mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 23:31:12 +00:00
Imported latest snapshot of cosmotoolbox
This commit is contained in:
parent
a53a757d5a
commit
e41c26a46c
12 changed files with 1497 additions and 0 deletions
25
external/cosmotool/sample/test_healpix_calls.cpp
vendored
Normal file
25
external/cosmotool/sample/test_healpix_calls.cpp
vendored
Normal file
|
@ -0,0 +1,25 @@
|
|||
#include <iostream>
|
||||
#include "fourier/healpix.hpp"
|
||||
|
||||
using namespace CosmoTool;
|
||||
using namespace std;
|
||||
|
||||
int main()
|
||||
{
|
||||
HealpixFourierTransform<double> dft(128,2*128,2*128, 40);
|
||||
HealpixUtilityFunction<double> utils;
|
||||
long Npix = dft.realSpace().size();
|
||||
|
||||
dft.realSpace().eigen().setRandom();
|
||||
dft.analysis();
|
||||
cout << "Map dot-product = " << dft.realSpace().dot_product(dft.realSpace()) << endl;
|
||||
cout << "Fourier dot-product = " << dft.fourierSpace().dot_product(dft.fourierSpace()).real()*Npix/(4*M_PI) << endl;
|
||||
cout << "Spectrum analysis" << endl;
|
||||
HealpixUtilityFunction<double>::Spectrum_ptr s = utils.estimateSpectrumFromMap(dft.fourierSpace());
|
||||
|
||||
dft.synthesis();
|
||||
cout << "Resynthesis dot-product = " << dft.realSpace().dot_product(dft.realSpace()) << endl;
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
306
external/cosmotool/src/cosmopower.cpp
vendored
Normal file
306
external/cosmotool/src/cosmopower.cpp
vendored
Normal file
|
@ -0,0 +1,306 @@
|
|||
#include <cassert>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <gsl/gsl_integration.h>
|
||||
#include "cosmopower.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace CosmoTool;
|
||||
|
||||
#define USE_GSL
|
||||
#define TOLERANCE 1e-6
|
||||
#define NUM_ITERATION 8000
|
||||
|
||||
|
||||
CosmoPower::CosmoPower()
|
||||
{
|
||||
eval = &CosmoPower::powerEfstathiou;
|
||||
|
||||
n = 1.0;
|
||||
K0 = 1;
|
||||
V_LG_CMB = 627;
|
||||
|
||||
CMB_VECTOR[0] = 56.759;
|
||||
CMB_VECTOR[1] = -540.02;
|
||||
CMB_VECTOR[2] = 313.50;
|
||||
|
||||
h = 0.719;
|
||||
SIGMA8 = 0.77;
|
||||
OMEGA_B = 0.043969;
|
||||
OMEGA_C = 0.21259;
|
||||
|
||||
Theta_27 = 2.728/2.7;
|
||||
|
||||
updateCosmology();
|
||||
}
|
||||
|
||||
/*
|
||||
* This is \hat{tophat}
|
||||
*/
|
||||
static double tophatFilter(double u)
|
||||
{
|
||||
if (u != 0)
|
||||
return 3 / (u*u*u) * (sin(u) - u * cos(u));
|
||||
else
|
||||
return 1;
|
||||
}
|
||||
|
||||
static double powC(double q, double alpha_c)
|
||||
{
|
||||
return 14.2 / alpha_c + 386 / (1 + 69.9 * pow(q, 1.08));
|
||||
}
|
||||
|
||||
static double T_tilde_0(double q, double alpha_c, double beta_c)
|
||||
{
|
||||
double a = log(M_E + 1.8 * beta_c * q);
|
||||
return a / ( a + powC(q, alpha_c) * q * q);
|
||||
}
|
||||
|
||||
static double j_0(double x)
|
||||
{
|
||||
if (x == 0)
|
||||
return 1.0;
|
||||
return sin(x)/x;
|
||||
}
|
||||
|
||||
static double powG(double y)
|
||||
{
|
||||
double a = sqrt(1 + y);
|
||||
|
||||
return y * (-6 * a + (2 + 3 * y) *log((a + 1)/(a - 1)));
|
||||
}
|
||||
|
||||
double CosmoPower::powerEfstathiou(double k)
|
||||
{
|
||||
double a = 6.4/Gamma0;
|
||||
double b = 3/Gamma0;
|
||||
double c = 1.7/Gamma0;
|
||||
double nu = 1.13;
|
||||
|
||||
double f = (a*k) + pow(b*k,1.5) + pow(c*k,2);
|
||||
|
||||
// EFSTATHIOU ET AL. (1992)
|
||||
return normPower * pow(k,n) * pow(1+pow(f,nu),(-2/nu));
|
||||
}
|
||||
|
||||
double CosmoPower::powerHuWiggles(double k)
|
||||
{
|
||||
// EISENSTEIN ET HU (1998)
|
||||
// FULL POWER SPECTRUM WITH BARYONS AND WIGGLES
|
||||
|
||||
double k_silk = 1.6 * pow(OMEGA_B * h * h, 0.52) * pow(OmegaEff, 0.73) * (1 + pow(10.4 * OmegaEff, -0.95));
|
||||
double z_eq = 2.50e4 * OmegaEff * pow(Theta_27, -4);
|
||||
double s = 44.5 * log(9.83 / OmegaEff) / (sqrt(1 + 10 * pow(OMEGA_B * h * h, 0.75)));
|
||||
double f = 1 / (1 + pow(k * s / 5.4, 4));
|
||||
double k_eq = 7.46e-2 * OmegaEff * pow(Theta_27, -2);
|
||||
double a1 = pow(46.9 * OmegaEff, 0.670) * (1 + pow(32.1 * OmegaEff, -0.532));
|
||||
double a2 = pow(12.0 * OmegaEff, 0.424) * (1 + pow(45.0 * OmegaEff, -0.582));
|
||||
double alpha_c = pow(a1, -OMEGA_B/ OMEGA_0) * pow(a2, -pow(OMEGA_B / OMEGA_0, 3));
|
||||
|
||||
double q = k / (13.41 * k_eq);
|
||||
double b1_betac = 0.944 * 1/(1 + pow(458 * OmegaEff, -0.708));
|
||||
double b2_betac = pow(0.395 * OmegaEff, -0.0266);
|
||||
double beta_c = 1/ ( 1 + b1_betac * (pow(OMEGA_C / OMEGA_0, b2_betac) - 1) );
|
||||
double T_c = f * T_tilde_0(q, 1, beta_c) + (1 - f) * T_tilde_0(q, alpha_c, beta_c);
|
||||
|
||||
double b1_zd = 0.313 * pow(OmegaEff, -0.419) * (1 + 0.607 * pow(OmegaEff, 0.674));
|
||||
double b2_zd = 0.238 * pow(OmegaEff, 0.223);
|
||||
double z_d = 1291 * pow(OmegaEff, 0.251) / (1 + 0.659 * pow(OmegaEff, 0.828)) * (1 + b1_zd * pow(OmegaEff, b2_zd));
|
||||
double R_d = 31.5 * OMEGA_B * h * h * pow(Theta_27, -4) * 1e3 / z_d;
|
||||
|
||||
double alpha_b = 2.07 * k_eq * s * pow(1 + R_d, -0.75) * powG((1 + z_eq)/(1 + z_d));
|
||||
double beta_b = 0.5 + OMEGA_B / OMEGA_0 + (3 - 2 * OMEGA_B / OMEGA_0) * sqrt(pow(17.2 * OmegaEff, 2) + 1);
|
||||
double beta_node = 8.41 * pow(OmegaEff, 0.435);
|
||||
double s_tilde = s * pow(1 + pow(beta_node / (k * s), 3), -1./3);
|
||||
|
||||
double T_b = (T_tilde_0(q, 1, 1) / (1 + pow(k * s / 5.2, 2)) + alpha_b / (1 + pow(beta_b / (k * s), 3)) * exp(-pow(k/k_silk, 1.4))) * j_0(k * s_tilde);
|
||||
|
||||
double T_k = OMEGA_B/OMEGA_0 * T_b + OMEGA_C/OMEGA_0 * T_c;
|
||||
|
||||
return normPower * pow(k,n) * T_k * T_k;
|
||||
}
|
||||
|
||||
double CosmoPower::powerHuBaryons(double k)
|
||||
{
|
||||
double s = 44.5 * log(9.83 / OmegaEff) / (sqrt(1 + 10 * pow(OMEGA_B * h * h, 0.75)));
|
||||
double alpha_Gamma = 1 - 0.328 * log(431 * OmegaEff) * OMEGA_B / OMEGA_0 + 0.38 * log(22.3 * OmegaEff) * pow(OMEGA_B / OMEGA_0, 2);
|
||||
double GammaEff = OMEGA_0 * h * (alpha_Gamma + (1 - alpha_Gamma)/(1 + pow(0.43 * k * s, 4)));
|
||||
double q = k/(h*GammaEff) * pow(Theta_27, 2);
|
||||
double L_0 = log(2 * M_E + 1.8 * q);
|
||||
double C_0 = 14.2 + 731 / (1 + 62.5 * q);
|
||||
double T0 = L_0 / (L_0 + C_0 * q * q);
|
||||
|
||||
return normPower * pow(k,n) * T0 * T0;
|
||||
}
|
||||
|
||||
double CosmoPower::powerOld(double k)
|
||||
{
|
||||
static const double l = 1/(Omega * h*h);
|
||||
static const double alpha = 1.7 * l, beta = 9.0 * pow(l, 1.5), gamma = l*l;
|
||||
return normPower * pow(k,n) * pow(1 + alpha * k + beta * pow(k,1.5) + gamma *k*k,-2);
|
||||
}
|
||||
|
||||
double CosmoPower::powerSugiyama(double k)
|
||||
{
|
||||
double q = k * Theta_27*Theta_27 / (OmegaEff * exp(-OMEGA_B - sqrt(h/0.5)*OMEGA_B/OMEGA_0));
|
||||
double L0 = log(2*M_E + 1.8 * q);
|
||||
double C0 = 14.2 + 731 / (1 + 62.5 * q);
|
||||
double T_k = L0 / (L0 + C0 * q*q);
|
||||
|
||||
return normPower * pow(k,n) * T_k * T_k;
|
||||
}
|
||||
|
||||
double CosmoPower::powerBardeen(double k)
|
||||
{
|
||||
double q = k / (OmegaEff);
|
||||
|
||||
double poly = 1 + 3.89 * q + pow(16.1*q,2) + pow(5.46*q,3) + pow(6.71*q,4);
|
||||
double T_k = log(1+2.34*q)/(2.34*q) * pow(poly,-0.25);
|
||||
|
||||
return normPower * pow(k,n) * T_k * T_k;
|
||||
}
|
||||
|
||||
double CosmoPower::powerBDM(double k)
|
||||
{
|
||||
k /= h*h;
|
||||
double alpha1 = 190;
|
||||
double Gmu = 4.6;
|
||||
double alpha2 = 11.5;
|
||||
double alpha3 = 11;
|
||||
double alpha4 = 12.55;
|
||||
double alpha5 = 0.0004;
|
||||
return normPower*k*alpha1*alpha1*Gmu*Gmu/(1+(alpha2*k)+pow(alpha3*k,2)+pow(alpha4*k,3))*pow(1+pow(alpha5/k,2), -2);
|
||||
}
|
||||
|
||||
double CosmoPower::powerTest(double k)
|
||||
{
|
||||
return 1/(1+k*k);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function computes the normalization of the power spectrum. It requests
|
||||
* a sigma8 (density fluctuations within 8 Mpc/h)
|
||||
*/
|
||||
static double gslPowSpecNorm(double k, void *params)
|
||||
{
|
||||
CosmoPower *c = (CosmoPower *)params;
|
||||
|
||||
return c->integrandNormalize(k);
|
||||
}
|
||||
|
||||
double CosmoPower::integrandNormalize(double x)
|
||||
{
|
||||
double k = (1-x)/x;
|
||||
double f = tophatFilter(k*8.0/h);
|
||||
return power(k)*k*k*f*f/(x*x);
|
||||
}
|
||||
|
||||
void CosmoPower::normalize()
|
||||
{
|
||||
double normVal = 0;
|
||||
double abserr;
|
||||
gsl_integration_workspace *w = gsl_integration_workspace_alloc(NUM_ITERATION);
|
||||
gsl_function f;
|
||||
|
||||
f.function = gslPowSpecNorm;
|
||||
f.params = this;
|
||||
|
||||
normPower = 1;
|
||||
|
||||
ofstream ff("PP_k.txt");
|
||||
for (int i = 0; i < 100; i++)
|
||||
{
|
||||
double k = pow(10.0, 4.0*i/100.-2);
|
||||
ff << k << " " << power(k) << endl;
|
||||
}
|
||||
|
||||
// gsl_integration_qagiu(&f, 0, 0, TOLERANCE, NUM_ITERATION, w, &normVal, &abserr);
|
||||
gsl_integration_qag(&f, 0, 1, 0, TOLERANCE, NUM_ITERATION, GSL_INTEG_GAUSS61, w, &normVal, &abserr);
|
||||
gsl_integration_workspace_free(w);
|
||||
|
||||
normVal /= (2*M_PI*M_PI);
|
||||
|
||||
normPower = SIGMA8*SIGMA8/normVal;
|
||||
}
|
||||
|
||||
void CosmoPower::updateCosmology()
|
||||
{
|
||||
OMEGA_0 = OMEGA_B+OMEGA_C;
|
||||
Omega = OMEGA_0;
|
||||
beta = pow(OMEGA_0, 5./9);
|
||||
OmegaEff = OMEGA_0 * h * h;
|
||||
Gamma0 = OMEGA_0 * h * h;
|
||||
omega_B = OMEGA_B * h * h;
|
||||
omega_C = OMEGA_C * h * h;
|
||||
}
|
||||
|
||||
void CosmoPower::updatePhysicalCosmology()
|
||||
{
|
||||
OMEGA_B = omega_B / (h*h);
|
||||
OMEGA_C = omega_C / (h*h);
|
||||
OMEGA_0 = Gamma0 / (h*h);
|
||||
beta = pow(OMEGA_0, 5./9);
|
||||
}
|
||||
|
||||
double CosmoPower::eval_theta_theta(double k)
|
||||
{
|
||||
// Jennings (2012) fit
|
||||
double P_deltadelta = power(k);
|
||||
|
||||
static const double alpha0 = -12480.5, alpha1 = 1.824, alpha2 = 2165.87, alpha3=1.796;
|
||||
if (k > 0.3)
|
||||
return 0;
|
||||
double r =(alpha0*sqrt(P_deltadelta) + alpha1*P_deltadelta*P_deltadelta)/(alpha2 + alpha3*P_deltadelta);
|
||||
assert(P_deltadelta > 0);
|
||||
|
||||
if (r < 0)
|
||||
return 0;
|
||||
return r;
|
||||
}
|
||||
|
||||
double CosmoPower::power(double k)
|
||||
{
|
||||
return (this->*eval)(k);
|
||||
}
|
||||
|
||||
|
||||
void CosmoPower::setFunction(CosmoFunction f)
|
||||
{
|
||||
switch (f)
|
||||
{
|
||||
case POWER_EFSTATHIOU:
|
||||
eval = &CosmoPower::powerEfstathiou;
|
||||
break;
|
||||
case HU_WIGGLES:
|
||||
eval = &CosmoPower::powerHuWiggles;
|
||||
break;
|
||||
case HU_BARYON:
|
||||
eval = &CosmoPower::powerHuBaryons;
|
||||
break;
|
||||
case OLD_POWERSPECTRUM:
|
||||
eval = &CosmoPower::powerOld;
|
||||
break;
|
||||
case POWER_BARDEEN:
|
||||
eval = &CosmoPower::powerBardeen;
|
||||
break;
|
||||
case POWER_SUGIYAMA:
|
||||
eval = &CosmoPower::powerSugiyama;
|
||||
break;
|
||||
case POWER_BDM:
|
||||
eval = &CosmoPower::powerBDM;
|
||||
break;
|
||||
case POWER_TEST:
|
||||
eval = &CosmoPower::powerTest;
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
void CosmoPower::setNormalization(double A_K)
|
||||
{
|
||||
normPower = A_K/power(0.002);
|
||||
}
|
74
external/cosmotool/src/cosmopower.hpp
vendored
Normal file
74
external/cosmotool/src/cosmopower.hpp
vendored
Normal file
|
@ -0,0 +1,74 @@
|
|||
#ifndef _COSMOPOWER_HPP
|
||||
#define _COSMOPOWER_HPP
|
||||
|
||||
namespace CosmoTool {
|
||||
|
||||
class CosmoPower
|
||||
{
|
||||
public:
|
||||
// PRIMARY VARIABLES
|
||||
double n;
|
||||
double K0;
|
||||
double V_LG_CMB;
|
||||
|
||||
double CMB_VECTOR[3];
|
||||
|
||||
double h;
|
||||
double SIGMA8;
|
||||
double OMEGA_B;
|
||||
double OMEGA_C;
|
||||
double omega_B;
|
||||
double omega_C;
|
||||
double Theta_27;
|
||||
|
||||
// DERIVED VARIABLES
|
||||
double OMEGA_0;
|
||||
double Omega;
|
||||
double beta;
|
||||
double OmegaEff;
|
||||
double Gamma0;
|
||||
double normPower;
|
||||
|
||||
enum CosmoFunction
|
||||
{
|
||||
POWER_EFSTATHIOU,
|
||||
HU_WIGGLES,
|
||||
HU_BARYON,
|
||||
OLD_POWERSPECTRUM,
|
||||
POWER_BARDEEN,
|
||||
POWER_SUGIYAMA,
|
||||
POWER_BDM,
|
||||
POWER_TEST
|
||||
};
|
||||
|
||||
CosmoPower();
|
||||
|
||||
void setFunction(CosmoFunction f);
|
||||
|
||||
void updateCosmology();
|
||||
void updatePhysicalCosmology();
|
||||
void normalize();
|
||||
void setNormalization(double A_K);
|
||||
|
||||
|
||||
double eval_theta_theta(double k);
|
||||
double power(double k);
|
||||
|
||||
double integrandNormalize(double k);
|
||||
private:
|
||||
double (CosmoPower::*eval)(double);
|
||||
|
||||
double powerEfstathiou(double k);
|
||||
double powerHuWiggles(double k);
|
||||
double powerHuBaryons(double k);
|
||||
double powerOld(double k);
|
||||
double powerBardeen(double k);
|
||||
double powerSugiyama(double k);
|
||||
double powerBDM(double k);
|
||||
double powerTest(double k);
|
||||
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
232
external/cosmotool/src/fourier/details/euclidian_maps.hpp
vendored
Normal file
232
external/cosmotool/src/fourier/details/euclidian_maps.hpp
vendored
Normal file
|
@ -0,0 +1,232 @@
|
|||
#ifndef __DETAILS_EUCLIDIAN_MAPS
|
||||
#define __DETAILS_EUCLIDIAN_MAPS
|
||||
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
class EuclidianFourierMapBase: public FourierMap<T>
|
||||
{
|
||||
public:
|
||||
typedef std::vector<int> DimArray;
|
||||
private:
|
||||
boost::shared_ptr<T> m_data;
|
||||
DimArray m_dims;
|
||||
long m_size;
|
||||
public:
|
||||
|
||||
EuclidianFourierMapBase(boost::shared_ptr<T> indata, const DimArray& indims)
|
||||
{
|
||||
m_data = indata;
|
||||
m_dims = indims;
|
||||
m_size = 1;
|
||||
for (int i = 0; i < m_dims.size(); i++)
|
||||
m_size *= m_dims[i];
|
||||
}
|
||||
|
||||
virtual ~EuclidianFourierMapBase()
|
||||
{
|
||||
}
|
||||
|
||||
const DimArray& getDims() const { return m_dims; }
|
||||
|
||||
virtual const T *data() const { return m_data.get(); }
|
||||
virtual T *data() { return m_data.get(); }
|
||||
virtual long size() const { return m_size; }
|
||||
|
||||
virtual FourierMap<T> *copy() const
|
||||
{
|
||||
FourierMap<T> *m = this->mimick();
|
||||
m->eigen() = this->eigen();
|
||||
return m;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class EuclidianFourierMapReal: public EuclidianFourierMapBase<T>
|
||||
{
|
||||
public:
|
||||
typedef typename EuclidianFourierMapBase<T>::DimArray DimArray;
|
||||
|
||||
EuclidianFourierMapReal(boost::shared_ptr<T> indata, const DimArray& indims)
|
||||
: EuclidianFourierMapBase<T>(indata, indims)
|
||||
{}
|
||||
|
||||
virtual FourierMap<T> *mimick() const
|
||||
{
|
||||
return new EuclidianFourierMapReal<T>(
|
||||
boost::shared_ptr<T>((T *)fftw_malloc(sizeof(T)*this->size()),
|
||||
std::ptr_fun(fftw_free)),
|
||||
this->getDims());
|
||||
}
|
||||
|
||||
virtual T dot_product(const FourierMap<T>& other) const
|
||||
throw(std::bad_cast)
|
||||
{
|
||||
const EuclidianFourierMapReal<T>& m2 = dynamic_cast<const EuclidianFourierMapReal<T>&>(other);
|
||||
if (this->size() != m2.size())
|
||||
throw std::bad_cast();
|
||||
|
||||
return (this->eigen()*m2.eigen()).sum();
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class EuclidianFourierMapComplex: public EuclidianFourierMapBase<std::complex<T> >
|
||||
{
|
||||
protected:
|
||||
typedef boost::shared_ptr<std::complex<T> > ptr_t;
|
||||
std::vector<double> delta_k;
|
||||
int m_dim0;
|
||||
bool even0, alleven;
|
||||
long plane_size;
|
||||
public:
|
||||
typedef typename EuclidianFourierMapBase<std::complex<T> >::DimArray DimArray;
|
||||
|
||||
EuclidianFourierMapComplex(ptr_t indata,
|
||||
int dim0,
|
||||
const DimArray& indims,
|
||||
const std::vector<double>& dk)
|
||||
: EuclidianFourierMapBase<std::complex<T> >(indata, indims), delta_k(dk), m_dim0(dim0), even0((dim0 % 2)==0)
|
||||
{
|
||||
assert(dk.size() == indims.size());
|
||||
plane_size = 1;
|
||||
alleven = true;
|
||||
for (int q = 1; q < indims.size(); q++)
|
||||
{
|
||||
plane_size *= indims[q];
|
||||
alleven = alleven && ((indims[q]%2)==0);
|
||||
}
|
||||
}
|
||||
|
||||
virtual FourierMap<std::complex<T> > *mimick() const
|
||||
{
|
||||
return
|
||||
new EuclidianFourierMapComplex<T>(
|
||||
ptr_t((std::complex<T> *)
|
||||
fftw_malloc(sizeof(std::complex<T>)*this->size()),
|
||||
std::ptr_fun(fftw_free)),
|
||||
m_dim0,
|
||||
this->getDims(),
|
||||
this->delta_k);
|
||||
}
|
||||
|
||||
const std::vector<double>& get_delta_k() const
|
||||
{
|
||||
return this->delta_k;
|
||||
}
|
||||
|
||||
template<typename Array, typename Array2>
|
||||
void get_Kvec(const Array& ik, Array2& kvec) const
|
||||
{
|
||||
const DimArray& dims = this->getDims();
|
||||
assert(ik.size() == dims.size());
|
||||
assert(kvec.size() == dims.size());
|
||||
|
||||
kvec[0] = ik[0] * delta_k[0];
|
||||
for (int q = 1; q < ik.size(); q++)
|
||||
{
|
||||
int dk = ik[q];
|
||||
if (dk > dims[q]/2)
|
||||
dk = dk - dims[q];
|
||||
|
||||
kvec[q] = dk*delta_k[q];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Array2>
|
||||
void get_Kvec(long p, Array2& kvec) const
|
||||
{
|
||||
const DimArray& dims = this->getDims();
|
||||
DimArray d(delta_k.size());
|
||||
get_IKvec(p, d);
|
||||
get_Kvec(d, kvec);
|
||||
}
|
||||
|
||||
void get_IKvec(long p, DimArray& ikvec) const
|
||||
{
|
||||
const DimArray& dims = this->getDims();
|
||||
assert(dims.size()==ikvec.size());
|
||||
for (int q = 0; q < ikvec.size(); q++)
|
||||
{
|
||||
ikvec[q] = p%dims[q];
|
||||
p = (p-ikvec[q])/dims[q];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<typename Array>
|
||||
double get_K(const Array& ik) const
|
||||
{
|
||||
const DimArray& dims = this->getDims();
|
||||
assert(ik.size() == dims.size());
|
||||
double k2 = 0;
|
||||
k2 += CosmoTool::square(ik[0]*delta_k[0]);
|
||||
|
||||
for (int q = 1; q < ik.size(); q++)
|
||||
{
|
||||
int dk = ik[q];
|
||||
|
||||
if (dk > dims[q]/2)
|
||||
dk = dk - dims[q];
|
||||
|
||||
k2 += CosmoTool::square(delta_k[q]*dk);
|
||||
}
|
||||
return std::sqrt(k2);
|
||||
}
|
||||
|
||||
double get_K(long p) const
|
||||
{
|
||||
const DimArray& dims = this->getDims();
|
||||
DimArray d(delta_k.size());
|
||||
for (int q = 0; q < d.size(); q++)
|
||||
{
|
||||
d[q] = p%dims[q];
|
||||
p = (p-d[q])/dims[q];
|
||||
}
|
||||
return get_K(d);
|
||||
}
|
||||
|
||||
bool allDimensionsEven() const { return alleven; }
|
||||
bool firstDimensionEven() const { return even0; }
|
||||
|
||||
virtual std::complex<T> dot_product(const FourierMap<std::complex<T> >& other) const
|
||||
throw(std::bad_cast)
|
||||
{
|
||||
const EuclidianFourierMapComplex<T>& m2 = dynamic_cast<const EuclidianFourierMapComplex<T>&>(other);
|
||||
if (this->size() != m2.size())
|
||||
throw std::bad_cast();
|
||||
|
||||
const std::complex<T> *d1 = this->data();
|
||||
const std::complex<T> *d2 = m2.data();
|
||||
const DimArray& dims = this->getDims();
|
||||
int N0 = dims[0] + (even0 ? 0 : 1);
|
||||
std::complex<T> result = 0;
|
||||
|
||||
for (long q0 = 1; q0 < N0-1; q0++)
|
||||
{
|
||||
for (long p = 0; p < plane_size; p++)
|
||||
{
|
||||
long idx = q0+dims[0]*p;
|
||||
assert(idx < this->size());
|
||||
result += 2*(conj(d1[idx]) * d2[idx]).real();
|
||||
}
|
||||
}
|
||||
if (even0)
|
||||
{
|
||||
for (long p = 0; p < plane_size; p++)
|
||||
{
|
||||
long q0 = N0*p, q1 = (p+1)*N0-1;
|
||||
result += conj(d1[q0]) * d2[q0];
|
||||
result += conj(d1[q1]) * d2[q1];
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
180
external/cosmotool/src/fourier/details/euclidian_spectrum_1d.hpp
vendored
Normal file
180
external/cosmotool/src/fourier/details/euclidian_spectrum_1d.hpp
vendored
Normal file
|
@ -0,0 +1,180 @@
|
|||
#ifndef __DETAILS_EUCLIDIAN_SPECTRUM_1D
|
||||
#define __DETAILS_EUCLIDIAN_SPECTRUM_1D
|
||||
|
||||
#include <iostream>
|
||||
#include <boost/function.hpp>
|
||||
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
template<typename T>
|
||||
class EuclidianOperator
|
||||
{
|
||||
public:
|
||||
typedef boost::function1<T, T> Function;
|
||||
|
||||
Function base, op;
|
||||
T operator()(T k) {
|
||||
return op(base(k));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class EuclidianSpectrum_1D: public SpectrumFunction<T>
|
||||
{
|
||||
public:
|
||||
typedef boost::function1<T, T> Function;
|
||||
protected:
|
||||
Function f;
|
||||
|
||||
static T msqrt(T a) { return std::sqrt(a); }
|
||||
public:
|
||||
typedef typename SpectrumFunction<T>::FourierMapType FourierMapType;
|
||||
typedef typename SpectrumFunction<T>::SpectrumFunctionPtr SpectrumFunctionPtr;
|
||||
typedef boost::shared_ptr<FourierMapType> ptr_map;
|
||||
|
||||
EuclidianSpectrum_1D(Function P)
|
||||
: f(P)
|
||||
{
|
||||
}
|
||||
|
||||
void newRandomFourier(gsl_rng *rng, FourierMapType& out_map) const;
|
||||
|
||||
SpectrumFunctionPtr copy() const {
|
||||
return SpectrumFunctionPtr(new EuclidianSpectrum_1D(f));
|
||||
}
|
||||
|
||||
void sqrt() {
|
||||
EuclidianOperator<T> o;
|
||||
o.base = f;
|
||||
o.op = &EuclidianSpectrum_1D<T>::msqrt;
|
||||
f = (Function(o));
|
||||
}
|
||||
|
||||
void mul(FourierMapType& m) const;
|
||||
void mul_sqrt(FourierMapType& m) const;
|
||||
void mul_inv(FourierMapType& m) const;
|
||||
void mul_inv_sqrt(FourierMapType& m) const;
|
||||
};
|
||||
|
||||
|
||||
template<typename T>
|
||||
void EuclidianSpectrum_1D<T>::newRandomFourier(gsl_rng *rng, FourierMapType& out_map) const
|
||||
{
|
||||
typedef EuclidianFourierMapComplex<T> MapT;
|
||||
typedef typename EuclidianSpectrum_1D<T>::ptr_map ptr_map;
|
||||
typedef typename MapT::DimArray DimArray;
|
||||
|
||||
MapT& rand_map = dynamic_cast<MapT&>(out_map);
|
||||
|
||||
std::complex<T> *d = rand_map.data();
|
||||
long idx;
|
||||
const DimArray& dims = rand_map.getDims();
|
||||
const std::vector<double>& delta_k = rand_map.get_delta_k();
|
||||
long plane_size;
|
||||
bool alleven = rand_map.allDimensionsEven();
|
||||
double V = 1;
|
||||
|
||||
for (int p = 0; p < delta_k.size(); p++)
|
||||
V *= (2*M_PI/delta_k[p]);
|
||||
|
||||
for (long p = 1; p < rand_map.size(); p++)
|
||||
{
|
||||
double A_k = std::sqrt(0.5*V*f(rand_map.get_K(p)));
|
||||
d[p] = std::complex<T>(gsl_ran_gaussian(rng, A_k),
|
||||
gsl_ran_gaussian(rng, A_k));
|
||||
}
|
||||
// Generate the mean value
|
||||
d[0] = std::complex<T>(gsl_ran_gaussian(rng, std::sqrt(V*f(0))), 0);
|
||||
|
||||
if (!rand_map.firstDimensionEven())
|
||||
return;
|
||||
|
||||
// Correct the Nyquist plane
|
||||
idx = dims[0]-1; // Stick to the last element of the first dimension
|
||||
d[idx] = std::complex<T>(d[idx].real() + d[idx].imag(), 0);
|
||||
// 1D is special case
|
||||
if (dims.size() == 1)
|
||||
return;
|
||||
|
||||
plane_size = 1;
|
||||
for (int q = 1; q < dims.size(); q++)
|
||||
{
|
||||
plane_size *= dims[q];
|
||||
}
|
||||
|
||||
for (long p = 1; p < plane_size/2; p++)
|
||||
{
|
||||
long q = (p+1)*dims[0]-1;
|
||||
long q2 = (plane_size-p+1)*dims[0]-1;
|
||||
assert(q < plane_size*dims[0]);
|
||||
assert(q2 < plane_size*dims[0]);
|
||||
d[q] = conj(d[q2]);
|
||||
}
|
||||
|
||||
if (alleven)
|
||||
{
|
||||
long q = 0;
|
||||
for (int i = dims.size()-1; i >= 1; i--)
|
||||
q = dims[i]*q + dims[i]/2;
|
||||
q += dims[0]-1;
|
||||
d[q] = std::complex<T>(d[q].real()+d[q].imag(),0);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void EuclidianSpectrum_1D<T>::mul(FourierMapType& m) const
|
||||
{
|
||||
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
|
||||
std::complex<T> *d = m.data();
|
||||
|
||||
for (long p = 0; p < m_c.size(); p++)
|
||||
d[p] *= f(m_c.get_K(p));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void EuclidianSpectrum_1D<T>::mul_sqrt(FourierMapType& m) const
|
||||
{
|
||||
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
|
||||
std::complex<T> *d = m.data();
|
||||
|
||||
for (long p = 0; p < m_c.size(); p++)
|
||||
d[p] *= std::sqrt(f(m_c.get_K(p)));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void EuclidianSpectrum_1D<T>::mul_inv(FourierMapType& m) const
|
||||
{
|
||||
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
|
||||
std::complex<T> *d = m.data();
|
||||
|
||||
for (long p = 0; p < m_c.size(); p++)
|
||||
{
|
||||
T A = f(m_c.get_K(p));
|
||||
if (A==0)
|
||||
d[p] = 0;
|
||||
else
|
||||
d[p] /= A;
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void EuclidianSpectrum_1D<T>::mul_inv_sqrt(FourierMapType& m) const
|
||||
{
|
||||
EuclidianFourierMapComplex<T>& m_c = dynamic_cast<EuclidianFourierMapComplex<T>&>(m);
|
||||
std::complex<T> *d = m.data();
|
||||
|
||||
for (long p = 0; p < m_c.size(); p++)
|
||||
{
|
||||
T A = std::sqrt(f(m_c.get_K(p)));
|
||||
if (A == 0)
|
||||
d[p] = 0;
|
||||
else
|
||||
d[p] /= A;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
#endif
|
65
external/cosmotool/src/fourier/details/euclidian_spectrum_1d_bin.hpp
vendored
Normal file
65
external/cosmotool/src/fourier/details/euclidian_spectrum_1d_bin.hpp
vendored
Normal file
|
@ -0,0 +1,65 @@
|
|||
#ifndef __DETAILS_EUCLIDIAN_SPECTRUM_1D_BIN
|
||||
#define __DETAILS_EUCLIDIAN_SPECTRUM_1D_BIN
|
||||
|
||||
#include <boost/bind.hpp>
|
||||
#include <cmath>
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
template<typename T>
|
||||
class EuclidianSpectrum_1D_Binned: public EuclidianSpectrum_1D<T>
|
||||
{
|
||||
protected:
|
||||
T *m_data;
|
||||
long m_size;
|
||||
T m_kmin, m_kmax, m_logdeltak;
|
||||
std::vector<T> m_dof;
|
||||
public:
|
||||
typedef typename SpectrumFunction<T>::FourierMapType FourierMapType;
|
||||
typedef typename SpectrumFunction<T>::SpectrumFunctionPtr SpectrumFunctionPtr;
|
||||
typedef boost::shared_ptr<FourierMapType> ptr_map;
|
||||
|
||||
T interpolate_spectrum(T k)
|
||||
{
|
||||
T q = std::log(k/m_kmin)/m_logdeltak;
|
||||
long ik = std::floor(q);
|
||||
|
||||
if (ik >= m_size-1)
|
||||
return m_data[m_size-1];
|
||||
else if (ik < 0)
|
||||
return k/m_kmin*m_data[0];
|
||||
|
||||
return std::exp((q-ik)*m_data[ik+1] + (1-(q-ik))*m_data[ik]);
|
||||
}
|
||||
|
||||
EuclidianSpectrum_1D_Binned(int numBin, T kmin, T kmax)
|
||||
: EuclidianSpectrum_1D<T>(boost::bind(&EuclidianSpectrum_1D_Binned::interpolate_spectrum, this, _1))
|
||||
{
|
||||
m_data = new T[numBin];
|
||||
m_kmin = kmin;
|
||||
m_kmax = kmax;
|
||||
m_size = numBin;
|
||||
m_logdeltak = std::log(m_kmax/m_kmin);
|
||||
}
|
||||
|
||||
SpectrumFunctionPtr copy() const
|
||||
{
|
||||
EuclidianSpectrum_1D_Binned *s = new EuclidianSpectrum_1D_Binned(m_size, m_kmin, m_kmax);
|
||||
std::copy(m_data, m_data+m_size, s->m_data);
|
||||
return SpectrumFunctionPtr(s);
|
||||
}
|
||||
|
||||
void set_dof(std::vector<T>& dof_array)
|
||||
{
|
||||
assert(m_size == dof_array.size());
|
||||
m_dof = dof_array;
|
||||
}
|
||||
|
||||
const T *data() const { return m_data; }
|
||||
long size() const { return m_size; }
|
||||
const T *dof() const { return &m_dof[0]; }
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
181
external/cosmotool/src/fourier/details/euclidian_transform.hpp
vendored
Normal file
181
external/cosmotool/src/fourier/details/euclidian_transform.hpp
vendored
Normal file
|
@ -0,0 +1,181 @@
|
|||
#ifndef __DETAILS_EUCLIDIAN_TRANSFORM
|
||||
#define __DETAILS_EUCLIDIAN_TRANSFORM
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
class EuclidianFourierTransform: public FourierTransform<T>
|
||||
{
|
||||
public:
|
||||
typedef typename EuclidianFourierMapBase<T>::DimArray DimArray;
|
||||
private:
|
||||
typedef FFTW_Calls<T> calls;
|
||||
EuclidianFourierMapReal<T> *realMap;
|
||||
EuclidianFourierMapComplex<T> *fourierMap;
|
||||
typename calls::plan_type m_analysis, m_synthesis;
|
||||
double volume;
|
||||
long N, Nc;
|
||||
DimArray m_dims, m_dims_hc;
|
||||
std::vector<double> m_L;
|
||||
public:
|
||||
EuclidianFourierTransform(const DimArray& dims, const std::vector<double>& L)
|
||||
{
|
||||
assert(L.size() == dims.size());
|
||||
std::vector<double> dk(L.size());
|
||||
std::vector<int> swapped_dims(dims.size());
|
||||
|
||||
m_dims = dims;
|
||||
m_dims_hc = dims;
|
||||
m_dims_hc[0] = dims[0]/2+1;
|
||||
m_L = L;
|
||||
|
||||
N = 1;
|
||||
Nc = 1;
|
||||
volume = 1;
|
||||
for (int i = 0; i < dims.size(); i++)
|
||||
{
|
||||
N *= dims[i];
|
||||
Nc *= m_dims_hc[i];
|
||||
volume *= L[i];
|
||||
dk[i] = 2*M_PI/L[i];
|
||||
swapped_dims[dims.size()-1-i] = dims[i];
|
||||
}
|
||||
|
||||
realMap = new EuclidianFourierMapReal<T>(
|
||||
boost::shared_ptr<T>(calls::alloc_real(N),
|
||||
std::ptr_fun(calls::free)),
|
||||
m_dims);
|
||||
fourierMap = new EuclidianFourierMapComplex<T>(
|
||||
boost::shared_ptr<std::complex<T> >((std::complex<T>*)calls::alloc_complex(Nc),
|
||||
std::ptr_fun(calls::free)),
|
||||
dims[0], m_dims_hc, dk);
|
||||
m_analysis = calls::plan_dft_r2c(dims.size(), &swapped_dims[0],
|
||||
realMap->data(), (typename calls::complex_type *)fourierMap->data(),
|
||||
FFTW_DESTROY_INPUT|FFTW_MEASURE);
|
||||
m_synthesis = calls::plan_dft_c2r(dims.size(), &swapped_dims[0],
|
||||
(typename calls::complex_type *)fourierMap->data(), realMap->data(),
|
||||
FFTW_DESTROY_INPUT|FFTW_MEASURE);
|
||||
}
|
||||
|
||||
virtual ~EuclidianFourierTransform()
|
||||
{
|
||||
delete realMap;
|
||||
delete fourierMap;
|
||||
calls::destroy_plan(m_synthesis);
|
||||
calls::destroy_plan(m_analysis);
|
||||
}
|
||||
|
||||
void synthesis()
|
||||
{
|
||||
calls::execute(m_synthesis);
|
||||
realMap->scale(1/volume);
|
||||
}
|
||||
|
||||
void analysis()
|
||||
{
|
||||
calls::execute(m_analysis);
|
||||
fourierMap->scale(volume/N);
|
||||
}
|
||||
|
||||
void synthesis_conjugate()
|
||||
{
|
||||
calls::execute(m_analysis);
|
||||
fourierMap->scale(1/volume);
|
||||
}
|
||||
|
||||
void analysis_conjugate()
|
||||
{
|
||||
calls::execute(m_synthesis);
|
||||
realMap->scale(volume/N);
|
||||
}
|
||||
|
||||
const FourierMap<std::complex<T> >& fourierSpace() const
|
||||
{
|
||||
return *fourierMap;
|
||||
}
|
||||
|
||||
FourierMap<std::complex<T> >& fourierSpace()
|
||||
{
|
||||
return *fourierMap;
|
||||
}
|
||||
|
||||
const FourierMap<T>& realSpace() const
|
||||
{
|
||||
return *realMap;
|
||||
}
|
||||
|
||||
FourierMap<T>& realSpace()
|
||||
{
|
||||
return *realMap;
|
||||
}
|
||||
|
||||
FourierTransform<T> *mimick() const
|
||||
{
|
||||
return new EuclidianFourierTransform(m_dims, m_L);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class EuclidianFourierTransform_1d: public EuclidianFourierTransform<T>
|
||||
{
|
||||
private:
|
||||
template<typename T2>
|
||||
static std::vector<T2> make_1d_vector(T2 a)
|
||||
{
|
||||
T2 arr[2] = { a};
|
||||
return std::vector<T2>(&arr[0],&arr[1]);
|
||||
}
|
||||
public:
|
||||
EuclidianFourierTransform_1d(int Nx, double Lx)
|
||||
: EuclidianFourierTransform<T>(make_1d_vector<int>(Nx), make_1d_vector<double>(Lx))
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~EuclidianFourierTransform_1d() {}
|
||||
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class EuclidianFourierTransform_2d: public EuclidianFourierTransform<T>
|
||||
{
|
||||
private:
|
||||
template<typename T2>
|
||||
static std::vector<T2> make_2d_vector(T2 a, T2 b)
|
||||
{
|
||||
T2 arr[2] = { a, b};
|
||||
return std::vector<T2>(&arr[0], &arr[2]);
|
||||
}
|
||||
public:
|
||||
EuclidianFourierTransform_2d(int Nx, int Ny, double Lx, double Ly)
|
||||
: EuclidianFourierTransform<T>(make_2d_vector<int>(Nx, Ny), make_2d_vector<double>(Lx, Ly))
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~EuclidianFourierTransform_2d() {}
|
||||
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
class EuclidianFourierTransform_3d: public EuclidianFourierTransform<T>
|
||||
{
|
||||
private:
|
||||
template<typename T2>
|
||||
static std::vector<T2> make_3d_vector(T2 a, T2 b, T2 c)
|
||||
{
|
||||
T2 arr[3] = { a, b, c};
|
||||
return std::vector<T2>(&arr[0], &arr[3]);
|
||||
}
|
||||
|
||||
public:
|
||||
EuclidianFourierTransform_3d(int Nx, int Ny, int Nz, double Lx, double Ly, double Lz)
|
||||
: EuclidianFourierTransform<T>(make_3d_vector<int>(Nx, Ny, Nz), make_3d_vector<double>(Lx, Ly, Lz))
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~EuclidianFourierTransform_3d() {}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
76
external/cosmotool/src/fourier/details/healpix_alms.hpp
vendored
Normal file
76
external/cosmotool/src/fourier/details/healpix_alms.hpp
vendored
Normal file
|
@ -0,0 +1,76 @@
|
|||
#ifndef __COSMOTOOL_FOURIER_HEALPIX_DETAILS_ALM_HPP
|
||||
#define __COSMOTOOL_FOURIER_HEALPIX_DETAILS_ALM_HPP
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
template<typename T>
|
||||
class HealpixFourierALM: public FourierMap<std::complex<T> >
|
||||
{
|
||||
private:
|
||||
std::complex<T> *alms;
|
||||
long m_size;
|
||||
long Lmax_, Mmax_, TVal_;
|
||||
Eigen::aligned_allocator<std::complex<T> > alloc;
|
||||
public:
|
||||
typedef unsigned long LType;
|
||||
|
||||
LType Lmax() const { return Lmax_; }
|
||||
LType Mmax() const { return Mmax_; }
|
||||
|
||||
LType Num_Alms() const
|
||||
{
|
||||
return ((Mmax_+1)*(Mmax_+2))/2 + (Mmax_+1)*(Lmax_-Mmax_);
|
||||
}
|
||||
|
||||
LType index_l0(LType m) const
|
||||
{
|
||||
return ((m*(TVal_-m))/2);
|
||||
}
|
||||
|
||||
LType index(LType l, LType m) const
|
||||
{
|
||||
return index_l0(m) + l;
|
||||
}
|
||||
|
||||
HealpixFourierALM(LType lmax, LType mmax)
|
||||
: Lmax_(lmax), Mmax_(mmax), TVal_(2*lmax+1)
|
||||
{
|
||||
m_size = Num_Alms();
|
||||
alms = alloc.allocate(m_size);
|
||||
}
|
||||
|
||||
virtual ~HealpixFourierALM()
|
||||
{
|
||||
alloc.deallocate(alms, m_size);
|
||||
}
|
||||
|
||||
virtual const std::complex<T>* data() const { return alms; }
|
||||
virtual std::complex<T> * data() { return alms;}
|
||||
virtual long size() const { return m_size; }
|
||||
|
||||
virtual FourierMap<std::complex<T> > *mimick() const
|
||||
{
|
||||
return new HealpixFourierALM<T>(Lmax_, Mmax_);
|
||||
}
|
||||
|
||||
virtual std::complex<T> dot_product(const FourierMap<std::complex<T> >& other) const
|
||||
throw(std::bad_cast)
|
||||
{
|
||||
const HealpixFourierALM<T>& mfm = dynamic_cast<const HealpixFourierALM<T>&>(other);
|
||||
typedef typename FourierMap<std::complex<T> >::MapType MapType;
|
||||
std::complex<T> S;
|
||||
|
||||
if (m_size != mfm.m_size)
|
||||
throw std::bad_cast();
|
||||
|
||||
MapType m1(alms, m_size);
|
||||
MapType m2(mfm.alms, mfm.m_size);
|
||||
|
||||
S = (m1.block(0,0,1,Lmax_+1).conjugate() * m2.block(0,0,1,Lmax_+1)).sum();
|
||||
S += std::complex<T>(2,0)*(m1.block(0,1+Lmax_,1,m_size-1-Lmax_).conjugate() * m2.block(0,1+Lmax_,1,m_size-1-Lmax_)).sum();
|
||||
return S;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
54
external/cosmotool/src/fourier/details/healpix_map.hpp
vendored
Normal file
54
external/cosmotool/src/fourier/details/healpix_map.hpp
vendored
Normal file
|
@ -0,0 +1,54 @@
|
|||
#ifndef __COSMOTOOL_FOURIER_HEALPIX_DETAILS_MAP_HPP
|
||||
#define __COSMOTOOL_FOURIER_HEALPIX_DETAILS_MAP_HPP
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
class HealpixFourierMap: public FourierMap<T>
|
||||
{
|
||||
private:
|
||||
T *m_data;
|
||||
long Npix, m_Nside;
|
||||
Eigen::aligned_allocator<T> alloc;
|
||||
public:
|
||||
HealpixFourierMap(long nSide)
|
||||
: Npix(12*nSide*nSide), m_Nside(nSide)
|
||||
{
|
||||
m_data = alloc.allocate(Npix);
|
||||
}
|
||||
|
||||
virtual ~HealpixFourierMap()
|
||||
{
|
||||
alloc.deallocate(m_data, Npix);
|
||||
}
|
||||
|
||||
long Nside() const { return m_Nside; }
|
||||
virtual const T* data() const { return m_data; }
|
||||
virtual T *data() { return m_data; }
|
||||
virtual long size() const { return Npix; }
|
||||
|
||||
virtual T dot_product(const FourierMap<T>& other) const
|
||||
throw(std::bad_cast)
|
||||
{
|
||||
typedef typename FourierMap<T>::MapType MapType;
|
||||
|
||||
const HealpixFourierMap<T>& mfm = dynamic_cast<const HealpixFourierMap<T>&>(other);
|
||||
if (Npix != mfm.size())
|
||||
throw std::bad_cast();
|
||||
|
||||
MapType m1(m_data, Npix);
|
||||
MapType m2(mfm.m_data, mfm.Npix);
|
||||
|
||||
return (m1*m2).sum();
|
||||
}
|
||||
|
||||
virtual FourierMap<T> *mimick() const
|
||||
{
|
||||
return new HealpixFourierMap<T>(m_Nside);
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
144
external/cosmotool/src/fourier/details/healpix_spectrum.hpp
vendored
Normal file
144
external/cosmotool/src/fourier/details/healpix_spectrum.hpp
vendored
Normal file
|
@ -0,0 +1,144 @@
|
|||
#ifndef __COSMOTOOL_FOURIER_HEALPIX_DETAILS_SPECTRUM_HPP
|
||||
#define __COSMOTOOL_FOURIER_HEALPIX_DETAILS_SPECTRUM_HPP
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
template<typename T>
|
||||
class HealpixSpectrum: public SpectrumFunction<T>
|
||||
{
|
||||
protected:
|
||||
std::vector<T> cls;
|
||||
int *m_dof;
|
||||
public:
|
||||
typedef typename SpectrumFunction<T>::FourierMapType FourierMapType;
|
||||
typedef boost::shared_ptr<FourierMapType> ptr_map;
|
||||
typedef typename SpectrumFunction<T>::SpectrumFunctionPtr SpectrumFunctionPtr;
|
||||
typedef unsigned long LType;
|
||||
|
||||
HealpixSpectrum(LType Lmax)
|
||||
: cls(Lmax+1), m_dof(new int[Lmax+1])
|
||||
{
|
||||
for (int l = 0; l <= Lmax; l++)
|
||||
m_dof[l] = l + 1;
|
||||
}
|
||||
|
||||
T *data() { return &cls[0]; }
|
||||
const T *data() const { return &cls[0]; }
|
||||
const int *dof() const { return m_dof; }
|
||||
|
||||
void set_dof(LType l, int dof) { m_dof[l] = dof; }
|
||||
|
||||
LType Lmax() const { return cls.size()-1; }
|
||||
long size() const { return cls.size(); }
|
||||
|
||||
void newRandomFourier(gsl_rng *rng, FourierMapType& like_map) const;
|
||||
|
||||
SpectrumFunctionPtr copy() const {
|
||||
HealpixSpectrum<T> *s = new HealpixSpectrum<T>(Lmax());
|
||||
s->cls = cls;
|
||||
return SpectrumFunctionPtr(s);
|
||||
}
|
||||
|
||||
void sqrt() {
|
||||
std::transform(cls.begin(), cls.end(), cls.begin(), std::ptr_fun<T,T>(std::sqrt));
|
||||
}
|
||||
|
||||
void mul(FourierMapType& m) const;
|
||||
void mul_sqrt(FourierMapType& m) const;
|
||||
void mul_inv(FourierMapType& m) const;
|
||||
void mul_inv_sqrt(FourierMapType& m) const;
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
void HealpixSpectrum<T>::newRandomFourier(gsl_rng *rng, FourierMapType& out_map) const
|
||||
{
|
||||
HealpixFourierALM<T>& alms = dynamic_cast<HealpixFourierALM<T>&>(out_map);
|
||||
long lmaxGen = std::min(cls.size()-1, alms.Lmax());
|
||||
std::complex<T> *new_data = alms.data();
|
||||
|
||||
for (LType l = 0; l <= lmaxGen; l++)
|
||||
{
|
||||
double Al = std::sqrt(cls[l]);
|
||||
|
||||
new_data[alms.index(l,0)] = gsl_ran_gaussian(rng, Al);
|
||||
Al *= M_SQRT1_2;
|
||||
for (LType m = 1; m <= std::min(l,alms.Mmax()); m++)
|
||||
{
|
||||
std::complex<T>& c = new_data[alms.index(l,m)];
|
||||
c.real() = gsl_ran_gaussian(rng, Al);
|
||||
c.imag() = gsl_ran_gaussian(rng, Al);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void HealpixSpectrum<T>::mul(FourierMapType& like_map) const
|
||||
{
|
||||
HealpixFourierALM<T>& alms = dynamic_cast<HealpixFourierALM<T>&>(like_map);
|
||||
std::complex<T> *data = alms.data();
|
||||
|
||||
for (LType l = 0; l <= alms.Lmax(); l++)
|
||||
{
|
||||
double Al = cls[l];
|
||||
|
||||
for (LType m = 0; m <= std::min(l,alms.Mmax()); m++)
|
||||
{
|
||||
data[alms.index(l,m)] *= Al;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void HealpixSpectrum<T>::mul_sqrt(FourierMapType& like_map) const
|
||||
{
|
||||
HealpixFourierALM<T>& alms = dynamic_cast<HealpixFourierALM<T>&>(like_map);
|
||||
std::complex<T> *data = alms.data();
|
||||
|
||||
for (LType l = 0; l <= alms.Lmax(); l++)
|
||||
{
|
||||
double Al = std::sqrt(cls[l]);
|
||||
|
||||
for (LType m = 0; m <= std::min(l,alms.Mmax()); m++)
|
||||
{
|
||||
data[alms.index(l,m)] *= Al;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void HealpixSpectrum<T>::mul_inv(FourierMapType& like_map) const
|
||||
{
|
||||
HealpixFourierALM<T>& alms = dynamic_cast<HealpixFourierALM<T>&>(like_map);
|
||||
std::complex<T> *data = alms.data();
|
||||
|
||||
for (LType l = 0; l <= alms.Lmax(); l++)
|
||||
{
|
||||
double Al = (cls[l] <= 0) ? 0 : (1/cls[l]);
|
||||
|
||||
for (LType m = 0; m <= std::min(l,alms.Mmax()); m++)
|
||||
{
|
||||
data[alms.index(l,m)] *= Al;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void HealpixSpectrum<T>::mul_inv_sqrt(FourierMapType& like_map) const
|
||||
{
|
||||
HealpixFourierALM<T>& alms = dynamic_cast<HealpixFourierALM<T>&>(like_map);
|
||||
std::complex<T> *data = alms.data();
|
||||
|
||||
for (LType l = 0; l <= alms.Lmax(); l++)
|
||||
{
|
||||
double Al = (cls[l] <= 0) ? 0 : std::sqrt(1/cls[l]);
|
||||
|
||||
for (LType m = 0; m <= std::min(l,alms.Mmax()); m++)
|
||||
{
|
||||
data[alms.index(l,m)] *= Al;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif
|
97
external/cosmotool/src/fourier/details/healpix_transform.hpp
vendored
Normal file
97
external/cosmotool/src/fourier/details/healpix_transform.hpp
vendored
Normal file
|
@ -0,0 +1,97 @@
|
|||
#ifndef __COSMOTOOL_FOURIER_HEALPIX_DETAILS_TRANSFORM_HPP
|
||||
#define __COSMOTOOL_FOURIER_HEALPIX_DETAILS_TRANSFORM_HPP
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
|
||||
template<typename T> struct HealpixJobHelper__ {};
|
||||
|
||||
template<> struct HealpixJobHelper__<double>
|
||||
{ enum {val=1}; };
|
||||
|
||||
template<> struct HealpixJobHelper__<float>
|
||||
{ enum {val=0}; };
|
||||
|
||||
|
||||
template<typename T>
|
||||
class HealpixFourierTransform: public FourierTransform<T>
|
||||
{
|
||||
private:
|
||||
sharp_alm_info *ainfo;
|
||||
sharp_geom_info *ginfo;
|
||||
HealpixFourierMap<T> realMap;
|
||||
HealpixFourierALM<T> fourierMap;
|
||||
int m_iterate;
|
||||
public:
|
||||
HealpixFourierTransform(long nSide, long Lmax, long Mmax, int iterate = 0)
|
||||
: realMap(nSide), fourierMap(Lmax, Mmax), ainfo(0), ginfo(0), m_iterate(iterate)
|
||||
{
|
||||
sharp_make_healpix_geom_info (nSide, 1, &ginfo);
|
||||
sharp_make_triangular_alm_info (Lmax, Mmax, 1, &ainfo);
|
||||
}
|
||||
|
||||
virtual ~HealpixFourierTransform()
|
||||
{
|
||||
sharp_destroy_geom_info(ginfo);
|
||||
sharp_destroy_alm_info(ainfo);
|
||||
}
|
||||
|
||||
virtual const FourierMap<std::complex<T> >& fourierSpace() const { return fourierMap; }
|
||||
|
||||
virtual FourierMap<std::complex<T> >& fourierSpace() { return fourierMap; }
|
||||
|
||||
virtual const FourierMap<T>& realSpace() const { return realMap; }
|
||||
|
||||
virtual FourierMap<T>& realSpace() { return realMap; }
|
||||
|
||||
virtual FourierTransform<T> *mimick() const
|
||||
{
|
||||
return new HealpixFourierTransform<T>(realMap.Nside(), fourierMap.Lmax(), fourierMap.Mmax());
|
||||
}
|
||||
|
||||
virtual void analysis()
|
||||
{
|
||||
void *aptr=reinterpret_cast<void *>(fourierMap.data()), *mptr=reinterpret_cast<void *>(realMap.data());
|
||||
|
||||
sharp_execute (SHARP_MAP2ALM, 0, 0, &aptr, &mptr, ginfo, ainfo, 1,
|
||||
HealpixJobHelper__<T>::val,0,0,0);
|
||||
for (int i = 0; i < m_iterate; i++)
|
||||
{
|
||||
HealpixFourierMap<T> tmp_map(realMap.Nside());
|
||||
void *tmp_ptr=reinterpret_cast<void *>(tmp_map.data());
|
||||
typename HealpixFourierMap<T>::MapType m0 = tmp_map.eigen();
|
||||
typename HealpixFourierMap<T>::MapType m1 = realMap.eigen();
|
||||
|
||||
sharp_execute (SHARP_ALM2MAP, 0, 0, &aptr, &tmp_ptr, ginfo, ainfo, 1,
|
||||
HealpixJobHelper__<T>::val,0,0,0);
|
||||
m0 = m1 - m0;
|
||||
sharp_execute (SHARP_MAP2ALM, 0, 1, &aptr, &tmp_ptr, ginfo, ainfo, 1,
|
||||
HealpixJobHelper__<T>::val,0,0,0);
|
||||
}
|
||||
}
|
||||
|
||||
virtual void synthesis()
|
||||
{
|
||||
void *aptr=reinterpret_cast<void *>(fourierMap.data()), *mptr=reinterpret_cast<void *>(realMap.data());
|
||||
|
||||
sharp_execute (SHARP_ALM2MAP, 0, 0, &aptr, &mptr, ginfo, ainfo, 1,
|
||||
HealpixJobHelper__<T>::val,0,0,0);
|
||||
}
|
||||
|
||||
virtual void analysis_conjugate()
|
||||
{
|
||||
synthesis();
|
||||
realMap.scale(4*M_PI/realMap.size());
|
||||
}
|
||||
|
||||
virtual void synthesis_conjugate()
|
||||
{
|
||||
analysis();
|
||||
fourierMap.scale(realMap.size()/(4*M_PI));
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
63
external/cosmotool/src/fourier/details/healpix_utility.hpp
vendored
Normal file
63
external/cosmotool/src/fourier/details/healpix_utility.hpp
vendored
Normal file
|
@ -0,0 +1,63 @@
|
|||
#ifndef __COSMOTOOL_FOURIER_HEALPIX_DETAILS_SPECTRUM_HP
|
||||
#define __COSMOTOOL_FOURIER_HEALPIX_DETAILS_SPECTRUM_HP
|
||||
|
||||
namespace CosmoTool
|
||||
{
|
||||
|
||||
template<typename T>
|
||||
class HealpixUtilityFunction: public MapUtilityFunction<T>
|
||||
{
|
||||
public:
|
||||
typedef typename MapUtilityFunction<T>::Spectrum Spectrum;
|
||||
typedef typename MapUtilityFunction<T>::Spectrum_ptr Spectrum_ptr;
|
||||
typedef typename MapUtilityFunction<T>::FMap FMap;
|
||||
typedef typename HealpixSpectrum<T>::LType LType;
|
||||
|
||||
Spectrum_ptr estimateSpectrumFromMap(const FMap& m) const
|
||||
{
|
||||
const HealpixFourierALM<T>& alms = dynamic_cast<const HealpixFourierALM<T>&>(m);
|
||||
LType Lmax = alms.Lmax(), Mmax = alms.Mmax();
|
||||
HealpixSpectrum<T> *spectrum = new HealpixSpectrum<T>(Lmax);
|
||||
T *data_cls = spectrum->data();
|
||||
const std::complex<T> *data_alms = alms.data();
|
||||
|
||||
// make an estimate of the cls
|
||||
std::fill(data_cls, data_cls+Lmax+1, 0);
|
||||
LType q = 0;
|
||||
for (LType m = 0; m <= Mmax; ++m )
|
||||
{
|
||||
for (LType l = m; l <= Lmax; ++l)
|
||||
{
|
||||
// Triangular storage
|
||||
data_cls[l] += std::norm(data_alms[l+q]);
|
||||
}
|
||||
q += Lmax+1-m;
|
||||
}
|
||||
assert(q==alms.size());
|
||||
|
||||
for (LType l = 0; l <= Lmax; ++l)
|
||||
{
|
||||
int dof = 1 + std::min(l, Mmax);
|
||||
spectrum->set_dof(l, dof);
|
||||
data_cls[l] /= dof;
|
||||
}
|
||||
|
||||
return Spectrum_ptr(spectrum);
|
||||
}
|
||||
|
||||
Spectrum_ptr newSpectrumFromRaw(T *data, long size,
|
||||
const Spectrum& like_spec) const
|
||||
{
|
||||
const HealpixSpectrum<T>& in_spec = dynamic_cast<const HealpixSpectrum<T>&>(like_spec);
|
||||
HealpixSpectrum<T> *new_spectrum = new HealpixSpectrum<T>(in_spec.Lmax());
|
||||
T *out_d = new_spectrum->data();
|
||||
|
||||
std::copy(data, data + min(size,new_spectrum->size()), out_d);
|
||||
|
||||
return Spectrum_ptr(new_spectrum);
|
||||
}
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue