// Reads in the void catalog and removes any void that could potentially // be affected by a mock particle. It does this by computing the longest // particle distance within each void and comparing it to the distance // of the nearest mock particle. If the void could potentially by rotated // to include this particle, we throw out the void. // This is placed here instead of using the edgeAvoidance option in // stackVoidsZero so that we can optionally filter the entire // catalog at once before the stacking phase. This is useful // for producing a "clean" void catalog for other purposes. #include "gsl/gsl_math.h" #include "string.h" #include "ctype.h" #include "stdlib.h" #include #include #include #include "pruneVoids_conf.h" #define LIGHT_SPEED 299792.458 #define MPC2Z 100./LIGHT_SPEED #define Z2MPC LIGHT_SPEED/100. typedef struct partStruct { float x, y, z, vol; } PART; typedef struct zoneStruct { int numPart; int *partIDs; } ZONE2PART; typedef struct voidZoneStruct { int numZones; int *zoneIDs; } VOID2ZONE; typedef struct voidStruct { float vol, coreDens, zoneVol, densCon, voidProb, radius; int voidID, numPart, numZones, coreParticle, zoneNumPart; float maxRadius, nearestMock, centralDen, redshift, redshiftInMpc; float nearestEdge; float center[3], barycenter[3]; int accepted; } VOID; int main(int argc, char **argv) { // initialize arguments pruneVoids_info args_info; pruneVoids_conf_params args_params; pruneVoids_conf_init(&args_info); pruneVoids_conf_params_init(&args_params); args_params.check_required = 0; if (pruneVoids_conf_ext (argc, argv, &args_info, &args_params)) return 1; if (!args_info.configFile_given) { if (pruneVoids_conf_required (&args_info, PRUNEVOIDS_CONF_PACKAGE)) return 1; } else { args_params.check_required = 1; args_params.initialize = 0; if (pruneVoids_conf_config_file (args_info.configFile_arg, &args_info, &args_params)) return 1; } int i, p, p2, numPartTot, numZonesTot, dummy, iVoid, iZ; int numVoids, mockIndex, numKept; double tolerance; FILE *fp, *fpBarycenter, *fpDistances, *fpSkyPositions, *fpInfo; PART *part, *voidPart; ZONE2PART *zones2Parts; VOID2ZONE *void2Zones; VOID *voids; float *temp, junk, voidVol; int junkInt, voidID, numPart, numZones, zoneID, partID, maxNumPart; int coreParticle, zoneNumPart; float coreDens, zoneVol, densCon, voidProb, dist[3], dist2, minDist, maxDist; float centralRad, centralDen; double nearestEdge, redshift; char line[500], junkStr[10]; int mask_index; double ranges[2][3], boxLen[3], mul; double volNorm, radius; int clock1, clock2; int periodicX=0, periodicY=0, periodicZ=0; numVoids = args_info.numVoids_arg; mockIndex = args_info.mockIndex_arg; tolerance = args_info.tolerance_arg; clock1 = clock(); printf("Pruning parameters: %f %f %f %s\n", args_info.zMin_arg, args_info.zMax_arg, args_info.rMin_arg, args_info.periodic_arg); // check for periodic box if (!args_info.isObservation_flag) { if ( strchr(args_info.periodic_arg, 'x') != NULL) { periodicX = 1; printf("Will assume x-direction is periodic.