mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 23:31:12 +00:00
setting the stage for on-the-fly mask and edge calculation
This commit is contained in:
parent
99a441013d
commit
aded7a7c2c
6 changed files with 143 additions and 67 deletions
|
@ -22,11 +22,10 @@
|
|||
|
||||
import numpy as np
|
||||
import scipy.integrate as integrate
|
||||
import healpy as healpy
|
||||
import os
|
||||
from backend import *
|
||||
|
||||
__all__=['expansion', 'angularDiameter', 'aveExpansion', 'getSurveyProps']
|
||||
__all__=['expansion', 'angularDiameter', 'aveExpansion']
|
||||
|
||||
# returns 1/E(z) for the given cosmology
|
||||
def expansion(z, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
||||
|
@ -51,62 +50,3 @@ def aveExpansion(zStart, zEnd, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
|||
ave = integrate.quad(expansion, zStart, zEnd, args=(Om, Ot, w0, wa))[0]
|
||||
ave = (zEnd-zStart)/ave
|
||||
return ave
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# returns the volume and galaxy density for a given redshit slice
|
||||
def getSurveyProps(maskFile, zmin, zmax, selFunMin, selFunMax, portion, selectionFuncFile=None, useComoving=False):
|
||||
|
||||
LIGHT_SPEED = 299792.458
|
||||
|
||||
mask = healpy.read_map(maskFile)
|
||||
area = (1.*np.size(np.where(mask > 0)) / np.size(mask)) * 4.*np.pi
|
||||
|
||||
if useComoving:
|
||||
zmin = LIGHT_SPEED/100.*angularDiameter(zmin, Om=0.27)
|
||||
zmax = LIGHT_SPEED/100.*angularDiameter(zmax, Om=0.27)
|
||||
selFunMin = LIGHT_SPEED/100.*angularDiameter(selFunMin, Om=0.27)
|
||||
selFunMax = LIGHT_SPEED/100.*angularDiameter(selFunMax, Om=0.27)
|
||||
else:
|
||||
zmin = zmin * 3000
|
||||
zmax = zmax * 3000
|
||||
selFunMin *= 3000
|
||||
selFunMax *= 3000
|
||||
volume = area * (zmax**3 - zmin**3) / 3
|
||||
|
||||
if selectionFuncFile == None:
|
||||
nbar = 1.0
|
||||
|
||||
elif not os.access(selectionFuncFile, os.F_OK):
|
||||
print(" Warning, selection function file %s not found, using default of uniform selection." % selectionFuncFile)
|
||||
nbar = 1.0
|
||||
|
||||
else:
|
||||
selfunc = np.genfromtxt(selectionFuncFile)
|
||||
selfunc = np.array(selfunc)
|
||||
selfunc[:,0] = selfunc[:,0]/100.
|
||||
selfuncUnity = selfunc
|
||||
selfuncUnity[:,1] = 1.0
|
||||
selfuncMin = selfunc[0,0]
|
||||
selfuncMax = selfunc[-1,0]
|
||||
selfuncDx = selfunc[1,0] - selfunc[0,0]
|
||||
selfuncN = np.size(selfunc[:,0])
|
||||
|
||||
selFunMin = max(selFunMin, selfuncMin)
|
||||
selFunMax = min(selFunMax, selfuncMax)
|
||||
|
||||
|
||||
def f(z): return selfunc[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2
|
||||
def fTotal(z): return selfuncUnity[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2
|
||||
|
||||
zrange = np.linspace(selFunMin, selFunMax)
|
||||
|
||||
nbar = scipy.integrate.quad(f, selFunMin, selFunMax)
|
||||
nbar = nbar[0]
|
||||
|
||||
ntotal = scipy.integrate.quad(fTotal, 0.0, max(selfuncUnity[:,0]))
|
||||
ntotal = ntotal[0]
|
||||
|
||||
nbar = ntotal / area / nbar
|
||||
|
||||
|
||||
return (volume, nbar)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue