mirror of
https://bitbucket.org/cosmicvoids/vide_public.git
synced 2025-07-04 23:31:12 +00:00
Update cosmotool 2nd part
This commit is contained in:
parent
64e05fc180
commit
003bc39d4a
70 changed files with 8708 additions and 0 deletions
202
external/cosmotool/python_sample/icgen/cosmogrowth.py
vendored
Normal file
202
external/cosmotool/python_sample/icgen/cosmogrowth.py
vendored
Normal file
|
@ -0,0 +1,202 @@
|
|||
import numexpr as ne
|
||||
import multiprocessing
|
||||
import pyfftw
|
||||
import weakref
|
||||
import numpy as np
|
||||
import cosmolopy as cpy
|
||||
import cosmotool as ct
|
||||
|
||||
class CubeFT(object):
|
||||
def __init__(self, L, N, max_cpu=-1):
|
||||
|
||||
self.N = N
|
||||
self.align = pyfftw.simd_alignment
|
||||
self.L = L
|
||||
self.max_cpu = multiprocessing.cpu_count() if max_cpu < 0 else max_cpu
|
||||
self._dhat = pyfftw.n_byte_align_empty((self.N,self.N,self.N/2+1), self.align, dtype='complex64')
|
||||
self._density = pyfftw.n_byte_align_empty((self.N,self.N,self.N), self.align, dtype='float32')
|
||||
self._irfft = pyfftw.FFTW(self._dhat, self._density, axes=(0,1,2), direction='FFTW_BACKWARD', threads=self.max_cpu, normalize_idft=False)
|
||||
self._rfft = pyfftw.FFTW(self._density, self._dhat, axes=(0,1,2), threads=self.max_cpu, normalize_idft=False)
|
||||
|
||||
def rfft(self):
|
||||
return ne.evaluate('c*a', local_dict={'c':self._rfft(normalise_idft=False),'a':(self.L/self.N)**3})
|
||||
|
||||
def irfft(self):
|
||||
return ne.evaluate('c*a', local_dict={'c':self._irfft(normalise_idft=False),'a':(1/self.L)**3})
|
||||
|
||||
def get_dhat(self):
|
||||
return self._dhat
|
||||
def set_dhat(self, in_dhat):
|
||||
self._dhat[:] = in_dhat
|
||||
dhat = property(get_dhat, set_dhat, None)
|
||||
|
||||
def get_density(self):
|
||||
return self._density
|
||||
def set_density(self, d):
|
||||
self._density[:] = d
|
||||
density = property(get_density, set_density, None)
|
||||
|
||||
|
||||
class CosmoGrowth(object):
|
||||
|
||||
def __init__(self, **cosmo):
|
||||
self.cosmo = cosmo
|
||||
|
||||
def D(self, a):
|
||||
return cpy.perturbation.fgrowth(1/a-1, self.cosmo['omega_M_0'], unnormed=True)
|
||||
|
||||
def compute_E(self, a):
|
||||
om = self.cosmo['omega_M_0']
|
||||
ol = self.cosmo['omega_lambda_0']
|
||||
ok = self.cosmo['omega_k_0']
|
||||
|
||||
E = np.sqrt(om/a**3 + ol + ok/a**2)
|
||||
|
||||
H2 = -3*om/a**4 - 2*ok/a**3
|
||||
|
||||
Eprime = 0.5*H2/E
|
||||
|
||||
return E,Eprime
|
||||
|
||||
def Ddot(self, a):
|
||||
E,Eprime = self.compute_E(a)
|
||||
D = self.D(a)
|
||||
Ddot_D = Eprime/E + 2.5 * self.cosmo['omega_M_0']/(a**3*E**2*D)
|
||||
Ddot_D *= a
|
||||
return Ddot_D
|
||||
|
||||
def compute_velmul(self, a):
|
||||
E,_ = self.compute_E(a)
|
||||
velmul = self.Ddot(a)
|
||||
velmul *= 100 * a * E
|
||||
return velmul
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class LagrangianPerturbation(object):
|
||||
|
||||
def __init__(self,density,L, fourier=False, supersample=1, max_cpu=-1):
|
||||
|
||||
self.L = L
|
||||
self.N = density.shape[0]
|
||||
|
||||
self.max_cpu = max_cpu
|
||||
self.cube = CubeFT(self.L, self.N, max_cpu=max_cpu)
|
||||
|
||||
if not fourier:
|
||||
self.cube.density = density
|
||||
self.dhat = self.cube.rfft().copy()
|
||||
else:
|
||||
self.dhat = density.copy()
|
||||
|
||||
if supersample > 1:
|
||||
self.upgrade_sampling(supersample)
|
||||
self.ik = np.fft.fftfreq(self.N, d=L/self.N)*2*np.pi
|
||||
self._kx = self.ik[:,None,None]
|
||||
self._ky = self.ik[None,:,None]
|
||||
self._kz = self.ik[None,None,:(self.N/2+1)]
|
||||
self.cache = {}#weakref.WeakValueDictionary()
|
||||
|
||||
@ct.timeit_quiet
|
||||
def upgrade_sampling(self, supersample):
|
||||
N2 = self.N * supersample
|
||||
N = self.N
|
||||
dhat_new = np.zeros((N2, N2, N2/2+1), dtype=np.complex128)
|
||||
|
||||
hN = N/2
|
||||
dhat_new[:hN, :hN, :hN+1] = self.dhat[:hN, :hN, :]
|
||||
dhat_new[:hN, (N2-hN):N2, :hN+1] = self.dhat[:hN, hN:, :]
|
||||
dhat_new[(N2-hN):N2, (N2-hN):N2, :hN+1] = self.dhat[hN:, hN:, :]
|
||||
dhat_new[(N2-hN):N2, :hN, :hN+1] = self.dhat[hN:, :hN, :]
|
||||
|
||||
self.dhat = dhat_new
|
||||
self.N = N2
|
||||
self.cube = CubeFT(self.L, self.N, max_cpu=self.max_cpu)
|
||||
|
||||
@ct.timeit_quiet
|
||||
def _gradient(self, phi, direction):
|
||||
if direction == 'all':
|
||||
dirs = [0,1,2]
|
||||
copy = True
|
||||
else:
|
||||
dirs = [direction]
|
||||
copy = False
|
||||
ret=[]
|
||||
for dir in dirs:
|
||||
ne.evaluate('phi_hat * i * kv / (kx**2 + ky**2 + kz**2)', out=self.cube.dhat,
|
||||
local_dict={'i':-1j, 'phi_hat':phi, 'kv':self._kdir(dir),
|
||||
'kx':self._kx, 'ky':self._ky, 'kz':self._kz},casting='unsafe')
|
||||
# self.cube.dhat = self._kdir(direction)*1j*phi
|
||||
self.cube.dhat[0,0,0] = 0
|
||||
x = self.cube.irfft()
|
||||
ret.append(x.copy() if copy else x)
|
||||
return ret[0] if len(ret)==1 else ret
|
||||
|
||||
@ct.timeit_quiet
|
||||
def lpt1(self, direction=0):
|
||||
return self._gradient(self.dhat, direction)
|
||||
|
||||
def new_shape(self,direction, q=3, half=False):
|
||||
N0 = (self.N/2+1) if half else self.N
|
||||
return ((1,)*direction) + (N0,) + ((1,)*(q-1-direction))
|
||||
|
||||
def _kdir(self, direction, q=3):
|
||||
if direction != q-1:
|
||||
return self.ik.reshape(self.new_shape(direction, q=q))
|
||||
else:
|
||||
return self.ik[:self.N/2+1].reshape(self.new_shape(direction, q=q, half=True))
|
||||
|
||||
def _get_k2(self, q=3):
|
||||
if 'k2' in self.cache:
|
||||
return self.cache['k2']
|
||||
|
||||
k2 = self._kdir(0, q=q)**2
|
||||
for d in xrange(1,q):
|
||||
k2 = k2 + self._kdir(d, q=q)**2
|
||||
|
||||
self.cache['k2'] = k2
|
||||
return k2
|
||||
|
||||
def _do_irfft(self, array, copy=True):
|
||||
if copy:
|
||||
self.cube.dhat = array
|
||||
return self.cube.irfft()
|
||||
|
||||
def _do_rfft(self, array, copy=True):
|
||||
if copy:
|
||||
self.cube.density = array
|
||||
return self.cube.rfft()
|
||||
|
||||
@ct.timeit_quiet
|
||||
def lpt2(self, direction=0):
|
||||
# k2 = self._get_k2()
|
||||
# k2[0,0,0] = 1
|
||||
|
||||
inv_k2 = ne.evaluate('1/(kx**2+ky**2+kz**2)', {'kx':self._kdir(0),'ky':self._kdir(1),'kz':self._kdir(2)})
|
||||
inv_k2[0,0,0]=0
|
||||
potgen0 = lambda i: ne.evaluate('kdir**2*d*ik2',out=self.cube.dhat,local_dict={'kdir':self._kdir(i),'d':self.dhat,'ik2':inv_k2}, casting='unsafe' )
|
||||
potgen = lambda i,j: ne.evaluate('kdir0*kdir1*d*ik2',out=self.cube.dhat,local_dict={'kdir0':self._kdir(i),'kdir1':self._kdir(j),'d':self.dhat,'ik2':inv_k2}, casting='unsafe' )
|
||||
|
||||
if 'lpt2_potential' not in self.cache:
|
||||
print("Rebuilding potential...")
|
||||
div_phi2 = np.zeros((self.N,self.N,self.N), dtype=np.float64)
|
||||
for j in xrange(3):
|
||||
q = self._do_irfft( potgen0(j) ).copy()
|
||||
for i in xrange(j+1, 3):
|
||||
with ct.time_block("LPT2 elemental (%d,%d)" %(i,j)):
|
||||
ne.evaluate('div + q * pot', out=div_phi2,
|
||||
local_dict={'div':div_phi2, 'q':q,'pot':self._do_irfft( potgen0(i), copy=False ) }
|
||||
)
|
||||
ne.evaluate('div - pot**2',out=div_phi2,
|
||||
local_dict={'div':div_phi2,'pot':self._do_irfft(potgen(i,j), copy=False) }
|
||||
)
|
||||
|
||||
phi2_hat = self._do_rfft(div_phi2)
|
||||
#self.cache['lpt2_potential'] = phi2_hat
|
||||
del div_phi2
|
||||
else:
|
||||
phi2_hat = self.cache['lpt2_potential']
|
||||
|
||||
return self._gradient(phi2_hat, direction)
|
Loading…
Add table
Add a link
Reference in a new issue