// ============================================================================= // // Program: voidOverlap // // Description: Takes two void catalogs and reports the "overlap" between // them. // // ============================================================================ #include "string.h" #include "ctype.h" #include "stdlib.h" #include #include #include "voidOverlap_conf.h" #include #include typedef struct partStruct { float x, y, z, volume; float ra, dec, redshift; long uniqueID; } PART; typedef struct zoneStruct { int numPart; int *partIDs; } ZONE2PART; typedef struct voidZoneStruct { int numZones; int *zoneIDs; } VOID2ZONE; typedef struct voidStruct { float vol, coreDens, zoneVol, densCon, voidProb, radius; int voidID, numPart, numZones, coreParticle, zoneNumPart; float maxRadius, nearestMock, centralDen, redshift, redshiftInMpc; float nearestEdge; float center[3], barycenter[3]; std::vector matches; } VOID; typedef struct catalog { int numVoids, numPartTot, numZonesTot; float boxLen[3]; std::vector part; std::vector zones2Parts; std::vector void2Zones; std::vector voids; } CATALOG; void loadCatalog(const char *partFile, const char *volFile, const char *voidFile, const char *zoneFile, const char *infoFile, const char *zonePartFile, CATALOG& catalog); int main(int argc, char **argv) { // initialize arguments voidOverlap_info args; voidOverlap_conf_params params; voidOverlap_conf_init(&args); voidOverlap_conf_params_init(¶ms); params.check_required = 0; if (voidOverlap_conf_ext (argc, argv, &args, ¶ms)) return 1; if (!args.configFile_given) { if (voidOverlap_conf_required (&args, VOIDOVERLAP_CONF_PACKAGE)) return 1; } else { params.check_required = 1; params.initialize = 0; if (voidOverlap_conf_config_file (args.configFile_arg, &args, ¶ms)) return 1; } char outVoid[200]; int p1, p2, iZ1, iZ2, iVoid1, iVoid2, iVoid, zoneID1, zoneID2; int voidStartIndex, numVoids, numVoidsOut, targetVoidID, voidID1, voidID2; FILE *fp; float *temp, junk, voidVol; long *temp2; int junkInt, voidID, numPart, numZones, zoneID, partID; char line[500], junkStr[10]; bool periodicX=false, periodicY=false, periodicZ=false, match; float dist[3], rdist, r1, r2; CATALOG catalog1, catalog2; loadCatalog(args.partFile1_arg, args.volFile1_arg, args.voidFile1_arg, args.zoneFile1_arg, args.infoFile1_arg, args.zonePartFile1_arg, catalog1); loadCatalog(args.partFile2_arg, args.volFile2_arg, args.voidFile2_arg, args.zoneFile2_arg, args.infoFile2_arg, args.zonePartFile2_arg, catalog2); // check for periodic box if ( strchr(args.periodic_arg, 'x') != NULL) { periodicX = true; printf("Will assume x-direction is periodic.\n"); } if ( strchr(args.periodic_arg, 'y') != NULL) { periodicY = true; printf("Will assume y-direction is periodic.\n"); } if ( strchr(args.periodic_arg, 'z') != NULL) { periodicZ = true; printf("Will assume z-direction is periodic.\n"); } printf(" Determining overlap...\n"); for (iVoid1 = 0; iVoid1 < catalog1.numVoids; iVoid1++) { printf(" Working on void %d of %d...\n", iVoid1, catalog1.numVoids); voidID1 = catalog1.voids[iVoid1].voidID; for (iZ1 = 0; iZ1 < catalog1.void2Zones[voidID1].numZones; iZ1++) { zoneID1 = catalog1.void2Zones[voidID1].zoneIDs[iZ1]; for (p1 = 0; p1 < catalog1.zones2Parts[zoneID1].numPart; p1++) { for (iVoid2 = 0; iVoid2 < catalog2.numVoids; iVoid2++) { voidID2 = catalog2.voids[iVoid2].voidID; for (iZ2 = 0; iZ2 < catalog2.void2Zones[voidID2].numZones; iZ2++) { zoneID2 = catalog2.void2Zones[voidID2].zoneIDs[iZ2]; for (p2 = 0; p2 < catalog2.zones2Parts[zoneID2].numPart; p2++) { match = false; if (args.useID_flag) { if (catalog1.part[p1].uniqueID == catalog2.part[p2].uniqueID) match = true; } else { dist[0] = catalog1.part[p1].x - catalog2.part[p2].x; dist[1] = catalog1.part[p1].y - catalog2.part[p2].y; dist[2] = catalog1.part[p1].z - catalog2.part[p2].z; if (periodicX) dist[0] = fmin(dist[0], abs(catalog1.boxLen[0]-dist[0])); if (periodicY) dist[1] = fmin(dist[1], abs(catalog1.boxLen[1]-dist[1])); if (periodicZ) dist[2] = fmin(dist[2], abs(catalog1.boxLen[2]-dist[2])); rdist = sqrt(dist[0]*dist[0] + dist[1]*dist[1] + dist[2]*dist[2]); r1 = pow(3./4./M_PI*catalog1.part[p1].volume, 1./3.); r2 = pow(3./4./M_PI*catalog2.part[p2].volume, 1./3.); if (rdist <= r1 + r2) match = true; } if (match) { catalog1.voids[iVoid1].matches.push_back(iVoid2); break; } } // end p2 if (match) break; } // end iZ1 } // end iVoid2 } // end p1 } // end iZ1 } // end iVoid1 printf("HELLO: "); for (iVoid = 0; iVoid < catalog1.voids[0].matches.size(); iVoid++) { printf("%d ", catalog2.voids[iVoid].voidID); } printf("\n Well, bye.\n"); return 0; } // end main // ---------------------------------------------------------------------------- void loadCatalog(const char *partFile, const char *volFile, const char *voidFile, const char *zoneFile, const char *infoFile, const char *zonePartFile, CATALOG& catalog) { int i, p, numPartTot, numZonesTot, dummy, iVoid, iZ, numVolTot; FILE *fp; float *temp, junk, voidVol, coreParticle, coreDens, zoneVol, zoneNumPart; float densCon, voidProb, volNorm; long *temp2; int junkInt, voidID, numPart, numZones, zoneID, partID; char line[500], junkStr[10]; float ranges[3][2]; printf("\n Loading info...\n"); NcFile f_info(infoFile); ranges[0][0] = f_info.get_att("range_x_min")->as_double(0); ranges[0][1] = f_info.get_att("range_x_max")->as_double(0); ranges[1][0] = f_info.get_att("range_y_min")->as_double(0); ranges[1][1] = f_info.get_att("range_y_max")->as_double(0); ranges[2][0] = f_info.get_att("range_z_min")->as_double(0); ranges[2][1] = f_info.get_att("range_z_max")->as_double(0); catalog.boxLen[0] = ranges[0][1] - ranges[0][0]; catalog.boxLen[1] = ranges[1][1] - ranges[1][0]; catalog.boxLen[2] = ranges[2][1] - ranges[2][0]; f_info.close(); // read in all particle positions printf("\n Loading particles...\n"); fp = fopen(partFile, "r"); fread(&dummy, 1, 4, fp); fread(&catalog.numPartTot, 1, 4, fp); fread(&dummy, 1, 4, fp); catalog.part.resize(numPartTot); temp = (float *) malloc(numPartTot * sizeof(float)); temp2 = (long *) malloc(numPartTot * sizeof(long)); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); for (p = 0; p < numPartTot; p++) catalog.part[p].x = temp[p]; fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); for (p = 0; p < numPartTot; p++) catalog.part[p].y = temp[p]; fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); for (p = 0; p < numPartTot; p++) catalog.part[p].z = temp[p]; fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); for (p = 0; p < numPartTot; p++) catalog.part[p].ra = temp[p]; fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); for (p = 0; p < numPartTot; p++) catalog.part[p].dec = temp[p]; fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp); fread(temp, numPartTot, 4, fp); for (p = 0; p < numPartTot; p++) catalog.part[p].redshift = temp[p]; fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp); fread(temp2, numPartTot, 8, fp); for (p = 0; p < numPartTot; p++) catalog.part[p].uniqueID = temp2[p]; free(temp2); fclose(fp); printf(" Read %d particles...\n", catalog.numPartTot); // read in all particle volumes printf(" Loading volumes...\n"); fp = fopen(volFile, "r"); fread(&numVolTot, 1, 4, fp); fread(temp, numPartTot, 4, fp); for (p = 0; p < numPartTot; p++) catalog.part[p].volume = temp[p]; fclose(fp); free(temp); // read in desired voids printf(" Loading voids...\n"); fp = fopen(voidFile ,"r"); fgets(line, sizeof(line), fp); sscanf(line, "%d %s %d %s", &junkInt, junkStr, &catalog.numVoids, junkStr); fgets(line, sizeof(line), fp); catalog.voids.resize(catalog.numVoids); iVoid = 0; while (fgets(line, sizeof(line), fp) != NULL) { scanf(line, "%d %d %d %f %f %d %d %f %d %f %f\n", &iVoid, &voidID, &coreParticle, &coreDens, &zoneVol, &zoneNumPart, &numZones, &voidVol, &numPart, &densCon, &voidProb); catalog.voids[iVoid].coreParticle = coreParticle; catalog.voids[iVoid].zoneNumPart = zoneNumPart; catalog.voids[iVoid].coreDens = coreDens; catalog.voids[iVoid].zoneVol = zoneVol; catalog.voids[iVoid].voidID = voidID; catalog.voids[iVoid].vol = voidVol; catalog.voids[iVoid].numPart = numPart; catalog.voids[iVoid].numZones = numZones; catalog.voids[iVoid].densCon = densCon; catalog.voids[iVoid].voidProb = voidProb; catalog.voids[iVoid].radius = pow(voidVol/volNorm*3./4./M_PI, 1./3.); iVoid++; } fclose(fp); // load up the zone membership for each void printf(" Loading zone-void membership info...\n"); fp = fopen(zoneFile, "r"); fread(&catalog.numZonesTot, 1, 4, fp); catalog.void2Zones.resize(catalog.numZonesTot); for (iZ = 0; iZ < numZonesTot; iZ++) { fread(&numZones, 1, 4, fp); catalog.void2Zones[iZ].numZones = numZones; catalog.void2Zones[iZ].zoneIDs = (int *) malloc(numZones * sizeof(int)); for (p = 0; p < numZones; p++) { fread(&catalog.void2Zones[iZ].zoneIDs[p], 1, 4, fp); } } fclose(fp); // now the zone membership printf(" Loading particle-zone membership info...\n"); fp = fopen(zonePartFile, "r"); fread(&dummy, 1, 4, fp); fread(&numZonesTot, 1, 4, fp); catalog.zones2Parts.resize(numZonesTot); for (iZ = 0; iZ < numZonesTot; iZ++) { fread(&numPart, 1, 4, fp); catalog.zones2Parts[iZ].numPart = numPart; catalog.zones2Parts[iZ].partIDs = (int *) malloc(numPart * sizeof(int)); for (p = 0; p < numPart; p++) { fread(&catalog.zones2Parts[iZ].partIDs[p], 1, 4, fp); } } fclose(fp); } // end loadCatalog