mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-05 07:41:11 +00:00
Added missing libsw library
This commit is contained in:
parent
dd5e51c09c
commit
9dff8cfb5a
57 changed files with 13454 additions and 0 deletions
269
external/libsdf/libsw/gnusort.c
vendored
Normal file
269
external/libsdf/libsw/gnusort.c
vendored
Normal file
|
@ -0,0 +1,269 @@
|
|||
/* Use a static buffer instead of malloc for small 'size' */
|
||||
/* Fixed a bug when called with total_elems=0, ptr=NULL */
|
||||
/* The default is now to not use alloca unless ALLOCA_PREFERRED is defined */
|
||||
/* -DNO_ALLOCA and -DC_ALLOCA are equivalent. Neither uses alloca herein. */
|
||||
/* Changed alloca -> Malloc/Free (johns) */
|
||||
/* Hacked by msw for even more speed (2x - 3x) */
|
||||
/* Assumes size is a multiple of sizeof(int) */
|
||||
/* Originally from glibc-1.03.tar.Z stdlib/qsort.c */
|
||||
|
||||
/* Copyright (C) 1991 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Library General Public License as
|
||||
published by the Free Software Foundation; either version 2 of the
|
||||
License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Library General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Library General Public
|
||||
License along with the GNU C Library; see the file COPYING.LIB. If
|
||||
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
|
||||
Cambridge, MA 02139, USA. */
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#ifndef ALLOCA_PREFERRED
|
||||
#include "Malloc.h"
|
||||
static char static_pivot[128];
|
||||
#endif
|
||||
#include "error.h"
|
||||
|
||||
/* Int-wise swap two items of size SIZE. */
|
||||
#define SWAP(a, b, size) \
|
||||
do \
|
||||
{ \
|
||||
register size_t __size = (size)/sizeof(int); \
|
||||
register int *__a = (int *)(a), *__b = (int *)(b); \
|
||||
do \
|
||||
{ \
|
||||
int __tmp = *__a; \
|
||||
*__a++ = *__b; \
|
||||
*__b++ = __tmp; \
|
||||
} while (--__size > 0); \
|
||||
} while (0)
|
||||
|
||||
/* Discontinue quicksort algorithm when partition gets below this size.
|
||||
This particular magic number was chosen to work best on a Sun 4/260. */
|
||||
#define MAX_THRESH 4
|
||||
|
||||
/* Stack node declarations used to store unfulfilled partition obligations. */
|
||||
typedef struct
|
||||
{
|
||||
char *lo;
|
||||
char *hi;
|
||||
} stack_node;
|
||||
|
||||
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
||||
#define STACK_SIZE (8 * sizeof(unsigned long int))
|
||||
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
|
||||
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
|
||||
#define STACK_NOT_EMPTY (stack < top)
|
||||
|
||||
|
||||
/* Order size using quicksort. This implementation incorporates
|
||||
four optimizations discussed in Sedgewick:
|
||||
|
||||
1. Non-recursive, using an explicit stack of pointer that store the
|
||||
next array partition to sort. To save time, this maximum amount
|
||||
of space required to store an array of MAX_INT is allocated on the
|
||||
stack. Assuming a 32-bit integer, this needs only 32 *
|
||||
sizeof(stack_node) == 136 bits. Pretty cheap, actually.
|
||||
|
||||
2. Chose the pivot element using a median-of-three decision tree.
|
||||
This reduces the probability of selecting a bad pivot value and
|
||||
eliminates certain extraneous comparisons.
|
||||
|
||||
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
|
||||
insertion sort to order the MAX_THRESH items within each partition.
|
||||
This is a big win, since insertion sort is faster for small, mostly
|
||||
sorted array segements.
|
||||
|
||||
4. The larger of the two sub-partitions is always pushed onto the
|
||||
stack first, with the algorithm then concentrating on the
|
||||
smaller partition. This *guarantees* no more than log (n)
|
||||
stack size is needed (actually O(1) in this case)! */
|
||||
|
||||
/* STDC says it's void, but Sun knows better, but SRV knows better still... */
|
||||
#if defined(__SRV__) || defined(__SUN_CC_UNPROTO__) || defined(__SUN5__) || !defined(sparc)
|
||||
void
|
||||
#else
|
||||
int
|
||||
#endif
|
||||
qsort(void *pbase, size_t total_elems, size_t size,
|
||||
int (*cmp)(const void *, const void *))
|
||||
{
|
||||
register char *base_ptr = (char *) pbase;
|
||||
|
||||
/* Allocating SIZE bytes for a pivot buffer facilitates a better
|
||||
algorithm below since we can do comparisons directly on the pivot. */
|
||||
#ifdef ALLOCA_PREFERRED
|
||||
char *pivot_buffer = (char *) alloca (size);
|
||||
#else
|
||||
char *pivot_buffer = (size > sizeof(static_pivot)) ? (char *)Malloc(size) : static_pivot;
|
||||
#endif
|
||||
const size_t max_thresh = MAX_THRESH * size;
|
||||
|
||||
if (size % sizeof(int) || (int)pbase % sizeof(int))
|
||||
Error("This qsort only works on int aligned stuff\n");
|
||||
|
||||
if (total_elems > MAX_THRESH)
|
||||
{
|
||||
char *lo = base_ptr;
|
||||
char *hi = &lo[size * (total_elems - 1)];
|
||||
/* Largest size needed for 32-bit int!!! */
|
||||
stack_node stack[STACK_SIZE];
|
||||
stack_node *top = stack + 1;
|
||||
|
||||
while (STACK_NOT_EMPTY)
|
||||
{
|
||||
char *left_ptr;
|
||||
char *right_ptr;
|
||||
|
||||
char *pivot = pivot_buffer;
|
||||
|
||||
/* Select median value from among LO, MID, and HI. Rearrange
|
||||
LO and HI so the three values are sorted. This lowers the
|
||||
probability of picking a pathological pivot value and
|
||||
skips a comparison for both the LEFT_PTR and RIGHT_PTR. */
|
||||
|
||||
char *mid = lo + size * ((hi - lo) / size >> 1);
|
||||
|
||||
if ((*cmp)((void *) mid, (void *) lo) < 0)
|
||||
SWAP(mid, lo, size);
|
||||
if ((*cmp)((void *) hi, (void *) mid) < 0)
|
||||
SWAP(mid, hi, size);
|
||||
else
|
||||
goto jump_over;
|
||||
if ((*cmp)((void *) mid, (void *) lo) < 0)
|
||||
SWAP(mid, lo, size);
|
||||
jump_over:;
|
||||
memcpy(pivot, mid, size);
|
||||
pivot = pivot_buffer;
|
||||
|
||||
left_ptr = lo + size;
|
||||
right_ptr = hi - size;
|
||||
|
||||
/* Here's the famous ``collapse the walls'' section of quicksort.
