#+ # VIDE -- Void IDentification and Examination # Copyright (C) 2010-2014 Guilhem Lavaux # Copyright (C) 2011-2014 P. M. Sutter # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; version 2 of the License. # # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. #+ # a suite of functions to compute expansion rates, angular diameter # distances, and expected void stretching import numpy as np import scipy import healpy as healpy import os from backend import * from backend.cosmologyTools import * __all__=['getSurveyProps', 'getNside', 'figureOutMask', 'findEdgeGalaxies'] # ----------------------------------------------------------------------------- # returns the volume and galaxy density for a given redshit slice def getSurveyProps(maskFile, zmin, zmax, selFunMin, selFunMax, portion, omegaM, selectionFuncFile=None, useComoving=False): #LIGHT_SPEED = 299792.458 mask = healpy.read_map(maskFile) area = (1.*np.size(np.where(mask > 0)) / np.size(mask)) * 4.*np.pi if useComoving: zmin = LIGHT_SPEED/100.*comovingDistance(zmin, Om=omegaM) zmax = LIGHT_SPEED/100.*comovingDistance(zmax, Om=omegaM) else: zmin = zmin * LIGHT_SPEED/100. zmax = zmax * LIGHT_SPEED/100. volume = area * (zmax**3 - zmin**3) / 3 if selectionFuncFile == None: nbar = 1.0 elif not os.access(selectionFuncFile, os.F_OK): print(" Warning, selection function file %s not found, using default of uniform selection." % selectionFuncFile) nbar = 1.0 else: selfunc = np.genfromtxt(selectionFuncFile) selfunc = np.array(selfunc) selfunc[:,0] = selfunc[:,0]/100. selfuncUnity = selfunc selfuncUnity[:,1] = 1.0 selfuncMin = selfunc[0,0] selfuncMax = selfunc[-1,0] selfuncDx = selfunc[1,0] - selfunc[0,0] selfuncN = np.size(selfunc[:,0]) selFunMin = max(selFunMin, selfuncMin) selFunMax = min(selFunMax, selfuncMax) def f(z): return selfunc[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2 def fTotal(z): return selfuncUnity[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2 zrange = np.linspace(selFunMin, selFunMax) nbar = scipy.integrate.quad(f, selFunMin, selFunMax) nbar = nbar[0] ntotal = scipy.integrate.quad(fTotal, 0.0, max(selfuncUnity[:,0])) ntotal = ntotal[0] nbar = ntotal / area / nbar return (volume, nbar) # ----------------------------------------------------------------------------- # returns the nside resolution from the given maskfile def getNside(maskFile): mask = healpy.read_map(maskFile) return healpy.get_nside(mask) # ----------------------------------------------------------------------------- # helper function to convert RA,dec to phi,theta def convertAngle(RA, Dec): phi = np.pi/180.*RA theta = Dec*np.pi/180. theta = np.pi/2. - Dec*np.pi/180. return (phi, theta) # ----------------------------------------------------------------------------- # computes the mask from a given galaxy datafile and writes it to a file def figureOutMask(galFile, nside, outMaskFile): npix = healpy.nside2npix(nside) mask = np.zeros((npix)) for line in open(galFile): line = line.split() RA = float(line[3]) Dec = float(line[4]) z = float(line[5]) phi, theta = convertAngle(RA, Dec) pix = healpy.ang2pix(nside, theta, phi) mask[pix] = 1. healpy.write_map(outMaskFile, mask, overwrite=True, dtype=np.dtype('float64')) return mask # ----------------------------------------------------------------------------- # figures out which galaxies live on a mask or redshift edge def findEdgeGalaxies(galFile, maskFile, edgeGalFile, contourFile, zmin, zmax, omegaM, useComoving, boundaryWidth, meanPartSep, outputDir): if useComoving: zmin = comovingDistance(zmin, Om=omegaM)*LIGHT_SPEED zmax = comovingDistance(zmax, Om=omegaM)*LIGHT_SPEED else: zmin *= LIGHT_SPEED zmax *= LIGHT_SPEED contourMap = healpy.read_map(contourFile) nside = healpy.get_nside(contourMap) npix = healpy.nside2npix(nside) # load in galaxies #galPos = np.genfromtxt(galFile) # TODO - WHY IS THIS FASTER THAN np.column_stack??? galPos = np.genfromtxt(outputDir+"/galaxies.txt") with open(galFile, 'rb') as File: chk = np.fromfile(File, dtype=np.int32,count=1) Np = np.fromfile(File, dtype=np.int32,count=1)[0] chk = np.fromfile(File, dtype=np.int32,count=1) chk = np.fromfile(File, dtype=np.int32,count=1) x = np.fromfile(File, dtype=np.float32,count=Np) chk = np.fromfile(File, dtype=np.int32,count=1) chk = np.fromfile(File, dtype=np.int32,count=1) y = np.fromfile(File, dtype=np.float32,count=Np) chk = np.fromfile(File, dtype=np.int32,count=1) chk = np.fromfile(File, dtype=np.int32,count=1) z = np.fromfile(File, dtype=np.float32,count=Np) chk = np.fromfile(File, dtype=np.int32,count=1) chk = np.fromfile(File, dtype=np.int32,count=1) RA = np.fromfile(File, dtype=np.float32,count=Np) chk = np.fromfile(File, dtype=np.int32,count=1) chk = np.fromfile(File, dtype=np.int32,count=1) Dec = np.fromfile(File, dtype=np.float32,count=Np) chk = np.fromfile(File, dtype=np.int32,count=1) chk = np.fromfile(File, dtype=np.int32,count=1) redshift = np.fromfile(File, dtype=np.float32,count=Np) chk = np.fromfile(File, dtype=np.int32,count=1) #print(galPos.shape) #galPos = np.column_stack((x,y,z)) #print(galPos.shape) flagList = np.zeros(len(galPos[:,0])) galTree = scipy.spatial.cKDTree(galPos) # flag galaxies near mask edges # using the "ray marching" algorithm: follow rays along lines of sight # of all mask edges, flagging nearest neighbor galaxies as we go raySteps = np.arange(zmin, zmax, meanPartSep) #print(meanPartSep, len(raySteps)) contourPixels = np.nonzero(contourMap)[0] #print(contourPixels) for pixel in contourPixels: #print("Working with pixel %d" % pixel) vec = healpy.pix2vec(nside,pixel) x = raySteps * vec[0] y = raySteps * vec[1] z = raySteps * vec[2] ray = np.array((x,y,z)).T dist, nearest = galTree.query(ray) flagList[nearest] = 1 # flag galaxies near redsfhit boundaries # TODO - save time by only covering portion of sphere that has data sphereIndices = np.arange(len(contourMap)) vec = healpy.pix2vec(nside, sphereIndices) vec = np.asarray(vec) maxEdge = zmax * vec maxEdge = maxEdge.T dist, nearest = galTree.query(maxEdge) flagList[nearest] = 2 minEdge = zmin * vec minEdge = minEdge.T dist, nearest = galTree.query(minEdge) flagList[nearest] = 3 # output flag information np.savetxt(edgeGalFile, flagList, fmt="%d") # paint galaxy flags onto healpix map for diagnostics # TODO - drop this when done testing flagMap = np.zeros(len(contourMap)) justEdgeRA = RA[flagList == 1] justEdgeDec = Dec[flagList == 1] phi, theta = convertAngle(justEdgeRA, justEdgeDec) ipix = healpy.ang2pix(nside, theta, phi) np.put(flagMap, ipix, 1) healpy.write_map("./flagged_galaxies.fits", flagMap, overwrite=True, dtype=np.dtype('float64')) # # output galaxy edge flags # edgeFile = open(edgeGalFile, "w") # # for line in open(galFile): # line = line.split() # RA = float(line[3]) # Dec = float(line[4]) # z = float(line[5]) # # if useComoving: # z = comovingDistance(z/LIGHT_SPEED, Om=omegaM) # else: # z *= LIGHT_SPEED/100. # # phi, theta = convertAngle(RA, Dec) # # # check the mask edges # ipix = healpy.ang2pix(nside, theta, phi) # neighbors = healpy.get_all_neighbours(nside, ipix) # isOnMaskEdge = any(mask[p] == 0 for p in neighbors) # # # check the redshift boundaries # zbuffer = (zmax-zmin)*boundaryWidth # isOnHighZEdge = (z >= zmax-zbuffer) # isOnLowZEdge = (z <= zmin+zbuffer) # # if isOnMaskEdge: # edgeFile.write("1\n") # edgeMask[ipix] = 1 # elif isOnHighZEdge: # edgeFile.write("2\n") # elif isOnLowZEdge: # #edgeFile.write("3\n") # else: # edgeFile.write("0\n") # # edgeFile.close() # healpy.write_map(edgeMaskFile, edgeMask, overwrite=True, # dtype=np.dtype('float64')) return