mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
more options for number function
This commit is contained in:
parent
792190ccc5
commit
e177bddea2
1 changed files with 19 additions and 12 deletions
|
@ -42,12 +42,16 @@ def fill_between(x, y1, y2=0, ax=None, **kwargs):
|
|||
# -----------------------------------------------------------------------------
|
||||
def plotNumberFunction(catalogList,
|
||||
figDir="./",
|
||||
plotName="numberfunc"):
|
||||
plotName="numberfunc",
|
||||
cumulative=True,
|
||||
binWidth=1):
|
||||
|
||||
# plots a cumulative number function
|
||||
# catalogList: list of void catalogs to plot
|
||||
# figDir: output directory for figures
|
||||
# plotName: name to prefix to all outputs
|
||||
# cumulative: if True, plots cumulative number function
|
||||
# binWidth: width of histogram bins in Mpc/h
|
||||
# returns:
|
||||
# numberFuncList: array of len(catalogList),
|
||||
# each element has array of size bins, number, +/- 1 sigma
|
||||
|
@ -56,7 +60,11 @@ def plotNumberFunction(catalogList,
|
|||
|
||||
plt.clf()
|
||||
plt.xlabel("$R_{eff}$ [$h^{-1}Mpc$]", fontsize=14)
|
||||
plt.ylabel(r"log ($n$ (> R) [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
||||
|
||||
if cumulative:
|
||||
plt.ylabel(r"log ($n$ (> R) [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
||||
else:
|
||||
plt.ylabel(r"log ($dn/dR$ [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
||||
|
||||
numberFuncList = []
|
||||
|
||||
|
@ -70,25 +78,24 @@ def plotNumberFunction(catalogList,
|
|||
boxVol = vp.getSurveyProps(maskFile,
|
||||
sample.zBoundary[0], sample.zBoundary[1],
|
||||
sample.zRange[0], sample.zRange[1], "all",
|
||||
selectionFuncFile=None)[0]
|
||||
#selectionFuncFile=sample.selFunFile)[0]
|
||||
boxVol *= obsFudgeFactor
|
||||
selectionFuncFile=sample.selFunFile)[0]
|
||||
else:
|
||||
boxVol = sample.boxLen*sample.boxLen*(sample.zBoundaryMpc[1] -
|
||||
sample.zBoundaryMpc[0])
|
||||
|
||||
boxVol *= 1.e-9 # Mpc->Gpc
|
||||
|
||||
bins = 100.
|
||||
bins = 100./binWidth
|
||||
hist, binEdges = np.histogram(data, bins=bins, range=(0., 100.))
|
||||
binCenters = 0.5*(binEdges[1:] + binEdges[:-1])
|
||||
|
||||
foundStart = False
|
||||
for iBin in xrange(len(hist)):
|
||||
if not foundStart and hist[iBin] == 0:
|
||||
continue
|
||||
foundStart = True
|
||||
hist[iBin] = np.sum(hist[iBin:])
|
||||
if cumulative:
|
||||
foundStart = False
|
||||
for iBin in xrange(len(hist)):
|
||||
if not foundStart and hist[iBin] == 0:
|
||||
continue
|
||||
foundStart = True
|
||||
hist[iBin] = np.sum(hist[iBin:])
|
||||
|
||||
nvoids = len(data)
|
||||
var = hist * (1. - hist/nvoids)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue