITS table (in other words, create a 2-D histogram of the values in the 2 columns).
This technique is often used in X-ray astronomy where each detected X-ray photon during
an observation is recorded in a FITS table. There are typically 2 columns in the table called
X and Y which record the pixel location of that event in a virtual 2D image. To create an
image from this table, one just scans the X and Y columns and counts up how many photons
were recorded in each pixel of the image. When table binning is specified, CFITSIO creates
a temporary FITS primary array in memory by computing the histogram of the values in
the specified columns. After the histogram is computed the original FITS file containing the

26

table is closed and the temporary FITS primary array is opened and passed to the application
program. Thus, the application program never sees the original FITS table and only sees the
image in the new temporary file (which has no extensions).

The table binning specifier is enclosed in square brackets following the root filename and
table extension name or number and begins with the keyword ’'bin’, as in:
'myfile.fits[events] [bin (X,Y)]’.In this case, the X and Y columns in the ’events’ table
extension are binned up to create the image. The size of the image is usually determined by
the TLMINn and TLMAXn header keywords which give the minimum and maximum allowed pixel
values in the columns. For instance if TLMINn = 1 and TLMAXn = 4096 for both columns,
this would generate a 4096 x 4096 pixel image by default. This is rather large, so you can
also specify a pixel binning factor to reduce the image size. For example specifying , ’ [bin
(X,Y) = 16]°’ will use a binning factor of 16, which will produce a 256 x 256 pixel image in
the previous example.

If the TLMIN and TLMAX keywords don’t exist, or you want to override their values,
you can specify the image range and binning factor directly, as in ’ [bin X = 1:4096:16,
Y=1:4096:16] . You can also specify the datatype of the created image by appending a b, i,
j, 1, or d (for 8-bit byte, 16-bit integers, 32-bit integer, 32-bit floating points, or 64-bit double
precision floating point, respectively) to the ’bin’ keyword (e.g. ’[binr (X,Y)]’ creates a
floating point image). If the datatype is not specified then a 32-bit integer image will be
created by default.

If the column name is not specified, then CFITSIO will first try to use the ’preferred
column’ as specified by the CPREF keyword if it exists (e.g., '"CPREF = 'DETX,DETY’),
otherwise column names ’X’, 'Y’ will be assumed for the 2 axes.

Note that this binning specifier is not restricted to only 2D images and can be used to
create 1D, 3D, or 4D images as well. It is also possible to specify a weighting factor that is
applied during the binning. Please refer to the “CFITSIO User’s Reference Guide” for more
details on these advanced features.

27

5.4 Table Filtering
5.4.1 Column and Keyword Filtering

The column or keyword filtering specifier is used to modify the column structure and/or the
header keywords in the HDU that was selected with the previous HDU location specifier. It
can be used to perform the following types of operations.

e Append a new column to a table by giving the column name, optionally followed by
the datatype in parentheses, followed by an equals sign and the arithmetic expression
to be used to compute the value. The datatype is specified using the same syntax that
is allowed for the value of the FITS TFORMn keyword (e.g., 'T’, 'J’, 'E’, 'D’, etc. for
binary tables, and 'I8’, F12.3’, 'E20.12’, etc. for ASCII tables). If the datatype is not
specified then a default datatype will be chosen depending on the expression.

e Create a new header keyword by giving the keyword name, preceded by a pound sign
'#°, followed by an equals sign and an arithmetic expression for the value of the keyword.
The expression may be a function of other header keyword values. The comment string
for the keyword may be specified in parentheses immediately following the keyword
name.

e Overwrite the values in an existing column or keyword by giving the name followed by
an equals sign and an arithmetic expression.

e Select a set of columns to be included in the filtered file by listing the column names
separated with semi-colons. Wild card characters may be used in the column names to
match multiple columns. Any other columns in the input table will not appear in the
filtered file.

e Delete a column or keyword by listing the name preceded by a minus sign or an excla-
mation mark (!)

e Rename an existing column or keyword with the syntax 'NewName == OldName’.

The column filtering specifier is enclosed in square brackets and begins with the string ’col’.
Multiple operations can be performed by separating them with semi-colons. For complex or
commonly used operations, you can write the column filter to a text file, and then use it by
giving the name of the text file, preceded by a '@’ character.

Some examples:

[col PI=PHA * 1.1 + 0.2] - creates new PI column from PHA values
[col rate = counts/exposure] - creates or overwrites the rate column by
dividing the counts column by the

EXPOSURE keyword value.

[col TIME; X; Y] - only the listed columns will appear
in the filtered file

28

[col Time;*raw] - include the Time column and any other
columns whose name ends with ’raw’.

[col -TIME; Good == STATUS] - deletes the TIME column and
renames the STATUS column to GOOD

[col @colfilt.txt] - uses the filtering expression in
the colfilt.txt text file

The original file is not changed by this filtering operation, and instead the modifications
are made on a temporary copy of the input FITS file (usually in memory), which includes
a copy of all the other HDUs in the input file. The original input file is closed and the
application program opens the filtered copy of the file.

5.4.2 Row Filtering

The row filter is used to select a subset of the rows from a table based on a boolean expression.
A temporary new FITS file is created on the fly (usually in memory) which contains only
those rows for which the row filter expression evaluates to true (i.e., not equal to zero). The
primary array and any other extensions in the input file are also copied to the temporary file.
The original FITS file is closed and the new temporary file is then opened by the application
program.

The row filter expression is enclosed in square brackets following the file name and exten-
sion name. For example, *file.fits[events] [GRADE==50] ’ selects only those rows in the
EVENTS table where the GRADE column value is equal to 50).

The row filtering expression can be an arbitrarily complex series of operations performed
on constants, keyword values, and column data taken from the specified FITS TABLE exten-
sion. The expression also can be written into a text file and then used by giving the filename
preceded by a @’ character, as in ’ [@rowfilt.txt]’.

Keyword and column data are referenced by name. Any string of characters not sur-
rounded by quotes (ie, a constant string) or followed by an open parentheses (ie, a function
name) will be initially interpreted as a column name and its contents for the current row in-
serted into the expression. If no such column exists, a keyword of that name will be searched
for and its value used, if found. To force the name to be interpreted as a keyword (in case
there is both a column and keyword with the same name), precede the keyword name with a
single pound sign, ’#’, as in #NAXIS2. Due to the generalities of FITS column and keyword
names, if the column or keyword name contains a space or a character which might appear as
an arithmetic term then inclose the name in ’$’ characters as in $MAX PHA$ or #$MAX-PHAS.
The names are case insensitive.

To access a table entry in a row other than the current one, follow the column’s name
with a row offset within curly braces. For example, *PHA{-3}’ will evaluate to the value
of column PHA, 3 rows above the row currently being processed. One cannot specify an
absolute row number, only a relative offset. Rows that fall outside the table will be treated
as undefined, or NULLs.

29

Boolean operators can be used in the expression in either their Fortran or C forms. The
following boolean operators are available:

"equal" .eq. .EQ. == '"not equal" .ne. .NE. !I=
"less than" .1t. .LT. < "less than/equal" .le. .LE. <= =<
"greater than" .gt. .GT. > ‘greater than/equal" .ge. .GE. >= =>
"or" .or. .OR. || "and" .and. .AND. &&
"negation" .not. .NOT. ! ‘'approx. equal(le-7)" ~

Note that the exclamation point, ’!’, is a special UNIX character, so if it is used on the

command line rather than entered at a task prompt, it must be preceded by a backslash to
force the UNIX shell to ignore it.

The expression may also include arithmetic operators and functions. Trigonometric func-
tions use radians, not degrees. The following arithmetic operators and functions can be used
in the expression (function names are case insensitive):

"addition" + "subtraction" -
"multiplication" * "division" /
"negation" - "exponentiation" *% 7
"absolute value" abs (x) "cosine" cos(x)
"sine" sin(x) "tangent" tan(x)
"arc cosine" arccos(x) '"arc sine" arcsin(x)
"arc tangent" arctan(x) '"arc tangent" arctan2(x,y)
"exponential" exp(x) "square root" sqrt (x)
"natural log" log(x) "common log" logl0(x)
"modulus" i%J "random # [0.0,1.0)" random()
"minimum" min(x,y) "maximum" max (x,y)
"if-then-else" b?x:y

The following type casting operators are available, where the inclosing parentheses are
required and taken from the C language usage. Also, the integer to real casts values to double
precision:

"real to integer" (int) x (INT) x
"integer to real" (float) i (FLOAT) i

Several constants are built in for use in numerical expressions:

#pi 3.1415. .. #e 2.7182...
#deg #pi/180 #row current row number
#null undefined value #snull undefined string

A string constant must be enclosed in quotes as in ’Crab’. The ”"null” constants are
useful for conditionally setting table values to a NULL, or undefined, value (For example,
"coll==-99 ? #NULL : colil").

There is also a function for testing if two values are close to each other, i.e., if they are
"near” each other to within a user specified tolerance. The arguments, value_1 and value_2

30

can be integer or real and represent the two values who’s proximity is being tested to be
within the specified tolerance, also an integer or real:

near(value_1, value_2, tolerance)

When a NULL, or undefined, value is encountered in the FITS table, the expression will
evaluate to NULL unless the undefined value is not actually required for evaluation, e.g.
"TRUE .or. NULL” evaluates to TRUE. The following two functions allow some NULL
detection and handling;:

ISNULL (x)
DEFNULL (x,y)

The former returns a boolean value of TRUE if the argument x is NULL. The later
”defines” a value to be substituted for NULL values; it returns the value of x if x is not
NULL, otherwise it returns the value of y.

Bit masks can be used to select out rows from bit columns (TFORMn = #X) in FITS files.
To represent the mask, binary, octal, and hex formats are allowed:

binary: b0110xx1010000101xxxx0001
octal: 0720x1 -> (b111010000xxx001)
hex: hOFxD -> (b00001111xxxx1101)

In all the representations, an x or X is allowed in the mask as a wild card. Note that the
x represents a different number of wild card bits in each representation. All representations
are case insensitive.

To construct the boolean expression using the mask as the boolean equal operator de-
scribed above on a bit table column. For example, if you had a 7 bit column named flags in
a FITS table and wanted all rows having the bit pattern 0010011, the selection expression
would be:

flags == 0010011
or
flags .eq. b10011

It is also possible to test if a range of bits is less than, less than equal, greater than and
greater than equal to a particular boolean value:

flags <= bxxx010xx
flags .gt. bxxx100xx
flags .le. blxxxxxxXx

Notice the use of the x bit value to limit the range of bits being compared.

It is not necessary to specify the leading (most significant) zero (0) bits in the mask, as
shown in the second expression above.

Bit wise AND, OR and NOT operations are also possible on two or more bit fields using
the '&’(AND), ’|(OR), and the ''(NOT) operators. All of these operators result in a bit
field which can then be used with the equal operator. For example:

31

(!flags) == 11101100
(flags & b1000001) == bx000001

Bit fields can be appended as well using the '+’ operator. Strings can be concatenated
this way, too.

5.4.3 Good Time Interval Filtering

A common filtering method involves selecting rows which have a time value which lies within
what is called a Good Time Interval or GTI. The time intervals are defined in a separate
FITS table extension which contains 2 columns giving the start and stop time of each good
interval. The filtering operation accepts only those rows of the input table which have an
associated time which falls within one of the time intervals defined in the GTI extension. A
high level function, gtifilter(a,b,c,d), is available which evaluates each row of the input table
and returns TRUE or FALSE depending whether the row is inside or outside the good time
interval. The syntax is

gtifilter(["gtifile" [, expr [, "STARTCOL", "STOPCOL"] 1 1)

where each ”[]” demarks optional parameters. Note that the quotes around the gtifile and
START/STOP column are required. Either single or double quote characters may be used.
The gtifile, if specified, can be blank (””) which will mean to use the first extension with the
name "*GTI*” in the current file, a plain extension specifier (eg, 742", ”[2]”, or ?[STDGTI]”)
which will be used to select an extension in the current file, or a regular filename with or with-
out an extension specifier which in the latter case will mean to use the first extension with an
extension name "*GTI*’. Expr can be any arithmetic expression, including simply the time
column name. A vector time expression will produce a vector boolean result. STARTCOL
and STOPCOL are the names of the START/STOP columns in the GTI extension. If one
of them is specified, they both must be.

In its simplest form, no parameters need to be provided — default values will be used.
The expression "gtifilter ()" is equivalent to

gtifilter("", TIME, "+START*", "*STOP*")

This will search the current file for a GTI extension, filter the TIME column in the current
table, using START/STOP times taken from columns in the GTI extension with names
containing the strings ”START” and "STOP”. The wildcards ("*’) allow slight variations in
naming conventions such as "TSTART” or "STARTTIME”. The same default values apply
for unspecified parameters when the first one or two parameters are specified. The function
automatically searches for TIMEZERO/I/F keywords in the current and GTI extensions,
applying a relative time offset, if necessary.

5.4.4 Spatial Region Filtering

Another common filtering method selects rows based on whether the spatial position asso-
ciated with each row is located within a given 2-dimensional region. The syntax for this
high-level filter is

32

regfilter("regfilename" [, Xexpr, Yexpr [, "wcs cols" 1 1)

where each ”[]” demarks optional parameters. The region file name is required and must be
enclosed in quotes. The remaining parameters are optional. The region file is an ASCII text
file which contains a list of one or more geometric shapes (circle, ellipse, box, etc.) which
defines a region on the celestial sphere or an area within a particular 2D image. The region
file is typically generated using an image display program such as fv/POW (distribute by
the HEASARC), or ds9 (distributed by the Smithsonian Astrophysical Observatory). Users
should refer to the documentation provided with these programs for more details on the
syntax used in the region files.

In its simpliest form, (e.g., regfilter("region.reg")) the coordinates in the default
"X’ and Y’ columns will be used to determine if each row is inside or outside the area specified
in the region file. Alternate position column names, or expressions, may be entered if needed,
as in

regfilter("region.reg", XP0OS, YPOS)

Region filtering can be applied most unambiguously if the positions in the region file and
in the table to be filtered are both give in terms of absolute celestial coordinate units. In
this case the locations and sizes of the geometric shapes in the region file are specified in
angular units on the sky (e.g., positions given in R.A. and Dec. and sizes in arcseconds or
arcminutes). Similarly, each row of the filtered table will have a celestial coordinate associated
with it. This association is usually implemented using a set of so-called "World Coordinate
System’ (or WCS) FITS keywords that define the coordinate transformation that must be
applied to the values in the X’ and "Y’ columns to calculate the coordinate.

Alternatively, one can perform spatial filtering using unitless 'pixel’ coordinates for the
regions and row positions. In this case the user must be careful to ensure that the positions
in the 2 files are self-consistent. A typical problem is that the region file may be generated
using a binned image, but the unbinned coordinates are given in the event table. The ROSAT
events files, for example, have X and Y pixel coordinates that range from 1 - 15360. These
coordinates are typically binned by a factor of 32 to produce a 480x480 pixel image. If one
then uses a region file generated from this image (in image pixel units) to filter the ROSAT
events file, then the X and Y column values must be converted to corresponding pixel units
as in:

regfilter("rosat.reg", X/32.+.5, Y/32.+.5)

Note that this binning conversion is not necessary if the region file is specified using celestial
coordinate units instead of pixel units because CFITSIO is then able to directly compare the
celestial coordinate of each row in the table with the celestial coordinates in the region file
without having to know anything about how the image may have been binned.

