mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
futher fixes for handling sub-volumes in analysis
This commit is contained in:
parent
e2ee7b22dd
commit
61acd59383
8 changed files with 182 additions and 26 deletions
|
@ -126,8 +126,8 @@ public:
|
|||
// Go bigger, though I would say we should not to.
|
||||
}
|
||||
while (iter_candidate != candidateList.begin()) ;
|
||||
if (vid_good_candidate < 0)
|
||||
std::cout << "Failure to lookup parent (2)" << std::endl;
|
||||
//if (vid_good_candidate < 0)
|
||||
// std::cout << "Failure to lookup parent (2)" << std::endl;
|
||||
return vid_good_candidate;
|
||||
}
|
||||
|
||||
|
|
|
@ -414,6 +414,7 @@ void saveForZobov(ParticleData& pdata, const string& fname, const string& paramn
|
|||
for (uint32_t i = 0; i < pdata.pos.size(); i++)
|
||||
{
|
||||
f.writeReal32((pdata.pos[i].xyz[j]+Lmax)/(2*Lmax));
|
||||
if (i < 10) printf("TEST WRITE %d %e\n", (pdata.pos[i].xyz[j]+Lmax)/(2*Lmax));
|
||||
}
|
||||
f.endCheckpoint();
|
||||
}
|
||||
|
|
|
@ -254,8 +254,9 @@ int main(int argc, char **argv) {
|
|||
for (iVoid = 0; iVoid < numVoids; iVoid++) {
|
||||
|
||||
voidID = voids[iVoid].voidID;
|
||||
//printf(" DOING %d (of %d) %d %d\n", iVoid, numVoids, voidID,
|
||||
// voids[iVoid].numPart);
|
||||
printf(" DOING %d (of %d) %d %d %f\n", iVoid, numVoids, voidID,
|
||||
voids[iVoid].numPart,
|
||||
voids[iVoid].radius);
|
||||
|
||||
voids[iVoid].center[0] = part[voids[iVoid].coreParticle].x;
|
||||
voids[iVoid].center[1] = part[voids[iVoid].coreParticle].y;
|
||||
|
@ -411,30 +412,36 @@ int main(int argc, char **argv) {
|
|||
} // iVoid
|
||||
|
||||
printf(" Picking winners and losers...\n");
|
||||
numKept = numVoids;
|
||||
for (iVoid = 0; iVoid < numVoids; iVoid++) {
|
||||
voids[iVoid].accepted = 1;
|
||||
}
|
||||
|
||||
for (iVoid = 0; iVoid < numVoids; iVoid++) {
|
||||
if (strcmp(args_info.dataPortion_arg, "edge") == 0 &&
|
||||
tolerance*voids[iVoid].maxRadius < voids[iVoid].nearestMock) {
|
||||
numKept--;
|
||||
voids[iVoid].accepted = 0;
|
||||
}
|
||||
|
||||
if (strcmp(args_info.dataPortion_arg, "central") == 0 &&
|
||||
tolerance*voids[iVoid].maxRadius > voids[iVoid].nearestMock) {
|
||||
numKept--;
|
||||
voids[iVoid].accepted = 0;
|
||||
}
|
||||
|
||||
if (voids[iVoid].radius < args_info.rMin_arg) {
|
||||
voids[iVoid].accepted = 0;
|
||||
}
|
||||
|
||||
if (voids[iVoid].centralDen > args_info.maxCentralDen_arg) {
|
||||
numKept--;
|
||||
voids[iVoid].accepted = -1;
|
||||
}
|
||||
|
||||
if (voids[iVoid].radius < args_info.rMin_arg) {
|
||||
numKept--;
|
||||
voids[iVoid].accepted = 0;
|
||||
}
|
||||
}
|
||||
|
||||
numKept = 0;
|
||||
for (iVoid = 0; iVoid < numVoids; iVoid++) {
|
||||
if (voids[iVoid].accepted == 1) numKept++;
|
||||
}
|
||||
|
||||
printf(" Number kept: %d (out of %d)\n", numKept, numVoids);
|
||||
|
||||
printf(" Output...\n");
|
||||
|
@ -452,7 +459,7 @@ int main(int argc, char **argv) {
|
|||
if (voids[iVoid].accepted != 1) continue;
|
||||
|
||||
fprintf(fp, "%d %d %d %f %f %d %d %f %d %f %f\n",
|
||||
i,
|
||||
iVoid,
|
||||
voids[iVoid].voidID,
|
||||
voids[iVoid].coreParticle,
|
||||
voids[iVoid].coreDens,
|
||||
|
|
|
@ -107,6 +107,9 @@ if (startCatalogStage <= 4) and (endCatalogStage >= 4):
|
|||
sys.stdout.flush()
|
||||
|
||||
for thisDataPortion in dataPortions:
|
||||
plotNumberCounts(workDir, dataSampleList, figDir, showPlot=True, dataPortion=thisDataPortion, setName=setName)
|
||||
plotRedshiftDistribution(workDir, dataSampleList, figDir, showPlot=False,
|
||||
dataPortion=thisDataPortion, setName=catalogName)
|
||||
plotSizeDistribution(workDir, dataSampleList, figDir, showPlot=False,
|
||||
dataPortion=thisDataPortion, setName=catalogName)
|
||||
|
||||
print "\n Done!"
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
import numpy as np
|
||||
import os
|
||||
import sys
|
||||
from Scientific.IO.NetCDF import NetCDFFile
|
||||
import void_python_tools as vp
|
||||
import argparse
|
||||
|
||||
|
@ -95,10 +94,10 @@ from void_python_tools.backend.classes import *
|
|||
|
||||
continueRun = False
|
||||
startCatalogStage = 1
|
||||
endCatalogStage = 3
|
||||
endCatalogStage = 4
|
||||
|
||||
startAPStage = 1
|
||||
endAPStage = 6
|
||||
endAPStage = 7
|
||||
|
||||
ZOBOV_PATH = os.getenv("PWD")+"/../zobov/"
|
||||
CTOOLS_PATH = os.getenv("PWD")+"/../c_tools/"
|
||||
|
@ -297,7 +296,7 @@ if args.script or args.all:
|
|||
for line in inFile: numPart += 1
|
||||
inFile.close()
|
||||
|
||||
minRadius = int(np.ceil(lbox/numPart**(1./3.)))
|
||||
minRadius = 2*int(np.ceil(lbox/numPart**(1./3.)))
|
||||
|
||||
if dataFormat == "multidark":
|
||||
writeScript(prefix, "halos", scriptDir, catalogDir, redshifts,
|
||||
|
|
|
@ -5,7 +5,6 @@
|
|||
import numpy as np
|
||||
import os
|
||||
import sys
|
||||
from Scientific.IO.NetCDF import NetCDFFile
|
||||
import void_python_tools as vp
|
||||
import argparse
|
||||
|
||||
|
@ -96,10 +95,10 @@ from void_python_tools.backend.classes import *
|
|||
|
||||
continueRun = False
|
||||
startCatalogStage = 1
|
||||
endCatalogStage = 3
|
||||
endCatalogStage = 4
|
||||
|
||||
startAPStage = 1
|
||||
endAPStage = 6
|
||||
endAPStage = 7
|
||||
|
||||
ZOBOV_PATH = os.getenv("PWD")+"/../zobov/"
|
||||
CTOOLS_PATH = os.getenv("PWD")+"/../c_tools/"
|
||||
|
|
|
@ -76,7 +76,6 @@ def launchGenerate(sample, binPath, workDir=None, inputDataDir=None,
|
|||
|
||||
if os.access("contour_map.fits", os.F_OK):
|
||||
os.system("mv %s %s" % ("contour_map.fits", zobovDir))
|
||||
os.system("mv %s %s" % ("mask_map.fits", zobovDir))
|
||||
|
||||
if os.access("comoving_distance.txt", os.F_OK):
|
||||
os.system("mv %s %s" % ("comoving_distance.txt", zobovDir))
|
||||
|
@ -815,7 +814,7 @@ def launchFit(sample, stack, logFile=None, voidDir=None, figDir=None,
|
|||
maxtries = 5
|
||||
while badChain:
|
||||
Rexpect = (stack.rMin+stack.rMax)/2
|
||||
Rtruncate = stack.rMax*3. + 1 # TEST
|
||||
Rtruncate = stack.rMin*3. + 1 # TEST
|
||||
ret,fits,args = vp.fit_ellipticity(voidDir,Rbase=Rexpect,
|
||||
Niter=300000,
|
||||
Nburn=100000,
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
__all__=['plotNumberCounts']
|
||||
__all__=['plotRedshiftDistribution', 'plotSizeDistribution', 'plot1dProfiles',
|
||||
'plotMarg1d']
|
||||
|
||||
from void_python_tools.backend.classes import *
|
||||
from plotDefs import *
|
||||
|
@ -7,11 +8,12 @@ import os
|
|||
import pylab as plt
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
def plotNumberCounts(workDir=None, sampleList=None, figDir=None, plotNameBase="numbercount",
|
||||
def plotRedshiftDistribution(workDir=None, sampleList=None, figDir=None,
|
||||
plotNameBase="zdist",
|
||||
showPlot=False, dataPortion=None, setName=None):
|
||||
|
||||
plt.clf()
|
||||
plt.xlabel("Comoving Distance (Mpc/h)")
|
||||
plt.xlabel("Redshift")
|
||||
plt.ylabel("Number of Voids")
|
||||
|
||||
plotTitle = setName
|
||||
|
@ -67,3 +69,149 @@ def plotNumberCounts(workDir=None, sampleList=None, figDir=None, plotNameBase="n
|
|||
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
def plotSizeDistribution(workDir=None, sampleList=None, figDir=None,
|
||||
plotNameBase="sizedist",
|
||||
showPlot=False, dataPortion=None, setName=None):
|
||||
|
||||
plt.clf()
|
||||
plt.xlabel("Void Radius (Mpc/h)")
|
||||
plt.ylabel("Number of Voids")
|
||||
|
||||
plotTitle = setName
|
||||
|
||||
plotName = plotNameBase
|
||||
|
||||
xMin = 1.e00
|
||||
xMax = 0
|
||||
|
||||
for (iSample,sample) in enumerate(sampleList):
|
||||
|
||||
sampleName = sample.fullName
|
||||
lineTitle = sampleName
|
||||
|
||||
filename = workDir+"/sample_"+sampleName+"/centers_"+dataPortion+"_"+\
|
||||
sampleName+".out"
|
||||
if not os.access(filename, os.F_OK):
|
||||
print "File not found: ", filename
|
||||
continue
|
||||
|
||||
data = np.loadtxt(filename, comments="#")
|
||||
if data.ndim == 1:
|
||||
print " Too few!"
|
||||
continue
|
||||
|
||||
xMin = 5
|
||||
xMax = 140
|
||||
|
||||
range = (xMin, xMax)
|
||||
nbins = np.ceil((xMax-xMin)/5)
|
||||
|
||||
#thisMax = np.max(data[:,5])
|
||||
#thisMin = np.min(data[:,5])
|
||||
#if thisMax > xMax: xMax = thisMax
|
||||
#if thisMin < xMin: xMin = thisMin
|
||||
|
||||
plt.hist(data[:,4], bins=nbins,
|
||||
label=lineTitle, color=colorList[iSample],
|
||||
histtype = "step", range=range,
|
||||
linewidth=linewidth)
|
||||
|
||||
plt.legend(title = "Samples", loc = "upper right")
|
||||
plt.title(plotTitle)
|
||||
|
||||
plt.xlim(xMin, xMax)
|
||||
#plt.xlim(xMin, xMax*1.4) # make room for legend
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||
|
||||
if showPlot:
|
||||
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
def plot1dProfiles(workDir=None, sampleList=None, figDir=None,
|
||||
plotNameBase="1dprofile",
|
||||
showPlot=False, dataPortion=None, setName=None):
|
||||
|
||||
plt.clf()
|
||||
plt.xlabel(r"$R/R_{v,\mathrm{max}}$")
|
||||
plt.ylabel(r"$n / \bar n$")
|
||||
|
||||
for (iSample,sample) in enumerate(sampleList):
|
||||
|
||||
sampleName = sample.fullName
|
||||
|
||||
for (iStack,stack) in enumerate(sample.stacks):
|
||||
|
||||
plotTitle = setName
|
||||
plotName = plotNameBase
|
||||
|
||||
runSuffix = getStackSuffix(stack.zMin, stack.zMax, stack.rMin,
|
||||
stack.rMax, dataPortion)
|
||||
|
||||
plotTitle = sampleName + ", z = "+str(stack.zMin)+"-"+str(stack.zMax)+", R = "+str(stack.rMin)+"-"+str(stack.rMax)+ r" $h^{-1}$ Mpc"
|
||||
|
||||
filename = workDir+"/sample_"+sampleName+"/stacks_"+runSuffix+\
|
||||
"profile_1d.txt"
|
||||
|
||||
if not os.access(filename, os.F_OK):
|
||||
print "File not found: ", filename
|
||||
continue
|
||||
|
||||
data = np.loadtxt(filename, comments="#")
|
||||
if data.ndim == 1:
|
||||
print " Too few!"
|
||||
continue
|
||||
|
||||
data[:,1] /= stack.rMax
|
||||
plt.ylim(ymin=0.0, ymax=np.amax(data[:,2])+0.1)
|
||||
plt.xlim(xmin=0.0, xmax=2.1)
|
||||
plt.plot(data[:,1], data[:,2], label=lineTitle, color=colorList[0],
|
||||
linewidth=linewidth)
|
||||
|
||||
plt.title(plotTitle)
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||
|
||||
if showPlot:
|
||||
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
def plotMarg1d(workDir=None, sampleList=None, figDir=None,
|
||||
plotNameBase="marg1d",
|
||||
showPlot=False, dataPortion=None, setName=None):
|
||||
|
||||
plotNames = ("Om", "w0", "wa")
|
||||
plotTitles = ("$\Omega_M$", "$w_0$", "$w_a$")
|
||||
files = ("Om", "w0", "wa")
|
||||
|
||||
for iPlot in range(len(plotNames)):
|
||||
|
||||
plt.clf()
|
||||
|
||||
plotName = plotNameBase+"_"+plotNames[iPlot]+"_"+dataPortion
|
||||
plotTitle = plotTitles[iPlot]
|
||||
dataFile = workDir + "/likelihoods_"+dataPortion+"_"+files[iPlot]+".dat"
|
||||
|
||||
plt.xlabel(plotTitle, fontsize="20")
|
||||
plt.ylabel("Likelihood", fontsize="20")
|
||||
plt.ylim(0.0, 1.0)
|
||||
|
||||
data = np.loadtxt(dataFile, comments="#")
|
||||
plt.plot(data[:,0], data[:,1], color='k', linewidth=linewidth)
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||
|
||||
if showPlot:
|
||||
os.system("display %s" % figDir+"/fig_"+plotName+".png")
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue