Slight re-organization of C/C++ tools. Significant modifications to support observational data. Python and pipeline scripts added

This commit is contained in:
P.M. Sutter 2012-10-31 10:43:15 -05:00
parent 15496df4ff
commit 14abbc2018
42 changed files with 16252 additions and 557 deletions

View file

@ -0,0 +1,550 @@
// Reads in the void catalog and removes any void that could potentially
// be affected by a mock particle. It does this by computing the longest
// particle distance within each void and comparing it to the distance
// of the nearest mock particle. If the void could potentially by rotated
// to include this particle, we throw out the void.
// This is placed here instead of using the edgeAvoidance option in
// stackVoidsZero so that we can optionally filter the entire
// catalog at once before the stacking phase. This is useful
// for producing a "clean" void catalog for other purposes.
#include "gsl/gsl_math.h"
#include "string.h"
#include "ctype.h"
#include "stdlib.h"
#include <math.h>
#include <stdio.h>
#include <netcdfcpp.h>
#include "pruneVoids_conf.h"
#define LIGHT_SPEED 299792.458
#define MPC2Z 100./LIGHT_SPEED
#define Z2MPC LIGHT_SPEED/100.
typedef struct partStruct {
float x, y, z, vol;
} PART;
typedef struct zoneStruct {
int numPart;
int *partIDs;
} ZONE2PART;
typedef struct voidZoneStruct {
int numZones;
int *zoneIDs;
} VOID2ZONE;
typedef struct voidStruct {
float vol, coreDens, zoneVol, densCon, voidProb, radius;
int voidID, numPart, numZones, coreParticle, zoneNumPart;
float maxRadius, nearestMock, centralDen, redshift;
float center[3], barycenter[3];
int accepted;
} VOID;
int main(int argc, char **argv) {
// initialize arguments
pruneVoids_info args_info;
pruneVoids_conf_params args_params;
pruneVoids_conf_init(&args_info);
pruneVoids_conf_params_init(&args_params);
args_params.check_required = 0;
if (pruneVoids_conf_ext (argc, argv, &args_info, &args_params))
return 1;
if (!args_info.configFile_given) {
if (pruneVoids_conf_required (&args_info,
PRUNEVOIDS_CONF_PACKAGE))
return 1;
} else {
args_params.check_required = 1;
args_params.initialize = 0;
if (pruneVoids_conf_config_file (args_info.configFile_arg,
&args_info,
&args_params))
return 1;
}
int i, p, p2, numPartTot, numZonesTot, dummy, iVoid, iZ;
int numVoids, mockIndex, numKept;
double tolerance;
FILE *fp, *fpBarycenter, *fpDistances, *fpSkyPositions, *fpInfo;
PART *part, *voidPart;
ZONE2PART *zones2Parts;
VOID2ZONE *void2Zones;
VOID *voids;
float *temp, junk, voidVol;
int junkInt, voidID, numPart, numZones, zoneID, partID, maxNumPart;
int coreParticle, zoneNumPart;
float coreDens, zoneVol, densCon, voidProb, dist[3], dist2, minDist, maxDist;
float centralRad, centralDen;
double nearestEdge, redshift;
char line[500], junkStr[10];
int mask_index;
double ranges[2][3], boxLen[3], mul;
double volNorm, radius;
int clock1, clock2;
numVoids = args_info.numVoids_arg;
mockIndex = args_info.mockIndex_arg;
tolerance = args_info.tolerance_arg;
clock1 = clock();
printf("Pruning parameters: %f %f %f\n", args_info.zMin_arg,
args_info.zMax_arg,
args_info.rMin_arg);
// load box size
printf("\n Getting info...\n");
NcFile f_info(args_info.extraInfo_arg);
ranges[0][0] = f_info.get_att("range_x_min")->as_double(0);
ranges[0][1] = f_info.get_att("range_x_max")->as_double(0);
ranges[1][0] = f_info.get_att("range_y_min")->as_double(0);
ranges[1][1] = f_info.get_att("range_y_max")->as_double(0);
ranges[2][0] = f_info.get_att("range_z_min")->as_double(0);
ranges[2][1] = f_info.get_att("range_z_max")->as_double(0);
boxLen[0] = ranges[0][1] - ranges[0][0];
boxLen[1] = ranges[1][1] - ranges[1][0];
boxLen[2] = ranges[2][1] - ranges[2][0];
// read in all particle positions
printf("\n Loading particles...\n");
fp = fopen(args_info.partFile_arg, "r");
fread(&dummy, 1, 4, fp);
fread(&numPartTot, 1, 4, fp);
fread(&dummy, 1, 4, fp);
part = (PART *) malloc(numPartTot * sizeof(PART));
temp = (float *) malloc(numPartTot * sizeof(float));
volNorm = numPartTot/(boxLen[0]*boxLen[1]*boxLen[2]);
printf("VOL NORM = %f\n", volNorm);
printf("CENTRAL DEN = %f\n", args_info.maxCentralDen_arg);
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
mul = ranges[0][1] - ranges[0][0];
for (p = 0; p < numPartTot; p++)
part[p].x = mul*temp[p];
fread(&dummy, 1, 4, fp);
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
mul = ranges[1][1] - ranges[1][0];
for (p = 0; p < numPartTot; p++)
part[p].y = mul*temp[p];
fread(&dummy, 1, 4, fp);
fread(&dummy, 1, 4, fp);
fread(temp, numPartTot, 4, fp);
mul = ranges[2][1] - ranges[2][0];
for (p = 0; p < numPartTot; p++)
part[p].z = mul*temp[p];
if (!args_info.isObservation_flag) {
for (p = 0; p < numPartTot; p++) {
part[p].x += ranges[0][0];
part[p].y += ranges[1][0];
part[p].z += ranges[2][0];
}
}
fclose(fp);
printf(" Read %d particles...\n", numPartTot);
if (mockIndex == -1) mockIndex = numPartTot;
// read in desired voids
printf(" Loading voids...\n");
fp = fopen(args_info.voidDesc_arg ,"r");
fgets(line, sizeof(line), fp);
sscanf(line, "%d %s %d %s", &junkInt, junkStr, &junkInt, junkStr);
fgets(line, sizeof(line), fp);
voids = (VOID *) malloc(numVoids * sizeof(VOID));
i = 0;
while (fgets(line, sizeof(line), fp) != NULL) {
sscanf(line, "%d %d %d %f %f %d %d %f %d %f %f\n", &iVoid, &voidID,
&coreParticle, &coreDens, &zoneVol, &zoneNumPart, &numZones,
&voidVol, &numPart, &densCon, &voidProb);
i++;
voids[i-1].coreParticle = coreParticle;
voids[i-1].zoneNumPart = zoneNumPart;
voids[i-1].coreDens = coreDens;
voids[i-1].zoneVol = zoneVol;
voids[i-1].voidID = voidID;
voids[i-1].vol = voidVol;
voids[i-1].numPart = numPart;
voids[i-1].numZones = numZones;
voids[i-1].densCon = densCon;
voids[i-1].voidProb = voidProb;
voids[i-1].radius = pow(voidVol/volNorm*3./4./M_PI, 1./3.);
voids[i-1].accepted = 1;
}
fclose(fp);
// load up the zone membership for each void
printf(" Loading void-zone membership info...\n");
fp = fopen(args_info.void2Zone_arg, "r");
fread(&numZonesTot, 1, 4, fp);
void2Zones = (VOID2ZONE *) malloc(numZonesTot * sizeof(VOID2ZONE));
for (iZ = 0; iZ < numZonesTot; iZ++) {
fread(&numZones, 1, 4, fp);
void2Zones[iZ].numZones = numZones;
void2Zones[iZ].zoneIDs = (int *) malloc(numZones * sizeof(int));
for (p = 0; p < numZones; p++) {
fread(&void2Zones[iZ].zoneIDs[p], 1, 4, fp);
}
}
fclose(fp);
// now the particles-zone
printf(" Loading particle-zone membership info...\n");
fp = fopen(args_info.zone2Part_arg, "r");
fread(&dummy, 1, 4, fp);
fread(&numZonesTot, 1, 4, fp);
zones2Parts = (ZONE2PART *) malloc(numZonesTot * sizeof(ZONE2PART));
for (iZ = 0; iZ < numZonesTot; iZ++) {
fread(&numPart, 1, 4, fp);
zones2Parts[iZ].numPart = numPart;
zones2Parts[iZ].partIDs = (int *) malloc(numPart * sizeof(int));
for (p = 0; p < numPart; p++) {
fread(&zones2Parts[iZ].partIDs[p], 1, 4, fp);
}
}
// and finally volumes
printf(" Loading particle volumes...\n");
fp = fopen(args_info.partVol_arg, "r");
fread(&mask_index, 1, 4, fp);
if (mask_index != mockIndex) {
printf("NON-MATCHING MOCK INDICES!? %d %d\n", mask_index, mockIndex);
exit(-1);
}
for (p = 0; p < mask_index; p++) {
fread(&temp[0], 1, 4, fp);
part[p].vol = temp[0];
}
fclose(fp);
free(temp);
// check boundaries
printf(" Computing void properties...\n");
maxNumPart = 0;
for (iVoid = 0; iVoid < numVoids; iVoid++) {
if (voids[iVoid].numPart > maxNumPart) maxNumPart = voids[iVoid].numPart;
}
voidPart = (PART *) malloc(maxNumPart * sizeof(PART));
for (iVoid = 0; iVoid < numVoids; iVoid++) {
voidID = voids[iVoid].voidID;
//printf(" DOING %d (of %d) %d %d\n", iVoid, numVoids, voidID,
// voids[iVoid].numPart);
voids[iVoid].center[0] = part[voids[iVoid].coreParticle].x;
voids[iVoid].center[1] = part[voids[iVoid].coreParticle].y;
voids[iVoid].center[2] = part[voids[iVoid].coreParticle].z;
// first load up particles into a buffer
i = 0;
for (iZ = 0; iZ < void2Zones[voidID].numZones; iZ++) {
zoneID = void2Zones[voidID].zoneIDs[iZ];
for (p = 0; p < zones2Parts[zoneID].numPart; p++) {
partID = zones2Parts[zoneID].partIDs[p];
if (partID > mask_index ||
(part[partID].vol < 1.e-27 && part[partID].vol > 0.)) {
printf("BAD PART!? %d %d %e", partID, mask_index, part[partID].vol);
exit(-1);
}
voidPart[i].x = part[partID].x;
voidPart[i].y = part[partID].y;
voidPart[i].z = part[partID].z;
voidPart[i].vol = part[partID].vol;
i++;
}
}
// compute barycenters
double weight = 0.;
voids[iVoid].barycenter[0] = 0.;
voids[iVoid].barycenter[1] = 0.;
voids[iVoid].barycenter[2] = 0.;
// TODO handle periodic boundaries?
for (p = 0; p < voids[iVoid].numPart; p++) {
dist[0] = voidPart[p].x - voids[iVoid].center[0];
dist[1] = voidPart[p].y - voids[iVoid].center[1];
dist[2] = voidPart[p].z - voids[iVoid].center[2];
//if (!args_info.isObservation_flag) {
// dist[0] = fmin(dist[0], abs(boxLen[0]-dist[0]));
// dist[1] = fmin(dist[1], abs(boxLen[1]-dist[1]));
// dist[2] = fmin(dist[2], abs(boxLen[2]-dist[2]));
//}
voids[iVoid].barycenter[0] += voidPart[p].vol*(dist[0]);
voids[iVoid].barycenter[1] += voidPart[p].vol*(dist[1]);
voids[iVoid].barycenter[2] += voidPart[p].vol*(dist[2]);
weight += voidPart[p].vol;
}
voids[iVoid].barycenter[0] /= weight;
voids[iVoid].barycenter[1] /= weight;
voids[iVoid].barycenter[2] /= weight;
voids[iVoid].barycenter[0] += voids[iVoid].center[0];
voids[iVoid].barycenter[1] += voids[iVoid].center[1];
voids[iVoid].barycenter[2] += voids[iVoid].center[2];
// compute central density
centralRad = voids[iVoid].radius/args_info.centralRadFrac_arg;
centralRad *= centralRad;
centralDen = 0.;
for (p = 0; p < voids[iVoid].numPart; p++) {
dist[0] = voidPart[p].x - voids[iVoid].barycenter[0];
dist[1] = voidPart[p].y - voids[iVoid].barycenter[1];
dist[2] = voidPart[p].z - voids[iVoid].barycenter[2];
//if (!args_info.isObservation_flag) {
// dist[0] = fmin(dist[0], abs(boxLen[0]-dist[0]));
// dist[1] = fmin(dist[1], abs(boxLen[1]-dist[1]));
// dist[2] = fmin(dist[2], abs(boxLen[2]-dist[2]));
//}
dist2 = pow(dist[0],2) + pow(dist[1],2) + pow(dist[2],2);
if (dist2 < centralRad) centralDen += 1;
}
voids[iVoid].centralDen = centralDen / (4./3. * M_PI * pow(centralRad, 3./2.));
// compute maximum extent
if (args_info.isObservation_flag) {
maxDist = 0.;
for (p = 0; p < voids[iVoid].numPart; p++) {
for (p2 = p; p2 < voids[iVoid].numPart; p2++) {
dist[0] = voidPart[p].x - voidPart[p2].x;
dist[1] = voidPart[p].y - voidPart[p2].y;
dist[2] = voidPart[p].z - voidPart[p2].z;
dist2 = pow(dist[0],2) + pow(dist[1],2) + pow(dist[2],2);
if (dist2 > maxDist) maxDist = dist2;
}
}
voids[iVoid].maxRadius = sqrt(maxDist)/2.;
} else {
maxDist = 0.;
for (p = 0; p < voids[iVoid].numPart; p++) {
dist[0] = voidPart[p].x - voids[iVoid].barycenter[0];
dist[0] = voidPart[p].y - voids[iVoid].barycenter[1];
dist[0] = voidPart[p].z - voids[iVoid].barycenter[2];
dist2 = pow(dist[0],2) + pow(dist[1],2) + pow(dist[2],2);
if (dist2 > maxDist) maxDist = dist2;
}
voids[iVoid].maxRadius = sqrt(maxDist);
}
if (args_info.isObservation_flag) {
// compute distance from center to nearest mock
minDist = 1.e99;
for (p = mockIndex; p < numPartTot; p++) {
dist[0] = voids[iVoid].barycenter[0] - part[p].x;
dist[1] = voids[iVoid].barycenter[1] - part[p].y;
dist[2] = voids[iVoid].barycenter[2] - part[p].z;
dist2 = pow(dist[0],2) + pow(dist[1],2) + pow(dist[2],2);
if (dist2 < minDist) minDist = dist2;
}
voids[iVoid].nearestMock = sqrt(minDist);
} else {
voids[iVoid].nearestMock = 1.e99;
}
if (args_info.isObservation_flag) {
voids[iVoid].redshift =
sqrt(pow(voids[iVoid].barycenter[0] - boxLen[0]/2.,2) +
pow(voids[iVoid].barycenter[1] - boxLen[1]/2.,2) +
pow(voids[iVoid].barycenter[2] - boxLen[2]/2.,2));
voids[iVoid].redshift = voids[iVoid].redshift;
redshift = voids[iVoid].redshift;
nearestEdge = fmin(fabs(redshift-args_info.zMin_arg*LIGHT_SPEED),
fabs(redshift-args_info.zMax_arg*LIGHT_SPEED));
} else {
voids[iVoid].redshift = voids[iVoid].barycenter[2]/LIGHT_SPEED*100.;
nearestEdge = fmin(
fabs(voids[iVoid].barycenter[0] - ranges[0][0]),
fabs(voids[iVoid].barycenter[0] - ranges[0][1]));
nearestEdge = fmin(nearestEdge,
fabs(voids[iVoid].barycenter[1] - ranges[1][0]));
nearestEdge = fmin(nearestEdge,
fabs(voids[iVoid].barycenter[1] - ranges[1][1]));
nearestEdge = fmin(nearestEdge,
fabs(voids[iVoid].barycenter[2] - ranges[2][0]));
nearestEdge = fmin(nearestEdge,
fabs(voids[iVoid].barycenter[2] - ranges[2][1]));
}
if (nearestEdge < voids[iVoid].nearestMock) {
voids[iVoid].nearestMock = nearestEdge;
}
} // iVoid
printf(" Picking winners and losers...\n");
numKept = numVoids;
for (iVoid = 0; iVoid < numVoids; iVoid++) {
if (strcmp(args_info.dataPortion_arg, "edge") == 0 &&
tolerance*voids[iVoid].maxRadius < voids[iVoid].nearestMock) {
numKept--;
voids[iVoid].accepted = 0;
}
if (strcmp(args_info.dataPortion_arg, "central") == 0 &&
tolerance*voids[iVoid].maxRadius > voids[iVoid].nearestMock) {
numKept--;
voids[iVoid].accepted = 0;
}
if (voids[iVoid].centralDen > args_info.maxCentralDen_arg) {
numKept--;
voids[iVoid].accepted = -1;
}
if (voids[iVoid].radius < args_info.rMin_arg) {
numKept--;
voids[iVoid].accepted = 0;
}
}
printf(" Number kept: %d (out of %d)\n", numKept, numVoids);
printf(" Output...\n");
fp = fopen(args_info.output_arg, "w");
fpBarycenter = fopen(args_info.outCenters_arg, "w");
fpInfo = fopen(args_info.outInfo_arg, "w");
fpDistances = fopen(args_info.outDistances_arg, "w");
fpSkyPositions = fopen(args_info.outSkyPositions_arg, "w");
fprintf(fp, "%d particles, %d voids.\n", mockIndex, numKept);
fprintf(fp, "see column in master void file\n");
fprintf(fpInfo, "# center x,y,z (Mpc/h), volume (normalized), radius (Mpc/h), redshift, volume (Mpc/h^3), void ID\n");
fprintf(fpSkyPositions, "# RA, dec, redshift, radius (Mpc/h), void ID\n");
for (iVoid = 0; iVoid < numVoids; iVoid++) {
if (voids[iVoid].accepted != 1) continue;
fprintf(fp, "%d %d %d %f %f %d %d %f %d %f %f\n",
i,
voids[iVoid].voidID,
voids[iVoid].coreParticle,
voids[iVoid].coreDens,
voids[iVoid].zoneVol,
voids[iVoid].zoneNumPart,
voids[iVoid].numZones,
voids[iVoid].vol,
voids[iVoid].numPart,
voids[iVoid].densCon,
voids[iVoid].voidProb);
fprintf(fpBarycenter, "%d %e %e %e\n",
voids[iVoid].voidID,
voids[iVoid].barycenter[0],
voids[iVoid].barycenter[1],
voids[iVoid].barycenter[2]);
fprintf(fpDistances, "%d %e\n",
voids[iVoid].voidID,
voids[iVoid].nearestMock);
double outCenter[3];
outCenter[0] = voids[iVoid].barycenter[0];
outCenter[1] = voids[iVoid].barycenter[1];
outCenter[2] = voids[iVoid].barycenter[2];
if (args_info.isObservation_flag) {
outCenter[0] = (voids[iVoid].barycenter[0]-boxLen[0]/2.)*100.;
outCenter[1] = (voids[iVoid].barycenter[1]-boxLen[1]/2.)*100.;
outCenter[2] = (voids[iVoid].barycenter[2]-boxLen[2]/2.)*100.;
}
fprintf(fpInfo, "%.2f %.2f %.2f %.2f %.2f %.5f %.2f %d\n",
outCenter[0],
outCenter[1],
outCenter[2],
voids[iVoid].vol,
voids[iVoid].radius,
voids[iVoid].redshift,
4./3.*M_PI*pow(voids[iVoid].radius, 3),
voids[iVoid].voidID
);
fprintf(fpSkyPositions, "%.2f %.2f %.5f %.2f %d\n",
atan((voids[iVoid].barycenter[1]-boxLen[1]/2.)/(voids[iVoid].barycenter[0]-boxLen[0]/2.)) * 180/M_PI + 180,
asin((voids[iVoid].barycenter[2]-boxLen[2]/2.)/voids[iVoid].redshift) * 180/M_PI,
voids[iVoid].redshift,
voids[iVoid].radius,
voids[iVoid].voidID);
}
fclose(fp);
fclose(fpInfo);
fclose(fpBarycenter);
fclose(fpDistances);
// print the centers catalog again but without central density cuts
fpInfo = fopen(args_info.outNoCutInfo_arg, "w");
fprintf(fpInfo, "# center x,y,z (km/s), volume (normalized), radius (Mpc/h), redshift, volume (Mpc/h^3), void ID\n");
for (iVoid = 0; iVoid < numVoids; iVoid++) {
if (voids[iVoid].accepted == 0) continue;
double outCenter[3];
outCenter[0] = voids[iVoid].barycenter[0];
outCenter[1] = voids[iVoid].barycenter[1];
outCenter[2] = voids[iVoid].barycenter[2];
if (args_info.isObservation_flag) {
outCenter[0] = (voids[iVoid].barycenter[0]-boxLen[0]/2.)*100.;
outCenter[1] = (voids[iVoid].barycenter[1]-boxLen[1]/2.)*100.;
outCenter[2] = (voids[iVoid].barycenter[2]-boxLen[2]/2.)*100.;
}
fprintf(fpInfo, "%.2f %.2f %.2f %.2f %.2f %.5f %.2f %d\n",
outCenter[0],
outCenter[1],
outCenter[2],
voids[iVoid].vol,
voids[iVoid].radius,
voids[iVoid].redshift,
4./3.*M_PI*pow(voids[iVoid].radius, 3),
voids[iVoid].voidID);
}
fclose(fpInfo);
clock2 = clock();
printf(" Time: %f sec (for %d voids)\n", (1.*clock2-clock1)/CLOCKS_PER_SEC, numVoids);
clock1 = clock();
printf("Done!\n");
return 0;
} // end main