\n"); } if ( strchr(args_info.periodic_arg, 'y') != NULL) { periodicY = 1; printf("Will assume y-direction is periodic.\n"); } if ( strchr(args_info.periodic_arg, 'z') != NULL) { periodicZ = 1; printf("Will assume z-direction is periodic.\n"); } } // load box size printf("\n Getting info...\n"); NcFile f_info(args_info.extraInfo_arg); ranges[0][0] = f_info.get_att("range_x_min")->as_double(0); ranges[0][1] = f_info.get_att("range_x_max")->as_double(0); ranges[1][0] = f_info.get_att("range_y_min")->as_double(0); ranges[1][1] = f_info.get_att("range_y_max")->as_double(0); ranges[2][0] = f_info.get_att("range_z_min")->as_double(0); ranges[2][1] = f_info.get_att("range_z_max")->as_double(0); boxLen[0] = ranges[0][1] - ranges[0][0]; boxLen[1] = ranges[1][1] - ranges[1][0]; boxLen[2] = ranges[2][1] - ranges[2][0]; // read in all particle positions printf("\n Loading particles...\n"); fp = fopen(args_info.partFile_arg, "r"); fread(&dummy, 1, 4, fp); fread(&numPartTot, 1, 4, fp); fread(&dummy, 1, 4, fp); part = (PART *) malloc(numPartTot * sizeof(PART)); temp = (float *) malloc(numPartTot * sizeof(float)); volNorm = numPartTot/(boxLen[0]*boxLen[1]*boxLen[2]); printf("VOL NORM = %f\n", volNorm); printf("CENTRAL DEN = %f\n", args_info.maxCentralDen_arg); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); mul = ranges[0][1] - ranges[0][0]; for (p = 0; p < numPartTot; p++) part[p].x = mul*temp[p]; fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); mul = ranges[1][1] - ranges[1][0]; for (p = 0; p < numPartTot; p++) part[p].y = mul*temp[p]; fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); mul = ranges[2][1] - ranges[2][0]; for (p = 0; p < numPartTot; p++) part[p].z = mul*temp[p]; if (!args_info.isObservation_flag) { for (p = 0; p < numPartTot; p++) { part[p].x += ranges[0][0]; part[p].y += ranges[1][0]; part[p].z += ranges[2][0]; } } fclose(fp); printf(" Read %d particles...\n", numPartTot); if (mockIndex == -1) mockIndex = numPartTot; // read in desired voids printf(" Loading voids...\n"); fp = fopen(args_info.voidDesc_arg ,"r"); fgets(line, sizeof(line), fp); sscanf(line, "%d %s %d %s", &junkInt, junkStr, &junkInt, junkStr); fgets(line, sizeof(line), fp); voids = (VOID *) malloc(numVoids * sizeof(VOID)); i = 0; while (fgets(line, sizeof(line), fp) != NULL) { sscanf(line, "%d %d %d %f %f %d %d %f %d %f %f\n", &iVoid, &voidID, &coreParticle, &coreDens, &zoneVol, &zoneNumPart, &numZones, &voidVol, &numPart, &densCon, &voidProb); i++; voids[i-1].coreParticle = coreParticle; voids[i-1].zoneNumPart = zoneNumPart; voids[i-1].coreDens = coreDens; voids[i-1].zoneVol = zoneVol; voids[i-1].voidID = voidID; voids[i-1].vol = voidVol; voids[i-1].numPart = numPart; voids[i-1].numZones = numZones; voids[i-1].densCon = densCon; voids[i-1].voidProb = voidProb; voids[i-1].radius = pow(voidVol/volNorm*3./4./M_PI, 1./3.); voids[i-1].accepted = 1; } fclose(fp); // load up the zone membership for each void printf(" Loading void-zone membership info...