#+ # VIDE -- Void IDentification and Examination # Copyright (C) 2010-2014 Guilhem Lavaux # Copyright (C) 2011-2014 P. M. Sutter # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; version 2 of the License. # # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. #+ # a suite of functions to compute expansion rates, angular diameter # distances, and expected void stretching import numpy as np import healpy as healpy import os from backend import * from backend.cosmologyTools import * __all__=['getSurveyProps', 'getNside', 'figureOutMask', 'findEdgeGalaxies'] # ----------------------------------------------------------------------------- # returns the volume and galaxy density for a given redshit slice def getSurveyProps(maskFile, zmin, zmax, selFunMin, selFunMax, portion, omegaM, selectionFuncFile=None, useComoving=False): #LIGHT_SPEED = 299792.458 mask = healpy.read_map(maskFile) area = (1.*np.size(np.where(mask > 0)) / np.size(mask)) * 4.*np.pi if useComoving: zmin = LIGHT_SPEED/100.*comovingDistance(zmin, Om=omegaM) zmax = LIGHT_SPEED/100.*comovingDistance(zmax, Om=omegaM) else: zmin = zmin * LIGHT_SPEED/100. zmax = zmax * LIGHT_SPEED/100. volume = area * (zmax**3 - zmin**3) / 3 if selectionFuncFile == None: nbar = 1.0 elif not os.access(selectionFuncFile, os.F_OK): print(" Warning, selection function file %s not found, using default of uniform selection." % selectionFuncFile) nbar = 1.0 else: selfunc = np.genfromtxt(selectionFuncFile) selfunc = np.array(selfunc) selfunc[:,0] = selfunc[:,0]/100. selfuncUnity = selfunc selfuncUnity[:,1] = 1.0 selfuncMin = selfunc[0,0] selfuncMax = selfunc[-1,0] selfuncDx = selfunc[1,0] - selfunc[0,0] selfuncN = np.size(selfunc[:,0]) selFunMin = max(selFunMin, selfuncMin) selFunMax = min(selFunMax, selfuncMax) def f(z): return selfunc[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2 def fTotal(z): return selfuncUnity[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2 zrange = np.linspace(selFunMin, selFunMax) nbar = scipy.integrate.quad(f, selFunMin, selFunMax) nbar = nbar[0] ntotal = scipy.integrate.quad(fTotal, 0.0, max(selfuncUnity[:,0])) ntotal = ntotal[0] nbar = ntotal / area / nbar return (volume, nbar) # ----------------------------------------------------------------------------- # returns the nside resolution from the given maskfile def getNside(maskFile): mask = healpy.read_map(maskFile) return healpy.get_nside(mask) # ----------------------------------------------------------------------------- # helper function to convert RA,dec to phi,theta def convertAngle(RA, Dec): phi = np.pi/180.*RA theta = Dec*np.pi/180. theta = np.pi/2. - Dec*np.pi/180. return (phi, theta) # ----------------------------------------------------------------------------- # computes the mask from a given galaxy datafile and writes it to a file def figureOutMask(galFile, nside, outMaskFile): npix = healpy.nside2npix(nside) mask = np.zeros((npix)) for line in open(galFile): line = line.split() RA = float(line[3]) Dec = float(line[4]) z = float(line[5]) phi, theta = convertAngle(RA, Dec) pix = healpy.ang2pix(nside, theta, phi) mask[pix] = 1. healpy.write_map(outMaskFile, mask, overwrite=True, dtype=np.dtype('float64')) return mask # ----------------------------------------------------------------------------- # figures out which galaxies live on a mask edge, and also writes the edge # map to an auxillary file def findEdgeGalaxies(galFile, maskFile, edgeGalFile, edgeMaskFile, zmin, zmax, omegaM, useComoving, boundaryWidth): if useComoving: zmin = comovingDistance(zmin, Om=omegaM) zmax = comovingDistance(zmax, Om=omegaM) #zmin = LIGHT_SPEED/100.*comovingDistance(zmin, Om=omegaM) #zmax = LIGHT_SPEED/100.*comovingDistance(zmax, Om=omegaM) #else: # zmin *= LIGHT_SPEED/100. # zmax *= LIGHT_SPEED/100. mask = healpy.read_map(maskFile) nside = healpy.get_nside(mask) npix = healpy.nside2npix(nside) edgeMask = np.zeros((npix)) edgeFile = open(edgeGalFile, "w") for line in open(galFile): line = line.split() RA = float(line[3]) Dec = float(line[4]) z = float(line[5]) if useComoving: z = comovingDistance(z/LIGHT_SPEED, Om=omegaM) else: z *= LIGHT_SPEED/100. phi, theta = convertAngle(RA, Dec) # check the mask edges ipix = healpy.ang2pix(nside, theta, phi) neighbors = healpy.get_all_neighbours(nside, ipix) isOnMaskEdge = any(mask[p] == 0 for p in neighbors) # check the redshift boundaries zbuffer = (zmax-zmin)*boundaryWidth isOnHighZEdge = (z >= zmax-zbuffer) isOnLowZEdge = (z <= zmin+zbuffer) if isOnMaskEdge: edgeFile.write("1\n") edgeMask[ipix] = 1 elif isOnHighZEdge: edgeFile.write("2\n") elif isOnLowZEdge: edgeFile.write("3\n") else: edgeFile.write("0\n") edgeFile.close() healpy.write_map(edgeMaskFile, edgeMask, overwrite=True, dtype=np.dtype('float64')) return