mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
added plot of ellipticity distribution
This commit is contained in:
parent
4b2c31faff
commit
c8f1f2259a
1 changed files with 50 additions and 9 deletions
|
@ -17,7 +17,7 @@
|
||||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||||
#+
|
#+
|
||||||
__all__=['plotNumberFunction',]
|
__all__=['plotNumberFunction','plotEllipDist',]
|
||||||
|
|
||||||
from void_python_tools.backend.classes import *
|
from void_python_tools.backend.classes import *
|
||||||
from plotDefs import *
|
from plotDefs import *
|
||||||
|
@ -53,7 +53,7 @@ def plotNumberFunction(catalogList,
|
||||||
# cumulative: if True, plots cumulative number function
|
# cumulative: if True, plots cumulative number function
|
||||||
# binWidth: width of histogram bins in Mpc/h
|
# binWidth: width of histogram bins in Mpc/h
|
||||||
# returns:
|
# returns:
|
||||||
# numberFuncList: array of len(catalogList),
|
# ellipDistList: array of len(catalogList),
|
||||||
# each element has array of size bins, number, +/- 1 sigma
|
# each element has array of size bins, number, +/- 1 sigma
|
||||||
|
|
||||||
print "Plotting number function"
|
print "Plotting number function"
|
||||||
|
@ -66,7 +66,7 @@ def plotNumberFunction(catalogList,
|
||||||
else:
|
else:
|
||||||
plt.ylabel(r"log ($dn/dR$ [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
plt.ylabel(r"log ($dn/dR$ [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
||||||
|
|
||||||
numberFuncList = []
|
ellipDistList = []
|
||||||
|
|
||||||
for (iSample,catalog) in enumerate(catalogList):
|
for (iSample,catalog) in enumerate(catalogList):
|
||||||
sample = catalog.sampleInfo
|
sample = catalog.sampleInfo
|
||||||
|
@ -127,13 +127,54 @@ def plotNumberFunction(catalogList,
|
||||||
plt.plot(binCentersToUse, mean, lineStyle,
|
plt.plot(binCentersToUse, mean, lineStyle,
|
||||||
color=lineColor,
|
color=lineColor,
|
||||||
linewidth=3)
|
linewidth=3)
|
||||||
|
|
||||||
|
ellipDistList.append((binCentersToUse, mean, lower, upper))
|
||||||
|
|
||||||
plt.legend(loc = "upper right", fancybox=True, prop={'size':14})
|
plt.legend(loc = "upper right", fancybox=True, prop={'size':14})
|
||||||
|
|
||||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||||
|
|
||||||
numberFuncList.append((binCentersToUse, mean, lower, upper))
|
return ellipDistList
|
||||||
|
|
||||||
return numberFuncList
|
|
||||||
|
# -----------------------------------------------------------------------------
|
||||||
|
def plotEllipDist(catalogList,
|
||||||
|
figDir="./",
|
||||||
|
plotName="ellipdist"):
|
||||||
|
|
||||||
|
# plots ellipticity distributions
|
||||||
|
# catalogList: list of void catalogs to plot
|
||||||
|
# figDir: output directory for figures
|
||||||
|
# plotName: name to prefix to all outputs
|
||||||
|
# returns:
|
||||||
|
# ellipDistList: array of len(catalogList),
|
||||||
|
# each element has array of ellipticity distributions
|
||||||
|
|
||||||
|
print "Plotting ellipticity distributions"
|
||||||
|
|
||||||
|
plt.clf()
|
||||||
|
plt.xlabel(r"Ellipticity $\epsilon$", fontsize=14)
|
||||||
|
plt.ylabel(r"P($\epsilon$)", fontsize=14)
|
||||||
|
|
||||||
|
ellipDistList = []
|
||||||
|
|
||||||
|
for (iSample,catalog) in enumerate(catalogList):
|
||||||
|
sample = catalog.sampleInfo
|
||||||
|
data = getArray(catalog.voids, 'ellipticity')
|
||||||
|
|
||||||
|
dataWeights = np.ones_like(data)/len(data)
|
||||||
|
dataHist, dataBins = np.histogram(data, bins=10, weights=dataWeights,
|
||||||
|
range=(0.0,0.35))
|
||||||
|
|
||||||
|
plt.plot(dataBins, dataHist, label=sample.fullName,
|
||||||
|
color=colorList[iSample])
|
||||||
|
|
||||||
|
ellipDistList.append((dataBins, dataHist,))
|
||||||
|
|
||||||
|
plt.legend(loc = "upper right", fancybox=True, prop={'size':14})
|
||||||
|
|
||||||
|
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||||
|
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||||
|
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue