/* * This file is part of libcxxsupport. * * libcxxsupport is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * libcxxsupport is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with libcxxsupport; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * libcxxsupport is being developed at the Max-Planck-Institut fuer Astrophysik * and financially supported by the Deutsches Zentrum fuer Luft- und Raumfahrt * (DLR). */ /*! \file xcomplex.h * Class for representing complex numbers, strongly inspired by C++'s * std::complex * * Copyright (C) 2003-2010 Max-Planck-Society * \author Martin Reinecke */ #ifndef PLANCK_XCOMPLEX_H #define PLANCK_XCOMPLEX_H #include #include /*! \defgroup complexgroup Complex number support */ /*! \{ */ /*! A class for representing complex numbers. This template is intended as an (under-encapsulated) replacement for the (over-encapsulated) std::complex<>. The goal is to include the whole functionality of std::complex<>, with some additional methods that allow higher performance. The (known and intentional) differences between xcomplex<> and std::complex<> are: - the default constructor of xcomplex<> does nothing, in contrast to std::complex<>, which initialises its members to zero. - xcomplex<> implements the methods real() and imag() according to defect report DR387 */ template class xcomplex { public: T re, /*!< real part */ im; /*!< imaginary part */ /*! Default constructor. \a re and \a im are not initialised. */ xcomplex () {} /*! Creates the complex number (\a re_, \a im_). */ xcomplex (const T &re_, const T &im_) : re(re_), im(im_) {} /*! Creates the complex number (\a re_, 0). */ xcomplex (const T &re_) : re(re_), im(0) {} /*! Creates an xcomplex from a std::complex of identical precision. */ xcomplex (const std::complex &orig) : re(orig.real()), im(orig.imag()) {} /*! Creates a complex number as a copy of \a orig. */ template explicit xcomplex (const xcomplex &orig) : re(T(orig.re)), im(T(orig.im)) {} /*! Conversion operator to std::complex */ operator std::complex () const { return std::complex(re,im); } /*! Returns the real part as lvalue. */ T &real() { return re; } /*! Returns the real part. */ const T &real() const { return re; } /*! Returns the imaginary part as lvalue. */ T &imag() { return im; } /*! Returns the imaginary part. */ const T &imag() const { return im; } /*! Sets the number to (\a re_, \a im_). */ void Set (const T &re_, const T &im_) { re = re_; im = im_; } /*! Sets the number to \a orig. */ xcomplex &operator= (const xcomplex &orig) { re=orig.re; im=orig.im; return *this; } /*! Sets the number to \a orig. */ xcomplex &operator= (const std::complex &orig) { re=orig.real(); im=orig.imag(); return *this; } /*! Sets the number to (\a orig, 0). */ xcomplex &operator= (const T &orig) { re=orig; im=0; return *this; } /*! Adds \a b to \a *this. */ xcomplex &operator+= (const xcomplex &b) { re+=b.re; im+=b.im; return *this; } /*! Subtracts \a b from \a *this. */ xcomplex &operator-= (const xcomplex &b) { re-=b.re; im-=b.im; return *this; } /*! Multiplies \a *this by \a b. */ xcomplex &operator*= (const xcomplex &b) { T tmp=re; re=tmp*b.re-im*b.im; im=tmp*b.im+im*b.re; return *this; } /*! Divides \a *this by \a b. */ xcomplex &operator/= (const xcomplex &b) { std::complex tmp=*this; std::complex tmp2=b; tmp /= tmp2; *this=tmp; return *this; } /*! Multiplies \a *this by \a fact. */ xcomplex &operator*= (const T &fact) { re*=fact; im*=fact; return *this; } /*! Divides \a *this by \a div. */ xcomplex &operator/= (const T &div) { re/=div; im/=div; return *this; } /*! Returns \a *this * \a fact. */ xcomplex operator* (const T &fact) const { return xcomplex (re*fact,im*fact); } /*! Returns \a *this * \a b. */ xcomplex operator* (const xcomplex &b) const { return xcomplex (re*b.re-im*b.im, re*b.im+im*b.re); } /*! Returns \a *this / \a b. */ xcomplex operator/ (const xcomplex &b) const { return xcomplex(std::complex(*this)/std::complex(b)); } /*! Returns \a *this / \a div. */ xcomplex operator/ (const T &div) const { return xcomplex (re/div,im/div); } /*! Returns \a *this + \a b. */ xcomplex operator+ (const xcomplex &b) const { return xcomplex (re+b.re, im+b.im); } /*! Returns \a *this - \a b. */ xcomplex operator- (const xcomplex &b) const { return xcomplex (re-b.re, im-b.im); } /*! Returns \a -(*this) */ xcomplex operator- () const { return xcomplex (-re,-im); } /*! Flips the signs of both components. */ void Negate() { re=-re; im=-im; } /*! Flips the signs of the imaginary component. */ void Conjugate() { im=-im; } /*! Multiplies the number by exp(i*\a angle) */ void Rotate(T angle) { T ca=cos(angle), sa=sin(angle); T tmp=re; re=tmp*ca-im*sa; im=tmp*sa+im*ca; } /*! Returns the complex conjugate of \a *this. */ xcomplex conj() const { return xcomplex (re,-im); } /*! Returns the norm of \a *this. */ T norm() const { return re*re + im*im; } }; /*! Returns the complex conjugate of \a num. \relates xcomplex */ template inline xcomplex conj (const xcomplex &num) { return xcomplex (num.re, -num.im); } /*! Returns the norm of \a num. \relates xcomplex */ template inline T norm (const xcomplex &num) { return num.re*num.re + num.im*num.im; } /*! Returns the absolute value of \a num. \relates xcomplex */ template inline T abs (const xcomplex &num) { using namespace std; return abs(complex(num)); } /*! Returns \a f1*f2. \relates xcomplex */ template inline xcomplex operator* (const T &f1, const xcomplex &f2) { return xcomplex (f1*f2.re, f1*f2.im); } /*! Returns \a f1/f2. \relates xcomplex */ template inline xcomplex operator/ (const T &f1, const xcomplex &f2) { return xcomplex(f1)/f2; } /*! Writes \a val to \a os. \relates xcomplex */ template inline std::ostream &operator<< (std::ostream &os, const xcomplex &val) { os << "(" << val.re << "," << val.im << ")"; return os; } /*! \} */ #endif