The last "wcs cols” parameter should rarely be needed. If supplied, this string contains
the names of the 2 columns (space or comma separated) which have the associated WCS
keywords. If not supplied, the filter will scan the X and Y expressions for column names. If
only one is found in each expression, those columns will be used, otherwise an error will be
returned.

These region shapes are supported (names are case insensitive):

33

Point (X1, Y1) <- One pixel square region
Line (X1, Y1, X2, Y2) <- One pixel wide region
Polygon (X1, Y1, X2, Y2, ...) <- Rest are interiors with
Rectangle (X1, Y1, X2, Y2, A) | boundaries considered
Box (Xc, Yc, Wdth, Hght, A) V within the region
Diamond (Xc, Yc, Wdth, Hght, A)

Circle (Xc, Yc, R)

Annulus (Xc, Yc, Rin, Rout)

Ellipse (Xc, Yc, Rx, Ry, A)

Elliptannulus (Xc, Yc, Rinx, Riny, Routx, Routy, Ain, Aout)
Sector (Xc, Yc, Amin, Amax)

where (Xc,Yc) is the coordinate of the shape’s center; (X#,Y#) are the coordinates of the
shape’s edges; Rxxx are the shapes’ various Radii or semimajor/minor axes; and Axxx are the
angles of rotation (or bounding angles for Sector) in degrees. For rotated shapes, the rotation
angle can be left off, indicating no rotation. Common alternate names for the regions can
also be used: rotbox = box; rotrectangle = rectangle; (rot)rhombus = (rot)diamond; and pie
= sector. When a shape’s name is preceded by a minus sign, ’-’, the defined region is instead
the area *outside* its boundary (ie, the region is inverted). All the shapes within a single
region file are OR’d together to create the region, and the order is significant. The overall
way of looking at region files is that if the first region is an excluded region then a dummy
included region of the whole detector is inserted in the front. Then each region specification
as it is processed overrides any selections inside of that region specified by previous regions.
Another way of thinking about this is that if a previous excluded region is completely inside
of a subsequent included region the excluded region is ignored.

The positional coordinates may be given either in pixel units, decimal degrees or hh:mm:ss.s,
dd:mm:ss.s units. The shape sizes may be given in pixels, degrees, arcminutes, or arcseconds.
Look at examples of region file produced by fv/POW or ds9 for further details of the region
file format.

5.4.5 Example Row Filters

[double && mag <= 5.0] - Extract all double stars brighter
than fifth magnitude

[#row >= 125 && #row <= 175] - Extract row numbers 125 through 175

[abs(sin(theta * #deg)) < 0.5] - Extract all rows having the
absolute value of the sine of theta
less than a half where the angles
are tabulated in degrees

[@rowFilter.txt] - Extract rows using the expression

contained within the text file
rowFilter.txt

34

[gtifilter()] - Search the current file for a GTI
extension, filter the TIME

column in the current table, using

START/STOP times taken from

columns in the GTI extension

[regfilter("pow.reg")] - Extract rows which have a coordinate
(as given in the X and Y columns)
within the spatial region specified
in the pow.reg region file.

