mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 23:31:12 +00:00
now also compute K-S statistic among different number functions while plotting
This commit is contained in:
parent
168ef7a0d7
commit
8e1b94949d
1 changed files with 68 additions and 33 deletions
|
@ -11,6 +11,7 @@ import os
|
|||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import argparse
|
||||
from scipy.stats import ks_2samp
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
|
@ -19,6 +20,8 @@ plotNameBase = "compdist"
|
|||
obsFudgeFactor = 1.0 # what fraction of the volume are we *reall* capturing?
|
||||
#obsFudgeFactor = .66 # what fraction of the volume are we *reall* capturing?
|
||||
|
||||
linewidth = 1
|
||||
|
||||
parser = argparse.ArgumentParser(description='Plot.')
|
||||
parser.add_argument('--show', dest='showPlot', action='store_const',
|
||||
const=True, default=False,
|
||||
|
@ -27,6 +30,10 @@ parser.add_argument('--parmFile', dest='parmFile', default='datasetsToPlot.py',
|
|||
help='path to parameter file')
|
||||
args = parser.parse_args()
|
||||
|
||||
nErrorBars = 10
|
||||
plotMax = 120
|
||||
errorBarsX = np.linspace(0, plotMax, num=nErrorBars)
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
filename = args.parmFile
|
||||
|
@ -50,52 +57,80 @@ plt.clf()
|
|||
plt.xlabel("Void Radius [Mpc/h]")
|
||||
plt.ylabel(r"N > R [$h^3$ Gpc$^{-3}$]")
|
||||
plt.yscale('log')
|
||||
plt.xlim(xmax=120.)
|
||||
plt.xlim(xmax=plotMax)
|
||||
|
||||
plotName = plotNameBase
|
||||
allData = []
|
||||
|
||||
for (iSample,sample) in enumerate(dataSampleList):
|
||||
for dataPortion in dataPortions:
|
||||
print "Data portion:", dataPortion
|
||||
sizeList = []
|
||||
for (iSample,sample) in enumerate(dataSampleList):
|
||||
|
||||
sampleName = sample.fullName
|
||||
lineTitle = sampleName
|
||||
sampleName = sample.fullName
|
||||
lineTitle = sampleName
|
||||
|
||||
if sample.dataType == "observation":
|
||||
boxVol = vp.getSurveyProps(sample.maskFile,
|
||||
sample.zBoundary[0], sample.zBoundary[1],
|
||||
sample.zRange[0], sample.zRange[1], "all",
|
||||
selectionFuncFile=None)[0]
|
||||
#selectionFuncFile=sample.selFunFile)[0]
|
||||
boxVol *= obsFudgeFactor
|
||||
else:
|
||||
boxVol = sample.boxLen*sample.boxLen*(sample.zBoundaryMpc[1] -
|
||||
if sample.dataType == "observation":
|
||||
boxVol = vp.getSurveyProps(sample.maskFile,
|
||||
sample.zBoundary[0], sample.zBoundary[1],
|
||||
sample.zRange[0], sample.zRange[1], "all",
|
||||
selectionFuncFile=None)[0]
|
||||
#selectionFuncFile=sample.selFunFile)[0]
|
||||
boxVol *= obsFudgeFactor
|
||||
else:
|
||||
boxVol = sample.boxLen*sample.boxLen*(sample.zBoundaryMpc[1] -
|
||||
sample.zBoundaryMpc[0])
|
||||
|
||||
boxVol *= 1.e-9 # Mpc->Gpc
|
||||
boxVol *= 1.e-9 # Mpc->Gpc
|
||||
|
||||
filename = workDir+"/"+sampleDirList[iSample]+"/centers_"+dataPortion+"_"+\
|
||||
sampleName+".out"
|
||||
if not os.access(filename, os.F_OK):
|
||||
print "File not found: ", filename
|
||||
continue
|
||||
filename = workDir+"/"+sampleDirList[iSample]+"/centers_"+dataPortion+"_"+\
|
||||
sampleName+".out"
|
||||
if not os.access(filename, os.F_OK):
|
||||
print "File not found: ", filename
|
||||
continue
|
||||
|
||||
data = np.loadtxt(filename, comments="#")
|
||||
if data.ndim == 1:
|
||||
print " Too few!"
|
||||
continue
|
||||
data = data[:,4]
|
||||
indices = np.arange(0, len(data), 1)
|
||||
sorted = np.sort(data)
|
||||
data = np.loadtxt(filename, comments="#")
|
||||
if data.ndim == 1:
|
||||
print " Too few!"
|
||||
continue
|
||||
data = data[:,4]
|
||||
indices = np.arange(0, len(data), 1)
|
||||
numVoids = indices[::-1]/boxVol
|
||||
voidSizes = np.sort(data)
|
||||
|
||||
plt.plot(sorted, indices[::-1]/boxVol, '-',
|
||||
label=lineTitle, color=colorList[iSample],
|
||||
linewidth=linewidth)
|
||||
sizeList.append(voidSizes)
|
||||
myErrorBarsX = []
|
||||
errorBarsY = []
|
||||
errorBarsDY = []
|
||||
errorBarsIdx = []
|
||||
for errorBarLoc in errorBarsX:
|
||||
nearestIdx = (np.abs(voidSizes-errorBarLoc)).argmin()
|
||||
if nearestIdx == 0: continue
|
||||
myErrorBarsX.append(errorBarLoc)
|
||||
errorBarsIdx.append(nearestIdx)
|
||||
errorBarsY.append(numVoids[nearestIdx])
|
||||
errorBarsDY.append(np.sqrt(numVoids[nearestIdx]))
|
||||
|
||||
hist, bin_edges = np.histogram(data, bins=100, range=(0,100))
|
||||
allData.append(hist)
|
||||
thisPlot = plt.plot(voidSizes, numVoids, '-',
|
||||
color=colorList[iSample],
|
||||
linewidth=linewidth, label=lineTitle)
|
||||
plt.errorbar(myErrorBarsX, errorBarsY, errorBarsDY,
|
||||
ecolor=colorList[iSample],
|
||||
fmt=None, label='_nolegend_', capsize=0)
|
||||
|
||||
hist, bin_edges = np.histogram(data, bins=100, range=(0,100))
|
||||
allData.append(hist)
|
||||
|
||||
plt.legend(title = "Samples", loc = "upper right", prop={'size':8})
|
||||
#plt.title(plotTitle)
|
||||
|
||||
# compute K-S statistic for all pairs of sets
|
||||
for (i,sample1) in enumerate(dataSampleList):
|
||||
for (j,sample2) in enumerate(dataSampleList):
|
||||
if j <= i: continue
|
||||
ks, pval = ks_2samp(sizeList[i][:], sizeList[j][:])
|
||||
print sample1.fullName, sample2.fullName, pval
|
||||
|
||||
plt.legend(title = "Samples", loc = "upper right", prop={'size':8})
|
||||
#plt.title(plotTitle)
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue