
GETTING STARTED WITH THE VOID FINDER
VIDE: The Void IDEntifier pipeline

Copyright (C) 2010-2013 Guilhem Lavaux
2011-2013 Paul Matthew Sutter
Draft guidelines by Alice Pisani

Here is a more detailed list of guidelines to download, install and run the
void finder pipeline. It is just a draft for now, but it can still give some help.
All terminal commands are written in blue.

I) Download

• Open terminal

• Install git (on a mac you can write: brew install git)

• Go to bickbucket site and enter with your account and password. Next to
“download” is the git link, copy it.

• Create a directory where you want to install the void finder: mkdir void
finder (for example)

• With the terminal cd to that directory: cd void finder

• Paste the git link in the following terminal line: git clone �pasted link
for void finder�

• This will create a directory called void identification with all files of void
finder. Do not change the name void identification.

• Terminal: create a outputs directory in void finder: mkdir outputs You
will need space to put results in this directory (almost same size of simu-
lation or data you use).

II) Install

• Into the directory where git downloaded the void finder go into
void identification: cd void identification

• Terminal: ccmake CmakeList.txt

• Terminal: check if everything is ok (paths!). If you need to change some-
thing, press t to see full configuration and then modify link pressing enter.

• Terminal: press c (means configure) press g (means generate)

• Terminal: make

1



• You have to create a file to give the paths needed by the void finder. You
can find an example for the file at this path:
void identification/python tools/pipeline source/defaults.py
Once you copy your simulation (or data) to a folder you choose, insert the
paths in this file. This file, that we now call name sim.py, must be saved
in void identification/pipeline/datasets

III) Run!

The run must be divided in two parts: generate the catalogs from your file
of simulation/data name sim.py. This will create python files needed for the
second part: run the void finder on those catalogs.

• Generate catalogs: you can create a bash script in the folder void identification:
run.sh (but if you prefer you can directly run the command line for the
initialization of the void finder).

- Copy these lines in your bash script file

#!/bin/sh
echo “Initializing void finder...”

bash /path to your void finder folder/void finder/void identification/run python.sh
/path to your void finder folder/void finder/void identification/pipeline/prepareCatalogs.py
–parm=’/path to your void finder folder/ void finder/void identification/pipeline
/datasets/name sim.py’ –scripts –halos –subsamples
exit 0

where you have to change the path to your void finder folder and
name sim.py with the one you used.

- Run the bash file: bash run.sh This generates catalogs. It will pro-
duce a script for each chosen subsampling.

- Now the catalogs are ready to run the void finder. Go to the folder
scripts at the path you gave in your name sim.py file. It is probably
in void finder/output/scripts/ . You now have there a file with the
name of your simulation: sim name redshift value subsampling.py.
(If you asked for halos you will have also the file to run with halos:
sim name halos subsampling.py. You can run the void finder on both
files alternatively.) These are the files created when generating cata-
logs, the void finder will use them.
Copy the file name that you want to use, you will need it to run the
void finder.

• Run the void finder.

- You can use the following bash file, where you copy the file name you
have in scripts.

#!/bin/sh

echo “Running void finder...”
bash /path to your void finder folder/void finder/void identification/run python.sh
/path to your void finder folder/void finder/void identification/pipeline/generateCatalog.py

2



/path to your void finder folder/void finder/outputs/scripts/sim name redshift
value subsampling.py

exit 0

- So now it’s running, let’s check this:
In the folder /path to your void finder folder/void finder/outputs/logs/
a new folder is created with the name of the simulation/data you
used. Inside this folder the run will create three files:

generate name sim.out : builds the mock catalog for the void
finder

zobov name sim.out : shows details about the procedure of the
void finder (at the end of the file is the number of zones)

pruneVoids name sim.out : selects the accepted voids

IV)And then? Where are the results?

In the folder /path to your void finder folder/void finder/outputs/ is a folder
with the name of simulation containing a sample name simulation folder. Here
you can find all the results from the void finder.
A —very brief—description of the output (to be continued):

• sample info.txt : contains informations about the simulation

• centers (no prefix): central density cut, just top-level (which means files
where children are removed, it only contains parent voids)

• untrimmed centers : no central density cut, all voids in tree

• untrimmed dencut centers : central density cut, all voids in tree

• trimmed nodencut centers : no central density cut, just top-level (which
means files where children are removed, it only contains parent voids)

In this files you have the position of the center of the void, the normalized
volume, the radius, the volume, the void ID, the density contrast, the number
of particles, the parent ID, the tree level (smaller level corresponds to parents),
the number of children and the central density.

3