35

5.5 Combined Filtering Examples

The previous sections described all the individual types of filters that may be applied to the
input file. In this section we show examples which combine several different filters at once.
These examples all use the fitscopy program that is distributed with the CFITSIO code.
It simply copies the input file to the output file.

fitscopy rosat.fit out.fit

This trivial example simply makes an identical copy of the input rosat.fit file without any
filtering.

fitscopy ’rosat.fit[events] [col Time;X;Y] [#row < 1000]’ out.fit

The output file contains only the Time, X, and Y columns, and only the first 999 rows
from the 'EVENTS’ table extension of the input file. All the other HDUs in the input file
are copied to the output file without any modification.

fitscopy ’rosat.fit[events] [PI < 50] [bin (Xdet,Ydet) = 16]’ image.fit

This creates an output image by binning the Xdet and Ydet columns of the events table
with a pixel binning factor of 16. Only the rows which have a PI energy less than 50 are used
to construct this image. The output image file contains a primary array image without any
extensions.

fitscopy ’rosat.fit[events] [gtifilter() && regfilter("pow.reg")]’ out.fit

The filtering expression in this example uses the gtifilter function to test whether the
TIME column value in each row is within one of the Good Time Intervals defined in the GTI
extension in the same input file, and also uses the regfilter function to test if the position
associated with each row (derived by default from the values in the X and Y columns of the
events table) is located within the area defined in the pow.reg text region file (which was
previously created with the fv/POW image display program). Only the rows which satisfy
both tests are copied to the output table.

fitscopy ’r.fit[evt] [PI<50]°’ stdout | fitscopy stdin[evt] [col X,Y] out.fit

In this somewhat convoluted example, fitscopy is used to first select the rows from the evt
extension which have PI less than 50 and write the resulting table out to the stdout stream.
This is piped to a 2nd instance of fitscopy (with the Unix ‘|’ pipe command) which reads
that filtered FITS file from the stdin stream and copies only the X and Y columns from the
evt table to the output file.

fitscopy ’r.fit[evt] [col RAD=sqrt ((X—#XCEN)**2+(Y-#YCEN)**2)] [rad<100]’ out.fit

This example first creates a new column called RAD which gives the distance between the
X,Y coordinate of each event and the coordinate defined by the XCEN and YCEN keywords
in the header. Then, only those rows which have a distance less than 100 are copied to the
output table. In other words, only the events which are located within 100 pixel units from
the (XCEN, YCEN) coordinate are copied to the output table.

36

fitscopy ’ftp://heasarc.gsfc.nasa.gov/rosat.fit[events] [bin (X,Y)=16]’ img.fit

This example bins the X and Y columns of the hypothetical ROSAT file at the HEASARC
ftp site to create the output image.

fitscopy ’raw.fit[i512,512][101:110,51:60]’ image.fit

This example converts the 512 x 512 pixel raw binary 16-bit integer image to a FITS file
and copies a 10 x 10 pixel subimage from it to the output FITS image.

37

6 CFITSIO Error Status Codes

The following table lists all the error status codes used by CFITSIO. Programmers are en-
couraged to use the symbolic mnemonics (defined in the file fitsio.h) rather than the actual
integer status values to improve the readability of their code.

Symbolic Const Value Meaning
0 0K, no error
SAME_FILE 101 input and output files are the same

TOO_MANY_FILES 103 tried to open too many FITS files at once
FILE_NOT_OPENED 104 could not open the named file
FILE_NOT_CREATED 105 could not create the named file

WRITE_ERROR 106 error writing to FITS file
END_OF_FILE 107 tried to move past end of file
READ_ERROR 108 error reading from FITS file
FILE_NOT_CLOSED 110 could not close the file
ARRAY_TOO_BIG 111 array dimensions exceed internal limit
READONLY_FILE 112 Cannot write to readonly file
MEMORY_ALLOCATION 113 Could not allocate memory
BAD_FILEPTR 114 invalid fitsfile pointer
NULL_INPUT_PTR 115 NULL input pointer to routine
SEEK_ERROR 116 error seeking position in file
BAD_URL_PREFIX 121 invalid URL prefix on file name

TOO_MANY_DRIVERS 122 tried to register too many IO drivers
DRIVER_INIT_FAILED 123 driver initialization failed
NO_MATCHING_DRIVER 124 matching driver is not registered
URL_PARSE_ERROR 125 failed to parse input file URL

SHARED_BADARG 1561 bad argument in shared memory driver
SHARED_NULPTR 152 null pointer passed as an argument
SHARED_TABFULL 1563 no more free shared memory handles
SHARED_NOTINIT 154 shared memory driver is not initialized

SHARED_IPCERR 155 IPC error returned by a system call
SHARED_NOMEM 156 no memory in shared memory driver
SHARED_AGAIN 157 resource deadlock would occur
SHARED_NOFILE 158 attempt to open/create lock file failed

SHARED_NORESIZE 159 shared memory block cannot be resized at the moment

HEADER_NOT_EMPTY 201 header already contains keywords
KEY_NO_EXIST 202 keyword not found in header
KEY_OUT_BOUNDS 203 keyword record number is out of bounds
VALUE_UNDEFINED 204 keyword value field is blank

NO_QUOTE 205 string is missing the closing quote

38

BAD_KEYCHAR 207 illegal character in keyword name or card

BAD_ORDER 208 required keywords out of order
NOT_POS_INT 209 keyword value is not a positive integer
NO_END 210 couldn’t find END keyword

BAD_BITPIX 211 illegal BITPIX keyword value

BAD_NAXIS 212 illegal NAXIS keyword value

BAD_NAXES 213 illegal NAXISn keyword value

BAD_PCOUNT 214 illegal PCOUNT keyword value

BAD_GCOUNT 215 illegal GCOUNT keyword value

BAD_TFIELDS 216 illegal TFIELDS keyword value

NEG_WIDTH 217 negative table row size

NEG_ROWS 218 negative number of rows in table
COL_NOT_FOUND 219 column with this name not found in table
BAD_SIMPLE 220 illegal value of SIMPLE keyword
NO_SIMPLE 221 Primary array doesn’t start with SIMPLE
NO_BITPIX 222 Second keyword not BITPIX

NO_NAXIS 223 Third keyword not NAXIS

NO_NAXES 224 Couldn’t find all the NAXISn keywords
NO_XTENSION 225 HDU doesn’t start with XTENSION keyword
NOT_ATABLE 226 the CHDU is not an ASCII table extension
NOT_BTABLE 227 the CHDU is not a binary table extension
NO_PCOUNT 228 couldn’t find PCOUNT keyword

NO_GCOUNT 229 couldn’t find GCOUNT keyword

NO_TFIELDS 230 couldn’t find TFIELDS keyword

NO_TBCOL 231 couldn’t find TBCOLn keyword

NO_TFORM 232 couldn’t find TFORMn keyword

NOT_IMAGE 233 the CHDU is not an IMAGE extension
BAD_TBCOL 234 TBCOLn keyword value < O or > rowlength
NOT_TABLE 235 the CHDU is not a table

COL_TOO_WIDE 236 column is too wide to fit in table
COL_NOT_UNIQUE 237 more than 1 column name matches template
BAD_ROW_WIDTH 241 sum of column widths not = NAXIS1
UNKNOWN_EXT 251 unrecognizable FITS extension type
UNKNOWN_REC 252 unknown record; 1st keyword not SIMPLE or XTENSION
END_JUNK 253 END keyword is not blank

BAD_HEADER_FILL 254 Header fill area contains non-blank chars
BAD_DATA_FILL 255 Illegal data fill bytes (not zero or blank)
BAD_TFORM 261 illegal TFORM format code
BAD_TFORM_DTYPE 262 unrecognizable TFORM datatype code
BAD_TDIM 263 illegal TDIMn keyword value

BAD_HEAP_PTR 264 invalid BINTABLE heap pointer is out of range
BAD_HDU_NUM 301 HDU number < 1 or > MAXHDU

BAD_COL_NUM 302 column number < 1 or > tfields
NEG_FILE_POS 304 tried to move to negative byte location in file

39

NEG_BYTES 306 tried to read or write negative number of bytes

BAD_ROW_NUM 307 illegal starting row number in table
BAD_ELEM_NUM 308 illegal starting element number in vector
NOT_ASCII_COL 309 this is not an ASCII string column

NOT_LOGICAL_COL 310 this is not a logical datatype column
BAD_ATABLE_FORMAT 311 ASCII table column has wrong format
BAD_BTABLE_FORMAT 312 Binary table column has wrong format

NO_NULL 314 null value has not been defined
NOT_VARI_LEN 317 this is not a variable length column
BAD_DIMEN 320 illegal number of dimensions in array
BAD_PIX_NUM 321 first pixel number greater than last pixel
ZERO_SCALE 322 illegal BSCALE or TSCALn keyword = 0
NEG_AXIS 323 illegal axis length < 1
NOT_GROUP_TABLE 340 Grouping function error
HDU_ALREADY_MEMBER 341

MEMBER_NOT_FOUND 342

GROUP_NOT_FOUND 343

BAD_GROUP_ID 344

TOO_MANY_HDUS_TRACKED 345
HDU_ALREADY_TRACKED 346

BAD_OPTION 347

IDENTICAL_POINTERS 348

BAD_GROUP_ATTACH 349

BAD_GROUP_DETACH 350

NGP_NO_MEMORY 360 malloc failed

NGP_READ_ERR 361 read error from file

NGP_NUL_PTR 362 null pointer passed as an argument.
Passing null pointer as a name of
template file raises this error

NGP_EMPTY_CURLINE 363 line read seems to be empty (used
internally)

NGP_UNREAD_QUEUE_FULL 364 cannot unread more then 1 line (or single
line twice)

NGP_INC_NESTING 365 too deep include file nesting (infinite
loop, template includes itself 7)

NGP_ERR_FOPEN 366 fopen() failed, cannot open template file

NGP_EOF 367 end of file encountered and not expected

NGP_BAD_ARG 368 bad arguments passed. Usually means
internal parser error. Should not happen

NGP_TOKEN_NOT_EXPECT 369 token not expected here

BAD_I2C 401 bad int to formatted string conversion

BAD_F2C 402 bad float to formatted string conversion

40

BAD_INTKEY
BAD_LOGICALKEY
BAD_FLOATKEY
BAD_DOUBLEKEY
BAD_C2I
BAD_C2F
BAD_C2D
BAD_DATATYPE
BAD_DECIM
NUM_OVERFLOW

403
404
405
406
407
408
409
410
411
412

DATA_COMPRESSION_ERR
DATA_DECOMPRESSION_ERR 414 error uncompressing image

BAD_DATE

PARSE_SYNTAX_ERR
PARSE_BAD_TYPE
PARSE_LRG_VECTOR
PARSE_NO_OUTPUT
PARSE_BAD_COL
PARSE_BAD_QOUTPUT

ANGLE_TOO_BIG
BAD_WCS_VAL
WCS_ERROR
BAD_WCS_PROJ
NO_WCS_KEY
APPROX_WCS_KEY

420

431
432
433
434
435
436

501
502
503
504
505
506

can’t interpret keyword value as integer
can’t interpret keyword value as logical
can’t interpret keyword value as float
can’t interpret keyword value as double
bad formatted string to int conversion
bad formatted string to float conversion
bad formatted string to double conversion
illegal datatype code value

bad number of decimal places specified
overflow during datatype conversion

413 error compressing image

error in date or time conversion

syntax error in parser expression
expression did not evaluate to desired type
vector result too large to return in array
data parser failed not sent an out column
bad data encounter while parsing column
Output file not of proper type

celestial angle too large for projection
bad celestial coordinate or pixel value
error in celestial coordinate calculation
unsupported type of celestial projection
celestial coordinate keywords not found
approximate wcs keyword values were returned

41

