mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
Merged in python3 (pull request #5)
Port to python3, large code cleanup * Fixed command line for cosmotool * Fix path * Dump command line is log file * Fix important typo * Modify paths for example * Fix path again * Use an explicit constructor * Change file to open (python 2->3) * python3 fix for xrange in periodic_kdtree.py * Fixed index for Np, numPart, numZones, numZonesTot, partID, zoneID in catalogUtil.py
This commit is contained in:
parent
8249256508
commit
affb56ff48
392 changed files with 4092 additions and 260938 deletions
298
python_tools/vide/voidUtil/plotUtil.py
Normal file
298
python_tools/vide/voidUtil/plotUtil.py
Normal file
|
@ -0,0 +1,298 @@
|
|||
#+
|
||||
# VIDE -- Void IDentification and Examination -- ./python_tools/vide/voidUtil/plotUtil.py
|
||||
# Copyright (C) 2010-2014 Guilhem Lavaux
|
||||
# Copyright (C) 2011-2014 P. M. Sutter
|
||||
#
|
||||
# This program is free software; you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation; version 2 of the License.
|
||||
#
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along
|
||||
# with this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
#+
|
||||
__all__=['plotNumberFunction','plotEllipDist','plotVoidCells']
|
||||
|
||||
from vide.backend.classes import *
|
||||
from .plotDefs import *
|
||||
import numpy as np
|
||||
import os
|
||||
import pylab as plt
|
||||
import vide.apTools as vp
|
||||
from vide.voidUtil import getArray, shiftPart, getVoidPart
|
||||
|
||||
def fill_between(x, y1, y2=0, ax=None, **kwargs):
|
||||
"""Plot filled region between `y1` and `y2`.
|
||||
|
||||
This function works exactly the same as matplotlib's fill_between, except
|
||||
that it also plots a proxy artist (specifically, a rectangle of 0 size)
|
||||
so that it can be added it appears on a legend.
|
||||
"""
|
||||
ax = ax if ax is not None else plt.gca()
|
||||
ax.fill_between(x, y1, y2, interpolate=True, **kwargs)
|
||||
p = plt.Rectangle((0, 0), 0, 0, **kwargs)
|
||||
ax.add_patch(p)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
def plotNumberFunction(catalogList,
|
||||
figDir="./",
|
||||
plotName="numberfunc",
|
||||
cumulative=True,
|
||||
binWidth=1):
|
||||
|
||||
# plots a cumulative number function
|
||||
# catalogList: list of void catalogs to plot
|
||||
# figDir: output directory for figures
|
||||
# plotName: name to prefix to all outputs
|
||||
# cumulative: if True, plots cumulative number function
|
||||
# binWidth: width of histogram bins in Mpc/h
|
||||
# returns:
|
||||
# ellipDistList: array of len(catalogList),
|
||||
# each element has array of size bins, number, +/- 1 sigma
|
||||
|
||||
print("Plotting number function")
|
||||
|
||||
catalogList = np.atleast_1d(catalogList)
|
||||
|
||||
plt.clf()
|
||||
plt.xlabel("$R_{eff}$ [$h^{-1}Mpc$]", fontsize=14)
|
||||
|
||||
if cumulative:
|
||||
plt.ylabel(r"log ($n$ (> R) [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
||||
else:
|
||||
plt.ylabel(r"log ($dn/dR$ [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
||||
|
||||
ellipDistList = []
|
||||
|
||||
for (iSample,catalog) in enumerate(catalogList):
|
||||
sample = catalog.sampleInfo
|
||||
data = getArray(catalog.voids, 'radius')
|
||||
|
||||
if sample.dataType == "observation":
|
||||
maskFile = sample.maskFile
|
||||
|
||||
boxVol = vp.getSurveyProps(maskFile,
|
||||
sample.zBoundary[0], sample.zBoundary[1],
|
||||
sample.zRange[0], sample.zRange[1], "all",
|
||||
selectionFuncFile=sample.selFunFile)[0]
|
||||
else:
|
||||
boxVol = sample.boxLen*sample.boxLen*(sample.zBoundaryMpc[1] -
|
||||
sample.zBoundaryMpc[0])
|
||||
|
||||
boxVol *= 1.e-9 # Mpc->Gpc
|
||||
|
||||
bins = 100./binWidth
|
||||
hist, binEdges = np.histogram(data, bins=bins, range=(0., 100.))
|
||||
binCenters = 0.5*(binEdges[1:] + binEdges[:-1])
|
||||
|
||||
if cumulative:
|
||||
foundStart = False
|
||||
for iBin in range(len(hist)):
|
||||
if not foundStart and hist[iBin] == 0:
|
||||
continue
|
||||
foundStart = True
|
||||
hist[iBin] = np.sum(hist[iBin:])
|
||||
|
||||
nvoids = len(data)
|
||||
var = hist * (1. - hist/nvoids)
|
||||
sig = np.sqrt(var)
|
||||
|
||||
lowerbound = hist - sig
|
||||
upperbound = hist + sig
|
||||
|
||||
mean = np.log10(hist/boxVol)
|
||||
lowerbound = np.log10(lowerbound/boxVol)
|
||||
upperbound = np.log10(upperbound/boxVol)
|
||||
|
||||
lineColor = colorList[iSample]
|
||||
lineTitle = sample.fullName
|
||||
|
||||
trim = (lowerbound > .01)
|
||||
mean = mean[trim]
|
||||
binCentersToUse = binCenters[trim]
|
||||
lower = lowerbound[trim]
|
||||
upper = upperbound[trim]
|
||||
|
||||
alpha = 0.55
|
||||
fill_between(binCentersToUse, lower, upper,
|
||||
label=lineTitle, color=lineColor,
|
||||
alpha=alpha,
|
||||
)
|
||||
|
||||
lineStyle = '-'
|
||||
plt.plot(binCentersToUse, mean, lineStyle,
|
||||
color=lineColor,
|
||||
linewidth=3)
|
||||
|
||||
ellipDistList.append((binCentersToUse, mean, lower, upper))
|
||||
|
||||
plt.legend(loc = "upper right", fancybox=True, prop={'size':14})
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||
|
||||
return ellipDistList
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
def plotEllipDist(catalogList,
|
||||
figDir="./",
|
||||
plotName="ellipdist"):
|
||||
|
||||
# plots ellipticity distributions
|
||||
# catalogList: list of void catalogs to plot
|
||||
# figDir: output directory for figures
|
||||
# plotName: name to prefix to all outputs
|
||||
# returns:
|
||||
# ellipDistList: array of len(catalogList),
|
||||
# each element has array of ellipticity distributions
|
||||
|
||||
print("Plotting ellipticity distributions")
|
||||
|
||||
plt.clf()
|
||||
plt.xlabel(r"Ellipticity $\epsilon$", fontsize=14)
|
||||
plt.ylabel(r"P($\epsilon$)", fontsize=14)
|
||||
|
||||
ellipDistList = []
|
||||
|
||||
catalogList = np.atleast_1d(catalogList)
|
||||
|
||||
for (iSample,catalog) in enumerate(catalogList):
|
||||
sample = catalog.sampleInfo
|
||||
data = getArray(catalog.voids, 'ellipticity')
|
||||
|
||||
dataWeights = np.ones_like(data)/len(data)
|
||||
dataHist, dataBins = np.histogram(data, bins=10, weights=dataWeights,
|
||||
range=(0.0,0.35))
|
||||
binCenters = 0.5*(dataBins[1:] + dataBins[:-1])
|
||||
|
||||
plt.plot(binCenters, dataHist, label=sample.fullName,
|
||||
color=colorList[iSample])
|
||||
|
||||
ellipDistList.append((dataBins, dataHist,))
|
||||
|
||||
plt.legend(loc = "upper right", fancybox=True, prop={'size':14})
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||
|
||||
return
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
def plotVoidCells(catalog,
|
||||
voidID,
|
||||
figDir="./",
|
||||
plotName="cells",
|
||||
plotDensity=True,
|
||||
sliceWidth=250):
|
||||
|
||||
# plots the particles belonging to a void
|
||||
# catalog: void catalog
|
||||
# voidID: ID of void to plot
|
||||
# figDir: output directory for figures
|
||||
# plotName: name to prefix to all outputs
|
||||
# sliceWidth: width of slice in Mpc/h
|
||||
|
||||
sample = catalog.sampleInfo
|
||||
periodicLine = getPeriodic(sample)
|
||||
|
||||
plt.clf()
|
||||
|
||||
iVoid = -1
|
||||
for i in range(len(catalog.voids)):
|
||||
if catalog.voids[i].voidID == voidID:
|
||||
iVoid = i
|
||||
break
|
||||
|
||||
if iVoid == -1:
|
||||
print("Void ID %d not found!" % voidID)
|
||||
return
|
||||
|
||||
sliceCenter = catalog.voids[iVoid].macrocenter
|
||||
|
||||
xwidth = sliceWidth
|
||||
ywidth = sliceWidth
|
||||
zwidth = max(sliceWidth/4., 50)
|
||||
|
||||
xmin = -xwidth/2.
