Update cosmotool 2nd part

This commit is contained in:
Guilhem Lavaux 2018-07-19 15:11:23 +03:00
parent 64e05fc180
commit 003bc39d4a
70 changed files with 8708 additions and 0 deletions

View file

@ -0,0 +1,104 @@
/*+
This is CosmoTool (./sample/gadgetToArray.cpp) -- Copyright (C) Guilhem Lavaux (2007-2014)
guilhem.lavaux@gmail.com
This software is a computer program whose purpose is to provide a toolbox for cosmological
data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...)
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
+*/
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include "cic.hpp"
#include "loadGadget.hpp"
#include "miniargs.hpp"
#include <H5Cpp.h>
#include "hdf5_array.hpp"
using namespace CosmoTool;
using namespace std;
int main(int argc, char **argv)
{
typedef boost::multi_array<float, 2> array_type;
uint32_t res;
char *fname;
int id;
double MPC;
MiniArgDesc desc[] = {
{ "SNAPSHOT", &fname, MINIARG_STRING },
{ "MPC", &MPC, MINIARG_DOUBLE },
{ 0, 0, MINIARG_NULL }
};
if (!parseMiniArgs(argc, argv, desc))
return 1;
H5::H5File f("density.h5", H5F_ACC_TRUNC);
SimuData *p = loadGadgetMulti(fname, 0, 0);
double L0 = p->BoxSize/MPC;
cout << "Will read " << p->TotalNumPart << " particles" << endl;
array_type parts(boost::extents[p->TotalNumPart][7]);
uint64_t q = 0;
try {
for (int cpuid=0;;cpuid++) {
cout << " = CPU " << cpuid << " = " << endl;
p = loadGadgetMulti(fname, cpuid, NEED_POSITION|NEED_VELOCITY|NEED_MASS);
cout << " = DONE LOAD, COPYING IN PLACE" << endl;
for (uint32_t i = 0; i < p->NumPart; i++)
{
for (int j = 0; j < 3; j++)
{
parts[q][j] = p->Pos[j][i]/MPC;
while (parts[q][j] < 0) parts[q][j] += L0;
while (parts[q][j] >= L0) parts[q][j] -= L0;
parts[q][j] -= L0/2;
}
parts[q][3] = p->Vel[0][i];
parts[q][4] = p->Vel[1][i];
parts[q][5] = p->Vel[2][i];
parts[q][6] = p->Mass[i];
q++;
}
cout << " = DONE (q=" << q << ")" << endl;
delete p;
}
} catch (const NoSuchFileException& e) {}
cout << " ++ WRITING ++" << endl;
hdf5_write_array(f, "particles", parts);
return 0;
}

View file

@ -0,0 +1,96 @@
/*+
This is CosmoTool (./sample/gadgetToDensity.cpp) -- Copyright (C) Guilhem Lavaux (2007-2014)
guilhem.lavaux@gmail.com
This software is a computer program whose purpose is to provide a toolbox for cosmological
data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...)
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
+*/
#include <cmath>
#include <iostream>
#include <cstdlib>
#include "cic.hpp"
#include "loadGadget.hpp"
#include "miniargs.hpp"
#include "yorick.hpp"
using namespace std;
using namespace CosmoTool;
int main(int argc, char **argv)
{
uint32_t res;
char *fname;
int id;
MiniArgDesc desc[] = {
{ "SNAPSHOT", &fname, MINIARG_STRING },
{ "ID", &id, MINIARG_INT },
{ "RESOLUTION", &res, MINIARG_INT },
{ 0, 0, MINIARG_NULL }
};
if (!parseMiniArgs(argc, argv, desc))
return 1;
SimuData *p = loadGadgetMulti(fname, 0, 0);
double L0 = p->BoxSize;
CICFilter filter(res, L0);
delete p;
try {
for (int cpuid=0;;cpuid++) {
p = loadGadgetMulti(fname, cpuid, NEED_POSITION);
for (uint32_t i = 0; i < p->NumPart; i++)
{
CICParticles a;
a.mass = 1.0;
a.coords[0] = p->Pos[0][i]/1000;
a.coords[1] = p->Pos[1][i]/1000;
a.coords[2] = p->Pos[2][i]/1000;
filter.putParticles(&a, 1);
}
delete p;
}
} catch (const NoSuchFileException& e) {}
CICType *denField;
uint32_t Ntot;
filter.getDensityField(denField, Ntot);
cout << "L0=" << L0 << endl;
cout << "Saving density field" << endl;
uint32_t dimList[] = { res, res, res};
saveArray("densityField.nc", denField, dimList, 3);
return 0;
}

View file

@ -0,0 +1,72 @@
#include <cmath>
#include <iostream>
#include <cstdlib>
#include <boost/multi_array.hpp>
#include <H5Cpp.h>
#include "hdf5_array.hpp"
#include "miniargs.hpp"
#include "fortran.hpp"
using namespace std;
using namespace CosmoTool;
//#define GRAFIC_GUILHEM
int main(int argc, char **argv)
{
uint32_t res;
char *fname;
int id;
MiniArgDesc desc[] = {
{ "GRAFIC", &fname, MINIARG_STRING },
{ 0, 0, MINIARG_NULL }
};
if (!parseMiniArgs(argc, argv, desc))
return 1;
UnformattedRead ur(fname);
ur.beginCheckpoint();
int32_t nx = ur.readInt32();
int32_t ny = ur.readInt32();
int32_t nz = ur.readInt32();
float dx = ur.readReal32();
float xo = ur.readReal32();
float yo = ur.readReal32();
float zo = ur.readReal32();
float astart = ur.readReal32();
float omega_m = ur.readReal32();
float omega_nu = ur.readReal32();
float h0 = ur.readReal32();
#ifdef GRAFIC_GUILHEM
float w0 = ur.readReal32();
#endif
ur.endCheckpoint();
cout << "Grafic file: Nx=" << nx << " Ny=" << ny << " Nz=" << nz << endl;
cout << "a_start = " << astart << endl;
cout << "z_start = " << 1/astart - 1 << endl;
cout << "L = " << nx*dx << endl;
boost::multi_array<float, 3> density(boost::extents[nx][ny][nz]);
for (int32_t iz = 0; iz < nz; iz++)
{
ur.beginCheckpoint();
for (int32_t iy = 0; iy < ny; iy++)
{
for (int32_t ix = 0; ix < nx; ix++)
{
density[ix][iy][iz] = ur.readReal32();
}
}
ur.endCheckpoint();
}
H5::H5File f("density.h5", H5F_ACC_TRUNC);
hdf5_write_array(f, "density", density);
return 0;
}

View file

@ -0,0 +1,218 @@
#include "openmp.hpp"
#include "omptl/algorithm"
#include <cassert>
#include "yorick.hpp"
#include "sphSmooth.hpp"
#include "mykdtree.hpp"
#include "miniargs.hpp"
#include <H5Cpp.h>
#include "hdf5_array.hpp"
#include <iostream>
#include <boost/format.hpp>
#include <boost/bind.hpp>
using namespace std;
using namespace CosmoTool;
#define N_SPH 32
struct VCoord{
float v[3];
float mass;
};
using boost::format;
using boost::str;
typedef boost::multi_array<float, 2> array_type;
typedef boost::multi_array<float, 3> array3_type;
typedef boost::multi_array<float, 4> array4_type;
ComputePrecision getVelocity(const VCoord& v, int i)
{
return v.mass * v.v[i];
}
ComputePrecision getMass(const VCoord& v)
{
return v.mass;
}
typedef SPHSmooth<VCoord> MySmooth;
typedef MySmooth::SPHTree MyTree;
typedef MyTree::Cell MyCell;
template<typename FuncT>
void computeInterpolatedField(MyTree *tree1, double boxsize, int Nres, double cx, double cy, double cz,
array3_type& bins, array3_type& arr, FuncT func, double rLimit2)
{
#pragma omp parallel
{
MySmooth smooth1(tree1, N_SPH);
#pragma omp for schedule(dynamic)
for (int rz = 0; rz < Nres; rz++)
{
double pz = (rz)*boxsize/Nres-cz;
cout << format("[%d] %d / %d") % smp_get_thread_id() % rz % Nres << endl;
for (int ry = 0; ry < Nres; ry++)
{
double py = (ry)*boxsize/Nres-cy;
for (int rx = 0; rx < Nres; rx++)
{
double px = (rx)*boxsize/Nres-cx;
MyTree::coords c = { float(px), float(py), float(pz) };
double r2 = c[0]*c[0]+c[1]*c[1]+c[2]*c[2];
if (r2 > rLimit2)
{
arr[rx][ry][rz] = 0;
continue;
}
uint32_t numInCell = bins[rx][ry][rz];
if (numInCell > N_SPH)
smooth1.fetchNeighbours(c, numInCell);
else
smooth1.fetchNeighbours(c);
arr[rx][ry][rz] = smooth1.computeSmoothedValue(c, func);
}
}
}
}
}
int main(int argc, char **argv)
{
char *fname1, *fname2;
double rLimit, boxsize, rLimit2, cx, cy, cz;
int Nres;
MiniArgDesc args[] = {
{ "INPUT DATA1", &fname1, MINIARG_STRING },
{ "RADIUS LIMIT", &rLimit, MINIARG_DOUBLE },
{ "BOXSIZE", &boxsize, MINIARG_DOUBLE },
{ "RESOLUTION", &Nres, MINIARG_INT },
{ "CX", &cx, MINIARG_DOUBLE },
{ "CY", &cy, MINIARG_DOUBLE },
{ "CZ", &cz, MINIARG_DOUBLE },
{ 0, 0, MINIARG_NULL }
};
if (!parseMiniArgs(argc, argv, args))
return 1;
H5::H5File in_f(fname1, 0);
H5::H5File out_f("fields.h5", H5F_ACC_TRUNC);
array_type v1_data;
uint32_t N1_points, N2_points;
array3_type bins(boost::extents[Nres][Nres][Nres]);
rLimit2 = rLimit*rLimit;
hdf5_read_array(in_f, "particles", v1_data);
assert(v1_data.shape()[1] == 7);
N1_points = v1_data.shape()[0];
cout << "Got " << N1_points << " in the first file." << endl;
MyCell *allCells_1 = new MyCell[N1_points];
#pragma omp parallel for schedule(static)
for (long i = 0; i < Nres*Nres*Nres; i++)
bins.data()[i] = 0;
cout << "Shuffling data in cells..." << endl;
#pragma omp parallel for schedule(static)
for (int i = 0 ; i < N1_points; i++)
{
for (int j = 0; j < 3; j++)
allCells_1[i].coord[j] = v1_data[i][j];
for (int k = 0; k < 3; k++)
allCells_1[i].val.pValue.v[k] = v1_data[i][3+k];
allCells_1[i].val.pValue.mass = v1_data[i][6];
allCells_1[i].active = true;
allCells_1[i].val.weight = 0.0;
long rx = floor((allCells_1[i].coord[0]+cx)*Nres/boxsize+0.5);
long ry = floor((allCells_1[i].coord[1]+cy)*Nres/boxsize+0.5);
long rz = floor((allCells_1[i].coord[2]+cz)*Nres/boxsize+0.5);
if (rx < 0 || rx >= Nres || ry < 0 || ry >= Nres || rz < 0 || rz >= Nres)
continue;
#pragma omp atomic update
bins[rx][ry][rz]++;
}
v1_data.resize(boost::extents[1][1]);
hdf5_write_array(out_f, "num_in_cell", bins);
cout << "Building trees..." << endl;
MyTree tree1(allCells_1, N1_points);
cout << "Creating smoothing filter..." << endl;
// array3_type out_rad_1(boost::extents[Nres][Nres][Nres]);
cout << "Weighing..." << endl;
#pragma omp parallel
{
MySmooth smooth1(&tree1, N_SPH);
#pragma omp for schedule(dynamic)
for (int rz = 0; rz < Nres; rz++)
{
double pz = (rz)*boxsize/Nres-cz;
(cout << rz << " / " << Nres << endl).flush();
for (int ry = 0; ry < Nres; ry++)
{
double py = (ry)*boxsize/Nres-cy;
for (int rx = 0; rx < Nres; rx++)
{
double px = (rx)*boxsize/Nres-cx;
MyTree::coords c = { float(px), float(py), float(pz) };
double r2 = c[0]*c[0]+c[1]*c[1]+c[2]*c[2];
if (r2 > rLimit2)
{
continue;
}
uint32_t numInCell = bins[rx][ry][rz];
if (numInCell > N_SPH)
smooth1.fetchNeighbours(c, numInCell);
else
smooth1.fetchNeighbours(c);
#pragma omp critical
smooth1.addGridSite(c);
}
}
(cout << " Done " << rz << endl).flush();
}
}
cout << "Interpolating..." << endl;
array3_type interpolated(boost::extents[Nres][Nres][Nres]);
computeInterpolatedField(&tree1, boxsize, Nres, cx, cy, cz,
bins, interpolated, getMass, rLimit2);
hdf5_write_array(out_f, "density", interpolated);
//out_f.flush();
for (int i = 0; i < 3; i++) {
computeInterpolatedField(&tree1, boxsize, Nres, cx, cy, cz,
bins, interpolated, boost::bind(getVelocity, _1, i), rLimit2);
hdf5_write_array(out_f, str(format("p%d") % i), interpolated);
}
return 0;
};

View file

@ -0,0 +1,86 @@
#include "openmp.hpp"
#include "omptl/algorithm"
#include <cassert>
#include "yorick.hpp"
#include "sphSmooth.hpp"
#include "mykdtree.hpp"
#include "miniargs.hpp"
#include <H5Cpp.h>
#include "hdf5_array.hpp"
#include <iostream>
#include <boost/format.hpp>
#include <boost/bind.hpp>
using namespace std;
using namespace CosmoTool;
struct VCoord{
};
using boost::format;
using boost::str;
typedef boost::multi_array<float, 2> array_type_2d;
typedef boost::multi_array<float, 1> array_type_1d;
typedef KDTree<3,float> MyTree;
typedef MyTree::Cell MyCell;
int main(int argc, char **argv)
{
char *fname1, *fname2;
MiniArgDesc args[] = {
{ "INPUT DATA1", &fname1, MINIARG_STRING },
{ 0, 0, MINIARG_NULL }
};
if (!parseMiniArgs(argc, argv, args))
return 1;
H5::H5File in_f(fname1, 0);
H5::H5File out_f("distances.h5", H5F_ACC_TRUNC);
array_type_2d v1_data;
array_type_1d dist_data;
uint32_t N1_points;
hdf5_read_array(in_f, "particles", v1_data);
assert(v1_data.shape()[1] == 7);
N1_points = v1_data.shape()[0];
cout << "Got " << N1_points << " in the first file." << endl;
MyCell *allCells_1 = new MyCell[N1_points];
cout << "Shuffling data in cells..." << endl;
#pragma omp parallel for schedule(static)
for (int i = 0 ; i < N1_points; i++)
{
for (int j = 0; j < 3; j++)
allCells_1[i].coord[j] = v1_data[i][j];
allCells_1[i].active = true;
}
dist_data.resize(boost::extents[N1_points]);
cout << "Building trees..." << endl;
MyTree tree1(allCells_1, N1_points);
#pragma omp parallel
{
MyCell **foundCells = new MyCell *[2];
#pragma omp for
for (size_t i = 0; i < N1_points; i++) {
double dists[2];
tree1.getNearestNeighbours(allCells_1[i].coord, 2, foundCells, dists);
dist_data[i] = dists[1];
}
delete[] foundCells;
}
hdf5_write_array(out_f, "distances", dist_data);
return 0;
};

183
external/cosmotool/sample/testHDF5.cpp vendored Normal file
View file

@ -0,0 +1,183 @@
/*+
This is CosmoTool (./sample/testHDF5.cpp) -- Copyright (C) Guilhem Lavaux (2007-2014)
guilhem.lavaux@gmail.com
This software is a computer program whose purpose is to provide a toolbox for cosmological
data analysis (e.g. filters, generalized Fourier transforms, power spectra, ...)
This software is governed by the CeCILL license under French law and
abiding by the rules of distribution of free software. You can use,
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info".
As a counterpart to the access to the source code and rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software's author, the holder of the
economic rights, and the successive licensors have only limited
liability.
In this respect, the user's attention is drawn to the risks associated
with loading, using, modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also
therefore means that it is reserved for developers and experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or
data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.
The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
+*/
#include <iostream>
#include "hdf5_array.hpp"
#include <H5Cpp.h>
using namespace std;
struct MyStruct
{
int a;
double b;
char c;
};
struct MyStruct2
{
MyStruct base;
int d;
};
enum MyColors
{
RED, GREEN, BLUE
};
CTOOL_STRUCT_TYPE(MyStruct, hdf5t_MyStruct,
((int, a))
((double, b))
((char, c))
)
CTOOL_STRUCT_TYPE(MyStruct2, hdf5t_MyStruct2,
((MyStruct, base))
((int, d))
)
CTOOL_ENUM_TYPE(MyColors, hdf5t_MyColors,
(RED) (GREEN) (BLUE)
)
int main()
{
typedef boost::multi_array<float, 2> array_type;
typedef boost::multi_array<float, 3> array3_type;
typedef boost::multi_array<MyStruct, 1> array_mys_type;
typedef boost::multi_array<MyColors, 1> array_mys_color;
typedef boost::multi_array<bool, 1> array_mys_bool;
typedef boost::multi_array<MyStruct2, 1> array_mys2_type;
typedef boost::multi_array<std::complex<double>, 2> arrayc_type;
typedef array_type::index index;
H5::H5File f("test.h5", H5F_ACC_TRUNC);
H5::Group g = f.createGroup("test_group");
array_type A(boost::extents[2][3]);
array_type B, Bprime(boost::extents[1][2]);
array3_type C(boost::extents[2][3][4]);
arrayc_type D, E;
array_mys_type F(boost::extents[10]), G;
array_mys2_type H(boost::extents[10]);
array_mys_color I(boost::extents[2]);
array_mys_bool J(boost::extents[2]);
I[0] = RED;
I[1] = BLUE;
J[0] = false;
J[1] = true;
int values = 0;
for (index i = 0; i != 2; i++)
for (index j = 0; j != 3; j++)
A[i][j] = values++;
for (index i = 0; i != 10; i++)
{
F[i].a = i;
F[i].b = double(i)/4.;
F[i].c = 'r'+i;
H[i].base = F[i];
H[i].d = 2*i;
}
std::cout << " c = " << ((char *)&F[1])[offsetof(MyStruct, c)] << endl;
CosmoTool::hdf5_write_array(g, "test_data", A);
CosmoTool::hdf5_write_array(g, "test_struct", F);
CosmoTool::hdf5_write_array(g, "test_struct2", H);
CosmoTool::hdf5_write_array(g, "colors", I);
CosmoTool::hdf5_write_array(g, "bools", J);
CosmoTool::hdf5_read_array(g, "test_data", B);
int verify = 0;
for (index i = 0; i != 2; i++)
for (index j = 0; j != 3; j++)
if (B[i][j] != verify++) {
std::cout << "Invalid array content" << endl;
abort();
}
std::cout << "Testing C " << std::endl;
try
{
CosmoTool::hdf5_read_array(g, "test_data", C);
std::cout << "Did not throw InvalidDimensions" << endl;
abort();
}
catch (const CosmoTool::InvalidDimensions&)
{}
std::cout << "Testing Bprime " << std::endl;
try
{
CosmoTool::hdf5_read_array(g, "test_data", Bprime, false, true);
for (index i = 0; i != 1; i++)
for (index j = 0; j != 2; j++)
if (B[i][j] != Bprime[i][j]) {
std::cout << "Invalid array content in Bprime" << endl;
abort();
}
}
catch (const CosmoTool::InvalidDimensions&)
{
std::cout << "Bad! Dimensions should be accepted" << std::endl;
abort();
}
D.resize(boost::extents[2][3]);
D = A;
CosmoTool::hdf5_write_array(g, "test_data_c", D);
CosmoTool::hdf5_read_array(g, "test_data_c", E);
verify = 0;
for (index i = 0; i != 2; i++)
for (index j = 0; j != 3; j++)
if (E[i][j].real() != verify++) {
std::cout << "Invalid array content" << endl;
abort();
}
CosmoTool::hdf5_read_array(g, "test_struct", G);
for (index i = 0; i != 10; i++)
if (G[i].a != F[i].a || G[i].b != F[i].b || G[i].c != F[i].c) {
std::cout << "Invalid struct content" << endl;
abort();
}
return 0;
}