\n"); fp = fopen(args_info.void2Zone_arg, "r"); fread(&numZonesTot, 1, 4, fp); void2Zones = (VOID2ZONE *) malloc(numZonesTot * sizeof(VOID2ZONE)); for (iZ = 0; iZ < numZonesTot; iZ++) { fread(&numZones, 1, 4, fp); void2Zones[iZ].numZones = numZones; void2Zones[iZ].zoneIDs = (int *) malloc(numZones * sizeof(int)); for (p = 0; p < numZones; p++) { fread(&void2Zones[iZ].zoneIDs[p], 1, 4, fp); } } fclose(fp); // now the particles-zone printf(" Loading particle-zone membership info...\n"); fp = fopen(args_info.zone2Part_arg, "r"); fread(&dummy, 1, 4, fp); fread(&numZonesTot, 1, 4, fp); zones2Parts = (ZONE2PART *) malloc(numZonesTot * sizeof(ZONE2PART)); for (iZ = 0; iZ < numZonesTot; iZ++) { fread(&numPart, 1, 4, fp); zones2Parts[iZ].numPart = numPart; zones2Parts[iZ].partIDs = (int *) malloc(numPart * sizeof(int)); for (p = 0; p < numPart; p++) { fread(&zones2Parts[iZ].partIDs[p], 1, 4, fp); } } // and finally volumes printf(" Loading particle volumes...\n"); fp = fopen(args_info.partVol_arg, "r"); fread(&mask_index, 1, 4, fp); if (mask_index != mockIndex) { printf("NON-MATCHING MOCK INDICES!? %d %d\n", mask_index, mockIndex); exit(-1); } for (p = 0; p < mask_index; p++) { fread(&temp[0], 1, 4, fp); part[p].vol = temp[0]; } fclose(fp); free(temp); // check boundaries printf(" Computing void properties...\n"); maxNumPart = 0; for (iVoid = 0; iVoid < numVoids; iVoid++) { if (voids[iVoid].numPart > maxNumPart) maxNumPart = voids[iVoid].numPart; } voidPart = (PART *) malloc(maxNumPart * sizeof(PART)); for (iVoid = 0; iVoid < numVoids; iVoid++) { voidID = voids[iVoid].voidID; printf(" DOING %d (of %d) %d %d %f\n", iVoid, numVoids, voidID, voids[iVoid].numPart, voids[iVoid].radius); voids[iVoid].center[0] = part[voids[iVoid].coreParticle].x; voids[iVoid].center[1] = part[voids[iVoid].coreParticle].y; voids[iVoid].center[2] = part[voids[iVoid].coreParticle].z; // first load up particles into a buffer i = 0; for (iZ = 0; iZ < void2Zones[voidID].numZones; iZ++) { zoneID = void2Zones[voidID].zoneIDs[iZ]; for (p = 0; p < zones2Parts[zoneID].numPart; p++) { partID = zones2Parts[zoneID].partIDs[p]; if (partID > mask_index || (part[partID].vol < 1.e-27 && part[partID].vol > 0.)) { printf("BAD PART!? %d %d %e", partID, mask_index, part[partID].vol); exit(-1); } voidPart[i].x = part[partID].x; voidPart[i].y = part[partID].y; voidPart[i].z = part[partID].z; voidPart[i].vol = part[partID].vol; i++; } } // compute barycenters double weight = 0.; voids[iVoid].barycenter[0] = 0.; voids[iVoid].barycenter[1] = 0.; voids[iVoid].barycenter[2] = 0.; for (p = 0; p < voids[iVoid].numPart; p++) { dist[0] = fabs(voidPart[p].x - voids[iVoid].center[0]); dist[1] = fabs(voidPart[p].y - voids[iVoid].center[1]); dist[2] = fabs(voidPart[p].z - voids[iVoid].center[2]); if (periodicX) dist[0] = fmin(dist[0], boxLen[0]-dist[0]); if (periodicY) dist[1] = fmin(dist[1], boxLen[1]-dist[1]); if (periodicZ) dist[2] = fmin(dist[2], boxLen[2]-dist[2]); voids[iVoid].barycenter[0] += voidPart[p].vol*(dist[0]); voids[iVoid].barycenter[1] += voidPart[p].vol*(dist[1]); voids[iVoid].barycenter[2] += voidPart[p].vol*(dist[2]); weight += voidPart[p].vol; } voids[iVoid].barycenter[0] /= weight; voids[iVoid].barycenter[1] /= weight; voids[iVoid].barycenter[2] /= weight; voids[iVoid].barycenter[0] += voids[iVoid].center[0]; voids[iVoid].barycenter[1] += voids[iVoid].center[1]; voids[iVoid].barycenter[2] += voids[iVoid].center[2]; voids[iVoid].barycenter[0] = fmod(voids[iVoid].barycenter[0], boxLen[0]); voids[iVoid].barycenter[1] = fmod(voids[iVoid].barycenter[1], boxLen[1]); voids[iVoid].barycenter[2] = fmod(voids[iVoid].barycenter[2], boxLen[2]); // compute central density centralRad = voids[iVoid].radius/args_info.centralRadFrac_arg; centralRad *= centralRad; centralDen = 0.; for (p = 0; p < voids[iVoid].numPart; p++) { dist[0] = fabs(voidPart[p].x - voids[iVoid].barycenter[0]); dist[1] = fabs(voidPart[p].y - voids[iVoid].barycenter[1]); dist[2] = fabs(voidPart[p].z - voids[iVoid].barycenter[2]); if (periodicX) dist[0] = fmin(dist[0], boxLen[0]-dist[0]); if (periodicY) dist[1] = fmin(dist[1], boxLen[1]-dist[1]); if (periodicZ) dist[2] = fmin(dist[2], boxLen[2]-dist[2]); dist2 = pow(dist[0],2) + pow(dist[1],2) + pow(dist[2],2); if (dist2 < centralRad) centralDen += 1; } voids[iVoid].centralDen = centralDen / (4./3. * M_PI * pow(centralRad, 3./2.)); // compute maximum extent /* if (args_info.isObservation_flag) { maxDist = 0.; for (p = 0; p < voids[iVoid].numPart; p++) { for (p2 = p; p2 < voids[iVoid].numPart; p2++) { dist[0] = voidPart[p].x - voidPart[p2].x; dist[1] = voidPart[p].y - voidPart[p2].y; dist[2] = voidPart[p].z - voidPart[p2].z; dist2 = pow(dist[0],2) + pow(dist[1],2) + pow(dist[2],2); if (dist2 > maxDist) maxDist = dist2; } } voids[iVoid].maxRadius = sqrt(maxDist)/2.; } else { */ maxDist = 0.; for (p = 0; p < voids[iVoid].numPart; p++) { dist[0] = fabs(voidPart[p].x - voids[iVoid].barycenter[0]); dist[0] = fabs(voidPart[p].y - voids[iVoid].barycenter[1]); dist[0] = fabs(voidPart[p].z - voids[iVoid].barycenter[2]); if (periodicX) dist[0] = fmin(dist[0], boxLen[0]-dist[0]); if (periodicY) dist[1] = fmin(dist[1], boxLen[1]-dist[1]); if (periodicZ) dist[2] = fmin(dist[2], boxLen[2]-dist[2]); dist2 = pow(dist[0],2) + pow(dist[1],2) + pow(dist[2],2); if (dist2 > maxDist) maxDist = dist2; } voids[iVoid].maxRadius = sqrt(maxDist); // } if (args_info.isObservation_flag) { // compute distance from center to nearest mock minDist = 1.e99; for (p = mockIndex; p < numPartTot; p++) { dist[0] = voids[iVoid].barycenter[0] - part[p].x; dist[1] = voids[iVoid].barycenter[1] - part[p].y; dist[2] = voids[iVoid].barycenter[2] - part[p].z; dist2 = pow(dist[0],2) + pow(dist[1],2) + pow(dist[2],2); if (dist2 < minDist) minDist = dist2; } voids[iVoid].nearestMock = sqrt(minDist); } else { voids[iVoid].nearestMock = 1.e99; } if (args_info.isObservation_flag) { voids[iVoid].redshiftInMpc = sqrt(pow(voids[iVoid].barycenter[0] - boxLen[0]/2.,2) + pow(voids[iVoid].barycenter[1] - boxLen[1]/2.,2) + pow(voids[iVoid].barycenter[2] - boxLen[2]/2.,2)); voids[iVoid].redshiftInMpc = voids[iVoid].redshiftInMpc; redshift = voids[iVoid].redshiftInMpc; nearestEdge = fabs(redshift-args_info.zMax_arg*LIGHT_SPEED/100.); //nearestEdge = fmin(fabs(redshift-args_info.zMin_arg*LIGHT_SPEED/100.), // fabs(redshift-args_info.zMax_arg*LIGHT_SPEED/100.)); voids[iVoid].redshift = voids[iVoid].redshiftInMpc/LIGHT_SPEED*100.; } else { voids[iVoid].redshiftInMpc = voids[iVoid].barycenter[2]; voids[iVoid].redshift = voids[iVoid].barycenter[2]/LIGHT_SPEED*100.; nearestEdge = 1.e99; if (!periodicX) { nearestEdge = fmin(nearestEdge, fabs(voids[iVoid].barycenter[0] - ranges[0][0])); nearestEdge = fmin(nearestEdge, fabs(voids[iVoid].barycenter[0] - ranges[0][1])); } if (!periodicY) { nearestEdge = fmin(nearestEdge, fabs(voids[iVoid].barycenter[1] - ranges[1][0])); nearestEdge = fmin(nearestEdge, fabs(voids[iVoid].barycenter[1] - ranges[1][1])); } if (!periodicZ) { nearestEdge = fmin(nearestEdge, fabs(voids[iVoid].barycenter[2] - ranges[2][0])); nearestEdge = fmin(nearestEdge, fabs(voids[iVoid].barycenter[2] - ranges[2][1])); } } voids[iVoid].nearestEdge = nearestEdge; } // iVoid printf(" Picking winners and losers...\n"); for (iVoid = 0; iVoid < numVoids; iVoid++) { voids[iVoid].accepted = 1; } for (iVoid = 0; iVoid < numVoids; iVoid++) { if (voids[iVoid].densCon < 1.5) { // voids[iVoid].accepted = -4; } if (voids[iVoid].centralDen > args_info.maxCentralDen_arg) { voids[iVoid].accepted = -1; } // toss out voids that are obviously wrong if (voids[iVoid].densCon > 1.e3) { voids[iVoid].accepted = -4; } if (strcmp(args_info.dataPortion_arg, "edge") == 0 && tolerance*voids[iVoid].maxRadius < voids[iVoid].nearestMock) { voids[iVoid].accepted = -3; } if (strcmp(args_info.dataPortion_arg, "central") == 0 && tolerance*voids[iVoid].maxRadius > voids[iVoid].nearestMock) { voids[iVoid].accepted = -3; } if (voids[iVoid].radius < args_info.rMin_arg) { voids[iVoid].accepted = -2; } // *alwas* clean out near edges since there are no mocks there if (tolerance*voids[iVoid].maxRadius > voids[iVoid].nearestEdge) { voids[iVoid].accepted = -3; } // assume the lower z-boundary is "soft" in observations if (voids[iVoid].redshift < args_info.zMin_arg) { voids[iVoid].accepted = -3; } } numKept = 0; for (iVoid = 0; iVoid < numVoids; iVoid++) { if (voids[iVoid].accepted == 1) numKept++; } printf(" Number kept: %d (out of %d)\n", numKept, numVoids); printf(" Output...\n"); fp = fopen(args_info.output_arg, "w"); fpBarycenter = fopen(args_info.outCenters_arg, "w"); fpInfo = fopen(args_info.outInfo_arg, "w"); fpDistances = fopen(args_info.outDistances_arg, "w"); fpSkyPositions = fopen(args_info.outSkyPositions_arg, "w"); fprintf(fp, "%d particles, %d voids.