Implemented (yet another) new boundary handling scheme, whereby we scan radially along survey edge while flagging nearest galaxies. The prepObservation routine was significantly cleaned up to accommodate this, but it was ultimately implemented in python (surveyTools.py) for ease of prototyping, with the intent to move it back into C later.

Some general housekeeping, making sure some new parameters are passed around correctly, and removing the storage of some unused files.

This update is considered HIGHLY UNSTABLE. It will almost certainly break somewhere for simulations.

Still under active development.
This commit is contained in:
Paul M. Sutter 2025-01-07 20:04:29 +08:00
parent 62dd66be79
commit 3dce2593d9
9 changed files with 348 additions and 454 deletions

View file

@ -89,26 +89,24 @@ Usage: python3 -m vide_pipeline parameter_file.py
The VIDE tools are all packaged in the `vide` package. The VIDE tools are all packaged in the `vide` package.
Running with observation
-----------------------
An example parameter file and dataset is given in the examples/example_observation directory. The parameter file contains all the information VIDE needs to run: where to find inputs and place outputs, tolerances for managing boundary handling, and information about your particular datasets, like redshift boundaries. To see how this works, here is an example:
cd examples/example_observation
python3 -m vide_pipeline example_observation.py
Running with simulation Running with simulation
----------------------- -----------------------
Using simulation requires a preliminary step, consisting in using the script Working with simulations requires a preliminary step, consisting in using the script "vide_prepare_simulation" which is installed automatically. This script performs necessary processing on your simulation file, such as extracting slices, performing subsampling, placing particles on a lightcone, and so on. For a demonstration, see the "example_simulation.py" parameter file in the examples/example_simulation/ directory. Running this script creates a series of auxillary parameter files that can then be run individually for void finding. Here is an example of this procedure:
`vide_prepare_simulation` which is installed during the installation procedure.
The script generates mock catalog and a default pipeline to handle simulations. cd examples/example_simulation
An example of the complete procedure is given here-below: vide_prepare_simulation --all --parm example_simulation.py
```
mkdir $HOME/my_vide_test
cp python_tools/vide_pipeline/datasets/example_simulation.py $HOME/my_vide_test
mkdir $HOME/my_vide_test/examples
cp examples/example_simulation_z0.0.dat $HOME/my_vide_test/examples
cd $HOME/my_vide_test
vide_prepare_simulation --all --parm example_simulation.py
python3 -m vide_pipeline example_simulation/sim_ss1.0.py python3 -m vide_pipeline example_simulation/sim_ss1.0.py
``` ```
The example copies the required data in a separate directory. Then, we execute
the `vide_prepare_simulation` script to generate the auxiliary pipeline. The
`vide_pipeline` is finally executed on this generated script.
Notes for CONDA Notes for CONDA
--------------- ---------------

View file

@ -18,9 +18,9 @@
+*/ +*/
#include <healpix_map.h> #include <healpix_map.h>
#include <healpix_map_fitsio.h> #include <healpix_map_fitsio.h>
#include <pointing.h>
#include <boost/format.hpp> #include <boost/format.hpp>
#include <iostream> #include <iostream>
#include <fstream> #include <fstream>
@ -30,7 +30,6 @@
#include "contour_pixels.hpp" #include "contour_pixels.hpp"
#include <netcdf> #include <netcdf>
#include <CosmoTool/fortran.hpp> #include <CosmoTool/fortran.hpp>
#include <gsl/gsl_interp.h>
#include <gsl/gsl_integration.h> #include <gsl/gsl_integration.h>
#define LIGHT_SPEED 299792.458 #define LIGHT_SPEED 299792.458
@ -65,10 +64,10 @@ struct ParticleData
vector<double> redshift; vector<double> redshift;
vector<double> catalogID; vector<double> catalogID;
vector<long> uniqueID; vector<long> uniqueID;
int id_mask;
// PMS // PMS
int mask_index; int mask_index;
// END PMS // END PMS
int edgeFlag = 0;
vector<Position> pos; vector<Position> pos;
double box[3][2]; double box[3][2];
double Lmax; double Lmax;
@ -122,15 +121,13 @@ void loadData(const string& fname, NYU_VData & data)
} }
void placeGalaxiesInCube(NYU_VData& data, ParticleData& output_data, void placeGalaxiesInCube(NYU_VData& data, ParticleData& output_data,
bool useComoving, double omegaM) bool useComoving, double omegaM) {
{
double d2r = M_PI/180; double d2r = M_PI/180;
gsl_function expanF; gsl_function expanF;
expanF.function = &expanFun; expanF.function = &expanFun;
struct my_expan_params expanParams; struct my_expan_params expanParams;
double maxZ = 2.0, z, result, error, *dL, *redshifts; double result, error;
int numZ = 1000, iZ;
size_t nEval; size_t nEval;
expanParams.Om = omegaM; expanParams.Om = omegaM;
@ -138,20 +135,6 @@ void placeGalaxiesInCube(NYU_VData& data, ParticleData& output_data,
expanParams.wa = 0.0; expanParams.wa = 0.0;
expanF.params = &expanParams; expanF.params = &expanParams;
dL = (double *) malloc(numZ * sizeof(double));
redshifts = (double *) malloc(numZ * sizeof(double));
for (iZ = 0; iZ < numZ; iZ++) {
z = iZ * maxZ/numZ;
//gsl_integration_qng(&expanF, 0.0, z, 1.e-6, 1.e-6, &result, &error, &nEval);
dL[iZ] = result;
redshifts[iZ] = z;
}
gsl_interp *interp = gsl_interp_alloc(gsl_interp_linear, numZ);
gsl_interp_init(interp, redshifts, dL, numZ);
gsl_interp_accel *acc = gsl_interp_accel_alloc();
output_data.pos.resize(data.size()); output_data.pos.resize(data.size());
output_data.id_gal.resize(data.size()); output_data.id_gal.resize(data.size());
output_data.ra.resize(data.size()); output_data.ra.resize(data.size());
@ -168,43 +151,36 @@ void placeGalaxiesInCube(NYU_VData& data, ParticleData& output_data,
for (int i = 0; i < data.size(); i++) for (int i = 0; i < data.size(); i++)
{ {
double ra = data[i].ra*d2r, dec = data[i].dec*d2r; double ra = data[i].ra*d2r, dec = data[i].dec*d2r;
double Dc = data[i].cz;
Position& p = output_data.pos[i]; Position& p = output_data.pos[i];
if (useComoving) { if (useComoving) {
//double pos = gsl_interp_eval(interp, redshifts, dL, data[i].cz, acc);
// Maubert - Lower boundary in redshift set to 0 to be consistent with pruneVoids (was 1.e-6 before).
gsl_integration_qng(&expanF, 0.0, data[i].cz/LIGHT_SPEED, gsl_integration_qng(&expanF, 0.0, data[i].cz/LIGHT_SPEED,
1.e-6, 1.e-6, 1.e-6, &result, &error, &nEval);
1.e-6, &result, &error, &nEval); Dc = result*LIGHT_SPEED;
double Dc = result*LIGHT_SPEED;
p.xyz[0] = Dc*cos(ra)*cos(dec);
p.xyz[1] = Dc*sin(ra)*cos(dec);
p.xyz[2] = Dc*sin(dec);
} else {
p.xyz[0] = data[i].cz*cos(ra)*cos(dec);
p.xyz[1] = data[i].cz*sin(ra)*cos(dec);
p.xyz[2] = data[i].cz*sin(dec);
} }
//printf("CREATE %e %e\n", data[i].cz, sqrt(p.xyz[0]*p.xyz[0] + p.xyz[1]*p.xyz[1] + p.xyz[2]*p.xyz[2]));
p.xyz[0] = Dc*cos(ra)*cos(dec);
p.xyz[1] = Dc*sin(ra)*cos(dec);
p.xyz[2] = Dc*sin(dec);
output_data.id_gal[i] = data[i].index; output_data.id_gal[i] = data[i].index;
output_data.ra[i] = ra; output_data.ra[i] = ra;
output_data.dec[i] = dec; output_data.dec[i] = dec;
output_data.redshift[i] = data[i].cz; output_data.redshift[i] = data[i].cz;
output_data.uniqueID[i] = data[i].uniqueID; output_data.uniqueID[i] = data[i].uniqueID;
for (int j = 0; j < 3; j++) for (int j = 0; j < 3; j++) {
{ if (p.xyz[j] > output_data.box[j][0])
if (p.xyz[j] > output_data.box[j][0]) output_data.box[j][0] = p.xyz[j];
output_data.box[j][0] = p.xyz[j]; if (p.xyz[j] < output_data.box[j][1])
if (p.xyz[j] < output_data.box[j][1]) output_data.box[j][1] = p.xyz[j];
output_data.box[j][1] = p.xyz[j]; }
}
//printf("INSERT GAL %d %e %e %e\n", output_data.id_gal[i], p.xyz[0], p.xyz[1], p.xyz[2]);
} }
// normalize box // normalize the box volume
float left = 1.e99; float left = INFINITY;
float right = -1.e99; float right = -INFINITY;
for (int j = 0; j < 3; j++) { for (int j = 0; j < 3; j++) {
if (output_data.box[j][1] < left) left = output_data.box[j][1]; if (output_data.box[j][1] < left) left = output_data.box[j][1];
if (output_data.box[j][0] > right) right = output_data.box[j][0]; if (output_data.box[j][0] > right) right = output_data.box[j][0];
@ -214,24 +190,27 @@ void placeGalaxiesInCube(NYU_VData& data, ParticleData& output_data,
output_data.box[j][0] = right; output_data.box[j][0] = right;
} }
double Rmax = -1;
for (int j = 0; j < 3; j++) {
Rmax = max(Rmax, max(output_data.box[j][0], -output_data.box[j][1]));
}
output_data.Lmax = Rmax;
cout << format("Galaxy position generated: %d galaxies") % output_data.pos.size() << endl; cout << format("Galaxy position generated: %d galaxies") % output_data.pos.size() << endl;
cout << format("box is %g < x < %g; %g < y < %g; %g < z < %g") cout << format("box is %g < x < %g; %g < y < %g; %g < z < %g")
% (1e-2*output_data.box[0][1]) % (1e-2*output_data.box[0][0]) % (1e-2*output_data.box[0][1]) % (1e-2*output_data.box[0][0])
% (1e-2*output_data.box[1][1]) % (1e-2*output_data.box[1][0]) % (1e-2*output_data.box[1][1]) % (1e-2*output_data.box[1][0])
% (1e-2*output_data.box[2][1]) % (1e-2*output_data.box[2][0]) << endl; % (1e-2*output_data.box[2][1]) % (1e-2*output_data.box[2][0]) << endl;
gsl_interp_free(interp);
} }
void generateSurfaceMask(prepObservation_info& args , void flagEdgeGalaxies(prepObservation_info& args ,
Healpix_Map<float>& mask, Healpix_Map<float>& mask,
vector<int>& pixel_list, vector<int>& contourPixels,
vector<int>& full_mask_list,
NYU_VData& data, NYU_VData& data,
ParticleData& output_data, ParticleData& output_data,
bool useComoving, bool useComoving,
double omegaM) double omegaM) {
{
//Maubert - Needed for comobile distance in mock_sphere //Maubert - Needed for comobile distance in mock_sphere
gsl_function expanF; gsl_function expanF;
@ -242,38 +221,14 @@ void generateSurfaceMask(prepObservation_info& args ,
expanParams.wa = 0.0; expanParams.wa = 0.0;
expanF.params = &expanParams; expanF.params = &expanParams;
double result, error ; double result, error;
size_t nEval; size_t nEval;
//End Maubert - Needed for comobile distance in mock_sphere //End Maubert - Needed for comobile distance in mock_sphere
// Find the first free index // TODO - REMOVE THIS
int idx = -1;
int insertion = 0;
double volume = pixel_list.size()*1.0/mask.Npix()*4*M_PI;
int numToInsert;
for (int i = 0; i < output_data.id_gal.size(); i++)
{
if (idx < output_data.id_gal[i])
idx = output_data.id_gal[i]+1;
}
output_data.id_mask = idx;
// PMS
output_data.mask_index = output_data.id_gal.size(); output_data.mask_index = output_data.id_gal.size();
// END PMS
cout << "Generate surface mask..." << endl;
double Rmax = -1; // write a small text file with galaxy position (for diagnostic purposes)
for (int j = 0; j < 3; j++)
{
Rmax = max(Rmax, max(output_data.box[j][0], -output_data.box[j][1]));
}
output_data.Lmax = Rmax;
// PMS - write a small text file with galaxy position (for diagnostic purposes)
FILE *fp; FILE *fp;
fp = fopen("galaxies.txt", "w"); fp = fopen("galaxies.txt", "w");
for (int i = 0; i < data.size(); i++) { for (int i = 0; i < data.size(); i++) {
@ -284,208 +239,82 @@ void generateSurfaceMask(prepObservation_info& args ,
(p.xyz[2])); (p.xyz[2]));
} }
fclose(fp); fclose(fp);
// END PMS
cout << format("Rmax is %g, surface volume is %g") % (Rmax/100) % (volume/(4*M_PI)) << endl; /* NOTE: temporarily moved to python for quick debugging. Will move back to
volume *= Rmax*Rmax*Rmax/3/1e6; here once it's all sorted
numToInsert = (int)floor(volume*args.density_fake_arg);
// TEST NOT USING MOCK PARTICLES
numToInsert = 0;
// END TEST
cout << format("3d volume to fill: %g (Mpc/h)^3") % volume << endl;
cout << format("Will insert %d particles") % numToInsert << endl; // convert redshift boundaries to covmoving if necessary
double rmin;
fp = fopen("mock_galaxies.txt", "w"); double rmax;
double pct = 0;
for (int i = 0; i < numToInsert; i++) {
double new_pct = i*100./numToInsert;
if (new_pct-pct > 5.) {
pct = new_pct;
cout << format(" .. %3.0f %%") % pct << endl;
}
Position p;
bool stop_here;
do {
int p0 = (int)floor(drand48()*pixel_list.size());
vec3 v = mask.pix2vec(pixel_list[p0]);
double r = Rmax*pow(drand48(),1./3);
p.xyz[0] = v.x * r;
p.xyz[1] = v.y * r;
p.xyz[2] = v.z * r;
stop_here = true;
for (int j = 0; j < 3; j++) {
if (p.xyz[j] > output_data.box[j][0] ||
p.xyz[j] < output_data.box[j][1])
stop_here = false;
}
}
while (!stop_here);
// PMS : write mock galaxies to a small file for diagnostic purposes
fprintf(fp, "%e %e %e\n",
(p.xyz[0]),
(p.xyz[1]),
(p.xyz[2]));
// END PMS
output_data.pos.push_back(p);
output_data.id_gal.push_back(idx);
output_data.ra.push_back(-1);
output_data.dec.push_back(-1);
output_data.redshift.push_back(-1);
output_data.uniqueID.push_back(-1);
//printf("INSERT MOCK %d %e %e %e\n", idx, p.xyz[0], p.xyz[1], p.xyz[2]);
insertion++;
}
fclose(fp);
// PMS
// TEST - insert mock galaxies along box edge - this is for tesselation safety
fp = fopen("mock_boundary.txt", "w");
double dx[3];
dx[0] = output_data.box[0][1] - output_data.box[0][0];
dx[1] = output_data.box[1][1] - output_data.box[1][0];
dx[2] = output_data.box[2][1] - output_data.box[2][0];
int nPart = 100;
// TEST
for (int iDir = 0; iDir < 0; iDir++) {
for (int iFace = 0; iFace < 0; iFace++) {
//for (int iDir = 0; iDir < 3; iDir++) {
//for (int iFace = 0; iFace < 2; iFace++) {
int iy = (iDir + 1) % 3;
int iz = (iDir + 2) % 3;
for (int i = 0; i < nPart; i++) {
for (int j = 0; j < nPart; j++) {
Position p;
p.xyz[iDir] = output_data.box[iDir][iFace];
p.xyz[iy] = i * dx[iy]/nPart + output_data.box[iy][0];
p.xyz[iz] = j * dx[iz]/nPart + output_data.box[iz][0];
output_data.pos.push_back(p);
output_data.id_gal.push_back(idx);
output_data.ra.push_back(-1);
output_data.dec.push_back(-1);
output_data.redshift.push_back(-1);
output_data.uniqueID.push_back(-1);
insertion++;
fprintf(fp, "%e %e %e\n",
(p.xyz[0]),
(p.xyz[1]),
(p.xyz[2]));
}
}
}
}
fclose(fp);
// END PMS
// PMS
// TEST - insert mock galaxies along spheres of survey redshift boundaries
fp = fopen("mock_sphere.txt", "w");
//Maubert - insert mock galaxies according to useComoving specification
// Added & compute rmin & rmax out of loop
double rmin ;
double rmax ;
if (useComoving) { if (useComoving) {
gsl_integration_qng(&expanF, 0.0, args.zMin_arg, gsl_integration_qng(&expanF, 0.0, args.zMin_arg, 1.e-6, 1.e-6, &result,
1.e-6, &error, &nEval);
1.e-6, &result, &error, &nEval); rmin = result*LIGHT_SPEED;
rmin = result* LIGHT_SPEED;
gsl_integration_qng(&expanF, 0.0, args.zMax_arg, gsl_integration_qng(&expanF, 0.0, args.zMax_arg, 1.e-6, 1.e-6, &result,
1.e-6, &error, &nEval);
1.e-6, &result, &error, &nEval); rmax = result*LIGHT_SPEED;
rmax = result* LIGHT_SPEED;
} else { } else {
rmin = args.zMin_arg * LIGHT_SPEED; rmin = args.zMin_arg * LIGHT_SPEED;
rmax = args.zMax_arg * LIGHT_SPEED; rmax = args.zMax_arg * LIGHT_SPEED;
} }
// TEST NOT USING BOUNDARY PARTICLES
for (int q = 0; q < 0; q++) {
//for (int q = 0; q < full_mask_list.size(); q++) {
vec3 v = mask.pix2vec(full_mask_list[q]);
Position p;
if (rmin > 0.) {
p.xyz[0] = v.x * rmin;
p.xyz[1] = v.y * rmin;
p.xyz[2] = v.z * rmin;
output_data.pos.push_back(p);
output_data.id_gal.push_back(idx);
output_data.ra.push_back(-1);
output_data.dec.push_back(-1);
output_data.redshift.push_back(-1);
output_data.uniqueID.push_back(-1);
insertion++;
fprintf(fp, "%e %e %e\n",
(p.xyz[0]),
(p.xyz[1]),
(p.xyz[2]));
}
p.xyz[0] = v.x * rmax;
p.xyz[1] = v.y * rmax;
p.xyz[2] = v.z * rmax;
output_data.pos.push_back(p);
output_data.id_gal.push_back(idx);
output_data.ra.push_back(-1);
output_data.dec.push_back(-1);
output_data.redshift.push_back(-1);
output_data.uniqueID.push_back(-1);
insertion++;
fprintf(fp, "%e %e %e\n",
(p.xyz[0]),
(p.xyz[1]),
(p.xyz[2]));
}
fclose(fp);
// END PMS
cout << format("Done. Inserted %d particles.") % insertion << endl;
}
void saveData(ParticleData& pdata)
{
NcFile f("particles.nc", NcFile::replace);
NcDim d = f.addDim("space", 3);
NcDim p = f.addDim("Np", pdata.pos.size());
NcVar v = f.addVar("particles", ncDouble, {d, p});
double *x = new double[pdata.pos.size()];
for (int j = 0; j < 3; j++)
{
for (int i = 0; i < pdata.pos.size(); i++)
x[i] = pdata.pos[i].xyz[j];
v.putVar({size_t(j), 0}, {1, pdata.pos.size()}, x);
}
v = f.addVar("id_gal", ncInt, std::vector<NcDim>({p}));
v.putVar(&pdata.id_gal[0]);
delete[] x;
} double dx = args.meanPartSep_arg;
int nSteps = floor( (rmax - rmin) / dx);
cout << "Assumed resolution element: " << dx << " " << nSteps << endl;
void saveForZobov(ParticleData& pdata, const string& fname, const string& paramname) // flag galaxies near mask edges
// using the "ray marching" algorithm: follow rays along lines of sight
// of all mask edges, flagging nearest neighbor galaxies as we go
// TODO - replace this with faster kd-tree search
cout << "Flagging galaxies on edges of survey..." << endl;
// explore rays along mask contours
for (int pixel : contourPixels) {
cout << "Working with pixel " << pixel << endl;
vec3 v = mask.pix2vec(pixel);
//cout << v*rmin << " " << v*rmax << endl;
// march along single ray and find nearest neighbors
for (int n = 0; n <= nSteps; n++) {
double r = n*dx + rmin;
vec3 rayPos = v*r;
double x = rayPos.x;
double y = rayPos.y;
double z = rayPos.z;
//cout << "Step " << n << " " << rayPos << endl;
// scan all galaxies
double minDist = INFINITY;
double dist = 0;
int closestGal = -1;
for (int i = 0; i < data.size(); i++) {
Position& galPos = output_data.pos[i];
dist = pow(galPos.xyz[0] - x, 2) +
pow(galPos.xyz[1] - y, 2) +
pow(galPos.xyz[2] - z, 2);
if (dist < minDist) closestGal = i;
} // galaxy search
} // marching along one ray
} // all contours
// flag galaxies near redshift boundaries
cout << "Flagging galaxies at redshift boundaries..." << endl;
*/
} // end flagEdgeGalaxies
void saveForZobov(ParticleData& pdata, const string& fname,
const string& paramname)
{ {
UnformattedWrite f(fname); UnformattedWrite f(fname);
static const char axis[] = { 'X', 'Y', 'Z' }; static const char axis[] = { 'X', 'Y', 'Z' };
@ -562,21 +391,6 @@ void saveForZobov(ParticleData& pdata, const string& fname, const string& paramn
v.putVar({0}, {size_t(nOutputPart)}, &pdata.id_gal[0]); v.putVar({0}, {size_t(nOutputPart)}, &pdata.id_gal[0]);
//v2->put(expansion_fac, pdata.pos.size()); //v2->put(expansion_fac, pdata.pos.size());
//delete[] expansion_fac;
/*
FILE *infoFile = fopen("sample_info.txt", "w");
fprintf(infoFile, "x_min = %f\n", -Lmax/100.);
fprintf(infoFile, "x_max = %f\n", Lmax/100.);
fprintf(infoFile, "y_min = %f\n", -Lmax/100.);
fprintf(infoFile, "y_max = %f\n", Lmax/100.);
fprintf(infoFile, "z_min = %f\n", -Lmax/100.);
fprintf(infoFile, "z_max = %f\n", Lmax/100.);
fprintf(infoFile, "mask_index = %d\n", pdata.mask_index);
fprintf(infoFile, "total_particles = %d\n", pdata.pos.size());
fclose(infoFile);
*/
} }
int main(int argc, char **argv) int main(int argc, char **argv)
@ -608,40 +422,40 @@ int main(int argc, char **argv)
prepObservation_conf_print_version(); prepObservation_conf_print_version();
cout << "Loading data " << args_info.catalog_arg << "..." << endl; cout << "Loading galaxy data " << args_info.catalog_arg << "..." << endl;
vector<NYU_Data> data; vector<NYU_Data> data;
Healpix_Map<float> o_mask; vector<int> contourPixels;
vector<int> pixel_list;
vector<int> full_mask_list;
ParticleData output_data; ParticleData output_data;
loadData(args_info.catalog_arg, data); loadData(args_info.catalog_arg, data);
cout << "Loading mask..." << endl; cout << "Loading mask..." << endl;
Healpix_Map<float> mask;
Healpix_Map<float> o_mask;
int newNside = args_info.nsideForContour_arg;
read_Healpix_map_from_fits(args_info.mask_arg, o_mask); read_Healpix_map_from_fits(args_info.mask_arg, o_mask);
Healpix_Map<float> mask; if (newNside == -1) newNside = o_mask.Nside();
mask.SetNside(128, RING); mask.SetNside(newNside, RING);
mask.Import(o_mask); mask.Import(o_mask);
computeContourPixels(mask,pixel_list); computeContourPixels(mask, contourPixels);
computeMaskPixels(mask,full_mask_list);
// We compute a cube holding all the galaxies + the survey surface mask
cout << "Placing galaxies..." << endl; cout << "Placing galaxies..." << endl;
placeGalaxiesInCube(data, output_data, args_info.useComoving_flag, placeGalaxiesInCube(data, output_data, args_info.useComoving_flag,
args_info.omegaM_arg); args_info.omegaM_arg);
generateSurfaceMask(args_info, mask, pixel_list, full_mask_list,
data, output_data,args_info.useComoving_flag,
args_info.omegaM_arg); //cout << "Flagging edge galaxies..." << endl;
flagEdgeGalaxies(args_info, mask, contourPixels,
data, output_data,args_info.useComoving_flag,
args_info.omegaM_arg);
saveForZobov(output_data, args_info.output_arg, args_info.params_arg); saveForZobov(output_data, args_info.output_arg, args_info.params_arg);
// saveData(output_data);
// PMS // PMS - TODO REMOVE THIS
FILE *fp = fopen("mask_index.txt", "w"); FILE *fp = fopen("mask_index.txt", "w");
fprintf(fp, "%d", output_data.mask_index); fprintf(fp, "%d", output_data.mask_index);
fclose(fp); fclose(fp);
@ -650,6 +464,7 @@ int main(int argc, char **argv)
fprintf(fp, "%d", output_data.pos.size()); fprintf(fp, "%d", output_data.pos.size());
fclose(fp); fclose(fp);
printf("Done!\n"); printf("Done!\n");
// END PMS // END PMS - TODO REMOVE THIS
return 0; return 0;
} }

View file

@ -17,3 +17,7 @@ option "params" - "Output parameters of the datacube" string required
option "useComoving" - "Convert to real space using LCDM cosmology" flag off option "useComoving" - "Convert to real space using LCDM cosmology" flag off
option "omegaM" - "Omega Matter for fiducial cosmology" double optional default="0.27" option "omegaM" - "Omega Matter for fiducial cosmology" double optional default="0.27"
option "nsideForContour" - "HEALPix NSIDE resolution for figuring out mask contours" int optional default="-1"
option "meanPartSep" - "Estimated mean tracer seperation in h^3 / Mpc^3" double optional default="1"

View file

@ -120,12 +120,12 @@ void openFiles(string outputDir, string sampleName,
int mockIndex, int numKept, int mockIndex, int numKept,
FILE** fpZobov, FILE** fpCenters, FILE** fpZobov, FILE** fpCenters,
FILE** fpCentersNoCut, FILE** fpCentersNoCut,
FILE** fpBarycenter, FILE** fpDistances, FILE** fpShapes, FILE** fpBarycenter, FILE** fpShapes,
FILE** fpSkyPositions); FILE** fpSkyPositions);
void closeFiles(FILE* fpZobov, FILE* fpCenters, void closeFiles(FILE* fpZobov, FILE* fpCenters,
FILE* fpCentersNoCut, FILE* fpCentersNoCut,
FILE* fpBarycenter, FILE* fpDistances, FILE* fpShapes, FILE* fpBarycenter, FILE* fpShapes,
FILE* fpSkyPositions); FILE* fpSkyPositions);
void outputVoids(string outputDir, string sampleName, string prefix, void outputVoids(string outputDir, string sampleName, string prefix,
@ -374,7 +374,7 @@ int main(int argc, char **argv) {
fclose(fp); fclose(fp);
// now the particles-zone // now the particles-zone
printf(" Loading particle-zone membership info...\n"); printf(" Loading zone-particle membership info...\n");
fp = fopen(args.zone2Part_arg, "r"); fp = fopen(args.zone2Part_arg, "r");
fread(&dummy, 1, 4, fp); fread(&dummy, 1, 4, fp);
fread(&numZonesTot, 1, 4, fp); fread(&numZonesTot, 1, 4, fp);
@ -470,7 +470,7 @@ int main(int argc, char **argv) {
// load voids *again* using Guilhem's code so we can get tree information // load voids *again* using Guilhem's code so we can get tree information
clock3 = clock(); clock3 = clock();
printf(" Re-loading voids and building tree..\n"); printf(" Re-loading voids and building tree...\n");
ZobovRep zobovCat; ZobovRep zobovCat;
if (!loadZobov(args.voidDesc_arg, args.zone2Part_arg, args.void2Zone_arg, if (!loadZobov(args.voidDesc_arg, args.zone2Part_arg, args.void2Zone_arg,
0, zobovCat)) { 0, zobovCat)) {
@ -691,12 +691,12 @@ int main(int argc, char **argv) {
sqrt(pow(voids[iVoid].macrocenter[0] - boxLen[0]/2.,2) + sqrt(pow(voids[iVoid].macrocenter[0] - boxLen[0]/2.,2) +
pow(voids[iVoid].macrocenter[1] - boxLen[1]/2.,2) + pow(voids[iVoid].macrocenter[1] - boxLen[1]/2.,2) +
pow(voids[iVoid].macrocenter[2] - boxLen[2]/2.,2)); pow(voids[iVoid].macrocenter[2] - boxLen[2]/2.,2));
voids[iVoid].redshiftInMpc = voids[iVoid].redshiftInMpc; //voids[iVoid].redshiftInMpc = voids[iVoid].redshiftInMpc;
if (args.useComoving_flag) { if (args.useComoving_flag) {
redshift = gsl_interp_eval(interp, dL, redshifts, redshift = gsl_interp_eval(interp, dL, redshifts,
voids[iVoid].redshiftInMpc, acc); voids[iVoid].redshiftInMpc, acc);
nearestEdge = fabs((redshift-args.zMax_arg)*LIGHT_SPEED/100.); nearestEdge = fabs((redshift-args.zMax_arg)*LIGHT_SPEED/100.);
voids[iVoid].redshift = redshift; voids[iVoid].redshift = redshift;
} else { } else {
@ -1002,7 +1002,7 @@ void openFiles(string outputDir, string sampleName,
string prefix, string dataPortion, string prefix, string dataPortion,
int mockIndex, int numKept, int mockIndex, int numKept,
FILE** fpZobov, FILE** fpCenters, FILE** fpZobov, FILE** fpCenters,
FILE** fpBarycenter, FILE** fpDistances, FILE** fpShapes, FILE** fpBarycenter, FILE** fpShapes,
FILE** fpSkyPositions) { FILE** fpSkyPositions) {
*fpZobov = fopen((outputDir+"/"+prefix+"voidDesc_"+dataPortion+"_"+sampleName).c_str(), "w"); *fpZobov = fopen((outputDir+"/"+prefix+"voidDesc_"+dataPortion+"_"+sampleName).c_str(), "w");
@ -1014,8 +1014,6 @@ void openFiles(string outputDir, string sampleName,
*fpCenters = fopen((outputDir+"/"+prefix+"centers_"+dataPortion+"_"+sampleName).c_str(), "w"); *fpCenters = fopen((outputDir+"/"+prefix+"centers_"+dataPortion+"_"+sampleName).c_str(), "w");
fprintf(*fpCenters, "# center x,y,z (Mpc/h), volume (normalized), radius (Mpc/h), redshift, volume (Mpc/h^3), void ID, density contrast, num part, parent ID, tree level, number of children, central density\n"); fprintf(*fpCenters, "# center x,y,z (Mpc/h), volume (normalized), radius (Mpc/h), redshift, volume (Mpc/h^3), void ID, density contrast, num part, parent ID, tree level, number of children, central density\n");
*fpDistances = fopen((outputDir+"/"+prefix+"boundaryDistances_"+dataPortion+"_"+sampleName).c_str(), "w");
*fpSkyPositions = fopen((outputDir+"/"+prefix+"sky_positions_"+dataPortion+"_"+sampleName).c_str(), "w"); *fpSkyPositions = fopen((outputDir+"/"+prefix+"sky_positions_"+dataPortion+"_"+sampleName).c_str(), "w");
fprintf(*fpSkyPositions, "# RA, dec, redshift, radius (Mpc/h), void ID\n"); fprintf(*fpSkyPositions, "# RA, dec, redshift, radius (Mpc/h), void ID\n");
@ -1027,13 +1025,13 @@ void openFiles(string outputDir, string sampleName,
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
void closeFiles(FILE* fpZobov, FILE* fpCenters, void closeFiles(FILE* fpZobov, FILE* fpCenters,
FILE* fpBarycenter, FILE* fpDistances, FILE* fpShapes, FILE* fpBarycenter, FILE* fpShapes,
FILE* fpSkyPositions) { FILE* fpSkyPositions) {
fclose(fpZobov); fclose(fpZobov);
fclose(fpCenters); fclose(fpCenters);
fclose(fpBarycenter); fclose(fpBarycenter);
fclose(fpDistances); //fclose(fpDistances);
fclose(fpShapes); fclose(fpShapes);
fclose(fpSkyPositions); fclose(fpSkyPositions);
@ -1049,13 +1047,13 @@ void outputVoids(string outputDir, string sampleName, string prefix,
int iVoid; int iVoid;
VOID outVoid; VOID outVoid;
FILE *fp, *fpZobov, *fpCenters, *fpCentersNoCut, *fpBarycenter, FILE *fp, *fpZobov, *fpCenters, *fpCentersNoCut, *fpBarycenter,
*fpDistances, *fpShapes, *fpSkyPositions; *fpShapes, *fpSkyPositions;
openFiles(outputDir, sampleName, prefix, dataPortion, openFiles(outputDir, sampleName, prefix, dataPortion,
mockIndex, voids.size(), mockIndex, voids.size(),
&fpZobov, &fpCenters, &fpBarycenter, &fpZobov, &fpCenters, &fpBarycenter,
&fpDistances, &fpShapes, &fpSkyPositions); &fpShapes, &fpSkyPositions);
for (iVoid = 0; iVoid < voids.size(); iVoid++) { for (iVoid = 0; iVoid < voids.size(); iVoid++) {
@ -1104,6 +1102,7 @@ void outputVoids(string outputDir, string sampleName, string prefix,
outVoid.macrocenter[1], outVoid.macrocenter[1],
outVoid.macrocenter[2]); outVoid.macrocenter[2]);
/*
fprintf(fpDistances, "%d %e %e %e %e %e\n", fprintf(fpDistances, "%d %e %e %e %e %e\n",
outVoid.voidID, outVoid.voidID,
outVoid.nearestMock, outVoid.nearestMock,
@ -1111,6 +1110,7 @@ void outputVoids(string outputDir, string sampleName, string prefix,
outVoid.rescaledCoreDens, outVoid.rescaledCoreDens,
outVoid.nearestMockFromCore, outVoid.nearestMockFromCore,
outVoid.nearestGalFromCore); outVoid.nearestGalFromCore);
*/
fprintf(fpCenters, "%.2f %.2f %.2f %.2f %.2f %.5f %.2f %d %f %d %d %d %d %.2f\n", fprintf(fpCenters, "%.2f %.2f %.2f %.2f %.2f %.5f %.2f %d %f %d %d %d %d %.2f\n",
outCenter[0], outCenter[0],
@ -1164,6 +1164,6 @@ void outputVoids(string outputDir, string sampleName, string prefix,
} // end iVoid } // end iVoid
closeFiles(fpZobov, fpCenters, fpBarycenter, closeFiles(fpZobov, fpCenters, fpBarycenter,
fpDistances, fpShapes, fpSkyPositions); fpShapes, fpSkyPositions);
} // end outputVoids } // end outputVoids

View file

@ -30,7 +30,7 @@ continueRun = False
# 1 : extract redshift slices from data # 1 : extract redshift slices from data
# 2 : void extraction using zobov # 2 : void extraction using zobov
# 3 : removal of small voids and voids near the edge # 3 : removal of small voids and voids near the edge
startCatalogStage = 1 startCatalogStage = 2
endCatalogStage = 3 endCatalogStage = 3
basePath = os.path.dirname(os.path.abspath(__file__)) basePath = os.path.dirname(os.path.abspath(__file__))
@ -50,7 +50,7 @@ figDir = os.path.join(workDir,"figs","example_observation")
# optimization: maximum number of parallel threads to use # optimization: maximum number of parallel threads to use
numZobovThreads = 2 numZobovThreads = 2
# optimization: number of subdivisions of the box # optimization: number of subdivisions of the volume
numZobovDivisions = 2 numZobovDivisions = 2
# Maximum density for merging voids # Maximum density for merging voids
@ -65,7 +65,7 @@ boundaryTolerance = 1.0
# don't change this # don't change this
dataSampleList = [] dataSampleList = []
# define your volume-limited samples # define your data samples
newSample = Sample( newSample = Sample(
# path to galaxy file is inputDataDir+dataFile # path to galaxy file is inputDataDir+dataFile
dataFile = "example_observation.dat", dataFile = "example_observation.dat",
@ -76,19 +76,22 @@ newSample = Sample(
# a convenient nickname # a convenient nickname
nickName = "exobs", nickName = "exobs",
# don't change this # don't change this or nothing will make sense
dataType = "observation", dataType = "observation",
# assume sample is volume-limited? # assume sample is volume-limited?
volumeLimited = True, volumeLimited = True,
# HEALpix mask file - set to None to auto-compute # HEALpix mask file - set to None to auto-compute
# NOTE: auto-computed masks are pretty terrible, so
# only do that if you have no other options
#maskFile = "", #maskFile = "",
maskFile = inputDataDir+"/example_observation_mask.fits", maskFile = inputDataDir+"/example_observation_mask.fits",
# if maskFile blank, desired resolution for HEALpix # resolution for HEALpix mapping of survey edge contours
# mask mapping, otherwise pulled from maskFile # Set to -1 to use nside from given fits file
nsideForMask = 128, # MUST be set if auto-computing mask
nsideForContour = 128,
# radial selection function (if not volume limited) # radial selection function (if not volume limited)
selFunFile = None, selFunFile = None,
@ -109,6 +112,7 @@ newSample = Sample(
# density of mock particles in cubic Mpc/h # density of mock particles in cubic Mpc/h
# (make this as high as you can afford) # (make this as high as you can afford)
### DEPRECATED
fakeDensity = 0.05, fakeDensity = 0.05,
# if true, convert to comoving space using LCDM cosmology # if true, convert to comoving space using LCDM cosmology

View file

@ -69,7 +69,7 @@ class Sample:
nickName = "dim" nickName = "dim"
outputDir = "" outputDir = ""
maskFile = "rast_window_512.fits" maskFile = "rast_window_512.fits"
nsideForMask = 128 nsideForContour = 128
selFunFile = "czselfunc.all.dr72dim.dat" selFunFile = "czselfunc.all.dr72dim.dat"
zBoundary = (0.0, 0.1) zBoundary = (0.0, 0.1)
zBoundaryMpc = (0., 300) zBoundaryMpc = (0., 300)
@ -78,7 +78,8 @@ class Sample:
zRange = (0.0, 0.1) zRange = (0.0, 0.1)
omegaM = 0.27 omegaM = 0.27
minVoidRadius = -1 minVoidRadius = -1
fakeDensity = 0.01 meanPartSep = 1 # calculated mean particle separation
fakeDensity = 0.01 # TODO - remove
hasWeightedVolumes = False hasWeightedVolumes = False
profileBinSize = 2 # Mpc profileBinSize = 2 # Mpc
autoNumInStack = -1 # set to >0 to automatically generate stacks of size N autoNumInStack = -1 # set to >0 to automatically generate stacks of size N
@ -101,9 +102,9 @@ class Sample:
stacks = [] stacks = []
def __init__(self, dataFile="", fullName="", dataUnit=1, def __init__(self, dataFile="", fullName="", dataUnit=1,
nickName="", maskFile="", nsideForMask=128, selFunFile="", nickName="", maskFile="", nsideForContour=128, selFunFile="",
zBoundary=(), zRange=(), zBoundaryMpc=(), boundaryWidth=0.1, zBoundary=(), zRange=(), zBoundaryMpc=(), boundaryWidth=0.1,
shiftSimZ=False, shiftSimZ=False, meanPartSep = 1,
minVoidRadius=-1, fakeDensity=0.01, volumeLimited=True, minVoidRadius=-1, fakeDensity=0.01, volumeLimited=True,
numAPSlices=1, hasWeightedVolumes=False, numAPSlices=1, hasWeightedVolumes=False,
includeInHubble=True, partOfCombo=False, isCombo=False, includeInHubble=True, partOfCombo=False, isCombo=False,
@ -118,7 +119,7 @@ class Sample:
self.fullName = fullName self.fullName = fullName
self.nickName = nickName self.nickName = nickName
self.maskFile = maskFile self.maskFile = maskFile
self.nsideForMask = nsideForMask self.nsideForContour = nsideForContour
self.selFunFile = selFunFile self.selFunFile = selFunFile
self.zBoundary = zBoundary self.zBoundary = zBoundary
self.zBoundaryMpc = zBoundaryMpc self.zBoundaryMpc = zBoundaryMpc
@ -126,6 +127,7 @@ class Sample:
self.shiftSimZ = shiftSimZ self.shiftSimZ = shiftSimZ
self.zRange = zRange self.zRange = zRange
self.minVoidRadius = minVoidRadius self.minVoidRadius = minVoidRadius
self.meanPartSep = meanPartSep
self.fakeDensity = fakeDensity self.fakeDensity = fakeDensity
self.hasWeightedVolumes = hasWeightedVolumes self.hasWeightedVolumes = hasWeightedVolumes
self.volumeLimited = volumeLimited self.volumeLimited = volumeLimited

View file

@ -39,17 +39,20 @@ from backend.cosmologyTools import *
from backend.surveyTools import * from backend.surveyTools import *
import pickle import pickle
import scipy.interpolate as interpolate import scipy.interpolate as interpolate
import time
NetCDFFile = Dataset NetCDFFile = Dataset
ncFloat = 'f8' # Double precision ncFloat = 'f8' # Double precision
LIGHT_SPEED = 299792.458 #LIGHT_SPEED = 299792.458
# ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
def launchPrep(sample, binPath, workDir=None, inputDataDir=None, def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
outputDir=None, figDir=None, logFile=None, useComoving=False, outputDir=None, figDir=None, logFile=None, useComoving=False,
continueRun=None, regenerate=False): continueRun=None, regenerate=False):
startTime = time.time()
if sample.dataType == "observation": if sample.dataType == "observation":
sampleName = sample.fullName sampleName = sample.fullName
@ -67,14 +70,29 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
datafile = inputDataDir+"/"+sample.dataFile datafile = inputDataDir+"/"+sample.dataFile
if sample.maskFile == "": if sample.maskFile == "":
sample.maskFile = outputDir + "/constructed_mask.fits" if sample.nsideForContour == -1:
figureOutMask(datafile, sample.nsideForMask, sample.maskFile) sample.nsideForContour = 128
sample.maskFile = outputDir + "/constructed_mask.fits"
figureOutMask(datafile, sample.nsideForContour, sample.maskFile)
# compute mean particle separation
(boxVol, nbar) = getSurveyProps(sample.maskFile, sample.zRange[0],
sample.zRange[1], sample.zRange[0], sample.zRange[1], "all",
sample.omegaM, useComoving=useComoving)
numTracers = int(open(outputDir+"/mask_index.txt", "r").read())
sample.meanPartSep = (1.*numTracers/boxVol/nbar)**(-1/3.)
# flag edge galaxies
galFile = outputDir + "galaxies.txt"
edgeGalFile = outputDir + "/galaxy_edge_flags.txt" edgeGalFile = outputDir + "/galaxy_edge_flags.txt"
edgeMaskFile = outputDir + "/mask_edge_map.fits" #edgeMaskFile = outputDir + "/mask_edge_map.fits"
findEdgeGalaxies(datafile, sample.maskFile, edgeGalFile, edgeMaskFile, contourFile = outputDir + "/contour_map.fits"
findEdgeGalaxies(galFile, sample.maskFile, edgeGalFile, contourFile,
sample.zBoundary[0], sample.zBoundary[1], sample.omegaM, sample.zBoundary[0], sample.zBoundary[1], sample.omegaM,
useComoving, sample.boundaryWidth) useComoving, sample.boundaryWidth, sample.meanPartSep)
if useComoving: if useComoving:
useComovingFlag = "useComoving" useComovingFlag = "useComoving"
@ -92,12 +110,15 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
%s %s
%s %s
omegaM %g omegaM %g
nsideForContour %g
meanPartSep %g
""" % (datafile, sample.maskFile, outputFile, """ % (datafile, sample.maskFile, outputFile,
outputDir+"/zobov_slice_"+sampleName+".par", outputDir+"/zobov_slice_"+sampleName+".par",
sample.zBoundary[0], sample.zBoundary[1], sample.fakeDensity, sample.zBoundary[0], sample.zBoundary[1], sample.fakeDensity,
useComovingFlag, inputParameterFlag, sample.omegaM) useComovingFlag, inputParameterFlag, sample.omegaM,
sample.nsideForContour, sample.meanPartSep)
parmFile = os.getcwd()+"/generate_"+sample.fullName+".par" parmFile = os.getcwd()+"/prep_"+sample.fullName+".par"
if regenerate or not (continueRun and jobSuccessful(logFile, "Done!\n")): if regenerate or not (continueRun and jobSuccessful(logFile, "Done!\n")):
with open(parmFile, mode="wt") as f: with open(parmFile, mode="wt") as f:
@ -106,9 +127,11 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
with open(logFile, 'wt') as log: with open(logFile, 'wt') as log:
subprocess.call([binPath, arg1], stdout=log, stderr=log) subprocess.call([binPath, arg1], stdout=log, stderr=log)
if jobSuccessful(logFile, "Done!\n"): if jobSuccessful(logFile, "Done!\n"):
print("done") endTime = time.time()
walltime = endTime - startTime
print("done (%.2fs elapsed)" % walltime)
else: else:
print("FAILED!") print("FAILED! See log file for details.")
exit(-1) exit(-1)
else: else:
@ -118,7 +141,6 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
if os.access("contour_map.fits", os.F_OK): if os.access("contour_map.fits", os.F_OK):
os.system("mv %s %s" % ("contour_map.fits", outputDir)) os.system("mv %s %s" % ("contour_map.fits", outputDir))
os.system("mv %s %s" % ("mask_map.fits", outputDir))
if os.access("comoving_distance.txt", os.F_OK): if os.access("comoving_distance.txt", os.F_OK):
os.system("mv %s %s" % ("comoving_distance.txt", outputDir)) os.system("mv %s %s" % ("comoving_distance.txt", outputDir))
@ -129,15 +151,26 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
if os.access("galaxies.txt", os.F_OK): if os.access("galaxies.txt", os.F_OK):
os.system("mv %s %s" % ("galaxies.txt", outputDir)) os.system("mv %s %s" % ("galaxies.txt", outputDir))
os.system("mv %s %s" % ("mock_galaxies.txt", outputDir)) #os.system("mv %s %s" % ("galaxy_edge_flags.txt", outputDir))
os.system("mv %s %s" % ("mock_boundary.txt", outputDir))
os.system("mv %s %s" % ("mock_sphere.txt", outputDir))
else: # simulation else: # simulation
sampleName = sample.fullName sampleName = sample.fullName
datafile = inputDataDir+"/"+sample.dataFile datafile = inputDataDir+"/"+sample.dataFile
# compute mean particle separation
iX = float(sample.mySubvolume[0])
iY = float(sample.mySubvolume[1])
xMin = iX/sample.numSubvolumes * sample.boxLen
yMin = iY/sample.numSubvolumes * sample.boxLen
xMax = (iX+1)/sample.numSubvolumes * sample.boxLen
yMax = (iY+1)/sample.numSubvolumes * sample.boxLen
zMin = sample.zBoundaryMpc[0]
zMax = sample.zBoundaryMpc[1]
boxVol = (xMax-xMin)*(yMax-yMin)*(zMax-zMin)
sample.meanPartSep = (1.*numTracers/boxVol)**(-1/3.)
# check if the final subsampling is done # check if the final subsampling is done
lastSample = sample.subsample.split(', ')[-1] lastSample = sample.subsample.split(', ')[-1]
doneLine = "Done! %5.2e\n" % float(lastSample) doneLine = "Done! %5.2e\n" % float(lastSample)
@ -245,7 +278,7 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
cmd = "%s --configFile=%s" % (binPath,parmFile) cmd = "%s --configFile=%s" % (binPath,parmFile)
log = open(logFile, 'a') log = open(logFile, 'a')
arg1 = "--configFile=%s" % parmFile arg1 = "--configFile=%s" % parmFile
subprocess.call(cmd, stdout=log, stderr=log, shell=True) subprocess.call(cmd, stdout=log, stderr=log, shell=True)
log.close() log.close()
@ -257,7 +290,7 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
doneLine = "Done! %5.2e\n" % keepFraction doneLine = "Done! %5.2e\n" % keepFraction
if not jobSuccessful(logFile, doneLine): if not jobSuccessful(logFile, doneLine):
print("FAILED!") ### dies here for now print("FAILED! See log file for details.") ### dies here for now
exit(-1) exit(-1)
prevSubSample = thisSubSample prevSubSample = thisSubSample
@ -281,29 +314,6 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
os.system("mv %s %s" % ("total_particles.txt", outputDir)) os.system("mv %s %s" % ("total_particles.txt", outputDir))
#os.system("mv %s %s" % ("sample_info.txt", outputDir)) #os.system("mv %s %s" % ("sample_info.txt", outputDir))
# add to sample info file
if sample.dataType == "observation":
(boxVol, nbar) = getSurveyProps(sample.maskFile, sample.zRange[0],
sample.zRange[1], sample.zRange[0], sample.zRange[1], "all",
sample.omegaM, useComoving=useComoving)
else:
iX = float(sample.mySubvolume[0])
iY = float(sample.mySubvolume[1])
xMin = iX/sample.numSubvolumes * sample.boxLen
yMin = iY/sample.numSubvolumes * sample.boxLen
xMax = (iX+1)/sample.numSubvolumes * sample.boxLen
yMax = (iY+1)/sample.numSubvolumes * sample.boxLen
zMin = sample.zBoundaryMpc[0]
zMax = sample.zBoundaryMpc[1]
boxVol = (xMax-xMin)*(yMax-yMin)*(zMax-zMin)
nbar = 1.0
numTracers = int(open(outputDir+"/mask_index.txt", "r").read())
numTotal = int(open(outputDir+"/total_particles.txt", "r").read())
meanSep = (1.*numTracers/boxVol/nbar)**(-1/3.)
# save this sample's information # save this sample's information
with open(outputDir+"/sample_info.dat", mode='wb') as output: with open(outputDir+"/sample_info.dat", mode='wb') as output:
pickle.dump(sample, output, pickle.HIGHEST_PROTOCOL) pickle.dump(sample, output, pickle.HIGHEST_PROTOCOL)
@ -325,9 +335,8 @@ def launchPrep(sample, binPath, workDir=None, inputDataDir=None,
fp.write("Number of simulation subvolumes: %s\n" % sample.numSubvolumes) fp.write("Number of simulation subvolumes: %s\n" % sample.numSubvolumes)
fp.write("My subvolume index: %s\n" % sample.mySubvolume) fp.write("My subvolume index: %s\n" % sample.mySubvolume)
fp.write("Estimated volume (cubic Mpc/h): %g\n" % boxVol) fp.write("Estimated volume (cubic Mpc/h): %g\n" % boxVol)
fp.write("Number of real (non-boundary) tracers: %d\n" % numTracers) fp.write("Total number of tracers: %d\n" % numTracers)
fp.write("Total number of tracers: %d\n" % numTotal) fp.write("Estimated mean tracer separation (Mpc/h): %g\n" % sample.meanPartSep)
fp.write("Estimated mean tracer separation (Mpc/h): %g\n" % meanSep)
fp.write("Minimum void size actually used (Mpc/h): %g\n" % sample.minVoidRadius) fp.write("Minimum void size actually used (Mpc/h): %g\n" % sample.minVoidRadius)
fp.close() fp.close()
@ -336,6 +345,8 @@ def launchZobov(sample, binPath, outputDir=None, logDir=None, continueRun=None,
numZobovDivisions=None, numZobovThreads=None, numZobovDivisions=None, numZobovThreads=None,
mergingThreshold=0.2): mergingThreshold=0.2):
startTime = time.time()
sampleName = sample.fullName sampleName = sample.fullName
datafile = outputDir+"zobov_slice_"+sampleName datafile = outputDir+"zobov_slice_"+sampleName
@ -490,9 +501,11 @@ def launchZobov(sample, binPath, outputDir=None, logDir=None, continueRun=None,
os.unlink(fileName) os.unlink(fileName)
if jobSuccessful(logFile, "Done!\n"): if jobSuccessful(logFile, "Done!\n"):
print("done") endTime = time.time()
walltime = endTime - startTime
print("done (%.2fs elapsed)" % walltime)
else: else:
print("FAILED!") print("FAILED! See log file for details.")
exit(-1) exit(-1)
else: else:
@ -507,6 +520,8 @@ def launchPrune(sample, binPath,
continueRun=None, useComoving=False, mergingThreshold=0.2, continueRun=None, useComoving=False, mergingThreshold=0.2,
boundaryTolerance=1.0): boundaryTolerance=1.0):
startTime = time.time()
sampleName = sample.fullName sampleName = sample.fullName
numVoids = sum(1 for line in \ numVoids = sum(1 for line in \
@ -580,9 +595,11 @@ def launchPrune(sample, binPath,
if jobSuccessful(logFile, "NetCDF: Not a valid ID\n") or \ if jobSuccessful(logFile, "NetCDF: Not a valid ID\n") or \
jobSuccessful(logFile, "Done!\n"): jobSuccessful(logFile, "Done!\n"):
print("done") endTime = time.time()
walltime = endTime - startTime
print("done (%.2fs elapsed)" % walltime)
else: else:
print("FAILED!") print("FAILED! See log file for details.")
#exit(-1) #exit(-1)
else: else:
@ -597,6 +614,8 @@ def launchVoidOverlap(sample1, sample2, sample1Dir, sample2Dir,
overlapFrac=0.25, overlapFrac=0.25,
matchMethod=None, strictMatch=False): matchMethod=None, strictMatch=False):
startTime = time.time()
sampleName1 = sample1.fullName sampleName1 = sample1.fullName
sampleName2 = sample2.fullName sampleName2 = sample2.fullName
@ -663,7 +682,9 @@ def launchVoidOverlap(sample1, sample2, sample1Dir, sample2Dir,
log.close() log.close()
#if jobSuccessful(logFile, "Done!\n"): #if jobSuccessful(logFile, "Done!\n"):
print("done") endTime = time.time()
walltime = endTime - startTime
print("done (%.2fs elapsed)" % walltime)
#else: #else:
# print "FAILED!" # print "FAILED!"
# exit(-1) # exit(-1)
@ -707,7 +728,7 @@ def launchVelocityStack(sample, stack, binPath,
if jobSuccessful(logFile, "Done!\n"): if jobSuccessful(logFile, "Done!\n"):
print("done") print("done")
else: else:
print("FAILED!") print("FAILED! See log file for details.")
exit(-1) exit(-1)
else: else:

View file

@ -21,6 +21,7 @@
# distances, and expected void stretching # distances, and expected void stretching
import numpy as np import numpy as np
import scipy
import healpy as healpy import healpy as healpy
import os import os
from backend import * from backend import *
@ -127,63 +128,111 @@ def figureOutMask(galFile, nside, outMaskFile):
return mask return mask
# ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
# figures out which galaxies live on a mask edge, and also writes the edge # figures out which galaxies live on a mask or redshift edge
# map to an auxillary file def findEdgeGalaxies(galFile, maskFile, edgeGalFile, contourFile,
def findEdgeGalaxies(galFile, maskFile, edgeGalFile, edgeMaskFile, zmin, zmax, omegaM, useComoving, boundaryWidth,
zmin, zmax, omegaM, useComoving, boundaryWidth): meanPartSep):
if useComoving: if useComoving:
zmin = comovingDistance(zmin, Om=omegaM) zmin = comovingDistance(zmin, Om=omegaM)*LIGHT_SPEED
zmax = comovingDistance(zmax, Om=omegaM) zmax = comovingDistance(zmax, Om=omegaM)*LIGHT_SPEED
#zmin = LIGHT_SPEED/100.*comovingDistance(zmin, Om=omegaM) else:
#zmax = LIGHT_SPEED/100.*comovingDistance(zmax, Om=omegaM) zmin *= LIGHT_SPEED
#else: zmax *= LIGHT_SPEED
# zmin *= LIGHT_SPEED/100.
# zmax *= LIGHT_SPEED/100.
contourMap = healpy.read_map(contourFile)
mask = healpy.read_map(maskFile) nside = healpy.get_nside(contourMap)
nside = healpy.get_nside(mask)
npix = healpy.nside2npix(nside) npix = healpy.nside2npix(nside)
edgeMask = np.zeros((npix))
edgeFile = open(edgeGalFile, "w") # load in galaxies
galPos = np.genfromtxt(galFile)
flagList = np.zeros(len(galPos[:,0]))
galTree = scipy.spatial.cKDTree(galPos)
for line in open(galFile): # flag galaxies near mask edges
line = line.split() # using the "ray marching" algorithm: follow rays along lines of sight
RA = float(line[3]) # of all mask edges, flagging nearest neighbor galaxies as we go
Dec = float(line[4])
z = float(line[5])
if useComoving:
z = comovingDistance(z/LIGHT_SPEED, Om=omegaM)
else:
z *= LIGHT_SPEED/100.
phi, theta = convertAngle(RA, Dec)
# check the mask edges
ipix = healpy.ang2pix(nside, theta, phi)
neighbors = healpy.get_all_neighbours(nside, ipix)
isOnMaskEdge = any(mask[p] == 0 for p in neighbors)
# check the redshift boundaries raySteps = np.arange(zmin, zmax, meanPartSep)
zbuffer = (zmax-zmin)*boundaryWidth
isOnHighZEdge = (z >= zmax-zbuffer) contourPixels = np.nonzero(contourMap)[0]
isOnLowZEdge = (z <= zmin+zbuffer) #print(contourPixels)
for pixel in contourPixels:
#print("Working with pixel %d" % pixel)
vec = healpy.pix2vec(nside,pixel)
x = raySteps * vec[0]
y = raySteps * vec[1]
z = raySteps * vec[2]
ray = np.array((x,y,z)).T
#print(ray)
dist, nearest = galTree.query(ray)
flagList[nearest] = 1
#print(nearest)
if isOnMaskEdge: # flag galaxies near redsfhit boundaries
edgeFile.write("1\n") # TODO - save time by only covering portion of sphere with data
edgeMask[ipix] = 1 ds = np.sqrt(healpy.nside2pixarea(nside)) / 1000.
elif isOnHighZEdge: phi = np.arange(0, 2*np.pi, ds*2)
edgeFile.write("2\n") theta = np.arange(0, np.pi, ds)
elif isOnLowZEdge: vec = healpy.ang2vec(theta, phi)
edgeFile.write("3\n")
else:
edgeFile.write("0\n")
edgeFile.close() maxEdge = zmax * vec
healpy.write_map(edgeMaskFile, edgeMask, overwrite=True, dist, nearest = galTree.query(maxEdge)
dtype=np.dtype('float64')) #print(nearest)
#print(galPos[nearest])
flagList[nearest] = 2
minEdge = zmin * vec
dist, nearest = galTree.query(minEdge)
#print(nearest)
#print(galPos[nearest])
flagList[nearest] = 3
# output flag information
np.savetxt(edgeGalFile, flagList, fmt="%d")
# # output galaxy edge flags
# edgeFile = open(edgeGalFile, "w")
#
# for line in open(galFile):
# line = line.split()
# RA = float(line[3])
# Dec = float(line[4])
# z = float(line[5])
#
# if useComoving:
# z = comovingDistance(z/LIGHT_SPEED, Om=omegaM)
# else:
# z *= LIGHT_SPEED/100.
#
# phi, theta = convertAngle(RA, Dec)
#
# # check the mask edges
# ipix = healpy.ang2pix(nside, theta, phi)
# neighbors = healpy.get_all_neighbours(nside, ipix)
# isOnMaskEdge = any(mask[p] == 0 for p in neighbors)
#
# # check the redshift boundaries
# zbuffer = (zmax-zmin)*boundaryWidth
# isOnHighZEdge = (z >= zmax-zbuffer)
# isOnLowZEdge = (z <= zmin+zbuffer)
#
# if isOnMaskEdge:
# edgeFile.write("1\n")
# edgeMask[ipix] = 1
# elif isOnHighZEdge:
# edgeFile.write("2\n")
# elif isOnLowZEdge:
#
#edgeFile.write("3\n")
# else:
# edgeFile.write("0\n")
#
# edgeFile.close()
# healpy.write_map(edgeMaskFile, edgeMask, overwrite=True,
# dtype=np.dtype('float64'))
return return

View file

@ -36,6 +36,7 @@ if (len(sys.argv) == 1):
exit(-1) exit(-1)
if (len(sys.argv) > 1): if (len(sys.argv) > 1):
print("\n\n Welcome to VIDE!\n")
filename = sys.argv[1] filename = sys.argv[1]
print(" Loading parameters from", filename) print(" Loading parameters from", filename)
if not os.access(filename, os.F_OK): if not os.access(filename, os.F_OK):
@ -63,8 +64,8 @@ if not os.access(figDir, os.F_OK):
if not continueRun: if not continueRun:
print(" Cleaning out log files...") print(" Cleaning out log files...")
if startCatalogStage <= 1 and glob.glob(logDir+"/generate*") != []: if startCatalogStage <= 1 and glob.glob(logDir+"/prepare*") != []:
os.system("rm %s/generate*" % logDir) os.system("rm %s/prepare*" % logDir)
if startCatalogStage <= 2 and glob.glob(logDir+"/zobov*") != []: if startCatalogStage <= 2 and glob.glob(logDir+"/zobov*") != []:
os.system("rm %s/zobov*" % logDir) os.system("rm %s/zobov*" % logDir)
if startCatalogStage <= 3 and glob.glob(logDir+"/prune*") != []: if startCatalogStage <= 3 and glob.glob(logDir+"/prune*") != []:
@ -83,24 +84,24 @@ for sample in dataSampleList:
# --------------------------------------------------------------------------- # ---------------------------------------------------------------------------
if (startCatalogStage <= 1) and (endCatalogStage >= 1) and not sample.isCombo: if (startCatalogStage <= 1) and (endCatalogStage >= 1) and not sample.isCombo:
print(" Extracting tracers from catalog...", end=' ') print(" Preparing tracers from catalog...", end='')
sys.stdout.flush() sys.stdout.flush()
logFile = logDir+"/generate_"+sampleName+".out" logFile = logDir+"/prepare_"+sampleName+".out"
if sample.dataType == "observation": if sample.dataType == "observation":
GENERATE_PATH = CTOOLS_PATH+"/prepObservation" PREPARE_PATH = CTOOLS_PATH+"/prepObservation"
else: else:
GENERATE_PATH = CTOOLS_PATH+"/prepSimulation" PREPARE_PATH = CTOOLS_PATH+"/prepSimulation"
launchPrep(sample, GENERATE_PATH, workDir=workDir, launchPrep(sample, PREPARE_PATH, workDir=workDir,
inputDataDir=inputDataDir, outputDir=outputDir, inputDataDir=inputDataDir, outputDir=outputDir,
figDir=figDir, logFile=logFile, useComoving=sample.useComoving, figDir=figDir, logFile=logFile, useComoving=sample.useComoving,
continueRun=continueRun, regenerate=regenerateFlag) continueRun=continueRun, regenerate=regenerateFlag)
# -------------------------------------------------------------------------- # --------------------------------------------------------------------------
if (startCatalogStage <= 2) and (endCatalogStage >= 2) and not sample.isCombo: if (startCatalogStage <= 2) and (endCatalogStage >= 2) and not sample.isCombo:
print(" Extracting voids with ZOBOV...", end=' ') print(" Finding voids...", end='')
sys.stdout.flush() sys.stdout.flush()
launchZobov(sample, ZOBOV_PATH, outputDir=outputDir, logDir=logDir, launchZobov(sample, ZOBOV_PATH, outputDir=outputDir, logDir=logDir,
@ -111,7 +112,7 @@ for sample in dataSampleList:
# ------------------------------------------------------------------------- # -------------------------------------------------------------------------
if (startCatalogStage <= 3) and (endCatalogStage >= 3) and not sample.isCombo: if (startCatalogStage <= 3) and (endCatalogStage >= 3) and not sample.isCombo:
print(" Pruning void catalogs", "...", end=' ') print(" Pruning void catalogs", "...", end='')
sys.stdout.flush() sys.stdout.flush()
logFile = logDir+"/pruneVoids_"+sampleName+".out" logFile = logDir+"/pruneVoids_"+sampleName+".out"
@ -126,7 +127,7 @@ for sample in dataSampleList:
# ------------------------------------------------------------------------- # -------------------------------------------------------------------------
if (startCatalogStage <= 4) and (endCatalogStage >= 4): if (startCatalogStage <= 4) and (endCatalogStage >= 4):
print(" Plotting...", end=' ') print(" Plotting...", end='')
sys.stdout.flush() sys.stdout.flush()
#for thisDataPortion in dataPortions: #for thisDataPortion in dataPortions:
@ -139,4 +140,4 @@ if (startCatalogStage <= 4) and (endCatalogStage >= 4):
#plotVoidDistribution(workDir, dataSampleList, figDir, showPlot=False, #plotVoidDistribution(workDir, dataSampleList, figDir, showPlot=False,
# dataPortion=thisDataPortion, setName=setName) # dataPortion=thisDataPortion, setName=setName)
print("\n Done!") print("\n VIDE finished!")