|
||||
xmax = xwidth/2.
|
||||
ymin = -ywidth/2.
|
||||
ymax = ywidth/2.
|
||||
zmin = -zwidth/2.
|
||||
zmax = zwidth/2.
|
||||
|
||||
#Slice Particles
|
||||
if plotDensity:
|
||||
part = catalog.partPos
|
||||
part = shiftPart(part, sliceCenter, periodicLine, catalog.ranges)
|
||||
|
||||
filter = (part[:,0] > xmin) & (part[:,0] < xmax) & \
|
||||
(part[:,1] > ymin) & (part[:,1] < ymax) & \
|
||||
(part[:,2] > zmin) & (part[:,2] < zmax)
|
||||
part = part[filter]
|
||||
|
||||
extent = [xmin, xmax, ymin, ymax]
|
||||
hist, xedges, yedges = np.histogram2d(part[:,0], part[:,1], normed=False,
|
||||
bins=64)
|
||||
|
||||
hist = np.log10(hist+1)
|
||||
plt.imshow(hist,
|
||||
aspect='equal',
|
||||
extent=extent,
|
||||
interpolation='gaussian',
|
||||
cmap='YlGnBu_r')
|
||||
|
||||
|
||||
# overlay voids as circles
|
||||
fig = plt.gcf()
|
||||
|
||||
voidPart = getVoidPart(catalog, voidID)
|
||||
|
||||
newpart = np.zeros((len(voidPart),3))
|
||||
volume=np.zeros(len(voidPart))
|
||||
radius=np.zeros(len(voidPart))
|
||||
|
||||
newpart[:,0] = getArray(voidPart, 'x')
|
||||
newpart[:,1] = getArray(voidPart, 'y')
|
||||
newpart[:,2] = getArray(voidPart, 'z')
|
||||
|
||||
volume = getArray(voidPart, 'volume')
|
||||
radius = (3.*volume/(4.*np.pi))**(1./3.)
|
||||
|
||||
shiftedPartVoid =shiftPart(newpart,sliceCenter, periodicLine, catalog.ranges)
|
||||
|
||||
#Limiting plotted cells to cells into the slice
|
||||
#Possibility to only plot bigger cells (through cellsradiuslim)
|
||||
cellsMinlimz = zmin
|
||||
cellsMaxlimz = zmax
|
||||
cellsradiuslim = 0.0
|
||||
|
||||
for p in range(len(volume)):
|
||||
if (shiftedPartVoid[p,2]>(cellsMinlimz) and \
|
||||
shiftedPartVoid[p,2]<(cellsMaxlimz) and \
|
||||
radius[p]>cellsradiuslim):
|
||||
color = 'blue'
|
||||
circle = plt.Circle((shiftedPartVoid[p,0], \
|
||||
shiftedPartVoid[p,1]), \
|
||||
radius[p],
|
||||
alpha =.2, fc=color,edgecolor=None,linewidth=1)
|
||||
fig.gca().add_artist(circle)
|
||||
|
||||
title="cells"+str(voidID)
|
||||
plt.title(title, fontsize=20)
|
||||
plotName="cells"+str(voidID)
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||
|
||||
return
|
Loading…
Add table
Add a link
Reference in a new issue