\n", mockIndex, numKept); fprintf(fp, "see column in master void file\n"); fprintf(fpInfo, "# center x,y,z (Mpc/h), volume (normalized), radius (Mpc/h), redshift, volume (Mpc/h^3), void ID, density contrast\n"); fprintf(fpSkyPositions, "# RA, dec, redshift, radius (Mpc/h), void ID\n"); for (iVoid = 0; iVoid < numVoids; iVoid++) { if (voids[iVoid].accepted != 1) continue; fprintf(fp, "%d %d %d %f %f %d %d %f %d %f %f\n", iVoid, voids[iVoid].voidID, voids[iVoid].coreParticle, voids[iVoid].coreDens, voids[iVoid].zoneVol, voids[iVoid].zoneNumPart, voids[iVoid].numZones, voids[iVoid].vol, voids[iVoid].numPart, voids[iVoid].densCon, voids[iVoid].voidProb); fprintf(fpBarycenter, "%d %e %e %e\n", voids[iVoid].voidID, voids[iVoid].barycenter[0], voids[iVoid].barycenter[1], voids[iVoid].barycenter[2]); fprintf(fpDistances, "%d %e\n", voids[iVoid].voidID, voids[iVoid].nearestMock); double outCenter[3]; outCenter[0] = voids[iVoid].barycenter[0]; outCenter[1] = voids[iVoid].barycenter[1]; outCenter[2] = voids[iVoid].barycenter[2]; if (args_info.isObservation_flag) { outCenter[0] = (voids[iVoid].barycenter[0]-boxLen[0]/2.)*100.; outCenter[1] = (voids[iVoid].barycenter[1]-boxLen[1]/2.)*100.; outCenter[2] = (voids[iVoid].barycenter[2]-boxLen[2]/2.)*100.; } fprintf(fpInfo, "%.2f %.2f %.2f %.2f %.2f %.5f %.2f %d %f\n", outCenter[0], outCenter[1], outCenter[2], voids[iVoid].vol, voids[iVoid].radius, voids[iVoid].redshift, 4./3.*M_PI*pow(voids[iVoid].radius, 3), voids[iVoid].voidID, voids[iVoid].densCon); fprintf(fpSkyPositions, "%.2f %.2f %.5f %.2f %d\n", atan((voids[iVoid].barycenter[1]-boxLen[1]/2.)/(voids[iVoid].barycenter[0]-boxLen[0]/2.)) * 180/M_PI + 180, asin((voids[iVoid].barycenter[2]-boxLen[2]/2.)/voids[iVoid].redshiftInMpc) * 180/M_PI, voids[iVoid].redshift, voids[iVoid].radius, voids[iVoid].voidID); } fclose(fp); fclose(fpInfo); fclose(fpBarycenter); fclose(fpDistances); // print the centers catalog again but without central density cuts fpInfo = fopen(args_info.outNoCutInfo_arg, "w"); fprintf(fpInfo, "# center x,y,z (km/s), volume (normalized), radius (Mpc/h), redshift, volume (Mpc/h^3), void ID\n"); for (iVoid = 0; iVoid < numVoids; iVoid++) { if (voids[iVoid].accepted < -1) continue; double outCenter[3]; outCenter[0] = voids[iVoid].barycenter[0]; outCenter[1] = voids[iVoid].barycenter[1]; outCenter[2] = voids[iVoid].barycenter[2]; if (args_info.isObservation_flag) { outCenter[0] = (voids[iVoid].barycenter[0]-boxLen[0]/2.)*100.; outCenter[1] = (voids[iVoid].barycenter[1]-boxLen[1]/2.)*100.; outCenter[2] = (voids[iVoid].barycenter[2]-boxLen[2]/2.)*100.; } fprintf(fpInfo, "%.2f %.2f %.2f %.2f %.2f %.5f %.2f %d %f\n", outCenter[0], outCenter[1], outCenter[2], voids[iVoid].vol, voids[iVoid].radius, voids[iVoid].redshift, 4./3.*M_PI*pow(voids[iVoid].radius, 3), voids[iVoid].voidID, voids[iVoid].densCon); } fclose(fpInfo); clock2 = clock(); printf(" Time: %f sec (for %d voids)\n", (1.*clock2-clock1)/CLOCKS_PER_SEC, numVoids); clock1 = clock(); printf("Done!\n"); return 0; } // end main