|
||||
Gotta like those tight inner loops! They are the main reason
|
||||
that this algorithm runs much faster than others. */
|
||||
do
|
||||
{
|
||||
while ((*cmp)((void *) left_ptr, (void *) pivot) < 0)
|
||||
left_ptr += size;
|
||||
|
||||
while ((*cmp)((void *) pivot, (void *) right_ptr) < 0)
|
||||
right_ptr -= size;
|
||||
|
||||
if (left_ptr < right_ptr)
|
||||
{
|
||||
SWAP(left_ptr, right_ptr, size);
|
||||
left_ptr += size;
|
||||
right_ptr -= size;
|
||||
}
|
||||
else if (left_ptr == right_ptr)
|
||||
{
|
||||
left_ptr += size;
|
||||
right_ptr -= size;
|
||||
break;
|
||||
}
|
||||
}
|
||||
while (left_ptr <= right_ptr);
|
||||
|
||||
/* Set up pointers for next iteration. First determine whether
|
||||
left and right partitions are below the threshold size. If so,
|
||||
ignore one or both. Otherwise, push the larger partition's
|
||||
bounds on the stack and continue sorting the smaller one. */
|
||||
|
||||
if ((size_t) (right_ptr - lo) <= max_thresh)
|
||||
{
|
||||
if ((size_t) (hi - left_ptr) <= max_thresh)
|
||||
/* Ignore both small partitions. */
|
||||
POP(lo, hi);
|
||||
else
|
||||
/* Ignore small left partition. */
|
||||
lo = left_ptr;
|
||||
}
|
||||
else if ((size_t) (hi - left_ptr) <= max_thresh)
|
||||
/* Ignore small right partition. */
|
||||
hi = right_ptr;
|
||||
else if ((right_ptr - lo) > (hi - left_ptr))
|
||||
{
|
||||
/* Push larger left partition indices. */
|
||||
PUSH(lo, right_ptr);
|
||||
lo = left_ptr;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Push larger right partition indices. */
|
||||
PUSH(left_ptr, hi);
|
||||
hi = right_ptr;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Once the BASE_PTR array is partially sorted by quicksort the rest
|
||||
is completely sorted using insertion sort, since this is efficient
|
||||
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
|
||||
of the array to sort, and END_PTR points at the very last element in
|
||||
the array (*not* one beyond it!). */
|
||||
|
||||
#define min(x, y) ((x) < (y) ? (x) : (y))
|
||||
|
||||
/* johns - avoid potential segfault if total_elems==0 and base_ptr == 0 !*/
|
||||
if( total_elems > 0 )
|
||||
{
|
||||
char *const end_ptr = &base_ptr[size * (total_elems - 1)];
|
||||
char *tmp_ptr = base_ptr;
|
||||
char *thresh = min(end_ptr, base_ptr + max_thresh);
|
||||
register char *run_ptr;
|
||||
|
||||
/* Find smallest element in first threshold and place it at the
|
||||
array's beginning. This is the smallest array element,
|
||||
and the operation speeds up insertion sort's inner loop. */
|
||||
|
||||
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
|
||||
if ((*cmp)((void *) run_ptr, (void *) tmp_ptr) < 0)
|
||||
tmp_ptr = run_ptr;
|
||||
|
||||
if (tmp_ptr != base_ptr)
|
||||
SWAP(tmp_ptr, base_ptr, size);
|
||||
|
||||
/* Insertion sort, running from left-hand-side up to right-hand-side. */
|
||||
|
||||
run_ptr = base_ptr + size;
|
||||
while ((run_ptr += size) <= end_ptr)
|
||||
{
|
||||
tmp_ptr = run_ptr - size;
|
||||
while ((*cmp)((void *) run_ptr, (void *) tmp_ptr) < 0)
|
||||
tmp_ptr -= size;
|
||||
|
||||
tmp_ptr += size;
|
||||
if (tmp_ptr != run_ptr)
|
||||
{
|
||||
int *trav;
|
||||
|
||||
trav = (int *)(run_ptr + size);
|
||||
while (--trav >= (int *)run_ptr)
|
||||
{
|
||||
int c = *trav;
|
||||
int *hi, *lo;
|
||||
|
||||
for (hi = lo = trav;
|
||||
(lo -= size/sizeof(int)) >= (int *)tmp_ptr; hi = lo)
|
||||
*hi = *lo;
|
||||
*hi = c;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifndef ALLOCA_PREFERRED
|
||||
if( pivot_buffer != static_pivot)
|
||||
Free(pivot_buffer);
|
||||
#endif
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue