mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 15:21:11 +00:00
bug fixes
This commit is contained in:
parent
4cf0ec1173
commit
39e16d41ff
6 changed files with 103 additions and 102 deletions
|
@ -31,7 +31,7 @@ setup(
|
|||
cmdclass = {'build_ext': build_ext},
|
||||
include_dirs = [np.get_include()],
|
||||
packages=
|
||||
['void_python_tools','void_python_tools.backend','void_python_tools.apTools', 'void_python_tools.xcor', 'void_python_tools.voidUtil',
|
||||
['void_python_tools','void_python_tools.backend','void_python_tools.apTools', 'void_python_tools.voidUtil',
|
||||
'void_python_tools.apTools.profiles','void_python_tools.apTools.chi2',],
|
||||
#ext_modules = [Extension("void_python_tools.chi2.velocityProfileFitNative", ["void_python_tools/chi2/velocityProfileFitNative.pyx"], libraries=["gsl", "gslcblas"]), Extension("void_python_tools.chi2.likelihoo", ["void_python_tools/chi2/likelihood.pyx"], libraries=["gsl", "gslcblas"])]
|
||||
#ext_modules = [
|
||||
|
|
|
@ -269,7 +269,7 @@ def loadVoidCatalog(sampleDir, dataPortion="central", loadPart=True):
|
|||
densCon = line[9],
|
||||
voidProb = line[10],
|
||||
radius = pow(line[7]/volNorm*3./4./np.pi, 1./3.),
|
||||
barycenter = np.zeros((3))
|
||||
barycenter = np.zeros((3)),
|
||||
parentID = 0,
|
||||
treeLevel = 0,
|
||||
numChildren = 0,
|
||||
|
|
|
@ -32,7 +32,7 @@ def compareCatalogs(baseCatalogDir, compareCatalogDir,
|
|||
outputDir="./", logDir="./",
|
||||
matchMethod="useID", dataPortion="central",
|
||||
strictMatch=True,
|
||||
pathToCTools="../../../c_tools")
|
||||
pathToCTools="../../../c_tools"):
|
||||
|
||||
# reports the overlap between two void catalogs
|
||||
# baseCatalogDir: directory of catalog 1
|
||||
|
@ -44,36 +44,37 @@ def compareCatalogs(baseCatalogDir, compareCatalogDir,
|
|||
# strictMatch: if True, only attempt to match to trimmed catalog
|
||||
# pathToCTools: path to location of VIDE c_tools directory
|
||||
|
||||
if not os.access(outputDir, os.F_OK):
|
||||
os.makedirs(outputDir)
|
||||
|
||||
if not os.access(logDir, os.F_OK):
|
||||
os.makedirs(logDir)
|
||||
|
||||
outFileName = outputDir + "/" + "voidOverlap" #+ ".dat"
|
||||
|
||||
with open(baseCatalogDir+"/sample_info.dat", 'rb') as input:
|
||||
baseSample = pickle.load(input)
|
||||
|
||||
with open(compareCatalogDir+"/sample_info.dat", 'rb') as input:
|
||||
sample = pickle.load(input)
|
||||
|
||||
print " Comparing", baseSample.fullName, "to", sample.fullName, "...",
|
||||
sys.stdout.flush()
|
||||
|
||||
sampleName = sample.fullName
|
||||
|
||||
binPath = pathToCTools+"/analysis/voidOverlap"
|
||||
logFile = logDir+"/compare_"+baseSample.fullName+"_"+sampleName+".out"
|
||||
stepOutputFileName = outFileName + "_" + baseSample.fullName + "_" + \
|
||||
sampleName + "_"
|
||||
|
||||
launchVoidOverlap(baseSample, sample, baseCatalogDir,
|
||||
compareCatalogDir, binPath,
|
||||
thisDataPortion=dataPortion, logFile=logFile,
|
||||
continueRun=False, workDir=workDir,
|
||||
outputFile=stepOutputFileName,
|
||||
matchMethod=matchMethod,
|
||||
strictMatch=strictMatch)
|
||||
|
||||
print " Done!"
|
||||
if not os.access(outputDir, os.F_OK):
|
||||
os.makedirs(outputDir)
|
||||
|
||||
if not os.access(logDir, os.F_OK):
|
||||
os.makedirs(logDir)
|
||||
|
||||
outFileName = outputDir + "/" + "voidOverlap" #+ ".dat"
|
||||
|
||||
with open(baseCatalogDir+"/sample_info.dat", 'rb') as input:
|
||||
baseSample = pickle.load(input)
|
||||
|
||||
with open(compareCatalogDir+"/sample_info.dat", 'rb') as input:
|
||||
sample = pickle.load(input)
|
||||
|
||||
print " Comparing", baseSample.fullName, "to", sample.fullName, "...",
|
||||
sys.stdout.flush()
|
||||
|
||||
sampleName = sample.fullName
|
||||
|
||||
binPath = pathToCTools+"/analysis/voidOverlap"
|
||||
logFile = logDir+"/compare_"+baseSample.fullName+"_"+sampleName+".out"
|
||||
stepOutputFileName = outFileName + "_" + baseSample.fullName + "_" + \
|
||||
sampleName + "_"
|
||||
|
||||
launchVoidOverlap(baseSample, sample, baseCatalogDir,
|
||||
compareCatalogDir, binPath,
|
||||
thisDataPortion=dataPortion, logFile=logFile,
|
||||
continueRun=False, workDir=workDir,
|
||||
outputFile=stepOutputFileName,
|
||||
matchMethod=matchMethod,
|
||||
strictMatch=strictMatch)
|
||||
|
||||
print " Done!"
|
||||
return
|
||||
|
|
|
@ -43,68 +43,68 @@ def plotNumberFunction(catalogList, figDir="./",
|
|||
plotName="numberfunc",
|
||||
dataPortion="central"):
|
||||
|
||||
print "Plotting number function"
|
||||
|
||||
plt.clf()
|
||||
plt.xlabel("$R_{eff}$ [$h^{-1}Mpc$]", fontsize=14)
|
||||
plt.ylabel(r"log ($n$ (> R) [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
||||
|
||||
for (iSample,catalog) in enumerate(catalogList):
|
||||
sample = catalog.sampleInfo
|
||||
data = catalog.voids[:].radius
|
||||
|
||||
if sample.dataType == "observation":
|
||||
maskFile = sample.maskFile
|
||||
|
||||
boxVol = vp.getSurveyProps(maskFile,
|
||||
sample.zBoundary[0], sample.zBoundary[1],
|
||||
sample.zRange[0], sample.zRange[1], "all",
|
||||
selectionFuncFile=None)[0]
|
||||
#selectionFuncFile=sample.selFunFile)[0]
|
||||
boxVol *= obsFudgeFactor
|
||||
else:
|
||||
boxVol = sample.boxLen*sample.boxLen*(sample.zBoundaryMpc[1] -
|
||||
sample.zBoundaryMpc[0])
|
||||
|
||||
boxVol *= 1.e-9 # Mpc->Gpc
|
||||
|
||||
bins = args.xmax/5.
|
||||
hist, binEdges = np.histogram(data, bins=bins, range=(0., 100.))
|
||||
binCenters = 0.5*(binEdges[1:] + binEdges[:-1])
|
||||
|
||||
nvoids = len(data)
|
||||
var = hist * (1. - hist/nvoids)
|
||||
sig = np.sqrt(var)
|
||||
|
||||
lowerbound = hist - sig
|
||||
upperbound = hist + sig
|
||||
|
||||
mean = np.log10(hist/boxVol)
|
||||
lowerbound = np.log10(lowerbound/boxVol)
|
||||
upperbound = np.log10(upperbound/boxVol)
|
||||
|
||||
lineColor = colorList[iSample]
|
||||
lineTitle = sample.fullName
|
||||
print "Plotting number function"
|
||||
|
||||
trim = (bounds[0] > .01)
|
||||
mean = mean[trim]
|
||||
binCentersToUse = binCenters[trim]
|
||||
lower = lowerbound[trim]
|
||||
upper = upperbound[trim]
|
||||
|
||||
alpha = 0.55
|
||||
fill_between(binCentersToUse, lower, upper,
|
||||
label=lineTitle, color=lineColor,
|
||||
alpha=alpha,
|
||||
)
|
||||
|
||||
lineStyle = '-'
|
||||
plt.plot(binCentersToUse, mean, lineStyle,
|
||||
color=lineColor,
|
||||
linewidth=3)
|
||||
|
||||
plt.legend(loc = "upper right", fancybox=True, prop={'size':14})
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||
plt.clf()
|
||||
plt.xlabel("$R_{eff}$ [$h^{-1}Mpc$]", fontsize=14)
|
||||
plt.ylabel(r"log ($n$ (> R) [$h^3$ Gpc$^{-3}$])", fontsize=14)
|
||||
|
||||
for (iSample,catalog) in enumerate(catalogList):
|
||||
sample = catalog.sampleInfo
|
||||
data = catalog.voids[:].radius
|
||||
|
||||
if sample.dataType == "observation":
|
||||
maskFile = sample.maskFile
|
||||
|
||||
boxVol = vp.getSurveyProps(maskFile,
|
||||
sample.zBoundary[0], sample.zBoundary[1],
|
||||
sample.zRange[0], sample.zRange[1], "all",
|
||||
selectionFuncFile=None)[0]
|
||||
#selectionFuncFile=sample.selFunFile)[0]
|
||||
boxVol *= obsFudgeFactor
|
||||
else:
|
||||
boxVol = sample.boxLen*sample.boxLen*(sample.zBoundaryMpc[1] -
|
||||
sample.zBoundaryMpc[0])
|
||||
|
||||
boxVol *= 1.e-9 # Mpc->Gpc
|
||||
|
||||
bins = args.xmax/5.
|
||||
hist, binEdges = np.histogram(data, bins=bins, range=(0., 100.))
|
||||
binCenters = 0.5*(binEdges[1:] + binEdges[:-1])
|
||||
|
||||
nvoids = len(data)
|
||||
var = hist * (1. - hist/nvoids)
|
||||
sig = np.sqrt(var)
|
||||
|
||||
lowerbound = hist - sig
|
||||
upperbound = hist + sig
|
||||
|
||||
mean = np.log10(hist/boxVol)
|
||||
lowerbound = np.log10(lowerbound/boxVol)
|
||||
upperbound = np.log10(upperbound/boxVol)
|
||||
|
||||
lineColor = colorList[iSample]
|
||||
lineTitle = sample.fullName
|
||||
|
||||
trim = (bounds[0] > .01)
|
||||
mean = mean[trim]
|
||||
binCentersToUse = binCenters[trim]
|
||||
lower = lowerbound[trim]
|
||||
upper = upperbound[trim]
|
||||
|
||||
alpha = 0.55
|
||||
fill_between(binCentersToUse, lower, upper,
|
||||
label=lineTitle, color=lineColor,
|
||||
alpha=alpha,
|
||||
)
|
||||
|
||||
lineStyle = '-'
|
||||
plt.plot(binCentersToUse, mean, lineStyle,
|
||||
color=lineColor,
|
||||
linewidth=3)
|
||||
|
||||
plt.legend(loc = "upper right", fancybox=True, prop={'size':14})
|
||||
|
||||
plt.savefig(figDir+"/fig_"+plotName+".pdf", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".eps", bbox_inches="tight")
|
||||
plt.savefig(figDir+"/fig_"+plotName+".png", bbox_inches="tight")
|
||||
|
|
|
@ -94,7 +94,7 @@ def fitHSWProfile(radii, densities, sigmas):
|
|||
# pcov: covariance matrix
|
||||
|
||||
popt, pcov = curve_fit(HamausProfile, radii, densities,
|
||||
sigma=sigmas)
|
||||
sigma=sigmas,
|
||||
maxfev=10000, xtol=5.e-3,
|
||||
p0=[1.0,-1.0])
|
||||
|
||||
|
|
|
@ -61,7 +61,7 @@ def computeCrossCor(catalogDir,
|
|||
outputDir="./", logDir="./",
|
||||
matchMethod="useID", dataPortion="central",
|
||||
strictMatch=True,
|
||||
pathToCTools="../../../c_tools")
|
||||
pathToCTools="../../../c_tools"):
|
||||
|
||||
# Computes void-void and void-matter(galaxy) correlations
|
||||
# baseCatalogDir: directory of catalog
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue