mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 23:31:12 +00:00
Slight re-organization of C/C++ tools. Significant modifications to support observational data. Python and pipeline scripts added
This commit is contained in:
parent
15496df4ff
commit
14abbc2018
42 changed files with 16252 additions and 557 deletions
2
python_tools/void_python_tools/apTools/__init__.py
Normal file
2
python_tools/void_python_tools/apTools/__init__.py
Normal file
|
@ -0,0 +1,2 @@
|
|||
from chi2 import *
|
||||
from profiles import *
|
3
python_tools/void_python_tools/apTools/chi2/__init__.py
Normal file
3
python_tools/void_python_tools/apTools/chi2/__init__.py
Normal file
|
@ -0,0 +1,3 @@
|
|||
from velocityProfileFitNative import *
|
||||
from likelihood import *
|
||||
from cosmologyTools import *
|
BIN
python_tools/void_python_tools/apTools/chi2/__init__.pyc
Normal file
BIN
python_tools/void_python_tools/apTools/chi2/__init__.pyc
Normal file
Binary file not shown.
|
@ -0,0 +1,94 @@
|
|||
# a suite of functions to compute expansion rates, angular diameter
|
||||
# distances, and expected void stretching
|
||||
|
||||
import numpy as np
|
||||
import scipy.integrate as integrate
|
||||
|
||||
__all__=['expansion', 'angularDiameter', 'expectedStretch', 'aveStretch', 'aveExpansion', 'aveStretchCone', 'aveWeightedStretch']
|
||||
|
||||
# returns 1/E(z) for the given cosmology
|
||||
def expansion(z, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
||||
wz = w0 + wa*z/(1+z)
|
||||
ez = Om * (1+z)**3 + (Ot-Om)# * (1+z)**(3.+3*wz)
|
||||
ez = 1./np.sqrt(ez)
|
||||
return ez
|
||||
|
||||
|
||||
# returns D_A(z) for the given cosmology
|
||||
def angularDiameter(z, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
||||
da = integrate.quad(expansion, 0.0, z, args=(Om, Ot, w0, wa))[0]
|
||||
return da
|
||||
|
||||
|
||||
# returns expected void stretch for the given cosmology
|
||||
def expectedStretch(z, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
||||
ez = 1./expansion(z, Om=Om, Ot=Ot, w0=w0, wa=wa)
|
||||
da = angularDiameter(z, Om=Om, Ot=Ot, w0=w0, wa=wa)
|
||||
return ez*da/z
|
||||
|
||||
|
||||
# returns average expected void stretch for a given redshift range
|
||||
def aveStretch(zStart, zEnd, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
||||
if zStart == 0.0: zStart = 1.e-6
|
||||
ave = integrate.quad(expectedStretch, zStart, zEnd, args=(Om, Ot, w0, wa))[0]
|
||||
ave /= (zEnd-zStart)
|
||||
return ave
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# returns average expected void stretch for a given redshift range
|
||||
# assuming a cone
|
||||
def aveStretchCone(zStart, zEnd, skyFrac = 0.19, Om = 0.27, Ot = 1.0,
|
||||
w0 = -1.0, wa = 0.0):
|
||||
if zStart == 0.0: zStart = 1.e-6
|
||||
|
||||
h1 = zStart
|
||||
h2 = zEnd
|
||||
|
||||
r1 = skyFrac * 4* np.pi * zStart**2
|
||||
r2 = skyFrac * 4 * np.pi * zEnd**2
|
||||
|
||||
# surface area of a slice within a cone
|
||||
def coneSlice(x, h, r):
|
||||
return np.pi * (r/h*x)**2
|
||||
|
||||
def coneFunc(z, h, r, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
||||
return coneSlice(z, h, r) * expectedStretch(z, Om, Ot, w0, wa)
|
||||
|
||||
aveHigh = integrate.quad(coneFunc, 0.0, zEnd, args=(h2, r2, Om, Ot, w0, wa), full_output=1)[0]
|
||||
aveLow = integrate.quad(coneFunc, 0.0, zStart, args=(h1, r1, Om, Ot, w0, wa), full_output=1)[0]
|
||||
volumeHigh = integrate.quad(coneSlice, 0.0, zEnd, args=(h2, r2))[0]
|
||||
volumeLow = integrate.quad(coneSlice, 0.0, zStart, args=(h1, r1))[0]
|
||||
|
||||
return (aveHigh-aveLow)/(volumeHigh-volumeLow)
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# returns average expected void stretch for a given redshift range
|
||||
# weighted by an actual void distribution
|
||||
def aveWeightedStretch(zStart, zEnd, skyFrac = 0.19, Om = 0.27, Ot = 1.0,
|
||||
w0 = -1.0, wa = 0.0, dist=None, bins=None):
|
||||
if zStart == 0.0: zStart = 1.e-6
|
||||
|
||||
def weightedSlice(x):
|
||||
return np.interp(x, bins[:-1], dist)
|
||||
|
||||
def weightedFunc(z, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
||||
return expectedStretch(z, Om, Ot, w0, wa) *\
|
||||
weightedSlice(z)
|
||||
|
||||
ave = integrate.quad(weightedFunc, zStart, zEnd, args=(Om, Ot, w0, wa),
|
||||
full_output=1)[0]
|
||||
|
||||
volume = integrate.quad(weightedSlice, zStart, zEnd, full_output=1)[0]
|
||||
|
||||
return ave/volume
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# returns average expected expansion for a given redshift range
|
||||
def aveExpansion(zStart, zEnd, Om = 0.27, Ot = 1.0, w0 = -1.0, wa = 0.0):
|
||||
if zStart == 0.0: zStart = 1.e-6
|
||||
ave = integrate.quad(expansion, zStart, zEnd, args=(Om, Ot, w0, wa))[0]
|
||||
ave = (zEnd-zStart)/ave
|
||||
return ave
|
||||
|
||||
|
10841
python_tools/void_python_tools/apTools/chi2/velocityProfileFitNative.c
Normal file
10841
python_tools/void_python_tools/apTools/chi2/velocityProfileFitNative.c
Normal file
File diff suppressed because it is too large
Load diff
|
@ -0,0 +1,6 @@
|
|||
from build import *
|
||||
from draw import *
|
||||
from fit import *
|
||||
from mcmc import *
|
||||
from generateExpFigure import *
|
||||
from getSurveyProps import *
|
|
@ -0,0 +1,53 @@
|
|||
import numpy as np
|
||||
import healpy as healpy
|
||||
import scipy.integrate
|
||||
|
||||
__all__=['getSurveyProps']
|
||||
|
||||
# returns the volume and galaxy density for a given redshit slice
|
||||
def getSurveyProps(maskFile, zmin, zmax, selFunMin, selFunMax, portion, selectionFuncFile=None):
|
||||
|
||||
mask = healpy.read_map(maskFile)
|
||||
area = (1.*np.size(np.where(mask > 0)) / np.size(mask)) * 4.*np.pi
|
||||
zmin = zmin * 3000
|
||||
zmax = zmax * 3000
|
||||
volume = area * (zmax**3 - zmin**3) / 3
|
||||
|
||||
if selectionFuncFile != None:
|
||||
selfunc = np.genfromtxt(selectionFuncFile)
|
||||
selfunc = np.array(selfunc)
|
||||
selfunc[:,0] = selfunc[:,0]/100.
|
||||
selfuncUnity = selfunc
|
||||
selfuncUnity[:,1] = 1.0
|
||||
selfuncMin = selfunc[0,0]
|
||||
selfuncMax = selfunc[-1,0]
|
||||
selfuncDx = selfunc[1,0] - selfunc[0,0]
|
||||
selfuncN = np.size(selfunc[:,0])
|
||||
|
||||
selFunMin *= 3000
|
||||
selFunMax *= 3000
|
||||
|
||||
selFunMin = max(selFunMin, selfuncMin)
|
||||
selFunMax = min(selFunMax, selfuncMax)
|
||||
|
||||
|
||||
def f(z): return selfunc[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2
|
||||
def fTotal(z): return selfuncUnity[np.ceil((z-selfuncMin)/selfuncDx), 1]*z**2
|
||||
|
||||
zrange = np.linspace(selFunMin, selFunMax)
|
||||
|
||||
nbar = scipy.integrate.quad(f, selFunMin, selFunMax)
|
||||
nbar = nbar[0]
|
||||
|
||||
ntotal = scipy.integrate.quad(fTotal, 0.0, max(selfuncUnity[:,0]))
|
||||
#ntotal = scipy.integrate.quad(f, 0.0, max(selfunc[:,0]))
|
||||
ntotal = ntotal[0]
|
||||
|
||||
nbar = ntotal / area / nbar
|
||||
|
||||
else:
|
||||
nbar = 1.0
|
||||
|
||||
#print "PROPERTIES: ", volume, nbar
|
||||
|
||||
return (volume, nbar)
|
Loading…
Add table
Add a link
Reference in a new issue